Industrial Strength C++

Mats Henricson

Erik Nyquist

Prentice-Hall PTR

Copyright ©1997 Mats Henricson, Erik Nyquist and Ellemtel Utvecklings AB
Published by Prentice Hall PTR

All rights reserved.

ISBN 0-13-120965-5

Contents

Naming

Meaningful names
Names that collide
lllegal naming

Organizing the code
Comments
Control flow

Object Life Cycle

Initialization of variables and constants
Constructor initializer lists
Copying of objects

Conversions

The class interface

Inline functions

Argument passing and return values
Const Correctness

Overloading and default arguments

ST AN

11

19

25

31

32
35
38

47

55

56
58
66
74

Conversion functions 81

new and delete 87
Static Objects 95
Object-oriented programming 103
Encapsulation 104
Dynamic binding 106
Inheritance 110
The Class Interface 115
Assertions 129
Error handling 133
Different ways to report errors 134
When to throw exceptions 137
Exception-safe code 143
Exception types 149
Error recovery 153
Exception specifications 155
Parts of C++ to avoid 157
Library functions to avoid 157
Language constructs to avoid 161

Ii Industrial Strength C++

Size of executables

Portability

General aspects of portability
Including files

The size and layout of objects
Unsupported language features
Other compiler differences

Style

General Aspects of Style
Naming conventions
File-name extensions
Lexical style

AppendixTerminology
Rules and recommendations

Index

167

171

172
175
177
181
184

191

192
193
196
197

203

207

215

Examples

EXAMPLE 1.1
EXAMPLE 1.2
EXAMPLE 1.3
EXAMPLE 1.4
EXAMPLE 1.5
EXAMPLE 1.6
EXAMPLE 1.7
EXAMPLE 1.8
EXAMPLE 1.9
EXAMPLE 1.10
EXAMPLE 2.1
EXAMPLE 2.2
EXAMPLE 2.3
EXAMPLE 2.4
EXAMPLE 2.5
EXAMPLE 2.6
EXAMPLE 2.7
EXAMPLE 2.8
EXAMPLE 3.1
EXAMPLE 3.2
EXAMPLE 3.3
EXAMPLE 4.1
EXAMPLE 4.2
EXAMPLE 4.3
EXAMPLE 4.4
EXAMPLE 5.1

Naming a variable

Different ways to print an object
Naming accessors and modifiers
Names used by a template function
Namespace

Accessing names from namespace
Class as namespace

Class names with prefixes

Names of include files

Use of underscores in names
Testing for self-containment

Data member of class type
Forward declaration

Include guard

Disable inlining by using inline definition files

Function template

Class template

Template header file

Static string identifying the file
Comments in C++

Nested C-style comment
Block afteffor -loop

Blocks inswitch -statement
How to write switch statements
How to break out of a loop
Initializing variables

12
13
14
15
15
17
17
18
22
22
22
27
28
28
29
32

EXAMPLE 5.2
EXAMPLE 5.3
EXAMPLE 5.4
EXAMPLE 5.5
EXAMPLE 5.6
EXAMPLE 5.7
EXAMPLE 5.8
EXAMPLE 5.9
EXAMPLE 5.10
EXAMPLE 5.11
EXAMPLE 5.12
EXAMPLE 6.1
EXAMPLE 6.2
EXAMPLE 6.3
EXAMPLE 6.4
EXAMPLE 6.5
EXAMPLE 6.6
EXAMPLE 6.7
EXAMPLE 7.1
EXAMPLE 7.2
EXAMPLE 7.3
EXAMPLE 7.4
EXAMPLE 7.5
EXAMPLE 7.6
EXAMPLE 7.7
EXAMPLE 7.8
EXAMPLE 7.9
EXAMPLE 7.10
EXAMPLE 7.11
EXAMPLE 7.12
EXAMPLE 7.13

Initialization instead of assignment
Assignment instead of initialization
Declaring multiple variables

Correct use of “magic” number
Constructor initialization lists

Order of initializers

Returning dangling pointers and references
Non-copyable class

Copyable class that manages memory
Self-assignment

Implementing a copy assignment operator
Explicit conversions

Conversion of string object tonst char*
Usingstatic_cast

New style casts

Casting away const

Object in write-protected memory
Class withmutable data member

A class with inline member functions
Different types of function parameters
Passing parameters by value

Pointer and reference arguments
Passing arguments of unknown type
Passing base class reference

Passing base class object by value
Return value from assignment operators
const -declared parameter

Using parameter as a local variable
Copyable type parameter

Accessing string literals

Implications otonst

33
33
34
34
36
37
39
41
42
43
43
48
49
51
51
52
52
53
57
59
60
61
63
64
65
65
67
67
68
69
70

Vi

Industrial Strength C++

EXAMPLE 7.14
EXAMPLE 7.15
EXAMPLE 7.16
EXAMPLE 7.17
EXAMPLE 7.18
EXAMPLE 7.19
EXAMPLE 7.20
EXAMPLE 7.21
EXAMPLE 7.22
EXAMPLE 7.23
EXAMPLE 7.24
EXAMPLE 8.1
EXAMPLE 8.2
EXAMPLE 8.3
EXAMPLE 8.4
EXAMPLE 8.5
EXAMPLE 9.1
EXAMPLE 9.2
EXAMPLE 9.3
EXAMPLE 9.4
EXAMPLE 9.5
EXAMPLE 9.6
EXAMPLE 9.7
EXAMPLE 10.1
EXAMPLE 10.2
EXAMPLE 10.3
EXAMPLE 10.4
EXAMPLE 10.5
EXAMPLE 10.6
EXAMPLE 10.7
EXAMPLE 10.8
EXAMPLE 10.9

Accessing objects inside const member function 71

Accessing characters in a string
Overloaded member functions

Operator overloading

Implementation of closely related operators
Hiding member functions

Inheriting overloaded virtual member functions
Adding default arguments

Default arguments for member function
One-argument constructor

How to avoid conversion operator function
Allocate and deallocate free store object
Dangerous access to deleted object
Objects that commit suicide

Placement new

Class with customized memory management
Function local static object

Static data member

Unnamed namespace

Static objects in file scope

Access to static object inside constructor
Initialization order of static objects
Initialization object

Returning non-const reference to object
Assigning to string element

Factory class

Dynamic binding

Deleting a derived class object

Virtual base class

Pre- and postconditions

Using member function with precondition
Class with invariant

72
75
76
76
77
79
80
80
82
82
89
90
90
91
93
97
97
98
98
98
100
100
105
106
107
109
111
112
116
117
118

Vil

EXAMPLE 10.10
EXAMPLE 10.11
EXAMPLE 10.12
EXAMPLE 10.13
EXAMPLE 10.14
EXAMPLE 10.15
EXAMPLE 10.16
EXAMPLE 11.1
EXAMPLE 11.2
EXAMPLE 12.1
EXAMPLE 12.2
EXAMPLE 12.3
EXAMPLE 12.4
EXAMPLE 12.5
EXAMPLE 12.6
EXAMPLE 12.7
EXAMPLE 12.8
EXAMPLE 12.9
EXAMPLE 12.10
EXAMPLE 12.11
EXAMPLE 12.12
EXAMPLE 12.13
EXAMPLE 12.14
EXAMPLE 13.1
EXAMPLE 13.2
EXAMPLE 13.3
EXAMPLE 13.4
EXAMPLE 13.5
EXAMPLE 13.6
EXAMPLE 13.7
EXAMPLE 13.8

Using comments to specify class template 119

Checking precondition 120
Substitutability 121
Specification of overriden member function 121
Describing template argument requirements 123
Checking type constraints 124
Performance characteristics of types 125
Standard assert macro 130
Assertions and exceptions 131
Checking status value 135
Throwing an exception 136
Member function with precondition 138
Returning special value to report failure 139
Preventing exceptions inside destructors 141
Exception class constructor 142
Unsafe memory allocation 145
Having dry -block to manage memory 146
Exception safe allocation of free store objects 146
Exception safe copy assignment operator 148
Throwing object of built-in type 150
Inheritance of exception classes 151
Handling many exceptions with one handler 153
Exception specification 155
C-style 1/0O is not adequate for objects 159
Passing objects pointf() 160
Overloading obperator<< 160
Macros do not obey scope rules 161
Recommended way to define constants 162
Using an enum instead of static const int 162
Function-like macriGQUARE 162
Inline function, square 163

viii

Industrial Strength C++

EXAMPLE 13.9
EXAMPLE 13.10
EXAMPLE 13.11
EXAMPLE 15.1
EXAMPLE 15.2
EXAMPLE 15.3
EXAMPLE 15.4
EXAMPLE 15.5
EXAMPLE 15.6
EXAMPLE 15.7
EXAMPLE 15.8
EXAMPLE 15.9
EXAMPLE 15.10
EXAMPLE 15.11
EXAMPLE 15.12
EXAMPLE 15.13
EXAMPLE 15.14
EXAMPLE 15.15
EXAMPLE 15.16
EXAMPLE 15.17
EXAMPLE 15.18
EXAMPLE 15.19
EXAMPLE 15.20
EXAMPLE 15.21
EXAMPLE 15.22
EXAMPLE 15.23
EXAMPLE 15.24
EXAMPLE 16.1
EXAMPLE 16.2
EXAMPLE 16.3
EXAMPLE 16.4
EXAMPLE 16.5

Function-like macros are not type safe
How to define synonyms for a type
Passing array to function
Implementation-defined behavior
Unspecified behavior

Undefined behavior

Language extension

Type of fixed size

Good and bad way of including files
Directory names in include directives
Case-sensitivity of header file name
Offset of data member

Cast must obey alignment rules
Mixing signed and unsigned integers
char s can be signed or unsigned
OS-specifitypedef

Prefixed name

Unsupported keyword as empty macro
Forward-compatibility macros
Reusing a loop variable

Using a template

Template header file

Temporary objects

A pragma-directive

How to declarmain()

Evaluation order of arguments
Evaluation order of subexpressions
How to separate words in an identifier
Naming style

Data member suffix

Names of macros

Names of include guards

163
163
164
172
173
173
174
174
175
176
176
178
178
179
179
180
181
183
183
184
185
186
187
188
189
189
189
193
194
194
195
195

EXAMPLE 16.6
EXAMPLE 16.7
EXAMPLE 16.8
EXAMPLE 16.9
EXAMPLE 16.10
EXAMPLE 16.11
EXAMPLE 16.12
EXAMPLE 16.13

Integral suffixes

Specifying parameter names

Implicitly given access specifiers

Explicitly given access specifiers

Where to implement inline member functions
How to write unary operators

How to write access operators

How to access static members

195

197

198

198
199

200
200
200

Industrial Strength C++

Acknowledgements

We would like to thank Paul Becker, our editor, for believing in seemingly imaginary progress
from Sweden. Without his cheering support, year after year, this book would never have been
finished. We would also like to thank Scott Meyers for reading a very rough first version of the
book and giving us the comments it deserved. Other reviewers that we would like to give special
thanks to are Sean Corfield, which has enlightened us numerous times from his vast knowledge
of both C and C++, Kevlin A P Henney for tons and tons of excellent comments, and Geoff
Kuenning for his patient corrections of our shaky handling of the quite weird language called
English. Other reviewers that we would like to thank are, in no particular order, Dean Quanne,
Peter Dickson, Per Andersson, Les Hatton, Johan Bengtsson, John Kewley, Karl Dickson, Justin
Forder, Stefan Frennemo, Mats Lidell, Eric Turesson, Peter Cederqvist, Michael Olsson, Bjérn
Strihagen, Ulf Santesson, Roger Persson, Sven Tapper, Lars Petrus and Staffan Blau. Please for-
give us if anyone is forgotten!

Special thanks from Mats: | would also like to thank Ellemtel Telecommunications Systems
Labs, Ericsson and PostNet for their support in the development of the book. Last but not least |
would like to thank Asa for her patience and support.

Special thanks from Erik: | would also like to thank Ericsson Radio Messaging, ENEA Data and
Svenska Handelsbanken for their support in the development of the book. But most of all |
would like to thank Ulrika for her patience and support.

Xi

Preface

This book defines a C++ coding standard that should be valid and usable for almost all program-
mers. 1SO 9000 as well as the Capability Maturity Model (CMM) states that coding standards
are mandatory for any company with quality ambitions. Developing such a coding standard is,
however, a non-trivial task, particularly for a complex multi- paradigm language like C++. In
this book we give you a good start for a programming standard for a particular company or
project. Such a standard is often written by the most experienced programmers in a company. If
a quality manager responsible for the development of such a standard instead select this book as
the base for the coding standard, experienced programmers can be relieved from this arduous
task and instead continue to do what they prefer to do, designing the company products. This
book should also be of great interest for quality aware C++ programmers trying to find ways of
improving their code.

Since 1992, when our public domain "Ellemtel" C++ coding standard was released, we have
greatly expanded our material with insights from many years of C++ development in multi-mil-
lion dollar projects, as well as inside knowledge of what is going on in the standardization of
C++. We have carefully selected and concisely formulated the guidelines we believe are really
important, and divided them into rules and recommendations, based upon how serious it is to
deviate from the standard. This is how we can give novices good advice while still not restrain-
ing experts from using the full power of the language. Most rules and recommendations are writ-
ten so that it should be possible to check with a tool if they are broken or not. Text and code
examples explain each individual rule and recommendation.

Xiii

Introduction

In early 1990, C++ was chosen as the implementation language for a huge telecommunications
project at Ellemtel Telecommunications Systems Laboratories in Stockholm, Sweden. A pro-
gramming standard for the project was written by Erik, a document that was later maintained by
the two of us, working as the C++ support group. Then, in 1991, there was a discussion about
programming standards in the news group comp.lang.c++. Mats wrote a message describing the
structure of our document. Suddenly we received an e-mail from Bjarne Stroustrup, the initial
inventor of C++, asking if he could have a look at the document. The fact that it was written in
Swedish was no problem to him, since he was born in Denmark, and Danish is fairly close to
Swedish. The document was initially only meant for internal use, but shortly after Bjarne's e-
mail we convinced our managers that it would be a good idea to make the document available
to the public. By doing that we could use the Internet to review and improve our rules and rec-
ommendations. A few months later the document was translated into English and made available
for anonymous ftp.

This document is now in use at many hundreds of companies, research centers and universities
all over the world, from Chile and India to France, Australia and the USA. However, it was writ-
ten a long time ago. C++ has changed in quite many ways since 1992. Many new features have
been added to the language, like RTTI and namespaces, as well as a very powerful standard tem-
plate library, but C++ is now stable and very close to become an international standard. The way
C++ is used has changed a lot. What was previously looked upon with suspicion, like for exam-
ple multiple inheritance, is now rather accepted. With this as background it is time for a major

XV

revision of the “C++ Rules and Recommendations” document, now as a book from Prentice Hall.

What we have done is to rewrite our rules and recommendations from scratch, while preserving
the structure that made it so popular.

Programming standards must be valid both for newcomers and experts at the same time. This is
sometimes very difficult to fulfill. We have solved this problem by differentiating our guidelines

into rules and recommendations. Rules should almost never be broken by anyone, while recom-
mendations are supposed to be followed most of the time, unless a good reason was at hand. This
division gives experts the possibility to break a recommendation, or even sometimes a rule, if they
badly need to.

We are explicitly listing all rules and recommendations, instead of having them somewhere in a
block of text, entangled within discussions and code examples.

We have been very careful with the formulations of rules and recommendations included in this
book, to find the shortest and most accurate formulation possible. We also try to give helpful alter-
natives instead of just warning for dangerous practices.

The book consists of 15 chapters and one appendix, each discussing a particular aspect of C++
programming.

Chapter 1 is about naming. We discuss how names of classes and functions should be chosen,
written and administrated to get programs that are easy to understand, read and maintain.

Chapter 2 is about the organization of code. We discuss how code should be organized in files.

Chapter 3 discusses how comments should be used to add whatever information a company, orga-
nization or individual needs. Well written comments are often the sign of a good programmer.

Chapter 4 is about control flow statements, such as for, while, switch and if. If used improperly,
they can increase the complexity of a program.

Chapter 5 is a long chapter about the life cycle of objects. We discuss how objects are best
declared, created, initialized, copied, assigned and destroyed.

Chapter 6 discusses conversions. We suggest a few rules and recommendations that can take some
of the dangers out of this tricky part of C++.

Chapter 7 is a long chapter discussing rules and recommendations concerning the class interface.
Among the topics discussed are inline functions, argument passing and return values, const, oper-
ator and function overloading, default arguments and conversion operators.

XVi Industrial Strength C++

Chapter 8 discusses how to best use new and delete.

Chapter 9 discusses problems related to static objects, i.e. global objects, static data members, file
scope objects and local variables declared static.

Chapter 10 is also a long chapter, since it discusses fundamental parts of object oriented program-
ming, namely encapsulation, dynamic binding, inheritance, and software contracts.

Chapter 11 is a short chapter about assertions.

Chapter 12 is long since it discusses error handling, particularly exception handling. Rules and
recommendations are presented for when exceptions should be thrown, what kind of objects you
should throw, how you can recover from errors, how you can make your code exception- safe, and
how exceptions are best documented.

Chapter 13 explains what parts of C++ you should avoid. Parts of both the language and the stan-
dard library are so error prone that they should be avoided.

Chapter 14 is about the size of executables, i.e. how program size often can be traded for perfor-
mance, and vice versa.

Chapter 15 is a large chapter devoted entirely to the issue of Portability. Questions we will discuss
include how non-portable code best should handled, how files should be included, how you avoid
depending on the size or layout of objects, and how you best avoid features only supported by
some compilers.

The Appendix discusses programming Style. Style issues can often start heated debates, which is
the reason to why we put all this into an appendix instead of making it a normal chapter. We dis-
cuss, among other things, naming conventions and lexical style.

We believe this book presents the best C++ programming standard you can get, but it is of course
not enough. You also need experienced system architects and programmers well aware of different
design practices, as well as the problem domain in which your company exists. Such knowledge is
generally not C++ specific and therefore not within the scope of this book. Other areas not dis-
cussed in this book are testing, metrics, procedures for code reviews, prototyping, or how to trans-
form requirements into design ideas (object oriented analysis and design). We have concentrated
on C++ specific issues that will improve the quality of your code.

It would surprise us a lot if you agreed with us on each and every rule and recommendation in this
book. If you would like to remove, add or modify a rule or recommendation for the specific needs
of your company or project, do not despair. This can easily be done since the source of this book
can be bought from Prentice-Hall. Please contact XXX@prenhall.com for details.

XVil

We assume the reader knows the basics of C++. If you need an introduction to C++, we recom-
mend the following books:

e Bjarne Stroustrup. The C++ Programming Language, Second Edition. Addison-Wesley, 1991.
ISBN 0-201-53992-6.

¢ Marshall P. Cline and Greg A. Lomow. C++ FAQs. Addison Wesley, 1995, ISBN 0-201-
58958-3.

* Robert B. Murray. C++ Strategies and Tactics. Addison Wesley, 1993. ISBN 0-201-56382-7.

For the latest details on the language definition, we have used this document:

* Working Paper for Draft Proposed International Standard for Information Systems - Pro-
gramming Language C++.

The document with this extraordinary long title (often called just the “Working Paper”) is what
defines the current status of the proposed C++ standard. A new version of the “Working Paper”
comes every four months, but it is usually only accessible to people involved in the standardiza-
tion of C++. Therefore, if you would like to look at some of the inner details of C++, we recom-
mend this highly interesting book:

e Bjarne Stroustrup. The Design and Evolution of C++. Addison-Wesley, 1994. ISBN 0-201-
54330-3.

All code examples in this book try to follow the “Working Paper” description of C++. Except
when explicitly stated differently, all code should also follow the rules and recommendations
described in this book.

You are encouraged to contact us with questions and comments. Please use this email address:
rules@henricson.se

Erik Nyquist and Mats Henricson, Stockholm, June 1996

Xviii Industrial Strength C++

Chapter One

Naming

If names are not chosen, written and administrated with care, then you
will end up with a program that is hard to understand, read and main-
tain.

Meaningful names

RULES
AND
RECOMMENDATIONS

See Also

Rec 1.1 Use meaningful
names.

EXAMPLE 1.1

Rec 1.2 Use English names
for identifiers.

Names must be chosen with care. There is little chance that a class or
a function will be used more than once if the names of the abstrac-

tions they represent are not understood by the user. Good abstrac-
tions are essential for low maintenance costs, high level of reuse and
traceability from requirements to program code.

Rec 1.1 Use meaningful names.
Rec 1.2 Use English names for identifiers.
Rec 1.3 Be consistent when naming functions, types, vari-

ables and constants.

Rule 1.8 — Rule 1.9, some identifiers are not legal.
Rec 3.5 All comments should be written in English.
Style 1.2 — Style 1.8, how identifiers should be written.

Classes, typedefs, functions, variables, namespaces and files are all
given names. Suitable names are meaningful to the person using the
abstractions provided, and do not have to change if:

* the implementation changes,

e aprogram is ported to another environment, or if

e source code is used in a new context.

Abbreviations are not always meaningful and can be difficult to
understand. It is recommended to avoid abbreviations as much as
possible. Only use commonly accepted abbreviations (as e.g. IBM).

Naming a variable

int strL; /I Not recommended
int stringLength: // Recommended

Do not use names that are difficult to understand. Especially do not
use names that are only understood by those who understand your

Industrial Strength C++

native language. What does the word “Bil” mean to an English or
Japanese programmer? Not many know it is the Swedish word for

car.

Rec 1.3 Be consistent when Be consistent when giving names to member functions to make it
naming functions, types, vari- possible to reuse both code and existing knowledge. By being con-
ables and constants. gjstent, the user of a class will have to know less about the class and
it will be considered more easy to use.

EXAMPLE 1.2 Different ways to print an object

Many objects are printed by using the-operator (left-shift) with amstream and
the object as arguments.

ostreamé& operator<<(ostreamé&, const EmcString&);

EmcString s("printing");
cout << s << endl;

Other classes also provide member functions for the same purpose.

class EmcFruit

{
public:
...
virtual ostreamé& print(ostream&) const = 0;

3

class EmcApple : public EmcFruit

{
public:
...
virtual ostreamé& print(ostream&) const;

3

Such member functions are ofteirtual and only meant to be called indirectly by
the base class implementation.

/I Works for all classes derived from EmcFruit
inline ostream& operator<<(ostream& s, const EmcFruit& f)

return f.print(s); // calls virtual member function

}

EXAMPLE 1.3

EXAMPLE 1.4

By not using them directly, the code will be more readable since objects of different
classes are printed the same way.

EmcFruit* fp = new EmcApple;
cout << *fp << endl;
Naming accessors and modifiers

Some naming conventions are more indirect, for example, if a class has a member
function that returns a value, how should a member function that modifies the value
be named?

In general it is a bad idea to always provide a corresponding modifier, but if it is pro-
vided, we recommend that it has the same name as the corresponding accessor.

For example, the cladoint has two data membersM andyM with appropriate
accessors and modifiers as shown below.

Point p(0,0); /[a point in a 2-dimensional space
p.x(1); /I set X-coordinate
cout << p.x() << endl; // prints X-coordinate, "1"

There are many more such naming conventions, some of which are covered by the
Style-appendix at the end of this book. Style-rules are optional, not mandatory. Each
organization may have their own set of preferences. Choose one style and stick to it,
and make certain that the recommendations are followed. That is what consistent nam-
ing is about.

Names used by a template function

If templates are used in your application, consistent naming makes it possible to use
the same source code for a number of unrelated but similar types. Many good exam-
ples on this are found in the standard template library for C++.

The following template function can be used with any array type that has an indexing
operator, aize() member function and a typledex , defined such that objects of

the typeT can be assigned to the return value of the indexing operator. This is an
example of the benefits of consistent naming.

/I typename to mark a qualified name as a type name.

template <class Array, class T>
void check_assign(Array& a, typename Array::Index i, T t)
{ if (i < a.size())
{
alil =t;
}
}

Industrial Strength C++

The qualifiertypename is a recent addition to the language. When a name is quali-
fied with a template parameter, the name is by default treated as the name of a member
and the qualifietypename must be used for those names that are type names.

Names that collide

RULES
AND
RECOMMENDATIONS:

See Also

Rec 1.4 Only namespace
names should be global.

There are many global names in a C++ program. Before the intro-
duction of namespaces it was sometimes quite difficult to avoid iden-
tical identifiers in the global scope. Particularly when several class
libraries were combined.

A related issue is how to prevent names of macros and files from col-
liding.

Rec 1.4 Onlynamespace names should be global.

Rec 1.5 Do not use globalsing declarations andusing
directives inside header files.

Rec 1.6 Prefixes should be used to group macros.

Rec 1.7 Group related files by using a common prefix in
the file name.

Rec 15.5 — Rec 15.6, how to include header files.
Rec 15.13, if namespaces are not supported by your compiler.

A name clash is when a name is defined in more than one place. Two
different class libraries could, for example, give two different classes

the same name. If you try to use many class libraries at the same
time, then there is a fair chance that you neither can compile nor link
the program because of name clashes.

We recommended that you have as few names as possible in the glo-
bal scope. In C++ this means that names that would otherwise be
global should be declared and defined inside namespaces.

EXAMPLE 1.5

EXAMPLE 1.6

It is no longer necessary to have global types, variables, constants
and functions if namespaces are supported by your compiler. Names
inside namespaces are as easy to use as global names, except that
you sometimes must use the scope operator.

Without namespaces it is common to add a common identifier as a
prefix to the name of each class in a set of related classes. A common
identifier is usually a combination of 2 to 6 letters.

Since only a few compilers of today implement namespaces, we
have chosen that approach when writing our example classes for this
book.

Namespace

A namespace is a declarative region in which classes, functions, types and templates
can be defined.

namespace Emc

{
class String { ... };

..
}

A namespace is open, which means that new names can be added to an existing
namespace.

1l previous definition of Emc exists

namespace Emc

{

template <class T>
class DynamicArray

{
...

8
}

Accessing names from namespace
A name qualified with a namespace name refers to a member of the namespace.
Emc::String s;

A using declaration makes it possible to use a name from a namespace without the
scope-operator.

using Emc::String; String s1;

Industrial Strength C++

EXAMPLE 1.7

EXAMPLE 1.8

Rec 1.5 Do not use global
using declarations and using
directives inside header files.

It is possible to make all names from a namespace accessibleusitiy a directive.

using namespace Emc; // using-directive

String s; /[l Emc::String s;
DynamicArray<String> a; // Emc::DynamicArray<Emc::String>
a;

Class as namespace

Syntactically, namespaces are similar to classes, since declarations aitidrefian
also be nested inside classes. Semantically, there are a few differences however and
some of them are worth pointing out.

If a declaration or definition of a function is put inside a namespace, only the global
name of the function changes. On the other hand, if you put a function declaration
inside a class, it becomes a member function that can only be called with an object. A
member function must be declargtdtic in order to make it possible to call it as a
free function.

If a function definition is put inside a class, the function automatically becomes inline.
A global function or a function inside a namespace must be explicitly declared
inline

Classes are sometimes used as namespaces though. The recommendation is that the
static member functions and nested types should be strongly related to the class to
which they belong.

Class names with prefixes

EmcString s1; // Belongs to the Emc Class Library
OtherString s2; // Belongs to the Other Class Library

A using declaration or aising directive in the global scope is not
recommended inside header files, since it will make names globally
accessible to all files that include that header, which is what we are
trying to avoid.

Inside an implementation fileising declarations andsing direc-
tives are less dangerous and sometimes very convenient.

On the other hand, too-frequent use of the scope operator is not rec-
ommended. The difference between local hames and other names
will be more explicit, but more code needs be rewritten if the
namespaces are reorganized.

Rec 1.6 Prefixes should be
used to group macros.

Rec 1.7 Group related files by

using a common prefix in the
file name.

EXAMPLE 1.9

There are no namespaces for file names and macros, since these are
part of the language environment, rather than the language. Such
names should therefore always include a common identifier as a pre-
fix.

For file names there is one important exception. If the common iden-
tifier makes the file name too long for the operating system to han-
dle, it may be necessary to use directories to group files. This is often
the case when writing code for DOS (TM) or Microsoft Windows
(TM).

Names of include files

#include "RWCstring.h" /* Recommended */
#include "rw/cstring.h" /* Sometimes needed */

lllegal naming

RULES
AND
RECOMMENDATIONS

See Also

Rule 1.8 Do not use identifiers
that contain two or more
underscores in a row.

Rule 1.9 Do not use identifiers
that begin with an underscore.

It is quite irrelevant which naming convention you use, as long as it
is consistent. But there are actually a few kinds of names that are
rather confusing, or plain wrong. Such names should be avoided in
all naming conventions.

Rule 1.8 Do not use identifiers that contain two or more
underscores in a row.

Rule 1.9 Do not use identifiers that begin with an under-
score.

Style 1.2 — Style 1.5, names of identifiers.

Identifiers containing a double underscore (*) or beginning with

an underscore and an upper-case letter are reserved by the compiler,
and should therefore not be used by programmers. To be on the safe
side it is best to avoid the use of all identifiers beginning with an
underscore.

Industrial Strength C++

EXAMPLE 1.10 Use of underscores in names

constinti__j=11; //lllegal
constint _K=22; //lllegal
constint_m =33; // Not recommended

Chapter Two

Organizing
the code

Code is most often stored in files, even though some development envi-
ronments also have other, more efficient representations as an alterna-
tive (for example precompiled headers). Guidelines for how the code is
organized in files are needed to make the code easy to compile.

RULES
AND

RECOMMENDATIONS

See Also

Rule 2.1 Each header file
should be self-contained.

EXAMPLE 2.1

Rule 2.1 Each header file should be self-contained.

Rule 2.2 Avoid unnecessary inclusion.

Rule 2.3 Enclose all code in header files within include
guards.

Rec 2.4 Definitions for inline member functions should be
placed in a separate file.

Rec 2.5 Definitions for all template functions of a class

should be placed in a separate file.

Style 1.6 — Style 1.7, how include guards are written.
Style 1.9 — Style 1.10, how file names are chosen.
Style 1.15, where inline functions are defined.

The purpose of a header file is to group type definitions, declarations
and macros. It should be self-contained so that nothing more than the
inclusion of a single header file should be needed to use the full
interface of a class. A rather common error is to forget to include a
necessary header file. This could happen for example when a header
file has not been tested in isolation. By pure coincidence, the forgot-
ten file is included by another file. One way to test your header file is
to always include it first in the corresponding implementation files.
For this to work, the header file must be self-contained.

Testing for self-containment

/I EmcArray.cc
#include "EmcArray.hh"
#include <iostream.h>
...

/I The rest of the EmcArray.cc file

12

Industrial Strength C++

Rule 2.2 Avoid unnecessary The opposite, too much inclusion, is even more common. Very often

inclusion.

EXAMPLE 2.2

a file is included more than once, since it is required to make differ-
ent header files self-contained. It is also common that a file is
included even though it is not needed at all.

Before an object can be created, its size must be known and that size
can only be found by inspecting the class definition. If an object of
the class is used as return value, argument, data member or variable
with static storage duration, the header file containing the class defi-
nition must be included.

It should be enough to forward-declare a class if it is only referred to
by pointer or reference in the header file. There are some important
exceptions however. The class definition must be included if a mem-
ber function is called or a pointer is dereferenced. It should also be
included if a pointer or reference is cast to another type.

Remember that the inclusion of a header file makes the implementa-
tion of inline member functions visible to the user. If the implemen-
tation of an inline member function operates upon an object of a
class, that class definition must be visible even though only pointers
or references are used. The presence of inline member functions
increases the number of files that must be recompiled when a class
definition is modified. You can shorten your compile time by avoid-
ing inline functions, but that may instead reduce the run time perfor-
mance of your program.

If an inline function contains casts between forward-declared types,
no inclusion is needed, but such an implementation has a potential
bug. If two classes are forward-declared and they are related through
inheritance, a cast will not give the correct result if multiple inherit-
ance is used and pointer-adjustments are required. This is another
case that requires the class definitions to be visible.

Data member of class type

#include "A.hh"

class X
{
public:
A returnA(); /I A.hh must be #included
void withAParameter(A a); // A.hh must be #included
private:

13

Rule 2.3 Enclose all code in

EXAMPLE 2.3

header files within include
guards.

A aM; /I A.hh must be #included
h

Forward declaration

/I Forward declaration
class B;

class Y

{
public:
B* returnBPtr();
void withConstBRefParameter(const B& b);
private:
B* bM;

Header files are often included many times in a program. A standard
header such astring.h is a good example. Since C++ does not
allow multiple definitions of a class, it is necessary to prevent the
compiler from reading the definitions more than once. The standard,
as well as the only portable technique is to use an include guard so
that the source code is only seen the first time the compiler reads the
file. By defining a macro inside a conditional preprocessor directive,
which is only true if the macro has not been defined, the preproces-
sor prevents the compiler from seeing the source code in a header
file more than once.

It is important to have unique macros among the set of header files,
or only one of the header files using the same macro name will be
seen by the compiler. If there are no files in your system with identi-
cal names, and you have a one-to-one correspondence between the
macro name and the file name, this should not be a problem.

Life as a programmer is much easier if there is a sensible mapping
between the name of a file and its content. For example, nobody is
going to like you if you do a senseless thing like puttingStnieg

class in the fileStack.hh . The ideal is to have one file for each
class, since that makes it very easy to give a good name to the file,
but quite often this is not possible. One such reason is if you are con-
strained to use very short file names by an operating system like MS-
DOS.

14

Industrial Strength C++

EXAMPLE 2.4

Rec 2.4 Definitions for inline
member functions should be
placed in a separate file.

EXAMPLE 2.5

EmcString.icc

In such cases it is reasonable to put several class definitions in the
same header file, but only if the classes are closely related. It is much
easier to give a good name to such a collection of classes than if they
are grouped arbitrarily. But what is more important is the fact that
there is less risk that classes are included without reason.

A classic example is a list class, which often provides a special itera-
tor class for iteration over the list. Because the iterator is useless
without the list it is natural to put both the list class and the iterator
class in the same file. An advantage of doing so is that the user will
only need to include one file to use the list abstraction. With separate
header files for each class you need to find unique names for even
more files, which can be difficult if you are constrained by an operat-
ing system like MS-DOS.

Include guard

#ifndef EMCQUEUE_HH
#define EMCQUEUE_HH

/I Rest of header file

#endif

In the Style appendix we recommend that all inline member func-
tions should be defined outside of the class definition. By having
definitions of inline functions outside the class, the class declaration
will be much easier to read. The best place to put such inline func-
tions is in a separate file, an inline definition file.

An inline definition file should normally be included by the corre-
sponding header file. Sometimes frequent changes to inline defini-
tion files make the compilation times unnecessary long, and if that is
a problem, inline definition files are best included by the implemen-
tation file. It is necessary to remove iallne keywords first, oth-
erwise you will get link errors. With macros, such changes can be
made without changing the source code.

Disable inlining by using inline definition files

#include <string.h>
...

/I Do not include anything after this point

15

#ifdef DISABLE_INLINE
#define inline
#endif

/I Definitions of inline functions

inline
const char* EmcString::cStr() const

{
return cpM;

}

...
#ifdef DISABLE_INLINE

#undef inline
#endif

EmcString.hh /I Class declaration
...
/I Always include at end
#ifndef DISABLE_INLINE

#include "EmcString.icc"
#endif

EmcString.cc #include "EmcString.hh"
/I Definitions of non-inline functions
...
/I Always include at end

#ifdef DISABLE_INLINE
#include "EmcString.icc"
#endif

Rec 2.5 Definitions forall Templates are in one respect very similar to an inline function. No
template functions of aclass code is generated when the compiler sees the declaration of a tem-

should be placed in a Sefi‘lzrate plate; code is generated only when a template instantiation is needed.

16 Industrial Strength C++

EXAMPLE 2.6

EXAMPLE 2.7

A function template instantiation is needed when the template is
called or its address is taken and a class template instantiation is
needed when an object of the template instantiation class is declared.

A big problem is that there is no standard for how code that uses
templates is compiled. The compilers that require the complete tem-
plate definition to be visible usually instantiate the template when-

ever it is needed and then use a flexible linker to remove redundant
instantiations of the template member function. However, this solu-

tion is not possible on all systems; the linkers on most UNIX-sys-

tems cannot do this.

A big problem is that even though there is a standard for how tem-
plates should be compiled, there are still many compilers that do not
follow the standard. Some compilers require the complete template
definition to be visible, even though that is not required by the stan-
dard.

This means that we have a potential portability problem when writ-
ing code that uses templates. We recommend that you to put the
implementation of template functions in a separate file, a template
definition file, and use conditional compilation to control whether
that file is included by the header file. A macro is either set or not
depending on what compiler you use. An inconvenience is that you
now have to manage more files.

There could also a file with template functions that are declared
inline . These should not be put in a template definition file.

Function template

template <class T>
T max(T x, Ty)
{

return (X >y) ? x:y;

}

void function(int i, int j)

{
int m = max(i,j); // must instantiate max(int,int)
...

}

Class template

template <class T>
class EmcQueue

17

EXAMPLE 2.8

EmcQueue.hh

{
public:
EmcQueue();
...
void insert(const T& t);

3

EmcQueue<int> q; // instantiate EmcQueue<int>
g.insert(42); /l instantiate EmcQueue<int>:insert

Template header file

template <class T>
class EmcQueue
{

...

3

#ifndef DISABLE_INLINE
#include "EmcQueue.icc"
#endif

#ifndef EXTERNAL_TEMPLATE_DEFINITION
#include "EmcQueue.cc"
#endif

18

Industrial Strength C++

Chapter Three

Comments

A comment is an information carrier that makes it possible to add what-
ever information a company, organization or individual needs. Com-

ments are unfortunately hard to maintain, so with a few exceptions they
should only explain what is not obvious from reading the program itself.

If you have a standard format on all your comments, you can write tools
to extract useful information from comments. Such techniques are wide-
spread in the industry, but currently there is no de facto standard format.

Well written comments are the sign of a good programmer. Code without
comments can be very hard to maintain, but too many comments can
also be a hindrance. A fairly good balance can be found by following a
few fairly simple recommendations.

RULES Rec 3.1 Each file should contain a copyright comment.

AND Rec 3.2 Each file should contain a comment with a short
RECOMMENDATIONS description of the file content.
Rec 3.3 Every file should declare a local constant string
that identifies the file.
Rec 3.4 Usd/ for comments.
Rec 3.5 All comments should be written in English.

See Also Rec 1.2, use English for identifiers.
Rec 1.4, how to define a local constant string.
Rec 10.7, Rec 10.9, documenting classes and templates

Rec 3.1 Each file should con- Many projects have decided to copyright their code to prevent other
tain a copyright comment. companies or persons from using it without permission. Sometimes a
comment like this can be sufficient:

Short copyright comment // Copyright <company> <years>. All Rights Reserved.

In some countries such comments may not be necessary to protect
your code. It is however a good idea to put such a comment into your
code anyway. If nothing else, the copyright notice serves as a
reminder, and it says where the code came from in the first place. It
can sometimes also be useful to know who is the author(s) of a
source file. Suppose you have found a bug in some externally sup-
plied code. Without a name and/or contacting address of the person
responsible you cannot report this bug. The address is also necessary
if you need to ask him or her questions in order to understand a tech-
nical detail. Also make sure that not just the original author but all
programmers who have written and maintained the code are listed. In
some cases the names of the author(s) are replaced by the address of
a support organization that takes care of bug reports and questions.

The following comment has been used by many projects:

Long copyright comment // Copyright <company> <years>. All Rights Reserved.
/I <company address>

20 Industrial Strength C++

Rec 3.2 Each file should con-
tain a comment with a short
description of the file content.

Comment describing the
file content

Rec 3.3 Every file should
declare a local constant string
that identifies the file.

1"

/I The copyright to the computer program(s) herein

Il'is the property of <company>, <country>. The

/I program(s) may be used and/or copied only with the
/I written permission of <company> or in accordance

/I with the terms and conditions stipulated in the

/I agreement/contract under which the program(s) have
/I been supplied. This copyright notice must not be

/I removed.

Choose a style and stick to it. Long comments are harder to maintain,
S0 unless there is a reason not to, use a one-line copyright-comment,
but first make sure the copyright text you intend to use is appropriate
for the country where you work. Either consult the legal department
at your company, or contact a lawyer.

Copyright comments could be added automatically. This would
relieve the individual programmer from keeping these comments up-
to-date with the company standard.

The best thing a programmer can do to avoid questions from other
programmers is to write clear code, but a comment after the copy-
right comment with a short description of the file content can do
wonders.

/I File Description:

Il - <text>

1

/I Authors: <namel> <address1>
1 <name2> <address2>

Comments are only visible in source files, so this information is not
available if a class library is delivered without the source. Some
information that otherwise would be in a comment is instead often
provided in implementation files as static strings, which can easily
be extracted by tools. Many version control programs, suecbsas
andsccs , allows you to have variables in these static strings that are
automatically expanded when the file is checked out. The version
number is useful information when the client reports errors.

21

Rec 3.4 Use // for comments.

Rec 3.5 All comments should

EXAMPLE 3.1

EXAMPLE 3.2

EXAMPLE 3.3

be written in English.

By using such version handling systems you let the computer make
sure comments are not outdated if someone else takes over the code
for maintenance and forgets to update the list of authors.

Static string identifying the file

static const char rcsid[] = "$ld: $";

When using rcs, the variab®ld: $ is expanded with file name, version identity,
date for last check-in and the user identity for the person who last modified the file. If
your compiler supports namespaces, you should consider removing the static keyword
and to instead have the definition inside an unnamed namespace.

C++ style comments are superior to C style comments. They do not
span multiple lines and are easy to add or remove. This may be a
weak argument compared to more personal aesthetic reasons, as well
as the fact that hardened C programmers may want to stay with what
they got with their mother's milk, but C comments also have a prob-
lem in that they do not nest. Since the end of a C++ comment is
always the end of the line, nested comments are no longer an issue.

Comments in C++

char* cpM; /I A pointer to the characters

int lenM; /* The length of the character array */
Nested C-style comment

/* No: this nesting of C-style comments will not work !!!

char* cpM; /I A pointer to the characters
int lenM; /* The length of the character array */

*

All comments should be written in English, even if Swedish is your
natural language. There are many reasons to why:

* At large companies code may be shipped to another country for
maintenance, and English is the language most likely to be
understood by a randomly selected C++ programmer.

22

Industrial Strength C++

You may think that the code will only be viewed by your group
of programmers, but before you know it the sales department
may have sold access to the source code to a customer.

You may have to send the source code to you compiler supplier
(or third-party library supplier) in order to make it possible for
them to hunt down bugs in their code (or to give you the support
you have paid a lot to get). If they can read your comments, they
may be able to help you faster.

Comments written in other languages may be supported by the
upcoming ISO C++ standard, but it will take quite some time
before your compiler will support such comments, since it con-
tains characters outside the basic source character set.

23

Chapter Four

Control flow

It is important to use the control statemerfar,(while, do-
while, switch, case, if, else andgoto) correctly and
in a consistent way so that they are easy to understand.

RULES
AND

RECOMMENDATIONS

Rule 4.1 Do not change a loop

See Also

variable inside a for-loop
block.

Rule 4.1 Do not change a loop variable insidefar -loop

block.

Rec 4.2 Update loop variables close to where the loop-con-
dition is specified.

Rec 4.3 All flow control primitives (if, else, while,
for, do, switch and case) should be followed
by a block, even if it is empty.

Rec 4.4 Statements following @ase label should be ter-
minated by a statement that exits theswitch
statement.

Rec 4.5 Allswitch statements should have default
clause.

Rule 4.6 Usebreak andcontinue instead ofgoto .

Rec 4.7 Do not have too complex functions.

Rec 10.3, when to use selection statements.
Rec 15.15for -loop variables.

Iteration statements are common in C++. The standard library pro-
vides a large number of algorithms that iterates through collections
of objects. If you use the standard library you will be able to avoid
many mistakes related to iteration, but we still consider it important
that you know how to writéor , do-while andwhile statements
correctly.

When you write dor loop, it is highly confusing and error-prone to
change the loop variable within the loop body, rather than inside the
expression executed after each iteration.

In order to be sure that the loop terminates, you will need to know
how the loop index is updated after each iteration and under which
conditions the loop terminates. Perhaps the best feature &drthe
loop is that if it is used correctly, you can know the number of itera-
tions by studying théor loop header. In general avoid loop indexes

26

Industrial Strength C++

Rec 4.2 Update loop variables
close to where the loop-condi-
tion is specified.

Rec 4.3 All flow control primi-
tives (if, else, while, for, do,
switch and case) should be fol-
lowed by a block, even if it is
empty.

EXAMPLE 4.1

that are modified in more than one place. Only modify loop indexes
once, either before or after each iteration.

It is important to consistently use the same method to solve the same
problem. Your code will be hard to understanddd-while

while , andfor loops are used in many different ways. Therefore it

is better to have a preferred way for selecting an iteration statement.
We recommend you to follow these rules of thumb:

1. Use afor loop if the loop variable is updated on exit from the
block AFTER the loop condition has been checked.

2. Use ado-while loop if the loop will execute at least once and if
the loop variable is updat&EFORE the condition is checked.

3. Use awhile loop if the loop variable is updated on entry to the
block AFTER the loop condition has been checked.

The thumb rule will be easy to follow if you always choose the type
of loop that makes it possible to update the loop variables as close as
possible to where the loop condition is specified.

Another issue that makes code much more reliable and easy to read
is to enclose all code after flow control primitives in a block, even if
it is empty.

Block aftefior -loop

const int numberOfObjects = 42;
EmcArray<EmcString> a(numberOfObjects);

for (int i = 0; i < numberOfObjects; i++)
{ /I Recommended

char buf[3];

ostrstream os(buf, sizeof buf);
0S << i << ends;

a[i] = buf;

27

EXAMPLE 4.2

Rec 4.4 Statements following
a case label should be termi-

nated by a statement that exits
the switch statement.

EXAMPLE 4.3

Blocks iswitch -statement

cout << "Enter value: ";
int value;
cin >> value;

switch (value) // OK with block

{
case 1: /l OK
case 2: /l OK
{
cout << "1 or 2: " << gfvalue] << endl;
break;
}
default:
{
if (value > 2 && value < numberOfObjects)
{
cout << "Not 1 or 2: " << a[value] << endl;
}
break;
}
}

Note that it is OK to group sever@iSe labels after each other if the statements in
the grouped cases do the same thing.

Statements following aase label should be terminated by a state-
ment that exits the switch statement, suchreagrn or break .
Leaving out such termination means you have a fall-through
between different cases, which in many cases is a bug. In some rare
situations, fall-through is intentional, but then this should be clearly
documented in the code.

How to write switch statements

enum Status

{
red,
green

2

EmcString convertStatus(Status status)

switch (status)

{

case red:

{

28

Industrial Strength C++

return EmcString("Red"); // OK, exits switch
}
case green:
{
return EmcString("Green"); // OK, exits switch
}
default:
{
return EmcString(“lllegal value™);
}
}
}

Rec 4.5 All switch statements We also recommend that allvitch statements should always have

should have a default clause.

Rule 4.6 Use break and con-
tinue instead of goto.

EXAMPLE 4.4

adefault clause. In some cases it can never be reached since there
arecase labels for all possible enum values in theitch state-
ment, but by having such an unreachalgfault clause you show

a potential reader that you know what you are doing. By having such
adefault clause, you also provide for future changes. If an addi-
tional enum value is added, twitch statement should not just
silently ignore the new value. Instead, it should in some way notify
the programmer that thewitch statement needs to be changed.
You could, for example, throw an exception or terminate the pro-
gram.

We are also banning the use gdto . Yes, there might be cases
where it can be believed that the usgatb could make a program
easier to maintain or understand, but in most cases this is quite
unlikely.

Rethink your design and do your best to awgitb . In most cases
the code can be rewritten by instead udirgpk or continue . If
you do not usegoto , your code will be less sensitive to changes
since it is illegal to jump witlyoto past an initialization of a vari-
able.

How to break out of a loop

const int max = 10;
bool errorflag = false;

for(inti = 0; i < max; i++)

29

{
..

if (someCondition())

{

errorflag = true;
break; // leaves loop

}
}

/I no goto needed
if (errorflag)

abort();
}

Rec 4.7 Do not have too com- Everyone that has ever had to take over code written by someone
plex functions. else knows that complex code is hard to maintain. There are many
ways in which a function can be complex, such as the number of
lines of code, the number of parameters, or the number of possible
paths through a function. The number of possible paths through a
function, which is the result from the use of many control flow prim-
itives, is the main reason to why functions are complex. Therefore
you should be aware of the fact that heavy use of control flow primi-
tives will make your code more difficult to maintain.

30 Industrial Strength C++

Chapt

er Five

Object Life
Cycle

There are a few thing you should think about when declaring, initializ-
ing and copying objects.

You should have as few variables as possible, since that can improve
performance. This also means that you should not create a copy of
an object unless you have to.

You should not have to browse through many pages of code to find
the declaration of a variable.

You should not have to modify many pages of code if you want to
change the value of a literal.

Copying and initialization should always create objects with valid
states.

Initialization of variables and
constants

RULES
AND

RECOMMENDATIONS

Rec 5.1 Declare and initialize
variables close to where they

See Also

are used.

EXAMPLE 5.1

A little discipline when declaring and initializing variables and con-
stants can do wonders to make your code easier to understand and
maintain. What may come as a surprise is that you can also improve
the performance of your program.

Rec 5.1 Declare and initialize variables close to where
they are used.

Rec 5.2 If possible, initialize variables at the point of dec-
laration.

Rec 5.3 Declare each variable in a separate declaration
statement.

Rec 5.4 Literals should only be used in the definition of

constants and enumerations.

Rec 1.2, Style 1.4, variable names.
Rule 7.10, how to access string literals

It is best to declare variables close to where they are used. Otherwise
you may have trouble finding out what type a particular variable
have. Another advantage with localized variable declarations is more
efficient code, since only those objects that are actually needed will
be initialized.

Initializing variables

Instead of declaring the variable at the beginning of a code block and giving it a value
much later:

inti;
/I 20 lines of code not using i

i =10; /I No

32

Industrial Strength C++

Rec 5.2 If possible, initialize
variables at the point of decla-
ration.

EXAMPLE 5.2

EXAMPLE 5.3

try to declare and initialize the variable close to its first use:

intj=10; // Better

Try to initialize a variable to a well-defined value at the point of dec-
laration. The main reason is to avoid redundant member function
calls. Suppose you have a class with both a constructor and a assign-
ment operator taking the same type of argument. If you assign an
object of that class instead of using the corresponding constructor,
then two member function calls are needed to give the object a
proper value. The first call is to a default constructor that must be
provided when an object is declared without an initializer.

Initialization instead of assignment

/I Not recommended

EmcString string1; /I calls default constructor
stringl = "hello"; /I calls assignment operator
/I Better

EmcString string2("hello"); // calls constructor

Initialization at the point of declaration can also remove many poten-
tial bugs in your code, since the risk of using an uninitialized object
will be reduced.

Variables of built-in types are a special case, since they have no
default constructors that are called when an initializer is missing.
Instead such variables remain uninitialized until they are assigned to,
so if you do not initialize them, you should assign to them as soon as
possible.

The reason that such variables are not always initialized, is that it can
sometimes be very difficult or even impossible to do so. Suppose, for
example, that the variable must be passed to a function as a reference
argument to be initialized.

Assignment instead of initialization

inti; /I no reason to initialize i
cin >>i; // modifies both cin and i

33

Rec 5.3 Declare each variable Declaring multiple variables on the same line is not recommended.

in a separate declaration
statement.

EXAMPLE 5.4

Rec 5.4 Literals should only

constants and enumerations.

be used in the definition of

EXAMPLE 5.5

The code will be difficult to read and understand.

Separate declarations also make the code more readable and easier to
comment, if you want to attach a comment to each variable.

Some common mistakes are also avoided. Remember that when
declaring a pointer, unaryis only bound to the variable that imme-
diately follows.

Declaring multiple variables

inti, *ip, ia[100], (*ifp)(); // Not recommended

LoadModule* oldLm = 0; // pointer to the old object
LoadModule* newLm = 0; // pointer to the new object

/I declares one int*, m, and one int, n.
int* m, n; /I Not recommended

Literals (often called “magic numbers”) should only be used in the
definition of constants and enumerations.

One reason is that literals need an additional comment to be under-
stood. Some integers like 0 and 1 are exceptions since their meaning
can often be deduced from the context in which they are used. Many
of them can now be replaced by the nesol values,true and

false

Code with magic numbers is also more difficult to maintain, since
their use may be sprinkled all over the code.

Correct use of “magic” number

/I Literal in definition of const,
const size_t charMapSize = 256;

// but not to specify array size!
char charMap[charMapSize];

/I Or for comparison!
for (inti = 0; i < charMapSize; i++)
{
...
}

34

Industrial Strength C++

Constructor initializer lists

RULES
AND
RECOMMENDATIONS

See Also

Rec 5.5 Initialize all data
members.

Base classes and non-static data members should be initialized in the
constructor initializer list since it is more efficient than to use assign-
ment inside the body of the constructor.

Rec 5.5 Initialize all data members.

Rule 5.6 Let the order in the initializer list be the same as
the order of declaration in the header file. First
base classes, then data members.

Rec 5.7 Do not use or pagkis in constructor initializer
lists.

Rec 1.2 — Style 1.5, names of data members.
Rule 10.1, access to data members.

Initialization is the recommended way to give data members and
base classes proper values. All direct base classes, non-static data
members and virtual base classes can have initializers in the con-
structor initializer list. If the object to be initialized is a class with
constructors, the expression determines what constructor to use. If
not, the expression could be a value to copy.

If you do not specify an initializer, the default constructor will be
used to initialize the data member or the base class, if such a con-
structor exists. Data members of a built-in type will not be initial-
ized, which is potentially very dangerous. Clearly this is not
desirable. Initializing integers to a value like zero can sometimes be
a good idea.

It is possible to give data members values inside the body instead of
in the initialization list. We do not recommend this practice, since it
is less efficient to first call the default constructor and then the
assignment operator, than to call only one constructor. For data
members of built-in types there is no such difference, but for the sake
of consistency, even these should be initialized in the constructor ini-
tialization list.

35

EXAMPLE 5.6

There are some exceptions. If a data member must be initialized by
an expression that in any way must access the containing object, it is
sometimes necessary to defer initialization to the body of the con-

structor. Another situation is when an expression is too complex to

appear in the initialization list.

Base classes are treated as data members in the initialization list,
which means that they are also initialized by the default constructor,
if no initializer is provided.

Constructor initialization lists

class Base
{
public:
explicit Base(int i);
Base();
private:
int iM;
h

Base::Base(int i) : iM(i) // iM must be initialized
{

/[l Empty
}

Base::Base() : iM(0) // iM must be initialized
{

/l Empty
}

class Derived : public Base
{
public:
explicit Derived(int i);
Derived();
private:
int jM;
Base bM;
h
Derived::Derived(int i) // jM must be initialized
: Base(i), jM(i) /I Default constructor used for
bM

{
/I Empty
}
Derived::Derived() /I M must be initialized
: jM(0), bM(2) /I Default constructor used for
Base
{

36

Industrial Strength C++

Rule 5.6 Let the order in the
initializer list be the same as
the order of declaration in the
header file. First base classes,
then data members.

EXAMPLE 5.7

Rec 5.7 Do not use or pass
this in constructor initializer
lists.

/l Empty
}

It is legal C++ to list initializers in any order you wish, but you are
recommended to list them in the same order as they will be called.

The order in the initializer list is irrelevant to the execution order of
the initializers. Putting initializers for data members and base classes
in any other order than their actual initialization order is therefore
highly confusing and error-prone. A data member could be accessed
before it is initialized if the order in the initializer list is incorrect.

Virtual base classes are always initialized first. Then base classes,
data members and finally the constructor body for the most derived
class is run.

Order of initializers

class Derived : public Base // Base is number 1

{
public:
explicit Derived(int i);
Derived();
private:
int jM; /[jM is number 2
Base bM; /I bM is number 3
h

Derived::Derived(int i) : Base(i), jM(i), bM(i)
/I Recommended order 1 2 3

{
/l Empty

}

Another unsafe practice is to use or ptss in the initializer list.
The object pointed at lthis is not fully constructed until the body
of the constructor is being run.

The object is not fully constructed when base classes and data mem-
bers are initialized. Calling a virtual member function through a
pointer or reference to the partially constructed object is not safe.
Doing so is probably wrong and the program is likely to crash.

37

Calling a member function in a member initializer list can be equally
dangerous, since such a member function could try to access unini-
tialized members of the class.

Passinghis to base class and member initializers, or udinig
implicitly by calling a member function in the initializer list, should
therefore be avoided as much as possible.

Copying of objects

RULES
AND
RECOMMENDATIONS

A general rule is to avoid copying as much as possible, but it is
sometimes necessary to copy objects and you need to know when. It
is equally important to understand when copying is inappropriate.

Copying can be done by initialization or by assignment. Copying by
assignment is similar to initialization but is more difficult since you
modify an existing object that may hold resources that must be cor-
rectly managed.

The compiler will generate a copy constructor and a copy assign-
ment operator if the class does not declare one. It is important to
understand when the compiler-generated ones are appropriate.

Rec 5.8 Avoid unnecessary copying of objects that are
costly to copy.
Rule 5.9 A function must never return, or in any other way

give access to, references or pointers to local vari-
ables outside the scope in which they are declared.

Rec 5.10 If objects of a class should never be copied, then
the copy constructor and the copy assignment
operator should be declarecprivate and not
implemented.

Rec 5.11 A class that manages resources should declare a

copy constructor, a copy assignment operator, and
a destructor.

38

Industrial Strength C++

See Also

Rec 5.8 Avoid unnecessary
copying of objects that are
costly to copy.

Rule 5.9 A function must
never return, or in any other
way give access to, references
or pointers to local variables
outside the scope in which they

are declared.

EXAMPLE 5.8

Rule 5.12 Copy assignment operators should be protected
from doing destructive actions if an object is
assigned to itself.

Rec 7.3 — Rec 7.5, Rule 7.6, argument passing.
Rule 7.7, return value of copy assignment operator.

Rule 7.9, parameter type for copy constructor and copy assignment
operator.

Rec 12.7, Rule 12.8, resource management.

Copying an object is not the same as making a bitwise copy of its
storage. Bitwise copying, for example through the useeshcpy() ,

only works for a limited number of objects and should almost always
be avoided.

For most objects, copying is the same as calling either the copy con-
structor or the assignment operator for the class. Since a class could
have other objects as data members or inherit from other classes,
many member function calls would be needed to copy the object. To

improve performance, you should not copy an object unless it is nec-

essary.

It is possible to avoid copying by using pointers and references to
objects, but then you will instead have to worry about the lifetime of
objects. You must understand when it is necessary to copy an object
and when it is not.

Returning a pointer or reference to a local variable is always wrong
since it gives the user a pointer or reference to an object that no
longer exists. Such pointer or reference cannot be used without the
risk of overwriting the caller's stack space. Most compilers warn
about this, but mistakes are still possible to make.

Returning dangling pointers and references

int& dangerous()

inti=5;
return i; /I NO: Reference to local returned

39

Rec 5.10 If objects of a class
should never be copied, then

the copy constructor and the

copy assignment operator

should be declared private and

not implemented.

}

int& j = dangerous(); // NO: j is dangerous to use
/I much later:
cout << j; /I Crash, boom, bang, program dies

There are less obvious ways of making the same mistake, as in this example:

struct MyStruct
{

char *p;
...

h
MyStruct ms;

void alsoDangerous()

{
const char str[100] = "Bad news up ahead";
ms.p = str; /I No: address of local stored
}
alsoDangerous();

cout << ms.p << endl; // Garbage printed

The functionalsoDangerous() does not explicitly pass any pointer or reference to
any local object, but it lets such a pointer leak through by assigning it to a struct with a
scope larger than the local data in the function. The result in this case is that garbage
will be printed since the memory pointed at is likely to be overwritten.

Before you go ahead and implement copy constructors and copy
assignment operators for a class, you should ask yourself if the class
has a reasonable copy semantics or not. Is it reasonable to be able to
copy an object of the class? Sometimes this is a very simple question
to answer, such as for a string class which of course should be copy-
able. In many other cases the question about copying can be quite
hard to answer. But remember that even if you cannot copy objects,
you can still copy pointers and that is often sufficient.

Hopefully the question of copy semantics or not for a class will natu-
rally come out of the design process. Do not push copy semantics on
a class that should not have it.

40

Industrial Strength C++

EXAMPLE 5.9

Rec 5.11 A class that manages
resources should declare a
copy constructor, a copy
assignment operator, and a
destructor.

By declaring the copy constructor and copy assignment operator as
private , a class is made non-copyable. These member functions
must be declared, since the compiler would otherwise generate a
public copy constructor and a public copy assignment operator for
the class. The two privately declared member functions should not
be called, which means they do not have to be implemented, only
declared.

Non-copyable class

class CommunicationPort

{

public:
explicit CommunicationPort(int port);
~CommunicationPort();
...

private:
CommunicationPort(const CommunicationPort& cp);
CommunicationPort&

operator=(const CommunicationPort& cp);

...

As said before, the compiler will generate a copy constructor, a copy
assignment operator and a destructor if these member functions has
not been declared. For many classes, the generated member func-
tions have the wrong behavior.

A good example is a string object that stores a pointer to memory
allocated withnew. If we implement a destructor that deletes the
pointer, but do not provide a copy constructor, there is a good chance
that some pointers will be deleted twice.

A compiler generated copy constructor does memberwise initializa-
tion and a compiler generated copy assignment operator does mem-
berwise assignment of data members and base classes. For a string
class, this would mean that the pointer, not the character array is cop-
ied. If the class has been written with the assumption that the charac-
ter array is owned by the object, the bug is that two objects will store

a pointer to the same character array after a call to the compiler gen-
erated copy constructor or copy assignment operator.

41

EXAMPLE 5.10

If a class should be copyable, we must implement a copy constructor,
a copy assignment operator and a destructor when the ones generated
by the compiler will not work correctly. This means that there is a
large category of classes that should both declare and implement
these three member functions. An even larger category of classes are
those that declare them, since that would include all non-copyable
classes as well.

Classes that manage resources belong to this category. We have to
make sure that a resource is only acquired and released once.

Copyable class that manages memory

EmcIntStack is a simple stack class that manages an array of integers. Since we
want to be able to copy stack objects, we declare the copy constructor, the assignment
operator and the destructor as public members of the class.

/I EmclintStack is copyable

class EmclntStack
{
public:
EmclintStack(unsigned allocated = defaultSizeM);
EmcintStack(const EmcintStack& s, unsigned ex = 0);
~EmclntStack();
EmcintStack& operator=(const EmcintStack& s);
...
private:
enum { defaultSizeM = 100 };
unsigned allocatedM;
int* vectorM;
int topM;
h

EmcintStack::EmclIntStack(unsigned allocated)
: allocatedM(allocated),

vectorM(new int[allocatedM]),

topM(0)

{

}

EmclintStack::EmclIntStack(const EmcintStack& s,
unsigned extra)

: allocatedM(s.topM+extra),

vectorM(new int[allocatedM]),
topM(s.topM)

copy(vectorM, s.vectorM, s.topM);

}

42

Industrial Strength C++

Rule 5.12 Copy assignment
operators should be protected
from doing destructive actions

if an object is assigned to
itself.

EXAMPLE 5.11

EXAMPLE 5.12

EmcintStack::~EmclntStack()

delete [] vectorM;

}

We will study the assignment operator when explaining the next rule.

When implementing the copy assignment operator we must make
sure that self-assignment does not corrupt the state of the object.
There is a risk that you delete pointers and then assign them to them-
selves. To prevent that, you could copy the new state of the object to
local variables before assigning to the data members. This always
works, but is less efficient than assigning to the data members
directly. The most common solution is to check the address of the
object passed as argument before modifying the state of the object. If
the current object is passed as argument, the copy assignment opera-
tor simply returns without modifying the object.

Self-assignment

EmcString s = "Aguirre”;
S=Ss; /I Self assignment
cout << s << endl; /l Should print "Aguirre"

Implementing a copy assignment operator

When implementing the copy assignment operator folEthelntStack described
above, we check ththis -pointer before modifying the object. This is necessary
since we want to be able to reuse already allocated memory instead of allocating new
memory after each assignment.

EmcintStack& EmclntStack::operator=(const EmcintStack& s)
{
if (this |= &s)
{
int* newVector = vectorM;
if (allocatedM < s.topM)
{
/I operator new may throw bad_alloc
newVector = new int[s.topM];
allocatedM = s.topM;
}
/I copy elements
copy(newVector, s.vectorM, s.topM);
if (vectorM != newVector)

{

43

Il release memory
delete [] vectorM;
vectorM = newVector;
}
/I assign to object last to avoid changing state
/I if the assignment fails due to bad_alloc
topM = s.topM;
}

return *this;

}

Another similar class is our string clagncString . Like most other string classes,

objects of this class have a character array to store the value of theEsta8iring

has two data membergpM andlengthM . When assigning to a string, we simple
deallocate the character array pointed atjiM and create a new one of appropriate
size before copying the string.

class EmcString
{
public:
...
EmcString& operator=(const EmcString& s);
size_t length() const;
...
private:
size_t lengthM;
char* cpM;
h

Instead of checking ththis -pointer, we make sure that self-assignment does not cor-
rupt the state of the object by making a copy of the argument before modifying the
string. This will be slightly more efficient except when the parameter string is the
same object as the one assigned to. This could be considered a special case that is not
worth to optimize for. An even more efficient solution would be to avoid memory
allocation altogether when the existing string is big enough as in the previous exam-
ple.

EmcString& EmcString::operator=(const EmcString& s)
{

/I Not optimized for self-assignment

char* tmp = new char[s.length() + 1];

strcpy(tmp, s.cpM);

delete [] cpM;

cpM = tmp;

lengthM = s.lengthM;

return *this;

44

Industrial Strength C++

45

Chapter SIX

cConversions

It can be difficult to understand C++-code that uses implicit type con-
versions between otherwise unrelated types. A number of techniques can
be used to prevent such problems. Some conversions are so dangerous
that most compilers will give you a warning. We will show you how to
avoid the dangers involved by providing a few guidelines.

RULES
AND

RECOMMENDATIONS

See Also

Rec 6.1 Prefer explicit to
implicit type conversions.

EXAMPLE 6.1

Rec 6.1 Prefer explicit to implicit type conversions.

Rec 6.2 Use the new cast operatordynamic_cast,
const_cast, reinterpret_cast and
static_cast) instead of the old-style casts,
unless portability is an issue.

Rec 6.3 Do not cast away const.

Rule 6.4 Declare a data member asutable if it must be
modified by a const member function.

Rec 7.18 — Rec 7.19, conversion functions.

Most conversions are bad in some way. They can make the code less
portable, less robust and less readable. It is therefore important to
only use explicit conversions. Implicit conversions are almost
always bad.

It is common to use different integral types in a program. It can be
dangerous to mix different types, since the size and layout of these
types varies. A value that may fit in e.gshort on one platform, is
truncated on another platform. By always having explicit conver-
sions, it is much easier to find potentially dangerous code.

It is also common that a class provides an implicit conversion to its
representation. This makes it possible to pass an object as argument
to functions expecting direct access to the representation. If such
conversions are needed, we do not recommend you to have a conver-
sion operator function to do the job. You should instead have a mem-
ber function that does the conversion for you.

Explicit conversions

const unsigned large = 456789;

/I Potentially dangerous conversion
constint size = (int)large;

48

Industrial Strength C++

EXAMPLE 6.2

Rec 6.2 Use the new cast
operators (dynamic_cast,
const_cast, reinterpret_cast
and static_cast) instead of the
old-style casts, unless porta-
bility is an issue.

Conversion of string objectdmnst char*

It is common that a string class provides an implicit conversiorctmst char*
This makes it possible to pass a string object as argument to functions expecting such
a pointer.

class DangerousString

{
public:
...
DangerousString(const char* cp);
...
operator const char*() const; // Not recommended
const char* c¢Str() const; // Recommended
...
h

If your string class provide both a conversion operator member function and an ordi-
nary member function, you should always use the latter. If only a conversion operator
function is provided, you should only use explicit conversions.

EmcStack<const char*> stack;
stack.push("one");

DangerousString two("two");

/I Not recommended to store the result of a conversion.
/I Implicit conversion is not recommended.
stack.push(two); /I Implicit conversion

DangerousString three("three");

/I Explicit conversion is better than

/I implicit conversion.

stack.push((const char*)three); // Explicit conversion

DangerousString four("four");

/I Member function call is better than

/I conversion operator function call.
stack.push(four.cStr()); /l Member function call

There are many ways to convert values in C++; the traditional C cast
notation, the functional notation and new-style casts. The first two
are explained in most introductory C++ books. A new-style cast
means that one of the four new cast operators:

e static_cast

* reinterpret_cast ,

* dynamic_cast and

49

* const_cast

is being used. If your compiler supports the new cast operators you
should use them instead of the traditional cast operators, since they
give the user a way to distinguish between different types of casts.

A good thing about these operators is that their behavior is well-
defined in situations where the behavior of an ordinary cast is unde-
fined, or at least ambiguous. They cannot remove all dangers
involved in type conversions, but they are far better than the tradi-
tional cast syntax.

In order to use them, you must understand when each one of them is
appropriate.

A static cast is similar to an ordinary cast except that it will not allow
you to cast away constness or cast between unrelated types. You can
replace all implicit conversions wittatic_cast expressions.

Whenever you can make an implicit conversion from one type to
another, you can make static_cast in the opposite direction.

You can, for example, use static casts for base to derived conversions
if the base class is non-virtual.

The operatoconst_cast is solely used for casting away const.

The operatorreinterpret_cast is used when casting between
unrelated types, e.g. when castingrah to achar* .

The operatodynamic_cast checks the type of its operand at run-
time. It is similar to astatic_cast , but it is more safe. It can only

be used for types with run-time type information, i.e. classes with at
least one virtual member function, also called polymorphic classes.
It also allows base to derived conversions when the base class is vir-
tual. Since there is a run-time penalty for usihgamic_cast

instead ofstatic_cast , you should only use it when it is abso-
lutely necessary.

A problem with these operators is that they are not yet supported by
all compilers. Therefore, if you anticipate porting your code to
another environment, you should consider avoiding them for porta-
bility reasons.

50

Industrial Strength C++

EXAMPLE 6.3

EXAMPLE 6.4

Usingtatic_cast

unsigned large = 456789;
int size = static_cast<int>(large);

EmcStack<const char*> stack;
EmcString three("three");

/I Not recommended to store the result of a conversion.
/I static_cast is better than old-style cast.
stack.push(static_cast<const char*>(three));

New style casts

class B

{
public:
...
virtual ~B();
h

class D : virtual public B

{
public:
...
virtual ~D();
h

class E

{
public:
...
virtual ~E();
h

D* dynamicCast(B* b)
{

/I Must use dynamic_cast when base class is virtual.
return dynamic_cast<D*>(b);

}

D* constCast(const D* d1)

/I Should use const_cast when casting away const.
return const_cast<D*>(d1);

}
E* reinterpretCast(D* d)

/I Should use reinterpret_cast when casting pointer
/I to pointer of unrelated type.

51

return reinterpret_cast<E*>(d);

}

Rec 6.3 Do not castaway You should not cast away the constness of objects. There are how-

const.

EXAMPLE 6.5

EXAMPLE 6.6

ever a few rare cases where casting away constness is permitted,
such as if you need to use a function which has incorrectly specified
a parameter as non-const even if it does not modify it. If you have
been passed a const object, and need to pass it to the function which
takes a non-const object as parameter, then you are forced to choose
between two evils. Either you modify your own function so that you
will be passed a non-const object. This is not fair, since this will only
pass the problem to your user. Instead you should solve the problem
by maintaining your const correct interface and cast away the const-
ness of the object before you pass it to the function you need to use.

There are other problems with casting away const, such as the fact
that const objects might reside in write protected memory. It is unde-

fined what happens if you change such an object, but probably the
run-time system will report an error.

Casting away const

/I NOT RECOMMENDED
/I Parameter should be of type const EmcString&
void addToFileList(EmcString& s); // does not modify s

void addFiles(const EmcArray<EmcString>& s)
{
size_t max = s.size();
for(size_ti = 0; i < max; i++)
{
/I casting away const is NOT RECOMMENDED
/1 s[i] returns const EmcString&
addToFileList((EmcString&) s[i]);
...
}
}

Object in write-protected memory

/I ci may be in write-protected memory
const int ci = 22;

int* pi = (int*) &ci; // NO: Const cast away

/I reading write-protected memory?

52

Industrial Strength C++

Rule 6.4 Declare a data mem-

ber as mutable if it must be

modified by a const member
function.

EXAMPLE 6.7

inti = *pi; /I OK

/I writing into write-protected memory?
*pi =7, /I NO: This MAY fail!l!

If an object caches computed values for the sake of efficiency, such
data members should be declaradtable since that makes them
modifiable inside const member functions.

Class wittmutable data member

class EmcMatrix

{
public:
double determinant() const;
...
private:
mutable bool isDirtyM; /I mutable
mutable double detM; /I mutable
double calculateDeterminant() const;
...
h
double EmcMatrix::determinant() const
{
if(isDirtyM)
/I OK, access to mutable data members
detM = calculateDeterminant();
isDirtyM = false;
}
return detM;
}

The member functiodeterminant() was declaredonst even though it changed
data members of the class. This was made possible by declaring these data members
asmutable .

If your compiler does not supporitutable data members, then the best solution is to
cast away const inside the function, and add a comment to show other readers of the
code that you had no other option in order to keep the interface const-correct.

53

54

Industrial Strength C++

Chapter Seven

The class
Interface

The class interface is the most important part of a class. Sophisticated
algorithms will not help if the class interface is wrong. Different aspects
of the class interface are discussed in this chapter.

inline functions

argument passing

constness

operator and function overloading
conversion operator functions

Inline functions

RULES
AND

RECOMMENDATIONS

Rec 7.1 Make simple functions

See Also

inline.

Inline functions can improve the performance of your program. This
chapter will discuss which functions that should be specified as
inline, and which should not.

Rec 7.1 Make simple functions inline.
Rule 7.2 Do not declare virtual member functions as
inline

Rec 14.1, the danger of having too many inline functions.
Rule 14.2, how to avoid making a virtual destructor inline.
EXAMPLE 2.5, how to temporarily disable inlining.

It is possible to improve performance and make programs smaller by
declaring functiondnline . The opposite is also true if you use
inlining in the wrong places.

Fewer machine instructions are executed when an inline function is
called, since there is no need to prepare a stack frame for the function
call. As long as the program does not grow so that the code will
reside on different pages in memory, this is likely to improve perfor-
mance. Too large executables should be avoided and that is why it is
difficult to give an exact advice on when to use inline functions.

It may come as a surprise that inline expansion could decrease the
overall size of the program, but if the overhead of a function call is
larger than the total size of the inline-expanded code this is actually
true.

If you have member functions whose sole purpose is to give access
to data members, those member functions are likely candidates for
inlining. This is a consequence of the rule that a class should not
have any public or protected data members. Since member functions
should be used instead, it is likely that you want to make them inline

for the reasons explained above.

56

Industrial Strength C++

EXAMPLE 7.1

Rule 7.2 Do not declare vir-

It can be hard to know exactly when inlining is appropriate, so our
advice is to be cautious. Consider inlining only when you know that
the code generated for the function is small.

A class with inline member functions

class Point

{
public:
Point(double x, double y);
...
/I accessors
double x() const;
double y() const;

/I modifiers
void x(double x);
void y(double y);

private:
double xM;
double yM;

h
inline
double Point::x() const

{

return xMm;

}

...

Point operator+(const Point& p1, const Point& p2)

{
return Point(p1.x() + p2.x(), p1.y() + p2.y());

}

A negative effect of making a member function inline is that all cli-
ent code must be recompiled each time the member function
changes. This is especially annoying in larger projects with many
unstable classes that are used in many places. If this is your situation,
consider having all member functions as non-inline. By using inline
definition files, you can do that without much effort.

Virtual member functions could often be simple enough for inlining,

tual member functions as put they should unfortunately not be declaigithe . If a class

inline.

57

with virtual member functions is used, some compilers will require

that all virtual member functions have implementations that are
linked with the program. The reason is that the address of a virtual
member function is needed when a function call is dynamically

bound. Most compilers generate a table with the address of all virtual
member functions, also called the virtual table.

Since inline functions are inline-expanded, they do not have an
implementation by default. However if we make an inline function
virtual, it must have a definition. Such a definition will then be gen-
erated by the compiler and since the inline function is defined in a
header file, there is no obvious place to put it. A good place could be
in the same obiject file that contains the definition of the virtual table
for the class. What makes things complicated is the fact that the com-
piler does not always have an obvious place for the virtual table
either.

The virtual table needs to be allocated in one of the object modules.
Some compilers allocate it in the object module that contains the def-
inition of the first virtual function of the class. If the first virtual
function is inline, the virtual table + code for all virtual member
functions that are inline could be generated in each object module
that uses the class.

All this may seem complicated and it is. This may not be a problem
in the future, but with the compilers of today you should avoid hav-
ing virtual functions that are inline.

Argument passing and return

values

Calling member functions is the normal way to make things happen
in a C++ program, but ordinary functions are also used. Your code
will be easier to understand if function parameters and return values

58

Industrial Strength C++

RULES
AND
RECOMMENDATIONS

See Also

Rec 7.3 Pass arguments of
built-in types by value, unless
the function should modify
them.

EXAMPLE 7.2

are declared in a consistent way. The performance of your code can
also be improved.

Rec 7.3 Pass arguments of built-in types by value, unless
the function should modify them.

Rec 7.4 Only use a parameter of pointer type if the func-
tion stores the address, or passes it to a function
that does.

Rec 7.5 Pass arguments of class types by reference or
pointer.

Rule 7.6 Pass arguments of class types by reference or
pointer, if the class is meant as a public base class.

Rule 7.7 The copy assignment operator should return a

non-const reference to the object assigned to.

Rule 5.12, how to implement copy assignment operator.
Rule 7.8 — Rule 7.9, constness of pointer or reference argument.

Rec 10.2, validity of pointers and references returned from member
functions.

Rec 15.9, passing integers.

Arguments to functions can be passed in 3 ways: by value, by pointer
and by reference.

Different types of function parameters

void valueFunc(T t); // By value
void pointerFunc(T* tp); // By pointer
void referenceFunc(T& tr); // By reference

Passing arguments by value means that the function parameters are
copies of the arguments. If the parameters are pointers or references,
the function has access to the arguments. But remember that if an
argument is a temporary created by an implicit type cast, the object

used to create that temporary will not by modified.

A good rule of thumb is to pass built-in types lislear , int and
double by value, since it is cheap to copy such variables. This rec-

59

Rec 7.4 Only use a parameter

EXAMPLE 7.3

of pointer type if the function

stores the address, or passes it

to a function that does.

ommendation is also valid for some objects of classes that are cheap
to copy, such as simple aggregates of a very small number of built-in
types, for example a class that represents complex numbers which
often just consists of twdouble s as data members.

If a function needs access to an argument, then you must pass also
built-in types by reference or pointer. This should otherwise be
avoided.

Passing parameters by value

void func(char c); /I OK
void func(int i); /I OK
void func(double d); /I OK

void func(complex<float>c); // OK

Reference and pointer parameters are similar in that both allow a
function to modify the arguments. We only recommend pointer
parameters if a function stores the pointer value, or if it passes it to
another function that does.

Some programmers argue that the code is easier to understand if
pointer arguments are used when the function modifies an object,
since then you must take the addresses of objects when such func-
tions are called. This would make it obvious, from reading the client
code, when a function modifies an argument.

Unfortunately, the implementation of a function will often be more
difficult to read if pointer parameters are dereferenced inside expres-
sions. Local references make it easier to understand such compli-
cated expressions. What is not good with this solution is that one
more local variable is needed. This makes the function slightly more
complex.

Pointer parameters also force the implementation to consider how
null-pointers are handled, since dereferencir@@ointer is a fatal
error that certainly will crash your program. References cannot be
null, which relieves the implementation of the problem of checking
if it is null or not.

The implementation of a function taking a pointer as parameter
might pass it to some other function, which in its case also might

60

Industrial Strength C++

consider the possibility of being passed a null-pointer. It is easy to
see that all this easily cascades to endless tests of pointer values.

Therefore we recommend pointers only as a way of showing to the
user that the address of the argument is stored by the function for
later use, or is passed to a function that does so. Functions with
pointer parameters must therefore be treated specially since the cli-
ent must not delete objects whose addresses are passed to such a
function. You should be suspicious if the address of a local object is
passed to a function. One benefit with following this recommenda-
tion to avoid pointer parameters is that dangling pointers to local
objects are easier to detect.

Unless you are careful, pointer parameters may end up being used
everywhere within a system with the motivation that “l use a pointer
in my interface because internally | have to call that other interface,
which takes a pointer as argument”. The use of pointer parameters
can this way easily spread over a complete program system.

EXAMPLE 7.4 Pointer and reference arguments

EmcMathVector represents a 2-dimensional vector.

class EmcMathVector
{
public:
EmcMathVector(double x, double y);
EmcMathVector& operator*=(double factor);

double x() const;
double y() const;
void x(double x);
void y(double y);
...

private:
double xM;
double yM;

h

EmcMathVector::EmcMathVector(double x, double y)
 XM(x), yM(y)

{

/I empty
}

EmcMathVector& EmcMathVector::operator*=(double factor)

{

XM *= factor;

61

Rec 7.5 Pass arguments of
class types by reference or
pointer.

yM *= factor;

return *this;

}

The question is how we implement a function that modifies the statEmtiath-
Vector -object. We could either pass a pointer or reference.

EmcMathVector v(1.2, 3.4);

/I Not recommended
magnify(&v, 4.0); /l passing pointer

/I Recommended
magnify(v, 4.0); /I passing reference

By looking at the implementation, we can see that the implementation of the function
taking a pointer will be slightly more complex.
/I Pointer argument

void magnify(EmcMathVector* v, double factor)
/I Not recommended to pass pointer

if (V) /l Pointers might be 0
{

*v *= factor; // scalar multiplication of vector
}

/I Handle null pointers here in some way:
/I assert or exception

}

/I Reference argument

void magnify(EmcMathVector& v, double factor)
/I Recommended to pass reference

{

v *= factor; /I scalar multiplication of vector

}

Arguments of class type are often costly to copy, so we recommend
that you pass a reference (or in some cases a pointer), preferably
declared const, to such objects. Const access guarantees that the
function will not change the argument, and by passing a reference,
the argument is not copied.

void func(const EmcString& s); /I const reference

62

Industrial Strength C++

EXAMPLE 7.5

Small objects are sometimes more efficient to pass by value, but the
default is to assume that arguments of class types are passed as const
references. It is a good idea to always read the documentation for the
class to make sure whether an object should be passed by value or by
const reference.

Template parameters are a problem here, since when declaring tem-
plate functions you can in many cases not know if a user will pass a
built-in or a class type. The thing to do then is to select a way of
passing parameters by looking at how costly copying of a template
parameter is expected to be. If you anticipate cheap copying, then
you should pass parameters by value. Otherwise use references.

Passing arguments of unknown type

A simplified version of thevector class in the standard library is a good example of
what assumptions about instantiation-bound types can be impdtterator is

an argument to a member template and is expected to behave as a pointer. Since point-
ers should be cheap to copyputiterator parameters are passed by value. T is

the type of the object stored in the vector, and since the class should work even when
T is expensive to copy, parameters are passed as referericpsinters, on the other

hand, are passed by value.

template <class T>
class vector
{
public:
template <class Inputlterator>
vector(Inputlterator first,
Inputlterator last);
T* begin();
T& operator[](size_t n);
void push_back(const T& x);
T* insert(T* position, const T& x = T());
...
h

Footnote:

Member templates are a recent addition to the language. They are motivated by the
fact that it is impossible to create smart pointer templates that smoothly replace the
ordinary pointers without this new language feature, but there are other uses for them
as well. With member template constructors, it is possible to allow a template instanti-

ation to provide a conversion from an otherwise unrelated type to itself. Remember

that two template instantiations are different types.

63

Rule 7.6 Pass arguments of

class types by reference or

pointer, if the class is meant as

a public base class.

EXAMPLE 7.6

You can instantiateector<T>::vector with any type that behaves as an

Inputlterator . This means that it is up to the client to decide if built-in arrays or
iterator classes are used to initialize Weetor<T> object. Without member tem-
plates, it would have been necessary to make a decision when designing the template.

If a class is meant to be a public base class, then you should always
pass such objects by pointer or reference. This will as previously
described in almost all cases give you better performance, but there
are other reasons as well. If a function takes a reference or a pointer
to a base class, objects of derived classes can also be used as argu-
ments, since C++ allows a pointer of reference to a public base class
to be bound to a derived class object. This is what most often is
called polymorphism.

You should never attempt to pass objects of these types by value,
since what happens in such cases is that you will encounter what is
usually called slicing. You can avoid that problem by only having
abstract base classes, or by making the copy constructor private or
protected. Since an object of an abstract base class cannot be copied
and thus created, the compiler will catch errors of this kind.

Passing base class reference

/I basic_ostream<charT, traits> is a public base class

template <class charT, class traits = file_traits<charT> >
class basic_ofstream
: public basic_ostream<charT, traits>
{
public:
explicit basic_ofstream(const char* s,
openmode mode = out | trunc);
...

3

typedef basic_ostream<char> ostream;
typedef basic_ofstream<char> ofstream;

ostreamé& operator<<(ostreamé& o, const EmcMathVector& v)

{ non

0 << V.X() <<, " << vy();
return o;

}

int main()

{

64

Industrial Strength C++

EXAMPLE 7.7

Rule 7.7 The copy assignment
operator should return a non-

const reference to the object
assigned to.

EXAMPLE 7.8

ofstream out("hello.txt");
EmcMathVector v(1.2, 5.5);

out << v << endl,
/I operator<<(ostreamé&, const EmcMathVector&) called
return O;

}

In this case aofstream object is passed to tloperator<< taking a reference to
its base classstream .

Passing base class object by value

It is not possible to pass an object of the class ostream by value, siosteeam
object cannot be copied.

void uselessPrint(ostream o, const EmcMathVector& v)
/I NO: Compile error
{

0 << V.X() <<, " << vy();

}

The return value from the copy assignment operator should always
be a non-const reference to the object assigned to. There are many
reasons to this. One is that this is the return value of a compiler gen-
erated copy assignment operator. It could be confusing if hand-writ-
ten copy assignment operators had a different signature than the
compiler generated ones. Another reason is that all classes with copy
semantics in the standard library have copy assignment operators
with non-const return values.

Return value from assignment operators

The following expression is legal when usingrgh to access an int array.

int* array = new char[3];
II'... set values

int* arrayPointer;

/I assign to first element
*(arrayPointer = array) = 42

If we instead use a smart pointer class to access the array, we want to keep this behav-
ior for objects of that class.

EmcAutoArrayPtr<int> smartArrayPointer;
/I assign to first element
*(arrayPointer = array) = 42

65

This requires that the smart pointer class provides the copy assignment operator and
that it returns a nogenst reference tahis .

Const Correctness

RULES
AND
RECOMMENDATIONS

See Also

Rule 7.8 A pointer or refer-
ence parameter should be
declared const if the function
does not change the object
bound to it.

Being “const correct” is important when writing code in C++. It is
about correctly declaring function parameters, return values, vari-
ables and member functionsamst or not.

Rule 7.8 A pointer or reference parameter should be
declaredconst if the function does not change
the object bound to it.

Rule 7.9 The copy constructor and copy assignment opera-
tor should always have a const reference as
parameter.

Rule 7.10 Only useconst char -pointers to access string
literals.

Rule 7.11 A member function that does not change the state
of the program should be declarectonst .

Rule 7.12 A member function that gives non-const access to
the representation of an object must not be
declaredconst .

Rec 7.13 Do not let const member functions change the
state of the program.

Rule 5.12, how to implement copy assignment operator.
Rule 7.7, return value of copy assignment operator.

Functions often have const reference or const pointer parameters to
indicate that an argument is not modified by the function. A good
thing withconst declared parameters is that the compiler will actu-
ally give you an error if you modify such a parameter by mistake,
thus helping you to avoid bugs in the implementation.

66

Industrial Strength C++

EXAMPLE 7.9

EXAMPLE 7.10

Rule 7.9 The copy constructor
and copy assignment operator
should always have a const
reference as parameter.

const -declared parameter

/I operator<< does not modify the EmcString parameter
ostreamé& operator<<(ostreamé& out, const EmcString& s);

When an argument is passed by value, it is used to initialize a func-
tion parameter that will be a copy of the argument. The caller is
therefore immune to changes made to that parameter by the called
function. If you declare the parameter @mst in these circum-
stances you will just be preventing any change to the parameter tak-
ing place in the body of the function. This would be of little help,
since not being able to change a parameter passed by value only puts
unnecessary constraints upon the programmer implementing the
function. If a parameter passed by value is decleoest , the value

must be copied to a local variable if the value is to be modified by
the function.

By not declaring the parametawnst , it is possible to use the argu-
ment value without first copying the value.

Using parameter as a local variable

template <class T>

T arraySum(const EmcArray<T>& array,
size_t first,
size_t last)

{

assert(last <= array.length());
T sum = 0;

for(;first < last; first++)

{
/'t is possible to update first since
/I'it has not been declared const.
sum += arrayf[first];

}

return sum;

}

Two particularly important examples of const parameters are the
copy constructors and the copy assignment operators, which should
always have a const reference as parameter. In almost all cases it is
evident that they should not change the object copied from. Being

67

EXAMPLE 7.11

sloppy in this respect can have drastic consequences, since it will
force derived classes and containing classes to also take non-const
references as parameters.

If a class inherits another class and provides a copy constructor, this
only works if that class has a copy constructor that accepts a const
reference parameter. If not, the compiler will report an error, since a
const object is passed to a copy constructor taking a non-const
parameter. The same problem applies to the case when such a class is
used as a data member.

If a class does not allow constant objects to be copied, then it cannot
be used in many situations where the programmer expects these
properties to hold. It could be when the class is used as a template
argument, base class or data member.

There are a few rare exceptions to this rule, such as when the copy is
destructive; the new object takes over the state of the old object. This
is for example the case if a resource or token, such as a message, is
passed from an old object to a new object when the old object is cop-
ied.

Copyable type parameter

The following template assumes that the type argument T is copyable.

Il Interface

/I'T is Copyable
template<class T>
class EmcStack
{
public:
...
void push(const T& t);
...
private:
size_t allocatedM;
size_t topM;
T repM;
h

/I Implementation
/I EmcAutoArrayPtr manages arrays of objects

template <class T>
void EmcStack<T>::push(const T& t)

68

Industrial Strength C++

{

if (topM == allocatedM) // allocate more memory

{

size_t newSize = 2 * allocatedM;
EmcAutoArrayPtr<T> newRep(new T[newsSize]);
for(size_ti = 0;i < topM; i++)

{
newRep][i] = repMI[i];

}

repM = newRep.release();
allocatedM = newsSize;

}

/I Only works if T is of a type that allows copying
/I of constants.

repM[topM] = t;

topM++;

Rule 7.10 Only use const Constness is not always as enforced by the language. A very simple
char-pointers to access string example is string literals that are non-const. It is best to always
literals. access such strings through coctsdr -pointers, so that they cannot
be modified. What is not commonly known is that according to the
language definition they are of non-const type.

When using a&onst char* instead, the compiler will prevent you
from modifying the string literal through the pointer.

Unfortunately this does not guard you from direct assignment to the
pointer itself. It is therefore better to eitheonst declare the
pointer, or use array notation, since it is not possible to assign to a
built-in array.

EXAMPLE 7.12 Accessing string literals
/I NOT RECOMMENDED

char* messagel = "Calling Orson";
I/ Better
const char* message2 = "Ice Hockey";

/I Even better
const char* const message3 = "Terminator";

/I Best
const char message4[] = "l like candy";

69

Rule 7.11 A member function You should declare all member functions that do not modify the state
that does not change the state of the program asonst . Declaring a member function aenst
of the program should be h 55 40 important implications:

declared const.

EXAMPLE 7.13

1. Only const member functions can be called for const objects.
2. A const member function will not change data members.

It is a common error to forget tonst declare member functions
that should be const. If you forget this, then it will be difficult to pass
const references or pointers to objects of that class as arguments to
functions. It would also be difficult to use const references or point-
ers returned from functions.

Please note that it is possible for a const member function to change
static data members, global data, as well as the objects that pointer
data members are pointing at. It is even possible to modify the object

operated upon if a non-const pointer or reference to that object

exists.

Implications abnst

UselessString is a class that has not declared any const member functions.

class UselessString
{
public:
UselessString();
UselessString(char* cp);
UselessString(UselessString& u);

~UselessString();

UselessString& operator=(UselessString& u);
char* cStr();

size_t length();

char& operator[](size_t index);

char& at(size_t index);

friend ostream& operator<<(ostreamé& o,
UselessString& u);

private:
...

70

Industrial Strength C++

EXAMPLE 7.14

Rule 7.12 A member function
that gives non-const access to
the representation of an object

must not be declared const.

A consequence is that the following code, that you would expect to be legal, will not
compile:

void print(const UselessString& s)

/I Should be possible o print a const object
cout << s << endl; // Will not compile

}

Accessing objects inside const member function

class Silly

{
public:
explicit Silly(int val);
void me(Silly& s) const; // Odd function
private:
int valM;

h
Silly::Silly(int val) : valM(val)

..
}

The odd thing about the declaration of the functize() is that it takes a non-const
parameter, which indicates that it might be changed by the function, while the function
itself is declared asonst . If we look at its implementation we can easily see its
peculiarity.

void Silly::me(Silly& s) const

/l valM = 42; /I Error: cannot modify valM
s.valM =42; // OK but odd: s is not const

}

If you call the const member functione() with the object operated upon as argu-
ment, the object will be modified by the member function call despite the member
function's constness.

Silly s(7);

s.me(s); [/ s.valM ==42, not7

A member function that gives non-const access to the representation
of an object must not be declarednst , since the object has no
control over possible modifications through such pointers or refer-
ences. The solution is to properly overload member functions with
respect to constness.

71

EXAMPLE 7.15

Accessing characters in a string

The following piece of code allows a string to be modified by using the indexing oper-
ator to access individual characters.

EmcString name = "John Bauer";

name[0] ='B"; /I OK

The implementation returns a reference to a character that is part of the representation
for the string and that can be assigned to. Here, the indexing operator indirectly modi-
fies the object.

TheEmcString class has overloadegerator(] with respect to constness to pre-
vent const objects to be indirectly modified this way.

class EmcString

{
public:
EmcString(const char* cp);
size_t length() const;
...
/I Non-const version
char& operator[](size_t index);
/I Const version
char operator[](size_t index) const;
...
private:
size_t lengthM; // Length of string
char* cpM; /I A pointer to the characters
h

The string is represented by two data memlmls, the character array, and
lengthM , the length of the string.

The implementation of the indexing operators are straightforward. They just return a
reference to the character specified by the index parameter, as long as the index is
within bounds.

char& EmcString::operator[](size_t index)
{

assert(index < lengthM);

return cpM[index];

}

The compiler would not complain if this indexing operator is decleoest , since it

is not the pointecpM that is modified, only what it points at. By doing that, one oper-
ator member function would have been enough, which would be a benefit for the per-
son maintaining the class. since the fewer member functions the class has, the easier it
is to maintain.

72

Industrial Strength C++

Rec 7.13 Do not let const
member functions change the
state of the program.

From the user's perspective it would be wrongpttst declare the indexing operator
returning a reference, since that would open up the possibility that a constant string
could change value. Here, the compiler's interpretatiocon$t would not be the
same as the programmer's.

const EmcString pioneer = "Roald Amundsen";
/I pioneer[0] ='M"; Should NOT be legal!!

We want to allow each individual character @omst declared string to be accessed,

but not modified. The correct way to do that is to overload the indexing operator with
respect to constness. The const member function does not return a reference so the
string cannot be modified through assignment to the return value.

const EmcString s = "hello";
size_t length = s.length();

for (size_tj = 0; j < length; j++)
{
/l OK: Read only
cout << "char " << j << ": " << s[j] << endl;

}

A const member function promises, unless cheating, not to change
any of the data members of the object. Usually this is not enough as a
promise. A const member function should be possible to call any
number of times without affecting the state of the complete program.
It is therefore also important that a const member function refrains
from changing static data members, global data, or other objects
which the object has a pointer or reference to. Objects often put some
parts of their representation in separate objects and instead have data
members that are pointers to these objects. As a complicating factor,
it may also be the case that the value of a data member is not part of
the state of the object. It could be a value, such as the determinant for
a matrix, that was very costly to calculate and therefore cached in an
internal data member for efficiency reasons.

If const member functions fulfil their promise not to change the state
of the program, then that make them very useful for example as a
reliable tool in assertions that checks if the program is in a consistent
state. Assertions should be possible to switch off without changing
the behavior of the program, which makes it obvious that const
member functions must behave as promised.

73

There are many subtleties involved in this issue. What if there is a
log attached to the program, that is used when the program is
debugged? Writing to such a log does in some ways affect the state
of the program, since it will affect output buffers and the number of
open files. The only possible thing to do is to appeal to good engi-
neering judgement.

Overloading and default arguments

Overloading and default arguments in C++ are two straightforward
but powerful extensions to C. By avoiding a few pitfalls they can
greatly reduce the complexity of a system.

RULES Rule 7.14 All variants of an overloaded member function

AND should be used for the same purpose and have
RECOMMENDATIONS similar behavior.
Rec 7.15 If you overload one out of a closely-related set of

operators, then you should overload the whole set
and preserve the same invariants that exist for
built-in types.

Rule 7.16 If, in a derived class, you need to override one out
of a set of the base class' overloaded virtual mem-
ber functions, then you should override the whole
set, or use using-declarations to bring all of the
functions in the base class into the scope of the
derived class.

Rule 7.17 Supply default arguments with the function's dec-
laration in the header file, not with the function's
definition in the implementation file.

See Also Rec 13.4, overloaded functions replace functions with an unspecified
number of arguments.

Rec 10.6 — Rec 10.7, specifying behavior of member functions.

74 Industrial Strength C++

Rule 7.14 All variants of an
overloaded member function
should be used for the same
purpose and have similar
behavior.

EXAMPLE 7.16

Rec 7.15 If you overload one

out of a closely-related set of
operators, then you should
overload the whole set and

preserve the same invariants
that exist for built-in types.

Different member functions can be used for essentially the same pur-
pose. By giving all member functions the same name, this fact can be
made explicit to the user of a class. This is called function name
overloading.

Using function name overloading for any other purpose than to
group closely related member functions is not recommended and
would be very confusing.

Overloaded member functions

When working with strings, we sometimes want to know how many occurrences of a
character or a substring it contains. The string d&ssString overloads the name
contains for both these operations.

EmcString cosmonaut("Juri Gagarin");

charc="a’;
bool cValue = cosmonaut.contains(c);
/I cValue == true

EmcString uri("uri");
bool uriValue = cosmonaut.contains(uri);
/I uriValue == true

By giving the member functions the same name, the code will be more readable since
only one name, contains, must be remembered by the programmer.

Different versions o€ontains should also have the same behavior.

If used correctly, operator overloading can improve the readability of
the code. This is the case for classes that represent mathematical
guantities such as complex numbers and for classes that replace
arrays or pointers.

C++ programmers expect that all operators in a set of closely related
operators are available.

For example, if a class provides= for comparing two objects of
the class, it should also provitte.

In general, many relationships between operators can be described as
a set of invariants.

75

EXAMPLE 7.17

EXAMPLE 7.18

For example, i andb areint s andifa!=b is true, this implies
that!(a==b) is also true. The same property should holdahd
b are objects of a class.

The general recommendation is that if you overload operators, pro-
vide all operators in a closely related set of operators and preserve
the invariants that are valid for built-in types.

Operator overloading

If a class provides copy assignment apdrator==() , two objects are expected to
be equal after assigning one of them to the other.

Int x = 42;
Inty =0;
X=Y,;

/I x ==y should be true

If a class provides the comparison operaters=, > and>=, we expect that an object

can either be lesser, greater or equal to another object. For example, if we have a
functionmaxthat returns the largest of two operands, it should not matter what opera-
tor is used in the implementation.

Int max(Int x, Inty)
if (x >y) // could use: < instead

/l We also expect that:
Iy <x
return x;

}

else

/I We also expect that:
IIx<=y
returny;
}
}

It can be useful to preserve an invariant by using an operator member function in the
implementation of another closely related operator member function. You could say
the invariant is the implementation, since it defines how to implement an operator
function in terms of another overloaded operator function.

Implementation of closely related operators

EmcString overloadsoperator ==() andoperator !=() . The implementation
of operator!=() compares two strings and retutng if they are not equal.

bool EmcString::operator!=(const EmcString& s) const

{

76

Industrial Strength C++

Rule 7.16 If, in a derived
class, you need to override one
out of a set of the base class'
overloaded virtual member
functions, then you should
override the whole set, or use
using-declarations to bring all
of the functions in the base
class into the scope of the
derived class.

EXAMPLE 7.19

if (lengthM != s.lengthM)
/I Different lengths means that strings are different

{

return true;

}

else

{
return (strcmp(cpM, s.cpM) != 0);

}
}

To check if two strings are equal, we can simply negate the resoftecdtor
I=() . By doing that, less code is needed to implempatator ==()

bool EmcString::operator==(const EmcString& s) const

{

return !(*this !='s); // operator!= used here

}

Mixing overloading and inheritance can be tricky. A problem is that

if you in a derived class override only one of the overloaded virtual

functions in the base class, then the functions not overridden will be
hidden for all users of the derived class.

Both virtual and non-virtual member functions can be hidden. A hid-
den member function can only be called when the object is accessed
through a base class pointer or reference, but not directly.

Hidden member functions will make the code more difficult to
understand. The same expression could mean different things
depending on how the object is accessed. Implicit conversions must
be taken in consideration and the programmer must be of aware of
what versions of the overloaded function that are hidden for both
base classes and the actual class.

Hiding member functions

class Base
{
public:
...
void f(char);
void f(int);
virtual void v(char);
virtual void v(int);

77

Derived inheritsBase and provides some of the overloaded functions.

/I NOT RECOMMENDED

class Derived : public Base

{
public:
Derived();
...
void f(int);
virtual void v(char);

3

Different member functions will be called depending on Haerived is accessed.
For example, i’ used for its implementation, the result could be surprising.

void Derived::v(char c)

{
f(c); /I calls Derived::f(int), not Base::f(char)
v((int)c); // recursive call to Derived::v(char)

}

If the object is accessed within the scop8age or through 8Base pointer or refer-
ence, the result of overload resolution will be different.

Derived d;
Base& bref = d;
charc="a"

bref.f(c); /I calls Base::f(char)
bref.v(c); // calls Derived::v(char)
bref.v((int)c); // calls Base::v(int)

It is not always wrong to hide member functions. A good example is
a non-virtual comparison member function that takes a reference to
another object as argument. It can be difficult to compare objects of
different types. You will need run-time type checking or define the
comparison entirely in terms of virtual functions. If you in a derived
class know how to compare two objects of that class efficiently, you
may want to hide the more general comparison function so that it is
only used when operating on base class pointers or references.

If the member function would have been declavetial , the
derived class could instead have replaced it with a more efficient ver-
sion.

A virtual member function should be overridden to replace the base
class implementation, not to hide any names in the base class. The
natural thing is to always make all inherited virtual member func-

78

Industrial Strength C++

EXAMPLE 7.20

tions that are accessible in the base class also accessible in the
derived class. It would be very strange if different virtual member
functions are called depending on how the object is accessed.

If your compiler does not implement namespaces, you will have to
reimplement the member function.

Inheriting overloaded virtual member functions

Suppose the templatemcBoundedCollection<T> inherits from EmcCollec-

tion<T> . Objects of the same derived class are possible to compare more efficiently
than if the objects are of different classes. This is the reason to why the member func-
tionisEqual is overloaded in the derived class, but to avoid surprises the base class
version is also made accessible.

/I Stores any number of values

template <class T>
class EmcCollection

{
public:
...
virtual bool isEqual(const EmcCollection<T>&) const;
bool operator==(const EmcCollection<T>&) const;
h

In a derived class it is OK to hide the non-virtapérator==() , but not
isEqual().

/I Stores a limited number of values

template <class T>
class EmcBoundedCollection : public EmcCollection<T>
{
public:
...
using EmcCollection<T>::isEqual;
virtual bool
isEqual(const EmcBoundedCollection<T>&) const;
bool
operator==(const EmcBoundedCollection<T>&) const;

79

Rule 7.17 Supply default argu- Default arguments are a surprisingly complex area of C++. For
ments with the function's dec- example, it is possible to redeclare a function several times with dif-

laration in the header file, not

with the function's definition in

the implementation file.

EXAMPLE 7.21

EXAMPLE 7.22

ferent default arguments. We firmly believe that it is best to use
default arguments only with the declaration of a function in the
header file, not to make functions simpler to call in the implementa-
tion file. Such tricks tend to make the code more difficult to under-
stand.

Adding default arguments

void f(int x, inty = 2);
/1 50 lines of declarations later
void f(int x = 1, int y); // NOT RECOMMENDED

If you callf without specifying any arguments, the default arguments will be used.

f(; // calls f(1,2)

Default arguments for member function

/I operator() returns O if a generated internal
/I random double between [0,1) is > limit.
/I Else return 1.

class RanDraw
{
public:
enum RanType {Fast, Good};
RanDraw(double limit, int seed, RanType t = Good);
/l Default argument for t in class definition

i"...
3

RanDraw::RanDraw(double limit, int seed, RanType t)
/I No default arguments outside class definition
...
{
...

}

80

Industrial Strength C++

Conversion functions

RULES
AND
RECOMMENDATIONS

See Also

Rec 7.18 One-argument con-
structors should be declared
explicit.

It can be difficult to understand C++-code that uses implicit type
conversions between otherwise unrelated types. Your classes can be
designed to prevent such code by removing one-argument construc-
tors and conversion functions.

Rec 7.18 One-argument constructors should be declared
explicit
Rec 7.19 Do not use conversion functions.

Rec 6.1 — Rec 6.3, a more general discussion about conversions.
Rec 15.14, if your compiler does not support explicit.

Implicit type conversions are bad since the behavior of existing code
can change when new such conversions are added, and it is difficult
to know what function that is called when looking at the code.

If an object of a type is passed as argument to a function, it is natural
to expect to find a function taking that type as parameter.

If implicit type conversions are used, it is no longer that easy. A pro-
grammer must also check all implicit type conversions for the argu-
ment type in order to find out which function that actually is called.
This search can be quite difficult to do manually since some conver-
sions might be defined by an otherwise unrelated class.

A good way to improve the situation is to avoid implicit type conver-
sions and to prevent the client from depending on them.

By default, all one argument constructors can be used for implicit
type conversions. All one-argument constructors should therefore be
declared asxplicit to prevent them from being called implicitly.
The keyword explicit " is a recent addition to the C++-language
and may not yet be supported by your compiler.

81

EXAMPLE 7.23 One-argument constructor

class Other

{
public:
explicit Other(const Any& a);
/I No implicit conversion from Any
...

h

Since the clas®ther declares the constructor esplicit , the type must be speci-
fied when using aAny object instead of ®&ther object.

void foo(const Other& 0);

Any any;

/I foo(any); /' Would not compile
foo(Other(any)); // OK

Rec 7.19 Do not use conver- Conversion functions introduce an implicit conversion from a class
sion functions. to another type. You should avoid them and instead use ordinary
functions to get a value of another type.

EXAMPLE 7.24 How to avoid conversion operator function

Our string clas&mcString provides a member functiastr() for the purpose of
returning the string representation aast char *.

class EmcString

{
public:
...
const char* cStr() const;
/I conversion to const char*
...
h

void log(const char* cp);
EmcString magicPlace("Ngoro-Ngoro crater at dusk");

log(magicPlace.cStr());
/I Explicit conversion from String to const char*

82 Industrial Strength C++

83

84

Industrial Strength C++

85

Chapter Eight

new and
delete

The operatorsiew anddelete are the C++ way of allocating and
deallocating memory for objects. Their use is quite error prone, but

many problems can be avoided by following a few basic rules and rec-
ommendations.

RULES Rule 8.1 delete should only be used witthew.
AND Rule 8.2 delete [] should only be used witmew [|
RECOMMENDATIONS Rule 8.3 Do not access a pointer or reference to a deleted

object.

Rec 8.4 Do not deletehis

Rec 8.5 If you overloadoperator new for a class, you
should have a corresponding overloadedpera-
tor delete

Rec 8.6 Customize the memory management for a class if

memory management is an unacceptably-large
part of the allocation and deallocation of free
store objects of that class.

See Also Rule 10.4, base class destructor.
Rule 12.5, exceptions thrown inside destructors.
Rec 12.9, using the stack instead of the free store.

Rule 8.1 delete should only be It is important to understand how memory is managed in C++. You
used withnew. should understand what happens when an object is createdewith

and what happens when tiglete operator ends its lifetime.
Rule 8.2 delete [] should only

be used with new [].
Allocation and deallocation of free store objects are done in steps:

e If asingle object is allocatedperator new is called to allo-
cate memory, and then the constructor is called to initialize the
object.

* Ifan array of objects is allocatemherator new]] is called to
allocate memory for the whole array, and then the constructor is
called for each element of the array.

* When a single object is deleted, the destructor for the object is
called first, and theoperator delete is called to free the
memory occupied by the object.

88 Industrial Strength C++

EXAMPLE 8.1

Rule 8.3 Do not access a
pointer or reference to a
deleted object.

* When an array of objects is deleted, the destructor for each ele-
ment of the array object is called first, and tloperator
delete]] is called to free the memory occupied by the array.

Since different functions are used for allocation and deallocation of

single objects and arrays of objects, you must use the correct
delete expression when a pointer is deleted. If not, the wrong func-

tion will be called to release the memory occupied by the object.

The reason that different functions are called is that it should be pos-
sible for an implementation to use the algorithms that are best suited
for either case. If different algorithms are used, the memory will not
be properly released if the wrong function is called, and the program
will probably crash.

Allocate and deallocate free store object

Since EmcString does not overload neitheaperator new nor operator
delete , the default functions for memory allocation will be called.

EmcString* sp = new EmcString("Hello");
/I Calls ::operator new

delete sp;

/I Calls ::operator delete()

const size_t arraySize = 5;

EmcString* sa = new EmcString[arraySize];
/I Calls ::operator new[]()

delete [] sa;

/Il Calls ::operator delete[]()

You must decide what to do with your pointer after you have deleted
the object assigned to it. A pointer that has been used as argument to
a delete expression should not be used again unless you have
given it a new value, since the language does not define what should
happen if you access a deleted object. You could either assign the
pointer to0 or a new valid object. Otherwise you get a “dangling”
pointer.

89

EXAMPLE 8.2

Rec 8.4 Do not delete this.

EXAMPLE 8.3

Dangerous access to deleted object

The following code is legal, but the behavior is undefined.

EmcString* sp = new EmcString("Hello");
delete sp;
cout << *sp << endl; // No: Undefined behavior !!

You should also avoid deleting thieis pointer. It is potentially
dangerous to do so, and your code will be more difficult to under-
stand.

If a class provides a member function that deldtizs , it can be
dangerous to make such a member function an ordinary member
function, since it is possible that ttieés pointer must be accessed
when returning from the function.

You should not try to delete an object allocated on the stack with
such a member function. A common trick is to declare the destructor
as eithermprivate or protected to prevent objects on the stack
from being created.

Objects that commit suicide

class W
{
public:
WO0;
void goAway();
static void foo();
void bar();
...
protected:
~W();
h

Objects of the clas#/can only be created witiew since it has a protected destructor.

For that reason, it is also not possible to delete the object outside the scope of the
class. Instead the member functigpAway() has been provided that deletes the
object.

void W::goAway()

{
delete this; // No!!

}

90

Industrial Strength C++

Rec 8.5 If you overload opera-
tor new for a class, you should
have a corresponding over-
loaded operator delete.

EXAMPLE 8.4

W*w = new W;
w->goAway();

After the call togoAway() , it is undefined what happens if you try to use the object.

w->foo(); /I May crash !l!
w->bar(); /I May crash !!!

Objects can be allocated with many differeptv expressions. The
result of anew-expression is either a null-pointer or a pointer to an
object with a lifetime that is determined by the programmer. When
the object is no longer needed, some code is needed to properly
return the memory and perhaps other resources allocated by the
object. To delete a pointer to the object is not always the right thing
to do, since memory could have been allocated by some other means
thanoperator new(size_t)

For example, it is possible to provide additional placement argu-
ments in anew-expression. The function that allocates storage for
such an object is also called a placement operator new.

Placement new

A common form of placement new, that is part of the standard library, takes a memory
address as argument.

const int maxSize = 100;

/I get storage for object
/I assumption: sizeof(A) < 100
void* storage = (void*)new char[maxSize];

/I call placement new to create object
A* apl = new (storage) A();

To delete a pointer pointing to such an object is not recommended, but the destructor
should always be called. It is possible and correct to call the destructor explicitly in
this situation.

/I Use apl
ap1->~A(); // call destructor, not delete

/I reuse storage: sizeof(B) < 100
B* bpl = new ((void*)storage) B();
...

delete [] storage;

91

It is possible to overloadperator new, operator delete,

operator new(] andoperator delete [] for a class. If we
want to customize memory management for a class this is the correct
thing to do.

The interaction between exception handling and customized memory
management must be understood to avoid memory-related errors.

If an exception is thrown by a constructor for an object created with
new, the run-time system is responsible for returning the memory
allocated for the object. The client has no way of doing this, since a
pointer to the object is not available until the object has been fully
constructed. For this to work, the run-time system must know how to
correctly deallocate objects created by differ@mw-expressions.

The scope of theperator new used by thenew-expression is
searched for a matchingperator delete . A declaration of an
operator delete matches the declaration ofoperator new

when it has the same number of parameters and all parameter types
except the first are identical. The run-time system will then call the
matchingoperator delete to deallocate a partially constructed
object.

Until recently it was not possible to provide additional arguments to
operator delete andoperator delete[] , but now it is both
possible and recommended to overload these member functions if a
class has its own memory management. If not, the program could
crash before an exception handler is given the chance to handle the
exception and there is also the risk of getting memory leaks.

If the compiler does not support this rather new language feature,
one deallocation function that can be used with all different alloca-
tion functions is an alternative to an overloaded deallocation func-
tion, but then additional arguments to tlev-expression will not be
available when the deallocation function is called. This makes it dif-
ficult to customize memory management when only exceptions are
supported by the compiler.

92

Industrial Strength C++

EXAMPLE 8.5 Class with customized memory management

The clas#A has customized memory management. An additional placement argument
is provided to allow the client to control where in memory objects are placed.

class BadArgument

{
public:
explicit BadArgument(int);
...
h
class A
{
public:
AQ);
A(int) throw (BadArgument);
~A();
...
void* operator new(size_t size);
void* operator new[](size_t size);
void* operator new(size_t size, const PooI<A>& p);
void* operator new[](size_t size, const Pool<A>& p);
void operator delete(void* vp);
void operator delete[](void* vp);
void operator delete(void* vp, const Pool<A>& p);
void operator delete[](void* vp, const Pool<A>& p);
...
h
A has a constructor that throws an exception. If an exception is thrown the correct
operator delete() will be called.
A:A(int i) throw (BadArgument)
{

...
if (i == 42) throw BadArgument(42);
}

A* createA(int i)

Il throws exception if i == 42
return new A(i);

/I if exception is thrown, call
/I A::operator delete(void*)

}

A* createA(int i, const Pool<A>& memoryPool)

Il throws exception if i == 42
return new (memoryPool) A(i);

93

/I if exception is thrown, call
/I A::operator delete(void*, const Pool<A>& p)

}

Rec 8.6 Customize the mem- When should a class customize its memory management? Different
ory management for a class if memory management algorithms have different performance charac-
memory managementis an aristics. When using a general algorithm, both the size and location

unacceptably-large part of the
allocation and deallocation of

free store objects of that class.

of memory blocks must be stored and updated by the functions. A
customized allocator, that only manage memory blocks of one size,
can do less book-keeping and is therefore faster.

Some objects are very often created in large numbers on the free
store. Sometimes the memory management of such objects can be a
large part of the overall time spent on allocation of such objects. In
these cases it can be very well spent effort to customize the memory
management for such a class. Programs can be made to run 5 times
faster by such customized memory management. Therefore this can
be a good option for improvement if your programs runs unaccept-
ably slow.

94

Industrial Strength C++

Chapter Nine

Static Objects

Global objects, static data members, file scope objects and local vari-
ables declaredtatic = are variables with static storage duration. A
strategy for initialization of objects with static storage duration is
needed to avoid the risk of accessing uninitialized objects.

RULES
AND

RECOMMENDATIONS

See Also

Rec 9.1 Objects with static

storage duration should only

be declared within the scope of
a class, function or anonymous

namespace.

Rec 9.1 Objects with static storage duration should only
be declared within the scope of a class, function or
anonymous namespace.

Rec 9.2 Document how static objects are initialized.

Rec 1.4 — Rec 1.5, namespaces

Static objects make it possible to access an object inside a function
without having to pass along a pointer or reference to it. Many
objects can use the same object without each object storing a pointer
to the object, which can save space and sometimes make the code
less complex.

There are also many disadvantages of having static objects. Any
function that has access to a static object could use it, which means
that it can be costly and difficult to maintain code with many static
objects.

In addition they can complicate multi-threaded applications, since it
is necessary to protect static objects so that their states do not
become invalid if two threads modify an object at the same time.

We recommend you to limit the scope of a static object to a class, a
function or an unnamed namespace. By doing so, it is possible to
know in advance where a static object is accessed.

Encapsulate access to static objects as much as possible. If you can
declare a static object within a function, you should do that. Such
objects are guaranteed to have been initialized before the first use of
the function.

The choice between a static data member and a static object within
an unnamed namespace is not as obvious. The latter alternative is
more flexible regarding scope, but the first choice allow you to put
the implementation of a class in many files.

96

Industrial Strength C++

EXAMPLE 9.1

EXAMPLE 9.2

Unnamed namespaces allow you to use the same name for many dif-
ferent objects with static storage duration. For example, it is com-
mon to have a static string to identify each implementation file that a
program uses.

Old C++-programmers should know that objects within unnamed
namespaces replace static objects in file scope. The language has
changed, and there is now no guarantee that static objects in file
scope will be supported in the future.

Function local static object

int randomValue(int seed)

{
static int oldValue = seed;
/I calculate new value
return oldValue;

}

Static data member

A singleton class is a class with only one instance. It is common to store a static data
member that is a pointer to that object. By doing so static member functions can have
access to the object.

The pointer is not local to a function since many static member functions need access
to the object.

class EmcSingleton
{
public:
static EmcSingleton* instance();
static void create(int i = 0);
...
private:
/I private constructors
EmcSingleton(int i);
...
static auto_ptr<EmcSingleton> instanceM;

h
EmcSingleton* EmcSingleton::instanceM = 0;

void EmcSingleton::create(int i)

{

instanceM = new EmcSingleton(i);

}

EmcSingleton* EmcSingleton::instance()

{

97

Rec 9.2 Document how static

EXAMPLE 9.3

EXAMPLE 9.4

objects are initialized.

EXAMPLE 9.5

if (! instanceM) create();
return instanceM;

}

Unnamed namespace

/I myfile.cc

namespace

{

Il sccsid is not visible to other files
const char sccsid[] = "@#)myfile.cc ...";

}

...

Static objects in file scope

/I Not recommended if your compiler allows you to
/I have unnamed namespaces

static const char sccsid[] = "@(#)myfile.cc ...";

Static objects defined in different implementation files are initialized
in an order that is not specified by the language.

This is a problem when static objects are used by constructors used
to initialize other static objects. Programs that depend on any partic-
ular order could work on one platform and crash on another. To

ignore the problem is to ask for trouble.

Access to static object inside constructor

Suppose a constructor writes a messag®ib . If theiostream library would not
have provided a method for safe initializationcofit , such constructors would be
dangerous to use for static objects.

#include <iostream.h>

class EmcLog
{
public:
EmcLog(ostreamé& out);
...

3

EmcLog::EmcLog(ostream& out)
...

{

98

Industrial Strength C++

out << "Creating log" << endl;
...

}

/I cout must have been initialized before initializing
/I theLog.

EmcLog theLog(cout); // static object

To avoid surprises, the programmer should document under what cir-
cumstances static objects, and/or function and classes that depend on
them, can be used. In order to do that, the programmer must under-
stand how static objects are initialized and how to control the initial-
ization order.

You should always try to declare static objects initialized by con-
structors inside their corresponding access functions. These objects
are guaranteed to be initialized before first use, because they are ini-
tialized when control passes through the function for the first time.
This solution does not require the client to do anything special before
using the function.

If using such access functions is not possible, consider using static
pointers instead of objects, since that allows you to control how the
objects are initialized. The simple rule is that before you use a func-
tion or a class that needs to use the static pointers to access objects,
you must call a function that creates the objects bound to them.

In what way can that help? Since you do not depend on any imple-
mentation-defined order, your program will more portable. Another
desirable property is that the client can control when the initializa-
tion function is called.

An initialization function often has a corresponding finalization
function that should be called before terminating the program. By
having an initialization class that manage the resources, the program-
mer can automatically get finalization by putting a call to the final-
ization function inside the destructor.

There are rules for how static objects within the same translation unit
are initialized. If two static objects are defined within the same trans-
lation unit, but outside the scope of a function, their initialization
order will be the same as the order of their definitions.

99

FOOTNOTE: This is the opposite to the rules for non-static data
members where the declaration order, not the order of initializers,
determines initialization order.

EXAMPLE 9.6 Initialization order of static objects

/I scesid initialized before release.

namespace

{

const char sccsid[] = "@#)myfile.cc ...";
const char release[] = "@(#)Emc Class Library, 1.2";

2

You can take advantage of this order when classes and functions
require initialization. Many class libraries provides file local initial-
ization objects within its header files to make sure that the classes
can be used without trouble. This is what thstream library
does. This solution is safe, but costly in terms of performance and
memory. Many small objects with constructors will be created before
entering main and the number of objects will increase as the number
of implementation files used to build the program gets bigger. For
some applications this is not acceptable, so you should avoid such
general solutions.

If you, before enteringmain() , want to access functions that
depends on static objects, you must declare a static initialization
object before first use of the class. Where to put that object should be
your own responsibility.

EXAMPLE 9.7 Initialization object

Suppose you have a cldssncObject that requires initialization. The class provides a
nested clastitor for that purpose. The implementationlmifor ~ uses two mem-

ber functions provided bfmcObject , initialize andfinalize , that do the
actual initialization and finalization of the class. An initialization object should be cre-
ated before operating up&mcObject objects.

class EmcObject
{
public:
...
class Initor
{
public:
Initor();
~Initor();
private:

100 Industrial Strength C++

static int refcountM;
b

friend class Initor;

private:
static void initialize();
static void finalize();

i"...
3

The implementation must prevent a class to be initialized or finalized more than once.
All EmcObject:Initor objects share a reference count that is updated each time
an object is created. This is a common technique for safe initialization of static
objects. By checking the value, we make sure that the class is only initialized and
finalized once.

/I EmcObject.cc
int EmcObiject::Initor::refcountM = 0;

EmcObject::Initor::Initor()

{
if (refcountM == 0) EmcObject::initialize();
refcountM++;
}
EmcObiject::Initor::~Initor()
{
refcountM--;
if (refcountM == 0) EmcObject::finalize();
}
Before the client uses the class,EancObject::Initor object is created inside an

unnamed namespace. By doing that, there is no risk of nhame clashes if more than one
object with that name is created.

/I client code

namespace

{
EmcObiject::Initor initor; // initializes EmcObject
...

}

/I more code ...

101

102 Industrial Strength C++

Chapter Ten

Object-
oriented
programming

In this chapter we will discuss rules and recommendations concerning
the most important parts of object oriented programming, namely
encapsulation, dynamic binding, inheritance and software contracts.

Encapsulation

RULES
AND

RECOMMENDATIONS

Rule 10.1 Only declare data

See Also

members private.

There are many aspects to what is called encapsulation. For any data
member it is required that the source code that may access it directly
is limited to a part of the program, that can be deduced from inspect-
ing the class definition only. The main idea is that users should not
be affected by modifications to the class representation as long as the
class interface is unchanged.

Rule 10.1 Only declare data members private.

Rec 10.2 If a member function returns a pointer or refer-
ence, then you should document how it should be
used and for how long it is valid.

Rec 5.5, Rule 5.6, Rec 5.7, initialization of data members.
Rule 7.7, return value of copy assignment operator.

Public data members should be avoided. By only having private data
members, it is possible to know in advance what code that modifies
data members. This makes it less likely that the state of the object
becomes corrupt by mistake.

We want to avoid having users that depend on the representation of
the object. With public data members, it is difficult to predict how
much code that must be modified when the representation changes.
There will also always be a risk that the user modifies data members
in a way not anticipated by the implementation of the class, creating
bugs that are hard to find.

Imagine how hard it would be to maintain a class with public data
members. Many bugs would most likely be the user's own fault, even
though the program crashes inside member functions of the class. By
declaring data members as private the effort to maintain the class
will be less.

It is also impossible to change the name or type of public data mem-
bers, since that would immediately break all code using them. If pub-

104

Industrial Strength C++

Rec 10.2 If a member function
returns a pointer or reference,
then you should document how
it should be used and for how

long it is valid.

EXAMPLE 10.1

lic data members are avoided, then the internal representation of a
class can be changed without users of the class having to modify
their code.

We also recommend that protected data members are avoided, since
member functions of derived classes have the same kind of unre-
stricted and possibly dangerous access to protected data members as
other functions have to public data members. Some might argue that
constant members could be declared protected without risk, since
these cannot be modified. Even here a member function interface is
slightly better, since it makes the base class and the derived class
more loosely coupled.

Private data members are a good step towards encapsulation, but
they are not enough. We must always document ownership and life-

time of objects that we return pointers or references to, and also any
restrictions on how we use such pointers or references.

It is not always wrong to return a pointer or reference to an object,
but if we have a badly designed class interface, it is possible that we
use the object in a way that is not anticipated by the implementation.

Returning non-const reference to object

Suppose we have a string class with a member funletigth() that returns a non-
const reference to the data member that stores the length of the string. Then we can
easily invalidate the state of the object by assigning to the reference returned this way.

OtherString s("hello"); // length() ==
s.length() = 114; /I Not recommended
/l'length() == 114

It is always unwise to give uncontrolled access to data that is part of
an object's state. If such access is necessary, it is important that the
user knows how to use the class correctly. A good design principle is
to have as few limitations as possible on how to use a pointer or ref-
erence returned from a function.

It is not always wrong to return a pointer or reference to a data mem-

ber, since not all such objects are part of the containing object's state.
Sometimes it is even necessary to return a pointer or reference, e.g.
when using overloaded operators to modify an object.

105

EXAMPLE 10.2

Assigning to string element

When assigning to an element of a string or an array, it is easier to read and understand
the code if we use the same syntax as for built-in arrays.

EmcString has overloadef] to allow assignment of individual elements of the
string. This operator returns a reference to an array element that can be assigned to.

EmcString s = "Hello";
s[0] ='h'; /I Better than: s.set(0,'h");

Sometimes a function returns a pointer or a reference to an object
that must be managed by the user. Typically the user must delete the
object in order to avoid a memory leak. If a function transfers owner-
ship of an object that it returns a pointer or reference to, then this
must always be documented. A good strategy is to use a haming con-
vention to make it obvious to the user when the object must be
deleted by the user. You could e.g. give such functions a name that
starts with fiew”, “make” or “create "

Dynamic binding

RULES
AND
RECOMMENDATIONS

C++ allows you write code that only depends on a base class inter-
face. It is possible to bind base class pointers or references to objects
of derived classes and to operate on them without knowing their
exact type. This makes it possible to add new derived classes without
having to change the code that operates upon them. This makes pro-
grams easier to adapt to changing user requirements.

Here we want to explain how and when to use dynamic binding in
your programs.

Rec 10.3 Selection statement# (and switch) should be
used when the flow of control depends on an
object's value, while dynamic binding should be

106

Industrial Strength C++

See Also

Rec 10.3 Selection statements
(if and switch) should be used
when the flow of control
depends on an object's value,
while dynamic binding should
be used when the flow of con-
trol depends on the object's

type.

EXAMPLE 10.3

used when the flow of control depends on the
object's type.

Rule 4.1, Rec 4.2 — Rec 4.5, writiifig andswitch statements.

Heavy use of the selection statemdhtgelse andswitch might
be an indication of a poor design. Selection statements should mostly
be used when the flow of control depends on the value of an object.

Selection statements are not the best choice if the flow of control
depends on the type of an object. If you want to have an extensible
set of types that you operate upon, code that uses objects of different
types will be difficult and costly to maintain. Each time you need to
add a new type, each selection statement must be updated with a new
branch. It is best to localize selection statements to a few places in
the code. This however requires that you use inheritance and virtual
member functions.

Suppose you have a class that is a public base class. It is possible to
operate on objects of derived classes without knowing their type if
you only call virtual member functions. Such member function calls
are dynamically bound, i.e. the function to call is chosen in run-time.
Dynamic binding is an essential component of object-oriented pro-
gramming and we cannot overemphasize the importance that you
understand this part of C++. You should try to use dynamic binding
instead of selection statements as much as possible. It gives you a
more flexible design since you can add classes without rewriting
code that only depends on the base class interface.

Factory class

EmcCollection<T> is a base class that allows many different types of object col-
lections to be manipulated through the same interface. It is only meant to be derived
from and each derived class must override a set of pure virtual member functions. By
making it an abstract base class, the class interface is more clearly separated from its
implementation.

template <class T>
class EmcCollection
{
public:
...

107

Il insert one element
virtual void insert(const T&) = 0; // pure virtual
...

h
template <class T>

ostream&
operator<<(ostreamé&, const EmcCollection<T>& coll);

EmcArrayCollection is a class template derived frddmcCollection<T> that
implements the base class interface. All pure virtual member functions are overridden
so that arEmcArrayCollection<T> object can be created.

template <class T>
class EmcArrayCollection
: public virtual EmcCollection<T>

{
public:
static const size_t initialSize = 10;
EmcArrayCollection(size_t maxsize = initialSize);
...
h
A user of EmcCollectionFactory can create objects of classes derived from

EmcCollection<T> without explicitly including their class definitions in the pro-
gram, which makes the program less sensitive to changes in the implementation.

class InvalidCollectionType : public EmcException
{
public:
InvalidCollectionType(int id);
...
private:
intidM;
h

template <class T>
class EmcCollectionFactory

{
public:
EmcCollectionFactory();
...
enum EmcCollectionld { Arrayld =0, /* ... */ };
virtual EmcCollection<T>* create(int type) const
throw(InvalidCollectionType);
virtual EmcCollection<T>* createArray() const;
...
private:
...
h

108 Industrial Strength C++

Each class derived froEmcCollection<T> has its own type identifier represented
as an integer. This identifier is passed to the create member function when creating an
object.

EmcCollection<T>*

EmcCollectionFactory<T>::create(int type) const
throw(InvalidType)

{

/I Select behavior based on the value of type.

switch (type)
{ case Arrayld:
{ return createArray();
}
...
default:
{
throw InvalidCollectionType(type);
}
}

return O; // Never reached

}

template <class T>
EmcCollection<T>*
EmcCollectionFactory<T>::createArray() const
{

return new EmcArrayCollection<T>();

}

EXAMPLE 10.4 Dynamic binding

Suppose you have created an object of the Eag\rrayCollection<int> with

a call to EmcCollectionFactory<int>::create() . That object can be
assigned to aBmcCollection<int> pointer and operated upon using virtual mem-
ber functions declared by the base class.

EmcCollectionFactory<int> factory;
EmccCollection<int>* collection =
factory.create(EmcCollectionFactory<int>::Arrayld);

collection->insert(42);
/I EmcArrayCollection<int>::insert() is called

cout << *collection << endl;
delete collection;

109

Inheritance

RULES
AND

RECOMMENDATIONS

Rule 10.4 A public base class
must either have a public vir-
tual destructor or a protected

See Also

destructor.

If you use inheritance, you need to plan in advance how the base
class is meant to be used. Many base classes must have virtual
destructors, but not all. Sometimes a base class should be declared
virtual and sometimes not.

Rule 10.4 A public base class must either have a public vir-
tual destructor or a protected destructor.

Rule 10.5 If you derive from more than one base classes
with the same parent, then that parent should be a
virtual base class.

Rule 8.1 — Rule 8.2, how to delete objects.

When a class appears as a public base class, derived classes should
be specializations of the base class. This allows objects of derived
classes to be operated upon through base class pointers or references.
The user can use an object without knowing its exact type if a virtual
member function is called.

The destructor is a member function that in most cases should be
declaredvirtual . It is necessary to declarevittual in a base

class if derived class objects are deleted through a base class pointer.
If the destructor is not declaredrtual , only the base class
destructor will be called when deleting an object that way. In addi-
tion to that, the size of the base class object will be passgmbto

ator delete() and not the size of the complete object.

There is however a case where it is not appropriate to use virtual
destructors; mix-in classes. Such a class is used to define a small part
of an interface, which is inherited (mixed-in) by subclasses. In these
cases the destructor, and hence also the possibility of a user deleting
a pointer to such a mix-in base class, should normally not be part of
the interface offered by the base class. The best thing to do in these
cases is to have a non-virtual, non-public destructor, since that will

110

Industrial Strength C++

EXAMPLE 10.5

not allow a user of a pointer to such a base class to claim ownership
of the object and decide to simply delete it.

In such cases it is appropriate to make the destructor protected. This
will stop users from accidentally deleting an object through a pointer
to the mix-in base class, and therefore it is no longer necessary to
require the destructor to be virtual.

Deleting a derived class object

EmcCollection<T> has a derived clagmcArrayCollection<T> that stores an
array ofT objects.

class EmcCollection

{
public:
...
/I destructor virtual for base class
virtual ~EmcCollection();
...
h

template <class T>
class EmcArrayCollection : public virtual
EmccCollection<T>
{
public:
...
~EmcArrayCollection();
...
private:
size_t indexM;
EmcArray<T> arrayM;
...
h

The destructor of thEmcArray<T> member must be called when the object ends its
lifetime since otherwise memory allocated for the array will not be released. It is nec-
essary to declare the destructor as virtual in the base class, if we want to be sure that
the derived class object is properly deleted.

EmcCollectionFactory<int> factory;

EmccCollection<int>* collection =
factory.create(EmcCollectionFactory<int>::Arrayld);

...

delete collection;

/I 1. ~EmcArrayCollection<int>() is called
/I 2. ~EmcArray<int>() is called
/I 3. ~EmcCollection<int>() is called

111

Rule 10.5 If you derive from
more than one base classes
with the same parent, then that
parent should be a virtual base

class.

EXAMPLE 10.6

/I 4. ::operator delete(sizeof EmcArray<int>, cp)
/I is called

The destructor foEmcArray would in this case never have been called if the destruc-
tor for EmcCollection had not been declareitual

Multiple inheritance is a language feature that is seldom used, but it
is for example very useful if you want to derive from classes in two
different class libraries. It is then possible to have one derived class
instead of many.

Each object of a derived class has an object representing each base
class, a base class member. A problem with multiple inheritance is
that when two base classes inherit from the same class, the default is
to duplicate that base class member in the derived class, not to share
it.

Why is this bad?

Since you actually have two base class objects, you cannot assign the
derived class object to a pointer or reference to that base class.

You cannot call a member function introduced by that base class
when directly operating upon objects of the derived class without
explicitly qualifying the name with a base class name. When inherit-
ance is non-virtual, all names that are introduced by the base class
will be ambiguous. The presence of duplicated base classes will
make a derived class different from other derived classes, which we
should avoid.

It is more natural to share base class objects, but this requires that
each base class that appears more than once as a base class, is a vir-
tual base class.

Virtual base class

The classEmcLogged allows an object to write a log message on a format that is
specified by the implementation BmcLogged. It is meant to be used as a base class
only and is an example of a mix-in base class.

class EmcLogged

{
public:
virtual void writeClassName(ostream&) const = 0;

112

Industrial Strength C++

virtual void writeObjectld(ostreamé&) const;
virtual void writeValue(ostream&) const = 0O;

void logMessage(const char* message) const;

protected:
~EmcLogged(); // mix-in base class

3

The class has two pure virtual member functions that must be implemented by a
derived class. They are called by the non-virtual member funiciessage()
This function prints a log message to a file.

Suppose we want to make it possible to write a collection to the log. We create a hew
class templateEmcLoggedCollection that inherits from bothEmcCollec-
tion<T> andEmcLogged, both which are declared virtual base classes.

template <class T>
class EmcLoggedCollection
: public virtual EmcCollection<T>,
public virtual EmcLogged
{
public:
void writeValue(ostream&) const;

protected:
~EmcLoggedCollection();
h

The member functiomriteValue() is implemented so that operator<<() is used to
print a collection object. The class is abstract since it does not impleritnat
ClassName() .

template <class T>
void EmcLoggedCollection<T>::writeValue(ostreamé& 0) const
{

0 << *this;

}

Since both th&mcLogged destructor and thEmcLoggedCollection destructors
are protected, we cannot delete objects through pointers of these types.

Since theEmcCollection<T> is a virtual base class, we can mix-in this behavior
into another template derived fraBmcArrayCollection<T> . Here, virtual inher-
itance is necessary sin&mcCollection<T> appears as a base class more than
once.

template <class T>
class EmcLoggedArrayCollection
: public virtual EmcArrayCollection<T>,
public virtual EmcLoggedCollection<T>

113

public:
EmcLoggedArrayCollection();
...
virtual void writeClassName(ostreamé&) const;

protected:
~EmcLoggedArrayCollection();

3

This class implements its constructors and its destructor so that a log message is writ-
ten when these member functions are called. We could use this class when debugging
our programs.

Inheritance can also be used to extEnatCollectionFactory . Here, there is no
need for virtual inheritance.

We create a class templd&mcLoggedCollectionFactory that creates objects of
classes that derive fronEmcLoggedCollection<T> . The advantage of this
approach is that we can trace how objects are created and deleted without changing
the implementation of our existifgmcCollection classes. All that was required

was the virtual inheritance froEBmcCollection<T>

template <class T>
class EmcLoggedCollectionFactory : public
EmcCollectionFactory<T>
{
public:
virtual EmcCollection<T>* createArray() const;

3

template <class T>
EmcCollection<T>*
EmcLoggedCollectionFactory<T>::createArray() const

{

return new EmcLoggedArrayCollection<T>();

}

Since we only depend on the base class interface, we only need to change the type of
the factory object that is created.

EmcLoggedCollectionFactory<int> factory;

EmccCollection<int>* collection =
factory.create(EmcCollectionFactory<int>::Arrayld);

collection->insert(42);
/I EmcLoggedArrayCollection<int>::insert() is called

...
delete collection;

114

Industrial Strength C++

The Class Interface

RULES
AND
RECOMMENDATIONS

See Also

When you design object-oriented systems, you must know how to
describe class interfaces. Each class interface has member functions,
types and relationships to other classes that must be described in a
class specification.

The class specification should not only describe how the class should
be implemented, but also how it should be used. The class specifica-
tion is a software contract that must be obeyed by both the user of the
class and the class supplier.

It is important to distinguish this external view of objects from their
representation, since a class specification should not depend on any
particular implementation of a class.

If a class appears as a public base class, the class specification is also
valid for all its derived classes. Proper use of inheritance is important
for good object-oriented design. Proper inheritance means that the
interface of a public base class is also implemented correctly by
derived classes. A derived class should not modify the base class
interface, just extend it.

If C++ is used to describe preconditions, postconditions and class
invariants, test programs will be much easier to write, and the speci-
fication will be more exact.

Rec 10.6 Specify classes using preconditions, postcondi-
tions, exceptions and class invariants.

Rec 10.7 Use C++ to describe preconditions, postconditions
and class invariants.

Rule 10.8 A pointer or reference to an object of a derived
class should be possible to use wherever a pointer
or reference to a public base class object is used.

Rec 10.9 Document the interface of template arguments.

Rule 11.1, Rec 11.2, assertions can be useful if you need to check
conditions in your program.

115

Rec 10.6 Specify classes using The program operates upon object by calling member functions. We
preconditions, postconditions, want to write correct programs, which means that we must under-

exceptions and class invari-

ants.

EXAMPLE 10.7

stand how to use the objects correctly. Unless we are careful, pro-
gramming errors could result in unexpected run-time errors that
terminate the program. We should also try to minimize the chance
that a program relies on undocumented features.

A class specification should be the programmer's primary descrip-
tion of a class, that prevents us from making mistakes. The class
specification should describe more than what you can get by reading
the code and that is why we recommend you to provide precondi-
tions, postconditions and exceptions for each member function.

The user must know under what conditions a member function is
possible to call and if it has been implemented correctly.

The user's obligations are described as member function precondi-
tions that describe under what circumstances a member function can
be called.

Preconditions are conditions that should be valid on entry to a mem-
ber function. Their purpose is to prevent an object from being used
incorrectly.

The supplier's obligations are described as class invariants and mem-
ber function postconditions. The class invariant describes conditions
that are valid for all objects of the class.

Postconditions are conditions that should be valid on exit from a
member function and their purpose is to specify how the state of an
object is modified by a member function.

Pre- and postconditions

A stack is a classical example on an abstract data type with pre- and postconditions;
here represented by the cl&sscintStack

Initially a stack is empty. After you have pushed an element onto the stack, the stack is
no longer empty. It is possible to push an element onto the stack as long as the stack is
not full and to pop an element as long as the stack is not empty.

We can express this knowledge as pre- and postconditions of the corresponding mem-
ber functions in the class.

class EmcintStack

{

116

Industrial Strength C++

EXAMPLE 10.8

public:
...
int empty() const;
int full() const;
int top() const;
void push(int i);
int pop();

private:
...

h
void EmclntStack::push(int i)

/I Precondition: ! full()

...

/I Postcondition: | empty()
}

int EmclintStack::pop()

/I Precondition: ! empty()
...

}

Pre- and postconditions should always be valid, but what if they are
not? The implementation of the member function should be written
with the assumption that the precondition is valid, so it is the code
that uses a class that must be modified if a precondition is not valid.
This means that it is sometimes necessary to check the precondition
before operating upon the object.

On the other hand, it is the implementation of a class that must be
modified if a postcondition is not valid, since it is required that
implementation makes the postcondition valid.

Using member function with precondition

EmcString makeString(const EmciIntStack& stack)
{

EmcString returnValue;

EmclintStack copy(stack);

ostrstream out;

while (! copy.empty())

/' loop condition makes precondition valid

{

out << copy.pop(); // Precondition: ! copy.empty()

}

out << ends;

char* buf = out.str();

117

returnValue = buf;
delete [] buf;
return returnValue;

}

A class invariant could be seen as a set of conditions that must be
valid for all objects of a class outside its member functions. Each

public member function must leave the object in a state where the
class invariant is valid. This means that the invariant should also be
valid on entry to a member function.

Preconditions, postconditions and invariants are not part of the C++
language. Some languages such as Eiffel has explicit language sup-
port that allows the programmer to specify preconditions, postcondi-
tions and invariants using the programming language, but C++ does
not have that.

EXAMPLE 10.9 Class with invariant

We could assume that the length ofEaficString objects are larger thdhand equal

to the length of th@-terminated string returned froa®tr() . The latter assumption

is however not correct, since this string class overlfladbat allows us to assigrda
character in the middle of the string. When specifying class invariants, we must make
sure that it is difficult to break the invariant since that would make the class specifica-
tion rather useless.

class EmcString
{
public:
...
const char* cStr() const;
I ¢Str() returns O-terminated string
size_t length() const;
char& operator[](size_t index);
...

/I Invariant:
/l'length() >= 0

/I Not always true:
/l'length() == ::strlen(cStr())

Rec 10.7 Use C++to describe If it is possible, preconditions, postconditions and class invariants
preconditions, postconditions - should be expressed as C++ expressions. Otherwise, the specifica-
and class invariants. i js open for human interpretation and will only rarely be an accu-

118 Industrial Strength C++

EXAMPLE 10.10

rate description of the class. But there are a few exceptions. Some
conditions are not possible to check inside a program or are too
costly to check.

By using C++ to express conditions, and if the conditions are possi-
ble to check outside the scope of the class, test programs are easy to
write. A good test program verifies both the specification and the
implementation of a class. A program should behave the same with
and without such checks, so it is inside such expressions essential to
only observe properties of objects, not to modify them.

Normally, this means that the only member functions that should be
called in such expressions are public accessors, since these should
not modify the state of any objects. Constants and functions that does
not modify any objects can also be used.

Using comments to specify class template

/I EmcCollection is an abstract template class,
/I that allows a user to add, remove and search
/I for objects within an arbitrary collection.

/I REQUIRE(e), e is a precondition

/I ENSURE(e), e is a postcondition

/I throw(e), e is an exception type that an
/I implementation may throw

template <class T>
class EmcCollection

{
public:

virtual ~EmcCollection();

I insert one element

virtual void insert(const T&) = 0O;
/I REQUIRE(! isFull())

/I ENSURE(! isEmpty())

/I throw(bad_alloc)

/I remove all elements
virtual void clear() = 0;
/I ENSURE(isEmpty())

...
/I Remove one element

virtual T remove() = 0;
/I REQUIRE(lisEmpty())

119

Rule 10.8 A pointer or refer-
ence to an object of a derived
class should be possible to use
wherever a pointer or refer-

ence to a public base class

EXAMPLE 10.11

object is used.

I"..
3

The member functioimsert() has a precondition; the collection must not be full
when inserting an object. This condition is possible to check by calling the accessor
member functionsFull) . It also has a postcondition; the collection must not be
empty after an element has been inserted.

It would have been reasonable to further specify the postconditions by saying that the
size of the collection grows by 1 each time an element is inserted. By not doing that, it
is possible to have a collection that grows until it is full and then simply refuses to

insert more elements. It is intentional not to have such a postcondition, since that
allows us to specify how a derived class is allowed to make the postcondition stronger.

Checking precondition

EmcCollectionFactory<int> factory;
EmccCollection<int>* collection =
factory.create(EmcCollectionFactory<int>::Arrayld);

if (! collection->isFull())

{

collection->insert(42);
...

}

A class inherit from another class either to reuse the implementation
or the class interface. Public inheritance makes it possible to write
code that only depends on the base class interface, not the implemen-
tation. Public inheritance should only be used if derived class objects
are supposed to be operated upon through base class pointers or ref-
erences.

You should reconsider the way inheritance is used, if it is dangerous
to call inherited member functions for a derived class object. Such
member functions can either be called directly by the base class
implementation, or indirectly when the object is accessed through a
base class pointer or reference.

Substitutability is a property of derived classes that will allow you to
use objects of these classes without changing code that depends on
the base class interface only. If a virtual member function has a pre-
condition and a postcondition, then these must be valid for all imple-

120

Industrial Strength C++

EXAMPLE 10.12

EXAMPLE 10.13

mentations of the class interface. If they are not, the derived class
should not inherit the base class.

Substitutability

Il insertObject() works for any class with
/I EmcCollection<T> as public base class.

template <class T>

bool insertObject(EmcCollection<T>& c, const T& element)
/I throw (bad_alloc)

{

I return false if insertion fails, true otherwise

if (! c.isFull()
{

c.insert(element);
return true;

}

return false;

}

FOOTNOTE: It is worth noting that this function does not have an exception specifi-
cation. The main reason is that we want to allowEmgCollection instantiations

to use this function. It could be possible that an exception is thrown when the inserted
element is copied. Since its type is unknown, we cannot know what exceptions that
are thrown.

Typically, an implementation of a virtual member function in a
derived class can allow the member function to be called in more sit-
uations than specified by the base class, so the precondition can be
weaker in a derived class. The opposite, a stronger precondition,
breaks substitutability.

A derived class implementation often does more than the postcondi-
tion of the base class promises, because the implementation has
added state that is also modified. The opposite, a weaker postcondi-
tion, breaks substitutability.

Substitutability also requires that a derived class always fulfils the
base class invariant. Otherwise an object can be put in a state that is
not expected by the user of the class.

Specification of overriden member function

A collection may be bounded or unbounded, so it is natural to specialize the base class
EmcCollection<T>

121

The class templateEmcBoundedCollection , represents a family of classes
derived from arEmcCollection -instantiation, that only allows a limited number of
objects to be inserted. By pre-allocating storage, it is possible to abail alloc

exception when an object is inserted. This a stronger promise than made by the base
class, but that does not break substitutability, since the preconditimséd() is

the same.

virtual void insert(const T&);
/I REQUIRE(! isFull())
/I ENSURE(! isEmpty())

The class templateEmcUnboundedCollection represents a family of classes
derived from a&EmcCollection -instantiation, that allows any number of objects to

be inserted. As long as the program does not run out of memory, objects can be
inserted, i.e. the precondition is weaker, but the postcondition is still valid.

virtual void insert(const T&);

/ throw(bad_alloc)

/I ENSURE(! isEmpty())

/I ENSURE(OLD.size() + 1 == size())

On the other hand, a stronger postcondition has been added. An insertion must
increase the size of the collection or throbed_alloc exception. The old postcon-
dition that the collection is not empty after an insertion is a consequence of this new
stronger postcondition, since the size will always be largerGhts mentioned here

for exposure only.

Without this stronger postcondition, an implementation could simply overwrite stored
objects instead of increasing the size of the collection. That is a behavior that the user
probably does not expect when operating on an unbounded collection. A derived class
should give additional constraints for how the base class interface is implemented.

I/l insertObject() works for any class with
/I EmcUnboundedCollection<T> as a public base class.

template <class T>
bool insertObject(EmcUnboundedCollection<T>& cref,
const T& element) // throw (bad_alloc)

{

/I return false if insertion fails, true otherwise

/I The precondition of
/EmcUnboundedCollection<T>::insertis weaker than the
/I precondition for EmcCollection<T>::insert since an

/I unbounded collection is never full.

cref.insert(element);
return true;

}

122

Industrial Strength C++

Rec 10.9 Document the inter- A template defines a family of classes or functions. Apart from hav-
face of template arguments. ing template parameters that must be given values before it is used, a

EXAMPLE 10.14

template is not very different from an ordinary class or function.
Here we discuss what is different with templates; the presence of
type parameters and the consequence of having classes and functions
that are generated by the compiler. This will also help you both when
you want to write you own templates and when you only want to use
templates.

Templates were originally introduced in C++ to make it possible to
write type safe containers without having to use macros to change
the stored type.

Describing template argument requirements

EmcCollection is a class template whose instantiations are abstract classes.

/I' T must be: DefaultConstructible

n CopyConstructible
n Assignable

1 Destructible

" EqualityComparable

template <class T>
class EmcCollection
{
public:
...
h

We have a comment to describe what is required for the type arglinmreotrder to
instantiate the template.

These requirements must be known to the user of the class. By having symbolic
names for the most common requirements, the specification of template requirements
will be shorter and easier to comprehend.

In the example above, we use names that are taken from the C++ standard library and
they have the following meaning.

If T is a type, the following expressions should be valid.

Tt1, /I DefaultContructible
T t2(t1); /I CopyConstructible
t2 = t1; /I Assignable

bool b = (t2 == t1); // EqualityComparable
/I Destructable, an object on the stack can be created.

An appropriate way to extend the basic interface requirements is to simply say, for
example:

123

EXAMPLE 10.15

“T must haveint T::hash() const "

The compiler checks that a template argument is suitable. For class
templates, only those member function templates that are actually
used will be instantiated. Some older compilers instantiate the whole
class, but that is not standard behavior. A consequence is that a class
template can be used with arguments that only fulfill a subset of the
requirements, as long as member functions that require more are not
used. This is not a recommended use of a class template, since it is
an implementation detail to know how the requirements are related
to individual member functions.

To make sure that the template arguments are well-behaved, the class
should have a private static member function that contains expres-
sions that can only be parsed if the template arguments fulfill the
complete set of requirements.

If this member function is instantiated, the full set of requirements
will be checked by the compiler.

Checking type constraints

template <class T>
class EmcCollection
{
public:
...
static void templateRequirements();
...

3

template <class T>
void EmcCollection<T>::templateRequirements()

{
/I'T must be:
Tt1, /I DefaultContructible
T t2(t1); /I CopyConstructible
t2 = t1; /I Assignable
bool b = (t2 == t1); // EqualityComparable
} /I Destructible

These checks does not help you to determine the performance characteristics of a type.
If types with the wrong characteristics are used, the program may perform very
poorly. By documenting the time-complexity for different operations on the instantia-
tion-bound types, the user will be able to avoid surprises.

124

Industrial Strength C++

EXAMPLE 10.16

A template instantiation could also have a set of types that are found
by qualifying their name with template type parameters. These must
also be taken in consideration when specifying templates.

Performance characteristics of types

A container in the standard library should provide the following two types:
value_type Type of values stored by the container.

iterator For access to objects in container.

The first typeyvalue_type , is assumed to be costly to copy, since any value should
be possible to store in a container.

The second typeterator , should behave as a pointer and is therefore assumed to
be cheap to copy.

The consequence of this is tivatue_type object are always passed as const refer-
ences, whileterator objects are passed as values.

125

126 Industrial Strength C++

127

Chapter Eleven

Assertions

You probably write test programs to verify your implementation. To

make sure that bugs are detected as early as possible, it is useful to
check preconditions, postconditions and invariants inside your code.
Many bugs originate from making the wrong assumption about what
conditions that should be true when writing the code. These checks
should be done within the implementation of a class, since you do not
want to break encapsulation when testing the class. There is a perfor-
mance cost with having these checks. Normally you want to have checks
that are easy to disable after testing is complete. By using macros this is
easy to achieve. This chapter is about the consequences of using assert
macros.

RULES
AND
RECOMMENDATIONS

See Also

Rule 11.1 Do not let asser-
tions change the state of the
program.

EXAMPLE 11.1

Rec 11.2 Remove all asser-
tions from production code.

Rule 11.1 Do not let assertions change the state of the pro-
gram.

Rec 11.2 Remove all assertions from production code.

Rec 10.7, if you use C++ to specify classes, assertions can be useful.

Assertions are macros since they should be easy to remove from pro-
duction code. Either you use the assert macro in the standard library
or you create your own.

An assertion must not change the state of the program. If it does, the
behavior of the program and the state of objects depend on if asser-
tions are enabled or not. This will make it impossible to disable
assertions after testing has been done.

Standard assert macro

#include <assert.h>

void check(int answer)

{
assert(answer == 42);
...

}

All assertions should be removed from production code. If they are

not, there is a chance that the behavior of the program depends on
them. The program will also be faster if unnecessary checks are
removed.

Some conditions are not checked by assertions. You should not use
assertions to check conditions that should always result in throwing

an exception if the check fails. Such exceptions are part of the pro-

duction code and should not be possible to remove.

130

Industrial Strength C++

EXAMPLE 11.2 Assertions and exceptions

/I Checked version
char& EmcString::at(size_t index)

if (index >= lengthM)
{

throw EmcLengthError("String::operator[](size_t)");

}

return cpM[index];

}

/I Unchecked version

char& EmcString::operator[](size_t index)

{

assert(index < lengthM);
return cpM[index];

}

131

Chapter Twelve

Error handling

Errors can be reported and handled in a few different ways in a C++
program. Here, we will concentrate on the use of exception handling,
which has many advantages compared to the other alternatives. By
using exception handling it is possible to separate the error handling
code from the normal flow of control and many different types of errors
can be handled in one place. By allowing any amount of information to
be passed with the exception, there is a better chance to make the cor-
rect decision when handling the error.

Different ways to report errors

RULES
AND

RECOMMENDATIONS

Rec 12.1 Check for all errors

Rec 12.2 Use exception han-
dling instead of status values

See Also

reported from functions.

and error codes.

Run-time errors can be reported in a few different ways in a C++
program. Throwing exceptions or returning status codes from func-
tions are two possibilities. It is important to always check error con-
ditions, regardless of how they are reported.

Rec 12.1 Check for all errors reported from functions.

Rec 12.2 Use exception handling instead of status values
and error codes.

In C++, the best way to report an unexpected error condition is to
throw an exception.

throw EmcException("Fatal error: Could not open file");

Throwing an exception is very similar taeturn statement. When

a function returns, local objects will end their lifetime and their
destructors will be called. The same thing happens when leaving a
function by throwing an exception. A difference is that it is not obvi-
ous from reading the code which statement that will throw an excep-
tion, but is quite obvious where the function returns.

Throwing an exception is not the only way to report an error. Many
programs reuse existing libraries written in C that report errors
through status values and error codes instead of throwing exceptions.

A difference between these solutions is that it is not possible to
ignore an exception. Unless there is a handlegteh statement,
that can handle the exception, the program will terminate. If that is
the wrong behavior, the program must be modified.

It is important to handle exceptions, but it is even more important to
always check status values returned from functions. If an error
reported this way is ignored, there is no easy way of knowing what

134

Industrial Strength C++

EXAMPLE 12.1

eventually made the program crash. Such programs must also be
modified, but it is much more difficult to know where.

Checking status value

The socket() function is a UNIX library function that creates a communication
channel between two processes. If the call succeeds, it returns a socket file descriptor
that is>=0 , otherwisel is returned.

/I create socket
int socketfd = socket(AF_UNIX, SOCK_STREAM, 0);
if (socketfd < 0) // check status value

{
..

}

The negative return value is a status value that only tells the user that something did
go wrong, but not the reason for failure. In this particular case, the global variable
errmno must be used to get a description of the error.

It seems natural to check status values returned from functions, but
in reality there are huge amounts of code written that does not do

these checks. The fact that status values can be ignored by the pro-
grammer is one of the reasons to why exception handling in most

cases is a better way of reporting errors.

Using status values only works well if all functions along a call chain
are given the chance to handle the error. This requires the program-
mer to mix code that represents the ordinary flow of control with
code that is only run when an error is reported.

With exception handling it is possible to separate code that handles
errors from the ordinary flow of control. Less code will need to be
written since exception handling can be localized to one function
along a call chain. It is also possible to handle many different excep-
tions with the same piece of code by specifying a handler for either
an exception base class or with ellipsis ().

try

{ /I ordinary flow of control
f0;
90

}
catch(...) // handler for any kind of exception
{
I error handling
}

135

EXAMPLE 12.2

An additional difficulty with status values is that constructors and
some overloaded operators cannot return values, which means that a
status value must either be passed as a reference argument or be
stored by the object.

By using exception handling instead of status values, the functions
will need fewer arguments and return values, which makes them
much easier to use. Another advantage is that if you do not have any
way of recovering from an error reported as an exception, you can
simply ignore it and it will be propagated up along the call chain.

An additional benefit is that since an exception is an object, an arbi-
trary amount of error information can be stored in an exception

object. The more information that is available, the greater the chance
that the correct decision is made for how to handle the error.

Throwing an exception

One way to encapsulate the UNIX system calls is to provide a wrapper function that
throws an exception instead of returning a status value.

class EmcException

{
public:
...
/I EmcException objects can be printed
friend ostreamé&
operator<<(ostreamé&, const EmcException&);
...
h
class EmcSystemException : public EmcException
{
public:
EmcSystemException(const char* message);
...
h

int emcSocket(int family, int type, int protocol)
throw(EmcSystemException)
{
/I create socket
int socketfd = socket(family, type, protocol);
if (socketfd < 0)// check status value

{

throw EmcSystemException("emcSocket");

}

return socketfd;

136

Industrial Strength C++

A better solution is to encapsulate the calls inside a class that represents what the
socket is used for. By doing that, errors reported by functionsditleet() can be
translated into exceptions that are more meaningful to the user, and can also encapsu-
late all reasons why a particular member function failed. This will also allow the user
to modify the implementation and to replace sockets with any other mechanism for
inter-process communication, without revealing such changes to the user. We have not
done that because we wanted to keep the example simple.

When to throw exceptions

RULES
AND
RECOMMENDATIONS

See Also

Rec 12.3 Only throw excep-

tions when a function fails to

perform what it is expected to
do.

A programmer can throw an exception anytime, so rules are needed
for when exceptions are thrown so that both the user and the supplier
of class libraries can write code that is robust and correct.

Rec 12.3 Only throw exceptions when a function fails to
perform what it is expected to do.

Rec 12.4 Do not throw exceptions as a way of reporting
uncommon values from a function.

Rule 12.5 Do not let destructors called during stack unwind-
ing throw exceptions.

Rec 12.6 Constructors of types thrown as exceptions
should not themselves throw exceptions.

Rec 10.6, how to describe what a function is expected to do.
Rule 12.8, classes that must have a destructor.

When should an exception be thrown? It is possible to throw excep-
tions whenever a function encounters an unusual case, but we do not
recommend that since too frequent use of exceptions will make the
control flow difficult to follow.

It is appropriate to use exceptions as a way to report unexpected
errors. What is unexpected depends on the class specification and
when the error is detected. The user and the implementor often have

137

EXAMPLE 12.3

different views of what is unexpected. If preconditions and postcon-
ditions are used to specify behavior of member functions, it is possi-
ble to be more precise.

* A precondition violation is an unexpected error for the imple-
mentor, but not for the user.

* A postcondition violation is an unexpected error for the user if
the precondition was valid on entry, but not for the implementor.

We think that an exception should only be thrown to report an unex-
pected error to the user. We must give the user a chance to handle an
error that could not have been prevented by a precondition check.

Such exceptions are part of the class interface and tells the user in
what way the function could not fulfil its obligation to make the
postcondition valid.

Exceptions thrown for any other reason than this are questionable,
but not completely forbidden.

Not following this recommendation means that exceptions are some-
times thrown even when the user could have prevented them from
being thrown. A precondition violation is a good example.

Since it is the user's obligation to make the precondition valid, such
errors are only found in incorrect programs. What is the best way to
handle such errors? To recover from the error and to let the program
continue, or rewrite the program? We prefer the second alternative
and recommend you to check preconditions only as a way to find
bugs in your program.

It is useful to check the precondition since that prevents the user
from writing incorrect code, but if we assume that incorrectly written
programs should be corrected, how to report precondition errors are
less important. If an exception should be thrown or the program
should terminate by callingbort() is a matter of taste and
depends on the situation. Exception handling allows the program to
terminate in a more controlled manner.

Member function with precondition

When initializing anEmcString object with achar -array, a precondition is that a
non-null pointer must be passed as argument.

138

Industrial Strength C++

Rec 12.4 Do not throw excep-
tions as a way of reporting
uncommon values from a func-
tion.

EXAMPLE 12.4

The implementation does not throw an exception, since the user can prevent a null
pointer to be passed as parameter. Here, it is the user's obligation to make sure that the
member function can do what it is expected to do.

An EmcString object stores a pointer tahar -array that is allocated witew. The

user cannot possibly check beforehand that new might fail to allocate the necessary
memory needed for the allocation, so the implementation must report the error by
throwing an exception.

EmcString::EmcString(const char* cp) throw(bad_alloc)
: lengthM(strlen(cp))

{
/ PRECONDITION: cp =0

/I operator new[]() will throw bad_alloc
/1'if allocation fails

cpM = new char[lengthM + 1];
strcpy(cpM, cp);

A consequence of the recommendation that exceptions should only
be thrown if a function fails to do what it is expected to, is that
exceptions should not be used as a way of reporting uncommon val-
ues from a function.

It is important to remember why exceptions are a bad choice in these
situations. If an exception is thrown, that exception must be handled,
or the control flow of the program will change in a way that cannot
be predicted. Throwing an exception for the sole purpose of chang-
ing the control flow is therefore not recommended.

Your code can be difficult to understand if you throw exceptions in
many different situations, ranging from a way to just report unusual
threads in your code to reporting fatal run-time problems. Exception
handling is also often a very inefficient way to change the control
flow in a program, compared to passing along error codes.

Returning special value to report failure

Thefind() function in the standard library is a good example of a function that
could fail, but for which throwing an exception is inappropriate.

The standard library uses iterators to traverse through collections of objects. The itera-
tors are modeled after pointers, and ordinary pointers are therefore a special case of
iterators.

139

Rule 12.5 Do not let destruc-
tors called during stack
unwinding throw exceptions.

An input iterator is a special kind of iterator that allows you to read one element at the
time in a forward direction only. If such an object is assigned to an element in a collec-
tion, it will eventually, after being incremented a number of times, be equal to the iter-
ator pointing at the last element in the collection.

template<class Inputlterator, class T>

Inputlterator

find(Inputlterator first, Inputlterator last,
const T& value);

The functionfind() is defined to return the first iterator between first and last ele-
ment (but not counting last itself) that points 6 @equal tovalue . If no such value is
found, it will return the last iterator. It is quite common not to find what you are look-
ing for, so it is not reasonable to call it a programming failure if that happens. There-
forefind() is defined to returfast if value was not found in the sequence.

There are a few places where exceptions should not be used to report
errors. Inside destructors is one such particular place.

A try -block defines both a scope and a set of exception handlers.
Before continuing the execution inside a handler, the program will
leave the scope of thiey -block. This means that destructors for
local variables inside they -block must be run to properly end
their life time.

If an exception is thrown during this process and not handled by the
destructor, the library functioterminate() will be called. This
function will terminate the program. If that happens, there is a good
chance that some external resources managed by local objects have
not been released, which could mean that the program cannot be
restarted without first manually releasing such resources.

There are two ways to avoid this. Either you make sure not to call
code that might throw exceptions inside destructors or you catch all
exceptions thrown in destructors. The second alternative requires
some additional programming, since you must attg ablock with
exception handlers to the implementation of the destructor.

A problem is that you may want to allow the user to handle excep-
tions thrown under normal circumstances. A recent addition to C++
is the functionuncaught_exception() which will report true if

exceptions are handled, and false if they are not. If your compiler
supports this function, then you can check if it is OK to rethrow the

140

Industrial Strength C++

EXAMPLE 12.5

exception. If it is not supported, you should ignore all exceptions
thrown inside the destructor.

Preventing exceptions inside destructors

Logging is useful if you want to know what made a program crash. It can however
slow down a program since output must be written to a file or the console. One way to
improve performance is to cache the log messages in memory and only write them to
a file when something unexpected happens, e.g. when an exception is thrown.

The clas€EmcLogis used to implement such a scheme. The class stores the log mes-
sages and writes them to a log file after a call to the member fufficsb) . The

idea is to allocate objects of this class on the stack and to use the function
uncaught_exception() inside the destructor to check if an exception has been
thrown or not. If an exception has been thrown, we append to the log file.

class EmcLog

{
public:

class CouldNotOpenFile : public EmcException

{
public:
CouldNotOpenFile(const char* file);

I8

EmcLog(const char* filename);
~EmcLog();

void message(const EmcString&); // store log message
void flush() throw(CouldNotOpenFile);
/I append to log file

...

private:
EmcLog(const EmcLog& i); /I Non-copyable
EmcLog& operator=(const EmcLog& i);

EmcQueue<EmcString> messageCacheM; // log messages
const char* filenameM; // log file

h
EmcLog::~EmcLog()
if (uncaught_exception())

flush();

}
}

141

types thrown as exceptions
should not themselves throw

Rec 12.6 Constructors of

exceptions.

EXAMPLE 12.6

We must also callincaught_exception() insideflush() , since this function
throws an exception if it is unable to open the log file. Since an exception must not
propagate from the destructor, such an error must be ignoredfudtegh is called

by the destructor.

void EmcLog::flush()
{

ofstream out(filenameM, ios::app);
if (fout && !uncaught_exception())

{
throw EmcSystemException("EmcLog::flush()");

}

/I write messages to log
...

Another place where exceptions should be prevented from slipping
out is inside the constructors of objects thrown as exceptions.

The problem here is that if the constructor throws an exception, then
the user would get the wrong exception to catch. The user may catch
the exception, and even try to recover from the problem, but the user
is actually trying to handle another error. The real problem will be
lost and forgotten.

For copy constructors, there is another reason. The exception object
will be copied to an area managed by the exception handling system
before leaving the scope in which the throw is done. If this copy
fails, terminate() will be called.

Exception class constructor

The exception clagEmcException has a constructor withanst char* param-

eter. It seems natural to have a string data member to store that value. Most string
classes allocate memory with thew operator. This means that if the class has such a
data member, the constructor of this class will throw the standard exception
bad_alloc if memory allocation fails.

A way to avoid that would be to limit the size of the string. Such a solution has the
advantage of being exception safe, but you have to make sure that the allocated string
is big enough.

class EmcException
{
public:
EmcException(const char* message);
...

142

Industrial Strength C++

private:
enum { maxSizeM = 100 };

int lengthM;
char messageM[maxSizeM+1];

3

EmcException::EmcException(const char* message)
{
size_t actualLength = strlen(message);
lengthM = min(maxSizeM,actualLength);
strncpy(messageM, message, lengthM);
messageM[lengthM] = "\0";
}

Exception-safe code

It is necessary to prevent memory leaks and other errors that are
related to how resources are acquired and released. By managing all
resources with objects it will be less difficult to write code that prop-
erly manages resources.

RULES Rec 12.7 Use objects to manage resources.

AND Rule 12.8 A resource managed by an object must be
RECOMMENDATIONS released by the object's destructor.
Rec 12.9 Use stack objects instead of free store objects.
Rec 12.10 Before letting any exceptions propagate out of a
member function, make certain that the class
invariant holds, and if possible leave the state of
the object unchanged.

See Also Rec 5.11, when to implement copy constructor, copy assignment
operator and destructor.

Rec 10.6, definition of class invariant.

143

Rec 12.7 Use objects to man- A resource is something that more than one program needs, but for

age resources.

which there is a limit for how much that is available. Good examples
are memory and other operating system resources like sockets, file
descriptors, drawing contexts, shared memory and database locks.
The most important to manage are those that are not released when
the program terminates.

It is essential to correctly acquire and release resources. Unless you
acquire a resource for the whole lifetime of the program, a resource
should be acquired and released within a block of code. It is common
to have a function that is called at the beginning of the block and
another function that is called at the end of the block.

1. call function to acquire resource
2. use the resource
3. call function to release resource

The question is how to make sure that the statements for acquiring
and releasing the resource are both run. What is difficult is that the
control flow of a C++ program is not sequential, since a function
could return either the normal way or by throwing an exception.

A fundamental idea behind the C++ exception handling is that
resources should be allocated in the constructor and deallocated in
the destructor of a class. This is often called “Resource acquisition is
initialization”. Another way to say this is that resources should be
managed by objects.

It is convenient to use the constructor and the destructor for this pur-
pose, since they are automatically called when the objects start and
end their lifetime. No additional function calls are needed to properly
manage the resource. It is also the best way, since destructors are the
only member functions that are called before leaving a scope after an
exception has been thrown.

If your code is a mix of application logic and error handling code,
this is probably a consequence of not having exception safe classes.
It should always be a goal to separate error handling code from the
application control flow.

144

Industrial Strength C++

Rule 12.8 A resource man-

aged by an object must be

released by the object's
destructor.

Rec 12.9 Use stack objects
instead of free store objects.

EXAMPLE 12.7

You should always release a resource in the destructor. If any other
member functions would need to be called, you would perhaps have
to catch the exception and propagate it a number of times before han-
dling it. This is a much more complex solution since additional code
must be written.

You should also question how you allocate objects. C++ has both
objects with static, automatic and dynamic storage duration. Objects
created wittmew are most expensive to allocate and most difficult to
use. Whenever possible, you should create an object on the stack
instead of withnew. Stack objects are less expensive to allocate and
there is no risk of getting any memory leaks as long as you only use
exception safe classes.

You only need to create an object wiikw if the life-time is not con-
trolled by you, not just because you need a pointer to the object.

Exception handling has made it even more difficult to manage free

store objects. Each free store object must always be accessible
through either a static pointer or an object on the stack that owns the
object.

It is dangerous and inconvenient to have only local pointers to
objects allocated witmew. If a local pointer is the only way to
access an object created witbw, your code will not be exception
safe, unless you havety -block that catches all possible excep-
tions.

Unsafe memory allocation

The most fundamental resource to manage in C++ programs are dynamically allocated
memory. The most obvious example is a string class and we have earlier in the book
seen examples on how to write such a class.

The following code is unsafe since it contains a memory leak. The problem is that the
delete statement is not reached if an exception is thrown within the function.

void f() /I Not recommended

{
int* ip = new int(1); // create int with new
g(*ip);
/I memory leak if g() throws exception
delete ip; /I not reached

}

145

EXAMPLE 12.8

EXAMPLE 12.9

void g(int i)

throw i; /I Not recommended to throw int

}

Having &ty -block to manage memory

It is possible to rewrite our previous example so that the memory leak is avoided with-
out introducing any new classes. The function should haye #lock with a handler
that catches all possible exceptions.

void f() /I Not recommended
{
int* ip = new int(1); // create int with new
try
{
g(*ip);
/l memory safe even if g() throws exception
delete ip; /I not reached
catch(...) /I catch any exception
{
delete ip;
throw; /I Rethrowing the exception
}
}

Exception safe allocation of free store objects

The best way to manage objects allocated méth is to have a local object that man-
ages the memory instead of a pointer and a delete statement. You code will be shorter
and less difficult to write.

We recommend you to use the class tempiat®, ptr , supplied by the C++ stan-
dard library.

void f()

{
auto_ptr<int> ip = new int(1); // create int with new
g(*ip);
/l memory safe even if g() throws exception

}

If you want to keep control of the deletion of the object managed bgutbeptr
you must explicitly caltelease() to tell theauto_ptr to give up ownership of the
object. If you do not do that, tleuto_ptr ~ will delete the object when its destructor
is run.

146

Industrial Strength C++

Rec 12.10 Before letting any
exceptions propagate out of a
member function, make certain
that the class invariant holds,
and if possible leave the state
of the object unchanged.

Throwing an exception should not damage the state of your objects.
If possible, preserve the state of the current object before leaving the
scope of a member function by throwing an exception. If that is not
possible, try to restore the state so that the object's destructor is safe
to call. By doing that there is a greater chance that the program can
recover from the exception, since if the current object is a local
object its destructor will be called. As said before, such a destructor
must not throw exceptions or fail in any other way.

Here we discuss state only after the object has been initialized. When
exceptions are thrown by constructors, destructors are only called for
member objects that are completely initialized. Only these need to be
in valid states when leaving the constructor — not the complete
object.

All constructors should leave the object in a valid state so that its
destructor can be called without any errors. That guarantees success-
ful clean-up of member objects when leaving the scope of the con-
structor.

When designing classes you should try to figure out which opera-
tions that could throw exceptions, and then minimize the amount of
time that the object is in an invalid state. If it is possible, modify the
state of the object only after all dangerous functions has been called.
If that is not possible, either make it possible to restore the state of
the object or give the object a default value before throwing the
exception.

When writing templates you must decide what operations that are
allowed to throw exceptions. If you do not make any such assump-
tions, an exception could be thrown in a situation where the state of
the object is invalid.

If it is possible, whenever a member function modifies the state of an
object, avoid changing the state of the actual object and instead mod-
ify a copy of the state. If we can switch the state of the object without
getting any exceptions, a template can allow any exceptions to be
thrown when updating the copy, not the original, thereby keeping the
state of the original object unchanged.

Better performance can be achieved by making stronger assumptions
about what exceptions that can be thrown, but then the class will be

147

EXAMPLE 12.10

less reusable. As always there is a trade-off between flexibility and
performance.

Exception safe copy assignment operator

The templateEmcStack uses a built-in arrayectorM , to store copies of objects.
The pointertopM stores an index to the next element in the array to assign. The data
memberallocatedM stores the number of currently allocated objects, and is always
a positive number.

template<class T>
class EmcStack
{
public:
enum { defaultSizeM = 100 };

EmcStack(int size = defaultSizeM);
EmcStack(const EmcStack& s);
~EmcStack();

EmcStack& operator=(const EmcStack& s);
...

bool empty() const;

const T& top() const;

void push(const T& i);

const T& pop();

private:
unsigned allocatedM;
T vectorM;
int topM;
h

We want to provide an exception safe implementation of the copy assignment operator
for EmcStack . Our strategy is to make all dangerous operations before modifying the
state of the object, so that the state will be valid even if an exception is thrown.

In order to avoid memory leaks, we also use an object of theEasSutoArray-

Ptr<T> to manage memorgEmcAutoArrayPtr is a template that is similar to the
classauto_ptr in the standard library, but manages arrays of objects instead of indi-
vidual objects.

template<class T>
EmcStack<T>& EmcStack<T>::operator=(const EmcStack<T>& s)
{
if (this != &s)
{
/I operator new may throw bad_alloc
EmcAutoArrayPtr<T> newVector(new T[s.allocatedM]);

/I copy elements
for (inti=0;i<s.topM; i++)

{

148

Industrial Strength C++

newVector[i] = s.vectorM[i];

}

delete [] vectorM;

/I assign to object
topM = s.topM;
vectorM = newVector.release();
allocatedM = s.allocatedM;
}
return *this;

}

If memory allocation would have been costly, we could have tried to optimize by
copying to existing storage already used by the object, as was done in EXAMPLE
5.12. Such an implementation would however be much more difficult to make excep-
tion safe. If an exception is thrown when assigning to an element of the objects repre-
sentation, the state of the object will be undefined and probably corrupt.

Exception types

RULES
AND
RECOMMENDATIONS

See Also

Exception handling makes it possible to localize error handling to
fewer places in the code. The numbetrpf blocks should not have

to grow exponentially with the size of the program. Exception
classes should be organized in hierarchies to minimize the number of
exception handlers.

Exception hierarchies allow for object-oriented error handling, i.e.
you can use dynamic binding when handling errors. This means that
the same handler can be used for different types of exceptions. This
will make the code more readable and easier to maintain.

Rec 12.11 Only throw objects of class type.

Rec 12.12 Group related exception types by using inherit-
ance.

Rec 12.13 Only catch objects by reference.

Rule 7.6, why objects are passed by reference.
Rule 10.8, behavior of derived classes.

149

Rec 12.11 Only throw objects An object can be thrown if it can be copied and destroyed. This

exception types by using inher-

Rec 12.13 Only catch objects

of class type.

EXAMPLE 12.11

Rec 12.12 Group related

itance.

by reference.

makes it possible to throw values of built-in types, pointers, arrays or
objects. You should only throw objects of class type, since otherwise
it will not be possible to distinguish errors by the type, only by the

value. There is nothing in the language to prevent a value to repre-
sent many things, but a type name must be unique within a program.

If we throw a general-purpose type, such aman the value would
have to represent exactly one type of error, or there would be a risk
that the wrong error is handled. We would have to use a value that is
globally unique, a solution that makes it difficult to add new classes
or to use new class libraries.

The exception type should instead always represent the type of error,
and it should be a class that is used for exception handling only.

An additional benefit of throwing objects is that they can contain any
amount of data. You can have a data member that stores a description
of the error and you can print that description inside the handler.

Throwing object of built-in type

Thesocket() function has many reasons for failure, each one of them represented
as an integer value. For examf\CESSs returned if the function is denied permis-
sion to create the socket, dBBNOMENg returned if there is no available memory.

Suppose you would like to translate these error codes into exceptions. It is possible,
but not recommended, to throw @h containing the error value. The problem with

this approach is that you cannot catch different objects, in this case different integers,
only different types. With an integer approach like this you would therefore be forced
to have one singleatch clause with a bigwitch statement for how, or if, an error
should be handled, depending on the integer value. What is even worse, this solution
only works if you can know from where the exception originates. Nothing prevents
two functions from throwing the same value to represent two different errors.

A try block could have as many handlers as there are exception
types, but it is good to limit the number of handlers.

You can group related exception types by using inheritance. This is
necessary when you want to handle many different types of excep-
tions the same way.

150

Industrial Strength C++

EXAMPLE 12.12

It is a good idea to catch a reference to a base class, so that the user
can ignore the exact type of the exception that was thrown.

An important aspect here is that it is possible to derive new classes
without affecting the user's code. The handler for the base class will
handle exceptions of derived classes. Instead of having many han-
dlers for each derived class, you can have a handler for a base class.
In thecatch clause we are supposed to try to handle an error, so it
makes sense to group exception classes in hierarchies according to
how they can be handled.

Another reason to why exceptions should be caught by reference is
that you can loose information when a derived class object is copied
to a base class object instead of being passed by reference. The same
thing that could happen when passing objects by value to a function.

It can be useful to have nested exception classes. If you derive from
both that class and from a general purpose exception class, this will
allow you to organize your handlers not only based on error type, but
also on where the exception was thrown. Inheritance is used to con-
trol type matching rather than to create specializations of the base
class.

Inheritance of exception classes

It is good to have a general exception class at the top that allows you to print a descrip-
tion of the error. Most users are satisfied with knowing what went wrong and would
only have one handler for a whole hierarchy of exception classes.

In our examples we have used the cl&sscException , that stores strings that
describe the error condition.

class EmcException
{
public:
EmcException(const char* message);

/I EmcException objects can be printed
friend ostream&
operator<<(ostreamé&, const EmcException&);

protected:
I/l hook for derived classes
virtual ostreamé& printOn(ostreamé& o) const;

private:
enum { maxSizeM =100 };

151

int lengthM;
char messageM[maxSizeM];

3

The class provides a virtual member functimtOn() that can be overridden by
derived classes.

ostream& EmcException::printOn(ostream& o) const

{

0 << messageM,;
return o;

}

ostreamé& operator<<(ostreamé& o, const EmcException& e)

{

return e.printOn(o);
}
If an object of the clasEmcException or any class derived from it is handled, the
message printed will both depend on the type of the exception and the message stored

by the object.

We have also used the cla&asicSystemException that is derived fronEmcEx-

ception
class EmcSystemException : public EmcException
{
public:
EmcSystemException(const char* cp);
...
protected:
virtual ostreamé& printOn(ostreamé& 0) const;
private:
static const char* const headerM;
h

It overridesprintOn() so that a header is provided for each error message. The glo-
bal variableermo is used as index in the table of error messages for the UNIX sys-
tem callssys_errlist

const char* const
EmcSystemException::headerM = "System call failed: ";

extern char* sys_errlist[]; // Table with error messages
I for UNIX system calls

ostream& EmcSystemException::printOn(ostream& o) const

{

0 << headerM << " " << gys_errlist[::errno] <<": ";
return EmcException::printOn(o);

}

152 Industrial Strength C++

EXAMPLE 12.13

Handling many exceptions with one handler

A handler forEmcException can be used to handle &mcSystemException
since the latter class inherits frdBmcException .

try
{ /I ordinary flow of control
int socketfd = emcSocket(AF_UNIX, SOCK_STREAM, 0);
...
}
catch(EmcException& e) // handler for any exception class
/I derived from EmcException
{
cerr << e << endl;
...

}

Error recovery

RULES
AND
RECOMMENDATIONS

See Also

Rule 12.14 Always catch
exceptions the user is not sup-
posed to know about.

Sometimes exceptions of unknown types may propagate through
your code. It is important to know which of these you should catch,
and which ones you should let the user handle.

Rule 12.14 Always catch exceptions the user is not supposed
to know about.

Rec 12.15 Do not catch exceptions you are not supposed to
know about.

Rec 10.6, Rec 12.16, specifying exceptions for a class.

Hidden implementation details is an important property of well writ-
ten programs, since it gives you the possibility to make changes
without affecting the user.

Imagine a hierarchy of libraries where some libraries are imple-
mented on top of other libraries. To be able to change or replace
lower level classes without affecting the user, you must catch all

153

Rec 12.15 Do not catch excep-
tions you are not supposed to

know about.

exceptions that the user is not supposed to know about. Otherwise an
exception of a class unknown to the user could terminate the pro-
gram or be caught by a handler with.a parameter list. In either
case, nothing can be said about what caused the exception to be
thrown. All exceptions that reach the user should be known to the
user, since that will make it possible to explain why the exception
was thrown and how to prevent it from being thrown. You should try
to avoid writing programs that simply crashes without any proper
indication of what went wrong.

There are on the other hand exceptions that may propagate through
your code which you should not catch or translate. The most obvious

example is exceptions that might be thrown from template parame-

ters.

The template designer must specify under what circumstances a vari-
able of a type given as template parameter is allowed to throw excep-
tions. It is practically very difficult, if not impossible, to write
templates that can be instantiated with a type that throws exceptions
in places that are not known in advance. These exceptions should in
most cases be propagated to the user of the template, since only the
user code knows what exceptions to expect.

There are other cases where you may use code which can throw
unknown exceptions. The user might, for example, supply a pointer
to a sorting or hash function, which you will use inside your code. In
such cases you should as well let the supplier of the function take
care of all the exceptions that might be thrown.

154

Industrial Strength C++

Exception specifications

RULES
AND
RECOMMENDATIONS

See Also

Rec 12.16 Use exception spec-

ifications to declare which

exceptions that might be
thrown from a function.

EXAMPLE 12.14

Exception specifications are used to document what exceptions that
are thrown from a function. We recommend you to use them as much
as possible.

Rec 12.16 Use exception specifications to declare which
exceptions that might be thrown from a function.

Rec 12.3, when to throw exceptions.

Exceptions are part of the class interface and must be handled by the
user when they are thrown. The language gives you an option to
declare the exceptions thrown by a function. If a function does not
have an exception specification, that function is allowed to throw
any type of exception.

We recommend you to use exception specifications as much as pos-
sible. Since they are part of the language, the compiler will check
that the exception classes exist and are available to the user.

It is a program bug if a function with an exception specification
throws an exception that has not been specified. If that happens, the
default is to either terminate the program or, if the exception specifi-
cation includeshad_exception , to throw an object of that class
instead. You should avoid this situation if you can.

A consequence of the fact that template functions should propagate
exceptions is that a template function should only rarely have an

exception specification. It should only have it when the exact set of

exception types that can be thrown are known in advance. A tem-
plate function should probably not have an exception specification if

the type of the exception thrown depends on a type argument.

Exception specification

char& EmcString::at(size_t pos) throw(EmclndexOutOfRange)
{

155

if (pos > lengthM)
{
throw EmclindexOutOfRange(pos);

}
..

}

156 Industrial Strength C++

Chapter Thirteen

Parts of C++
to avoid

There are parts of C++ that should be avoided. C++ comes with many
new standard library classes and templates that in many cases replace
functions inherited from the C standard library. Also certain parts of the
language that are inherited from C are no longer needed. Either better

language constructs exists or there are classes or templates to use
instead.

Library functions to avoid

C++ has inherited all parts of the library defined by the C stan-
dard. Some of the functions provided by the C standard library

RULES
AND
RECOMMENDATIONS:

See Also

Rec 13.1 Use new and delete
instead of malloc, calloc, real-
loc and free.

Rule 13.2 Use the iostream
library instead of C-style I/0O.

are not well-suited for C++ programming and should not be used.

Rec 13.1 Usaew anddelete instead ofmalloc , calloc ,
realloc andfree .

Rule 13.2 Use thdostream library instead of C-style 1/0O.
Rule 13.3 Do not useetimp() and longjmp()

Rec 134 Use overloaded functions and chained function
calls instead of functions with an unspecified
number of arguments.

Rec 7.15, Rule 7.16, how to overload functions and operators.
Rule 8.1 — Rule 8.2, how to usew anddelete

Rec 12.2, exception handling can be used insteatphp and
longjmp .

You should avoid all memory-handling functions from the standard
C-library (such agmalloc , calloc , realloc andfree) since
they do not call constructors for new objects or destructors for
deleted objects.

It is also dangerous to mix C and C++ allocation of memory, such as:

+ callingdelete for a pointer obtained vimalloc ,
+ callingmalloc for objects having constructors,
« callingfree for anything allocated usingew,

e callingrealloc for anything allocated usingew.

Complete avoidance of C memory handling is therefore recom-
mended.

For similar reasons thiestream library is better to use than the
stdio library. Functions in thetdio library cannot be used for
user-defined objects.

158

Industrial Strength C++

EXAMPLE 13.1

Rule 13.3 Do not use setjimp()
and longjmp().

Rec 13.4 Use overloaded

functions and chained function

calls instead of functions with

an unspecified number of
arguments.

C-style 1/0 is not adequate for objects

EmcString s;
cin >>s; /I Yes: this works
scanf("%??", s); /I NO: this does not work

It is not possible to extend the set of formats understocddny .

If optimal efficiency is required, th&dio library is sometimes better than tibs-

tream library. This is not a universal truth, however, so you should do performance
benchmarks before you start to usedttio library. If you use it, localize the code

so that it is easy to replace.

The normal way to leave a function is by usingtarn statement
which gives control back to the calling function. If a serious error has
been encountered, this can be an unwise thing to do. The calling
function could perhaps recover from the failure, and when the pro-
gram crashes it is difficult to find out what went wrong. The correct
thing to do in C++ is to throw an exception. The library functions
setimp() andlongjmp() can be used to simulate exception han-
dling. Unfortunately the behavior of these functions is very platform-
dependent. Even worse is the fact that destructors are not called for
bypassed objects whéongjmp() is called. You should therefore
avoid them altogether.

Functions with unspecified number of arguments should be avoided

since they are a common cause of bugs that are hard to find. For
example, the compiler is not able to check that an argument is of the
type expected by the function. Such checks must instead be done by
the function in run-time.

In most cases it is in C++ possible to use overloaded functions or
operators instead, and to chain the function calls by returning refer-
ences to operate upon. Such solutions are more type safe.

159

EXAMPLE 13.2 Passing objectspantf()

The functionprintf() should not be given an object as argument even if the object
is of a class that can be implicitly converted to a type ptiatf() knows how to
handle.

class DangerousString
{
public:
DangerousString(const char* cp);
operator const char*() const; // Conversion operator
...

3

DangerousString hello = "Hello World!";
cout << hello << endl; /I Works perfectly
printf("%s\n", hello); /I Garbage is printed

In this caseoperator const char*() will be called when the string is passed to
cout , but this will not happen for the string when it is passeutitif() . When a
string object is passed as argumenpriotf() , no implicit conversion takes place
and the bit pattern for the object will be printed as a string.

EXAMPLE 13.3 Overloading @perator<<

class EmcString

{
public:
EmcString(const char* cp);
...

h
ostreamé& operator<<(ostreamé& o0s, const EmcString& s);

EmcString s = "Hello World!";
cout << s << endl; /I uses overloaded operator

160 Industrial Strength C++

Language constructs to avoid

RULES
AND
RECOMMENDATIONS

See Also

Rule 13.5 Do not use macros
instead of constants, enums,
functions or type definitions.

EXAMPLE 13.4

A few parts of the C++ language should be avoided since they are
too error prone compared to the potential benefit of using them.

Rule 13.5 Do not use macros instead of constants, enums,
functions or type definitions.

Rec 13.6 Use an array class instead of built-in arrays.
Rec 13.7 Do not use unions.

Rule 2.3, macros should be used in include guards.

Rec 10.3, polymorphism and inheritance can often replace selection
statements and unions.

Rec 15.14, macros can be used for writing forward-compatible code.
Style 1.6 — Style 1.7, how include guards are written.

In C, macros are often used for defining constants. In C++, a better
alternative is to usenum values orconst declared variables. Mac-

ros do not obey the normal scope rules for the language, and this is a
common source of errors. The compiler can seldom give meaningful
error messages if the error is caused by a macro replacement.

Macros do not obey scope rules

#define SIZE 1024 /I Not recommended
const size_t SIZE = 1024; /I Compilation error

Macro names should be all uppercase letters to help avoid unex-
pected macro replacements by the preprocessor. This is one reason to
why you should not have normal identifiers in all uppercase letters.

Constants defined by the language obey the scope rules of the lan-
guage and can for example be enclosed inside a class.

161

EXAMPLE 13.5

EXAMPLE 13.6

EXAMPLE 13.7

Recommended way to define constants

You can often define constants within a class.

class X

{
public:
...
private:
static const size_t maxBuf = 1024;
enum Color {green, yellow, red};

3

/I Definition of static const member
const size_t X::maxBuf;

Using an enum instead of static const int

Older compilers will not allow you to define ordinary constants inside a class. A com-
mon trick is to use an anonymoersum instead.

class X

{
...

private:
enum { maxBuf = 1024 };
enum Color {green, yellow, red};

3

Another advantage of using constants instead of macros is that most
debuggers only see the code as it looks like after preprocessing,
when all macro definitions have been substituted for their calls. It is
possible to print the value of a constant, but not a macro value. Con-
stants therefore make it easier to debug a program.

Macros are often used in C as a way to avoid the function-call over-
head for time-critical functions.

Function-like macr8SQUARE

/I Not recommended to have function-like macro
#define SQUARE(X) x*x

There are many problems with function-like macros. Since the argu-
ments are pure textual replacements, the consequences of using com-
plex expressions as arguments are often surprising.

inti = SQUARE(3 + 4);
/I Wrong result: i = (3 + 4 * 3 + 4) == 19, not 49

162

Industrial Strength C++

EXAMPLE 13.8

EXAMPLE 13.9

EXAMPLE 13.10

Itis common to add parentheses to the definition to avoid some bugs.

/I Parentheses to avoid precedence bugs
#define SQUARE(X) ((x)*(x))

But there are some bugs for which there is no good solution. If an
argument is used more than once and an expression is passed as
argument, the expression will be evaluated more than once.
inta=2;intb = SQUARE(a++);

/I Unknown result: b = 4 or 6 depending on when the value
/I of postfix ++ is evaluated.

Inline functions in C++ are often a better choice, since they allow
you to avoid the function call overhead and you still have something
that behaves as a function.

Inline function, square

inline int square(int x) // Recommended

{

return x * x;

3

intc=2;
intd = square(c++); //d=(2*2)==4

Another advantage of inline functions compared to macros is that
they are type-safe, which means that the compiler will give meaning-
ful error messages when a function is used with the wrong type of
arguments.

Function-like macros are not type safe

inti = SQUARE("hello"); /I Error: lllegal operands

Macros are also sometimes used to introduce synonyms for a type. A
better solution is to use a typedef.

How to define synonyms for a type

#define Velocity int // Not recommended
typedef int Velocity; // Recommended

Macros should only be used as include guards and for very special
purposes such as forward-compatibility macro packages (exceptions,
templates and run-time type identification).

163

Rec 13.6 Use an array class There are many potential bugs involved in using pointers to access

instead of built-in arrays.

EXAMPLE 13.11

built-in arrays. For example, when traversing an array, it is common
to access too few or too many elements. Memory management can
also be a big problem. It is almost always better to use an array tem-
plate instead, and fortunately the standard library for C++ provides
such a class.

There are a few other problems with the built-in arrays. They are of a
fixed size which means that the whole array must be copied if you
need to increase its size. If the size changes often this can be bad for
the performance of the program. It is in most cases better to use a
class that handles growth in an efficient way.

Another problem is that there is no bounds checking, which means
that you can access a memory area outside the array if you are not
careful.

When accessing an array, the index is simply used to find the address
of an element in the array. An array is treated as a pointer to the first
element and the index is the offset to the element.

The fact that an array is treated as a pointer when passed to functions
is a common source for errors. It is especially dangerous to have
arrays of objects. Since the size of derived class objects in most cases
are different from the size of base class objects, the offset between
elements in an array of base class objects will be different than the
offset between elements in an array of derived class objects. C++
allows a derived class pointer to be assigned to a base class pointer,
with the consequence that a compiler cannot prevent you from pass-
ing an array of derived class objects to a function that expects a
pointer to an array of base class objects. When accessing elements in
the array, you will get pointers within objects rather than pointers to
objects. This is yet another reason to avoid the built-in arrays.

Passing array to function

/I Fruit is a base class

void printFruits(Fruit* fruits, size_t size)
/I Not recommended to pass arrays to functions
{

for (size_ti=0; i< size; i++)

{

cout << fruits[i] << endl;

164

Industrial Strength C++

Rec 13.7 Do not use unions.

}
}

If we have an array of objects of the derived claggle , the following code may
crash.

/I Apple is derived from Fruit
const size_t numberOfApples = 3;
Apple apples[numberOfApples];

printFruits(apples, numberOfApples); // Might crash!

Unions may seem quite easy to use, since they look like classes with
the exception that they only store one of its data members at a time.
The similarity between classes and unions are, however, treacherous.
A union cannot have virtual member functions, base classes, static
data members or data members of any type that has a non-trivial
default constructor, copy constructor, destructor or copy assignment
operator. This can make unions very hard to use.

Unions can be an indication of a non-object oriented design that is
hard to extend. Since a union could store different types of data, the
programmer needs a way to tell what is actually stored. If the set of
different types of data changes, each piece of code that accesses the
object must be rewritten. This disadvantage can be made less serious
by putting all access to the union inside a class, instead of used
directly in many different places in the code.

The usual alternative to unions is inheritance and dynamic binding.
The advantage of having a derived class representing each type of
value stored is that the set of derived classes can be extended without
rewriting any code. Since code with unions is only slightly more effi-
cient, but much more difficult to maintain, you should avoid them
unless you have a very good reason.

165

166 Industrial Strength C++

Chapter Fourteen

Size of
executables

This chapter describes how to trade program size for performance and
vice versa. There are many things that can make a program unnecessar-
ily large. Among them are:

* unneeded code is linked with the program,

* program code or data is duplicated.

Too extensive copying of code will make a program hard to maintain
and will increase the size of the program. Therefore it should be a goal
to reuse code to a large extent.

There is a trade-off between the size of an executable and its perfor-
mance. Inline functions can make a program faster, but since many
inline functions will increase the size of a program, the effect could be
the opposite.

Before making a function inline it is necessary to check if the need for
inlining really exists.

RULES
AND

RECOMMENDATIONS

Rec 14.1 Avoid duplicated

See Also

code and data.

Rec 14.1 Avoid duplicated code and data.

Rule 14.2 When a public base class has a virtual destructor,
each derived class should declare and implement
a destructor.

Rec 7.1, when to make functiomiine
Rule 10.4, how to declare destructors for derived classes.

Large programs can have negative consequences on the overall per-
formance of a system. If an operating system with multi-tasking is
used, each program must share the CPU with other programs. If the
program is large, that means it is less likely that the program can stay
in memory while the operating system runs other programs. More
time will be spent in swapping programs in and out of memory, since
the time for context switches will increase. Reading pages of large
programs from memory is time consuming. This can reduce the
amount of actual work that is done by a program during a time slot.

Without proper care when implementing and using classes, many
programs could become unnecessarily large.

Reuse of code has the benefit of making a program more easy to
maintain. An additional benefit is better quality, since code that is
reused has been tested at least once. In theory, reuse should make a
program smaller, but a common problem is that many class libraries
will give the client a larger executable instead. A problem is that
most linkers will link a function even if it is not called by the pro-
gram. The result will be a code bloat that can only be avoided by
carefully organizing the source code. The problem could partially be
solved by putting each function definition in its own implementation
file. Not even this kind of drastic solution is complete since all vir-
tual functions that a program potentially can use must be linked.
Since these are called indirectly, the compiler has no way of knowing
exactly which ones that are not needed.

168

Industrial Strength C++

All these problems are technical an will probably be solved in the
future. Try to reuse code to a large extent, since there is good chance
that you can get better and smaller programs.

The program size will also depend on how different compilers treat
inline functions.

It is possible to speed up the program by using inline functions, but if
these make the program too large, the effect will be the opposite.
There is a trade-off between inlining and program size that must be
taken seriously.

Theinline keyword is a hint to the compiler to inline-expand the
function body where the function is called. Inline functions are not
meant to be called as ordinary functions, but sometimes the compiler
is unable to inline-expand them, and in such cases the compiler will
generate a function with local linkage that can be called by pro-
grams. This generated function is similar to a static function, i.e. it
can only be called inside the file that defines it.

Inline-expansion could fail if the inline function contains loops, if
the address of an inline function is used, or if an inline function is
called in a complex expression. In these cases, the compiler will not
be able to inline-expand the function. The rules for inlining are com-
piler-dependent, but to be on the safe side, avoid the cases mentioned
here.

Since the generated functions have local linkage, the compiler will
generate many copies of the function; one for each implementation
file that includes the header file with its definition. The total amount
of code generated could become large, unless the linker is smart
enough to remove excessive copies. Unfortunately, not all linkers are
that smart. The general recommendation is therefore to only declare
functions asnline if they are actually inline-expanded.

Constructors and destructors are often too complex for inlining even
though they appear to be simple. Do not forget that constructors and
destructors for the base class and data members are called implicitly.

Virtual member functions could often be simple enough for inlining,
but they should not be declaristine

169

Rule 14.2 When a public base A patrticularly insidious case, worth making a special rule for, con-
class has a virtual destructor,

each derived class should
declare and implement a
destructor.

cerns destructors. Destructors are the only virtual functions that

could be generated by the compiler. If a base class declares and
implements a virtual destructor and if a derived class does not pro-
vide one, the compiler will need to generate a destructor for the

derived class.

A compiler needs to store the address of all virtual member func-
tions, to make it possible to bind their calls dynamically. This
includes the destructor. Some compilers use the location of the first
virtual member function to decide where to allocate the virtual table
(a table that stores addresses of virtual member functions). This is
dangerous since there could be many such locations if the destructor
is the first virtual member function and it has been generated by the
compiler. Some compilers will duplicate the virtual table if there is
more than one location. This could significantly increase the size of
your program.

You should either avoid making the destructor the first virtual mem-
ber function, or make sure that each derived class declares and
implements it. The latter solution is better, since it is portable.
Another compiler could, for example, instead use the address of the
last virtual member function to determine where to allocate the vir-
tual table.

170

Industrial Strength C++

Chapter Fifteen

Portability

ISO 9126 defines portability as:

A set of attributes that bear on the ability of software to be trans-
ferred from one environment to another.

The word “environment” is not defined, but can typically be:

* the operating system, * the GUI-system,
* the hardware platform, * the user's language,

* the compiler, vendorand ¢ a set of presentation for-
version mats.

Operating systems are e.g. Mac-OS, NextStep, Solaris, MS-DOS. Hard-
ware platforms are e.g. Motorola 68K, PowerPC, Sparc, ix86. Compiler
vendors are e.g. Borland, Microsoft, IBM, Watcom. GUI-systems are
e.g. OpenWindows, OSF/Motif, MS Windows, OS2/PM. User languages
are e.g. English, Swedish, French. Presentation formats are e.g. how to
display time, currency, etc. Other aspects of the word “environment” is
communications, databases and different kinds of class libraries.

Portability is an issue to all projects involving multiple “environments”.

In this chapter we will concentrate on the portability issues close to the
C++ language. Other aspects are also relevant, but not within the scope
of this book.

1. International Standard ISO/IEC 9126, Information technology - Soft-
ware product evaluation - Quality characteristics and guidelines for
their use. Reference number ISO/IEC 9126:1991(E).

General aspects of portability

Many aspects of C++ are inherently non-portable. They are called
either undefined, unspecified or implementation-defined parts of the
language. Then there are pure extensions that are supplied by partic-
ular compiler vendors. You should try to avoid all extensions to C++,
but if they are needed, their use must be localized to a few places in
the code.

RULES Rule 15.1 Do not depend on undefined, unspecified or
AND implementation-defined parts of the language.
RECOMMENDATIONS Rule 15.2 Do not depend on extensions to the language or to
the standard library.
Rec 15.3 Make non-portable code easy to find and replace.

See Also Rec 15.14, unsupported language features must be treated similar to
language extensions.

Rule 15.1 Do not depend on Most non-portable code generally falls into three different catego-
undefined, unspecified or rjes:
implementation-defined parts
of the language. 1. Implementation-defined behavior

2. Unspecified behavior
3. Undefined behavior

Implementation-defined behavior means that the code is completely
legal C++, but compilers may interpret it differently. However, for
each implementation-defined aspect there are only a few different
ways in which compilers may differ, and the compiler vendor is
required to say in the documentation what their particular compiler
does. For example, it is implementation-defined whether a char
object can store a negative value or not.

EXAMPLE 15.1 Implementation-defined behavior

const char ¢ =-100;

if (c<0) /I Implementation-defined behavior

{

172 Industrial Strength C++

EXAMPLE 15.2

EXAMPLE 15.3

..
}

Unspecified behavior also means that the code is also completely
legal C++, but compilers may interpret it differently. The difference
between implementation-defined behavior and unspecified behavior
is that the compiler vendor is not required to describe what their par-
ticular compiler does. For example, when you cast an integer to an
enum, the resultinggnum value may in some cases be unspecified.

Unspecified behavior

enum BasicAttrType

{
..

counterGauge = 0x1000, // 4096
counterPeg = 0x2000, // 8192
conterAcc =0x3000 //12288

2

BasicAttrType t = (BasicAttrType) 10000;
/I t has unspecified value

Undefined behavior means that code is not correct C++. The stan-
dard does not specify what a compiler shall do with such code. It
may ignore the problem completely, issue an error or something else.
For example, it is undefined what happens if you dereference a
pointer returned from a request for zero bytes of memory.

Undefined behavior

char* a = new char[0];
cout << *a << endl; /' Undefined behavior

All programs with any ambition of being portable shall of course
avoid all dependencies on such parts of the language. The problem is
that there are very few programmers on the planet who knows of all
these parts of C++. Many portability problems are fortunately so
obscure that they seldom give any problems. In the rest of this chap-
ter we will describe the most common ones.

In general you should stay within the areas of the language that you
as an individual programmer know well, and take a look in a book or
the language specification itself if you are doing something new that
is likely to be non-portable.

173

Rule 15.2 Do not depend on Extensions to C++ are sometimes necessary. A fully portable pro-
extensions to the language or gram shall of course not depend on such features, but sometimes, for

Rec 15.3 Make non-portable
code easy to find and replace.

to the standard library.

EXAMPLE 15.4

EXAMPLE 15.5

various reasons, it can be necessary to use such extensions to the lan-
guage. It can be necessary to use macros if you want to write porta-
ble code.

Language extension

An extension provided by many compilers for DOS and MS-Windows are far and near
pointers. By specifying the type of the pointer it is possible to sometimes generate
more efficient code for a segmented architecture such as the 80x86-family of proces-
sors.

A near pointer is a 16 bit-pointer that can be used to access objects within a 64K seg-
ment.

char __near* np;

A far pointer is a 32-bit pointer that can access any available memory area.

char __far* fp;
11 sizeof(fp) != sizeof(np)

Portable code must have macros to make it possible to remove these non-standard key
words when compiling on other platforms.

#ifdef UNIX
#define FAR
...

#else

#define FAR _far
#endif

char FAR* fp; // This will now be OK on a UNIX computer

Sometimes you are forced to write non-portable code. The best way
out of this is to use such features in a way so that a new definition of
a macro or a typedef, or the replacement of a file, makes the code
work in the new environment. The general trick is to isolate such
code as much as possible so that it is easy to find and replace.

Type of fixed size

#ifdef INT32
typedef int sint32;
#else

typedef long sint32;
#endif

174

Industrial Strength C++

sint32 result = 1234 * 567; // result should

To avoid platform-specific behavior, you must choose a suitable representation for the
sint32 typedef. Depending on how large the integral types are, you could e.g.
choose between ant or along .

Including files

RULES
AND
RECOMMENDATIONS

See Also

Rule 15.4 Headers supplied
by the implementation should
go in <> brackets; all other
headers should go in ™

quotes.

EXAMPLE 15.6

There are a few non-portable aspects of file inclusion, such as when
to write"™ or<>, and what can be inside of such include brackets.

Rule 15.4 Headers supplied by the implementation should
go in<> brackets; all other headers should go in
" quotes.

Rec 15.5 Do not specify absolute directory names in
include directives.

Rec 15.6 Include file names should always be treated as
case sensitive.

Rule 2.1, what to include.

All classes and functions in the C++ standard library requires the
inclusion of a header before it can be used. A header is usually a
source file, but it does not have to be so. It is recommended to only
include standard headers with. It is implementation-defined what
happens if a name not defined by the standard appears withill
non-standard header files should be included Witlgquotes to avoid
such implementation-defined behavior. Most compilers allow both
ways, since other standards, such as for example POSIX, recom-
mend the use of> for inclusion.

Good and bad way of including files

/I Only include standard header with <>
#include <iostream.h> /* OK: standard header */

175

#include <MyFile.hh> /* NO: non-standard header */

/l'include any header with "
#include "stdlib.h" /* NO: better to use <> */
#include "MyFile.hh" /* OK */

Rec 15.5 Do not specify abso- You should also avoid using directory names in the include directive,
lute directory names in include since it is implementation-defined how files in such circumstances
directives. are found. Most modern compiler allow relative path names Awith
as separator, because such names has been standardized outside the
C++ standard, for example in POSIX. Absolute path names and path
names with other separators should always be avoided though.

The file will be searched for in an implementation-defined list of
places. Even if one compiler finds this file there is no guarantee that
another compiler will. It is better to specify to the build environment
where files may be located, since then you do not need to change any
include-directives if you switch to another compiler.

EXAMPLE 15.7 Directory names in include directives

#include "inc/MyFile.hh" /* Not recommended */
#include "inc\MyFile.hh" /* Not portable */
#include "/gui/xinterface.h" /* Not portable */
#include "c:\gui\xinterf.h" /* Not portable */

Rec 15.6 Include file names Some operating systems, such as DOS, Windows NT and Vax-VMS,
should always be treated as do not have case-sensitive file names. When writing programs to
case sensitive. g,ch pperating systems, the programmer can include a file in many

different ways.

If you are inconsistent, your code will be difficult to port to an envi-
ronment with case-sensitive file names. Therefore you should always
include a file as if it was case sensitive. You should look at the docu-
mentation for the class if you are uncertain.

EXAMPLE 15.8 Case-sensitivity of header file name

/I Includes the same file on Windows NT, but not on UNIX.

#include <lostream.h>

176 Industrial Strength C++

#include <iostream.h>
#include <iostream.H>

The size and layout of objects

RULES
AND
RECOMMENDATIONS

See Also

Rule 15.7 Do not make
assumptions about the size of
or layout in memory of an
object.

The size and layout of objects is implementation-defined in C++ so
that compiler vendors can generate code that is as efficient as possi-
ble. This is one of the most powerful parts of C++, as well as one of
the most error-prone ones. A few rules and recommendations are
needed in order to steer clear of portability problems.

Rule 15.7 Do not make assumptions about the size of or lay-
out in memory of an object.

Rule 15.8 Do not cast a pointer to a shorter quantity to a
pointer to a longer quantity.

Rec 15.9 If possible, use plaiimt to store, pass or return
integer values.

Rec 15.10 Do not explicitly declare integral types asdgned
or unsigned

Rule 15.11 Make sure all conversions of a value of one type to
another of a narrower type do not slice off signifi-
cant data.

Rec 15.12 Use typedefs or classes to hide the representation
of application-specific data types.

Rec 6.1 — Rec 6.3, how to use casts.
Rec 7.3 — Rec 7.5, how to pass arguments.

The sizes of built-in types are different in different environments.
For example, an int may be 16, 32 or even 64 bits long. The layout of
objects is also different in different environments, so it is unwise to
make any kind of assumption as to the layout in memory of objects,
such as when lumping together different data in a struct.

177

EXAMPLE 15.9

Rule 15.8 Do not casta

pointer to a shorter quantity to
a pointer to a longer quantity.

Rec 15.9 If possible, use plain

EXAMPLE 15.10

int to store, pass or return inte-

ger values.

Offset of data member

struct PersonRecord

{

char ageM;
unsigned int phoneNumberM;
EmcString nameM,;

2

A compiler is entitled to significant freedom when laying out such data in memory to
find the most efficient solution. The exact address oftieM, phoneNumberM and
nameMdata members within an object of tyersonRecord can vary between dif-
ferent environments.

Certain types have alignment requirements. An alignment require-
ment is a requirement on the addresses of objects. For example,
some architectures require that objects of a certain size starts at an
even address. It is a fatal error if a pointer to an object of that size
points to an odd address. For example, you might hagkarm
pointer and want to convert it to an pointer. If the pointer points

at an address that is illegal foriah , dereferencing thimt pointer

will give a run-time error.

Cast must obey alignment rules

int stepAndConvert(const char* a, int n)

{
const char* b = a + n; // step n chars ahead
return *(int*) b;
/I NO: Dangerous cast of const char* to int*

}

Calling stepAndConvert() will probably give a run-time error for many combina-
tions of the two parameters (a, n).

const char data[] = "abcdefghijkimnop";

int anint = 3;
int i = stepAndConvert(data, anint); // NO: May crash

This kind of code is unlikely to work, but if it does, it will certainly not be portable.

Plainint is the most efficient integral type on most systems, since it

has the natural word size suggested by the machine architecture. A
rule of thumb is that fewer machine instructions are needed when
you have operands that have the natural word size of the processor.

178

Industrial Strength C++

Rec 15.10 Do not explicitly
declare integral types as
signed or unsigned.

EXAMPLE 15.11

EXAMPLE 15.12

There are however exceptions, like the Alpha processor from Digi-
tal, which has 32 bitgt s, 64 bitdong int s and a natural word
size of 64 bits. However, in most cases, if you select any other type
you should have a good reason.

Selecting ashort int instead of a plaimt does not make sense
unless you are very tight on memory, andrey int should only
be used if it will hold values so large that plaits are not big
enough.

It is also best to avoid using explicittjgned or unsigned inte-
gral types, since mixing them in expressions may give you non-triv-
ial arithmetic conversions that are tricky to understand.

Mixing signed and unsigned integers

The standard headkmits.h defines a number of constants that describe the range
of the built-in types, for exampIBIT_MIN , INT_MAX UINT_MIN andUINT_MAX If
you work with very large numbers, be sure to check against these values.

/I Suppose int and unsigned int are 32 bits long.

/I From a typical limits.h file:

I #define INT_MIN -2147483648
Il #define INT_MAX 2147483647
Il #define UINT_MAX 4294967295

int i =42;
unsigned ui =2222222242;
int | =i-uij

/I NO: Result -2222222200 is out of range!!!
/I jhas value: 2072745096 !!!

When subtracting a larger value from a smaller value, the result is
implementation-defined if aonsigned type is used. Plaighar s

are particularly problematic, since it is implementation-defined if
they aresigned or unsigned

char s can be signed or unsigned

char zero = 0;

charone =1;

char minusOne = zero - one; // NO: result has
/I implementation-
/I defined value

179

char result = one + minusOne; // result is not always
/I equal to zero

Rule 15.11 Make sure all con- Converting values from a longer to a narrower type is potentially

versions of a value of one type ynsafe since significant data may be lost.
to another of a narrower type

do not slice off significant

data Most compilers will warn about dangerous conversions and you

should try to rewrite the code if that is necessary to avoid them. You
could, for example, use a data type with larger range.

You could also look through your code to see whether such danger-
ous conversions are possible.

EXAMPLE 15.13 OS-specifigpedef

The UNIX system calfork() , which returns a value of a type given by the typedef
pid_t . Some systems defiqed_t as ashort .

/I fork() returns pid_t that is sometimes a short
short int pid1 = fork(); // NO: should use pid_t

If a typedef is provided, you should always use it instead of the actual type. In this par-
ticular case, we should upil_t .

pid_t pid2 = fork(); // Recommended

Rec 15.12 Use typedefs or An application-specific type is used to store a quantity that varies
classes to hide the representa- between different environments. By providing a typedef or a class it
tion of application-specific s nossible for the programmer to write more portable code. Such
data types. types should only be used when there is a real need for them. Type-
defs makes the code more difficult to read, and classes can have neg-
ative impact on performance.

180 Industrial Strength C++

Unsupported language features

A common problem is to use compilers that does not implement all
features of the language. By looking forward you can avoid many
future problems today.

RULES Rec 15.13 Always prefix global names (such as externally
AND visible classes, functions, variables, constants,
RECOMMENDATIONS typedefs and enums) ihamespace is not sup-
ported by the compiler.
Rec 15.14 Use macros to prevent usage of unsupported key-
words.

Rec 15.15 Do not reuse variables declared insidda -loop.

See Also Rec 1.4, names that should be putamespace s.
Rule 4.1, how to write for -loop.

Rec 15.13 Always prefix glo- It is possible to avoid name clashes by putting declarations and defi-
bal names (such as externally pitions inside namespaces. Without namespaces, most definitions
visible classes, functions, vari- 44 declarations will be global. In such cases name clashes are

ables, constants, typedefs and
enums) if namespace is not avoided by adding a unique prefix to each global name.

supported by the compiler.
Other solutions, such as putting declarations and definitions inside

classes as static members should be avoided unless there is a close
relationship between the nested identifier and the class.

EXAMPLE 15.14 Prefixed name

EmcString famousClimber = "Edmund Hillary";
/I Uses Emc as prefix

181

Rec 15.14 Use macros to pre- The C++ standard has added many new keywords to the language.
vent usage of unsupported key- The current list contains 63 keywords.

words.
asm false sizeof
auto float static
bool for static_cast
break friend struct
case goto switch
catch if template
char inline typeid
class int typename
const long union
const_cast mutable unsigned
continue namespace using
default new virtual
delete operator void
do private volatile
double protected wchar_t
dynamic_cast public while
else register this
enum reinterpret_cast throw
explicit return true
export short try
extern signed typedef

The language also provide textual, alternative representations for
some of the operators.

and (&&) compl (~) or_eq (|=)
and_eq (&) not (1) xor (V)
bitand (&) not_eq (I=) xor_eq (=)
bitor (]) or (I])

None of these names are legal to use as identifiers, but many compil-
ers are not up-to-date with the standard.

182 Industrial Strength C++

EXAMPLE 15.15

EXAMPLE 15.16

Unsupported keyword as empty macro

If your compiler for example does not support the keyveodicit that is used to
prevent a constructor from defining an implicit conversion, it is useful to define an
empty macro with the same name as the keyword.

#ifdef NO_EXPLICIT
#define explicit
#endif

By doing so you prevent many future problems that will result from using the key-
word incorrectly.

EmcString explicit; // Error: explicit is keyword
/I will not compile if explicit defined as macro

An additional benefit is that you can use a keyword in places where it is intended to be
used.

class EmcArray
{
public:
explicit EmcArray(size_t size);
...
h

The macro does however not work as the keyword will do, since it will not stop the

constructor to work as an implicit conversion from the type of the parameter to an
object of the type of the class. The macro will only work as a way for the implementor

of the class to tell the user that the constructor should not be used for implicit conver-
sions.

Forward-compatibility macros

Here are some other useful macro-definitions and typedefs:

#ifdef NO_BOOL
typedef int bool;
const bool false = 0;
const bool true =1;
#endif

#ifdef NO_MUTABLE
#define mutable
#endif

#ifdef NO_EXCEPTION
#define throw(E) abort();
#define try

#define catch(T) if (0)
#endif

183

Rec 15.15 Do not reuse vari-
ables declared inside a for-

loop.

EXAMPLE 15.17

The library standard defines numerous names, that also should be
avoided. Most of them will be put inside the namesstte so the
chance of getting into trouble will be less. We do not list all names in
the book since the list contains more than 800 names. It is also
unlikely that anyone would want to spend time checking that list
while reviewing code.

The scope of a variable declared inside a for-statement has been
changed by the C++ standard. Previously such a variable belonged to
the enclosing scope, but now it belongs to the block following the
for -statement. This means that a variable declaredfar aloop

can no longer be reused in the enclosing scope. If you want to reuse a
loop variable you need to move the declaration outsidathdoop.

Reusing a loop variable

inti=0;
for(; i < last(); i++)

...
}

for(; i >= first(); i--)
{
...

}

Other compiler differences

Some parts of C++ have never been clearly specified. This is particu-
larly true for templates. Such parts of C++ should be handled with
care, since compilers often handle them differently. The best thing to
do is to have a design that is as good as possible and code that can be
compiled for the platforms chosen. Another solution is to only use
compilers that implement templates the same way, or only use one
compiler. If that is not possible, you must either restrict yourself to

184

Industrial Strength C++

RULES
AND
RECOMMENDATIONS

See Also

Rec 15.16 Only inclusion of
the header file should be
needed when using a template.

EXAMPLE 15.18

those part of the language that are implemented by all compilers, or
try to make your code easy to modify for new platforms.

Rec 15.16 Only inclusion of the header file should be needed
when using a template.

Rec 15.17 Do not rely on partial instantiation of templates.

Rec 15.18 Do not rely on the lifetime of temporaries.

Rec 15.19 Do not uspragmas.

Rule 15.20 Always return a value frommain() .

Rec 15.21 Do not depend on the order of evaluation of argu-
ments to a function.

Rec 2.5, how to organize templates.
Rec 7.3 — Rec 7.5, argument passing.

How should you organize your templates?

A template has an interface and an implementation just as any class
or function. A template is similar to an inline-function. The compiler
must be see both the interface and the implementation when code is
generated.

A template is automatically instantiated for all template arguments
that the program uses. It is also possible to request it to be instanti-
ated for a particular set of arguments. The reason to why you would
want such explicit instantiations is to reduce the compile time for
your program.

Using a template

/l emcMax is function template

template<class T>
const T& emcMax(const T& a, const T& b)

{

return (a>b)?a:b;

}

void foo(int i, int j)

{

int m = emcMax(i, j); // usage of emcMax

185

EXAMPLE 15.19

}

EmcQueue<int> q; // usage of class EmcQueue<int> and
/I EmcQueue<int>:s default constructor

g.insert(42); // usage of EmcQueue<int>::insert

template class EmcQueue<char>; // Explicit instantiation

There is no standard for how template source code is organized and
how much of a template to instantiate for a particular set of argu-
ments.

A function template is used when it is called, or its address is taken.
A class template is used when instances of the class template are
used to declare objects.

Some compilers require that the implementation either be part of the
header file or be included by the header file.

Other compilers use file-name conventions to determine where to
find the implementation. The implementation should be in a file with
the same name as the header file, but with the implementation file
extension substituted for the header file extension.

This is a potential portability problem when writing code using tem-
plates. We recommend to always put the implementation in a sepa-
rate file, a template definition file. By using conditional compilation
to control if this file is included or not, the same source code can be
used with different compilers.

Template header file

By having a macr&XTERNAL_TEMPLATE_DEFINITIONt is possible, at compile-
time, to control whether the implementation file is included by the header file or not.

template <class T>
class EmcQueue
{

...

3

#ifndef EXTERNAL_TEMPLATE_DEFINITION
#include <EmcQueue.cc>
#endif

186

Industrial Strength C++

Rec 15.17 Do not rely on par-
tial instantiation of templates.

Rec 15.18 Do not rely on the
lifetime of temporaries.

EXAMPLE 15.20

A difference between compilers that is more difficult to handle is
how much of a template class is instantiated.

Some compilers allow a template class to be instantiated for types
that does not provide all operators or member functions needed by
the implementation.

As long as you do not use the part of the implementation that
requires these, no error is reported by these compilers. This is called
partial instantiation.

Other compilers instantiate all members of a template class. There-
fore, the template argument must support all uses of the type, even if
only a few of the member functions are used. The only solution that
always works is to avoid relying on partial instantiation; i.e. always
assume that all member functions are instantiated.

Temporary objects are often created in C++, such as when a function
returns a value, or when a parameter to a function is passed by value.
The lifetime of temporaries was implementation-defined for a long
time, but it has now been decided that they must persist at least until
the end of the full expression in which they were created. Unfortu-
nately, it is possible that your compiler still does not implement that
behavior. Therefore you should take great care not to depend on the
lifetime of temporaries.

Temporary objects

Temporary objects are often created when operating upon objects that store values,
such as strings. If the class also provides a conversion operator that returns a pointer
or reference to the representation, then you have potentially dangerous code.

class DangerousString

{
public:
DangerousString(const char* cp);
operator const char*() const;
/I conversion operator gives access to data member
...
h

187

Rec 15.19 Do not use prag-

mas.

EXAMPLE 15.21

The conversion operator tonst char* is used to access the representation of the
string so that it can be printed by calliogiream::operator<<(const char*) .

The problem with this is that tHBangerousString object to be printed could be a
temporary, for example if it stores the result of an expression. Since the lifetime of
those objects vary between implementations, there is a risk that the pointer becomes
invalid before it is used.

DangerousString operator+(const DangerousString& left,
const DangerousString& right);

DangerousString a = "This may go";
DangerousString b =" wrong";

cout << a << endl; /I OK
cout<<a+b<<endl; // Dangerous

The solution for avoiding the problem in this particular case is to add an output opera-
tor for DangerousString -objects. Since a reference to the temporary is passed to
the function, the compiler must guarantee that the object bound to that reference exists
until the function returns.

ostream&
operator<<(ostreamé& o, const DangerousString& s);

A pragma is usually a way to control the compilation process, such
as disabling optimization of a particular function, or to force an

inline function to become inline in cases when the compiler normally
would refuse to make it inline.

Everything about pragmas is implementation-defined, so they are
perhaps the most non-portable feature of C++. The preprocessor will
handle them if it can understand them, and otherwise they will just
be ignored. You cannot be completely sure a new compiler will
understand any pragmas in your code.

Itis only OK to use pragmas as long as your code will work correctly
without them. Therefore you should only use them sparingly and
always document why and where they are used.

A pragma-directive

The pragmance was previously provided by the g++ compiler as a way for the pro-
grammer to tell the preprocessor which files that are include files. Files with the
pragma should only be included once.

#pragma once /* NO: not portable! */

188

Industrial Strength C++

Rule 15.20 Always return a
value from main().

EXAMPLE 15.22

Rec 15.21 Do not depend on
the order of evaluation of
arguments to a function.

EXAMPLE 15.23

EXAMPLE 15.24

The standardization committee for C++ has decided that the return
values of functions must always be declared. Functions without
return values were previously assumed to returinian Therefore

you now have to declaraain to return annt and you should also
always return a value. This is good, since in many environments this
return value is checked by other programs.

How to declareain()

int main() Il Yes

{
...

return O; Il Yes

}

Another area where compilers differ is the order of evaluation of
function arguments.

Evaluation order of arguments

func(f1(), f2(), f30);
/I f1 may be evaluated before f2 and f3,
// but don't depend on it!

The order of evaluation of expressions that are part of a larger
expression, is in many cases also unspecified. A portable program
should not depend on any specific order.

Evaluation order of subexpressions

afi++] = i; // NO: i may be incremented before or
/I after its value is used on the right
/I side of the assignment.

189

190 Industrial Strength C++

AppendixX One

Style

Code is always written in a particular style. Naming conventions, file
name extensions and lexical style are all part of this structure of code we
call Style. Discussing style is highly controversial, which is the reason
we have placed it in an appendix, to keep it distinct from all other rules
and recommendations.

General Aspects of Style

RULES
AND

RECOMMENDATIONS

Style 1.1 Do not mix coding
styles within a group of closely

related classes.

The most important aspect of style, whatever style you use, is to be
consistent.

Style 1.1 Do not mix coding styles within a group of closely
related classes.

For each project, or group of closely related classes, you should
select a coding style. Code written by one programmer might be
maintained by another, so the same style should be used by all pro-
grammers within the project. If you modify files from another
project, you should stick to the style chosen for that project.

However, sometimes you may be forced to mix code written with
different styles. It could, for example, be code reused from previous
projects using a different style than the one chosen for your project,
or from third party libraries, or from the standard library. In such
cases are it can be an option to select the style used by the standard
library, or the style used by the third party library, or perhaps a mix
between the two styles, or the style described in this appendix. It can
be an end in itself to use different styles for different kinds of code,
as well as there is obvious reasons for having the same style for all
code in the whole project. Mixing libraries is very common, which
means that style issues are bound to be a problem, but mixing styles
within a group of closely related classes is likely to be very confus-
ing, and should therefore be avoided if possible.

It should be noted that the standard library uses a style that in some
cases is different from what we recommend. This is particularly true
for how names for classes are written. It is our belief that the amount
of confusion should be small since the names and usage of the com-
ponents in the standard library will be known and used by all pro-
grammers and thus easily distinguished from code written by users
in a project.

192

Industrial Strength C++

Naming conventions

RULES
AND
RECOMMENDATIONS

Style 1.2 In names that consist
of more than one word, the
words are written together and
each word that follows the first
begins with an uppercase let-
ter.

EXAMPLE 16.1

Parallel to the issue of selecting good names for the abstractions in a
program lies the question as to how these names should be written.
Should you use uppercase or lowercase characters? How should
names consisting of many words be written? In this section we
present one such naming style.

Style 1.2

Style 1.3
Style 1.4

Style 1.5
Style 1.6
Style 1.7

Style 1.8

In names that consist of more than one word, the
words are written together and each word that
follows the first begins with an uppercase letter.
The names of classes, typedefs, and enumerated
types should begin with an uppercase letter.

The names of variables and functions should
begin with a lower-case letter.

Let data members have a “M” as suffix.

The names of macros should be in uppercase.
The name of an include guard should be the name
of the header file with all illegal characters
replaced by underscores and all letters converted
to uppercase.

Do not use characters that can be mistaken for
digits, and vice versa.

There are a few different ways to separate words in identifiers. One
is to use underscores and another is to let the first letter in each new
word be in uppercase. We have chosen the latter approach because
such identifiers are shorter and, in our personal opinion, easier to
read. Both naming conventions have their pros and cons.

How to separate words in an identifier

int max_timeout_time = 1000; // Not recommended
int maxTimeOutTime = 1000; /I Recommended

193

Style 1.3 The names of Type names, like classes and enums, should always begin with an
classes, typedefs, and enumer- yppercase letter to distinguish them from variables and functions,

ated types should begin with iy \we recommend should begin with a lowercase letter.
an uppercase letter.

Style 1.4 The names of vari-
ables and functions should
begin with a lower-case letter.

EXAMPLE 16.2 Naming style

class Browser; Il Class
enum State { green, yellow, red }; // Enum
intn=0; /I Local variables
void Browser::show() /I Member function
{

...
h

Style 1.5 Letdata members It is useful to have a naming convention that clearly distinguishes
have a "M” as suffix. ~ data members from local variables, function parameters and member
functions. We suggest adding an “M” (as in “Member”) as suffix to
data members. The implementation of member functions is easier to
understand if data members are easy to distinguish in the code.

EXAMPLE 16.3 Data member suffix

template<class T>
class EmcStack

{
public:
...
private:
unsigned allocatedM;
T vectorM;
int topM;

Style 1.6 The names of macros Names in all uppercase letters are reserved for macros. This has been
should be in uppercase. the traditional naming convention for macros, and we think it is a
good idea to keep this tradition. Macros should, however, be quite
unusual in C++, since const variables, enum values and inline func-
tions often are better and safer alternative for macros.

194 Industrial Strength C++

EXAMPLE 16.4

Style 1.7 The name of an
include guard should be the
name of the header file with all
illegal characters replaced by
underscores and all letters
converted to uppercase.

EXAMPLE 16.5

Style 1.8 Do not use charac-
ters that can be mistaken for
digits, and vice versa.

EXAMPLE 16.6

Names of macros

#define SQUARE(Xx) (X)*(x) /* Recommended */

Include guards are macros, and as such they should also be in all
uppercase letters. We suggest that the name of an include guard
should be the name of the header file with all illegal characters
replaced by underscores and all letters converted to uppercase.

It is quite important to have a consistent style for the names of these
macros, since that will relieve programmers from having to look in
the header file to know the name of the include guard. The file name
should be enough to deduce the name of the include guard.

Names of include guards

/I'In file File.hh
#ifndef FILE_HH
#define FILE_HH

/I The rest of the file

#endif /* FILE_HH */

Some digits are rather similar to some characters. TheQdigjiquite
similar to the charactéd, 1 is similar tol , as well a$ andS. There

is therefore a risk that they are mistaken for each other, which can be
confusing.

Integral suffixes

A suffix can be used to specify the type of an integer value. You can use kitloer “
“I "if the value is dong int , but the lowercasd * should be avoided since it can
be mistaken for the digit.

long i1 = 1I; // Not recommended
long i2 = 1L; /I Better

195

File-name extensions

RULES
AND
RECOMMENDATIONS

See Also

Style 1.9 Header files should
have the extension “.hh”".

Style 1.10 Inline definition
files should have the extension
“icc”.

A convention for choosing file-name extensions will make it easy for
tools and humans to distinguish between different types of files.

Style 1.9 Header files should have the extensionth ”.
Style 1.10 Inline definition files should have the extension
" .iCC ”

Rec 2.4, what to put in inline definition file.

There are many different file name extensions in use. This is a list of
some of them:

Header files: .h, .hh, .H, .hpp, .hxx

Implementation files: €, .cc,.C, .cpp, .CXX,
.cp

Inline definition files: Jcc, i

We have chosen to avoid the extensidnsand.c since they are
used by the C standard. We have also avoided all extensions with
uppercase letters, likel and.C, since some operating systems does
not distinguish file names with mixed case. Of the ones left to choose
from, we selectechh , .cc and.icc as our recommendation for
header files, implementation files and inline definition files.

Using only one standard for the extension for implementation files
helps, but for practical reasons, it is often necessary to have different
extensions for different platforms. Some compilers do not recognize
files with certain extensions, and do further more not allow you to
override which suffixes they recognize, which will force a project to
use some other extension instead. Fortunately, this should not be par-
ticularly important since client code should normally not depend on
the name extensions for implementation files.

196

Industrial Strength C++

Lexical style

RULES
AND
RECOMMENDATIONS

Style 1.11 The names of
parameters to functions should
be specified in the function
declaration if the type name is
insufficient to describe the
parameter.

EXAMPLE 16.7

A lexical style is a preferred way to combine the lexical tokens of the
language. Such a style should be chosen to avoid having code that is
difficult to read and understand just because different parts of it
looks different.

Style 1.11 The names of parameters to functions should be
specified in the function declaration if the type
name is insufficient to describe the parameter.

Style 1.12 Always provide an access specifier for base classes
and data members.

Style 1.13 The public, protected, and private sections of a
class should be declared in that order.

Style 1.14 The keywordstruct should only be used for a C-
style struct.

Style 1.15 Define inline member functions outside the class

definition.

Style 1.16 Write unary operators together with their oper-
and.

Style 1.17 Write access operators together with their oper-
ands.

Style 1.18 Do not access static members with''or ' -> "

The declaration of a function often contains more information than
the compiler needs to see. For example, names on formal parameters
are only needed in the function definition, not in declarations.

Parameter names are meant to make it easier for a programmer to
understand the purpose and usage of a function. It is in general better
to supply too many names than too few, but if the type name is sulffi-
cient to describe the purpose of a parameter, the declaration will be
shorter and as easy to understand as without the name.

Specifying parameter names

template<class T>
class list

197

{
public:

list();

explicit list(const T&);

list(const list<T>&);

list<T>& operator=(const list<T>&);

~list();

/l member template

template <class Inputlterator>

void insert(iterator position,
Inputlterator first,
Inputlterator last);

void insertFirst(const T&);

void insertLast(const T&);

...

3

The purpose of all member functions above is obvious, just by looking at their names
and the type of the parameters, except for the only member function with two parame-
ters of the same type, timsert() member function. To explain the purpose of each
parameter, all its parameters has been given names.

Style 1.12 Always provide an All members of a class are private unless the class has an access
access specifier for base gpecification. Likewise a base class will be private unless declared
classes and data members. otherwise. You should not use this default behavior. It is much better
to explicitly show the reader of the code what you mean.

EXAMPLE 16.8 Implicitly given access specifiers

/I Base class B implicitly declared private

classA: B /I Not recommended
{
/I Not recommended: implicit access specifier
inti;
public:

...
h
EXAMPLE 16.9 Explicitly given access specifiers
/I Base class B explicitly declared private

class A : private B // Recommended

{
public:
...

/I Recommended: explicit access specifier

198 Industrial Strength C++

Style 1.13 The public, pro-

tected, and private sections of

a class should be declared in
that order.

Style 1.14 The keyword struct
should only be used for a C-
style struct.

Style 1.15 Define inline mem-
ber functions outside the class
definition.

EXAMPLE 16.10

private:
inti;

The public part should be most interesting to the user of the class,
and should therefore come first. The protected part is of interest to
derived classes and should therefore come after the public part, while
the private part should be of nobody's interest and should therefore
be listed last in the class declaration.

There is only one major difference between a struct and a class in
C++. Everything in a struct is by default public, which is different
from a class where everything by default is private. This is for com-
patibility with C, since everything in a C struct is public. Apart from
that there are no big differences. A struct can have member functions
and inherit from other classes. It would be possible to only use struct
instead of class, but that would make your code more difficult to
understand.

To avoid confusion, the keywosdruct should only be used when

you are grouping built-in data types into a C-style struct; a POD-
struct (POD is an acronym for “plain old data”). A struct should
therefore have no member functions, nor data members of class
types. In other words, if you group anything in a struct that does not
exist in C (references, class objects etc.) then you should use a class
instead.

Inline member functions can be defined inside or outside the class
definition. We strongly recommend the second alternative. The class
definition will be more compact and comprehensible if no imple-
mentation can be seen in the class interface.

Where to implement inline member functions

class X

{
public:
/I Not recommended: function definition in class

199

Style 1.16 Write unary opera-
tors together with their oper-
and.

EXAMPLE 16.11

Style 1.17 Write access opera-
tors together with their oper-
ands.

EXAMPLE 16.12

Style 1.18 Do not access static
members with '." or '->'.

EXAMPLE 16.13

bool insideClass() const { return false; }
bool outsideClass() const;

3

/I Recommended: function definition outside class
inline bool X::outsideClass() const

{

return true;

}

The various operators should be presented to the reader so that their
use is completely clear. Some of them look identical but are very dif-
ferent, like unary and binary. Unary operators such as unanand

++ are best written together with their operand.

How to write unary operators

int* i = new int(77);

cout << *j<<endl; // Notrecommended
cout << *i << endl; // Recommended

Access operators, such asand-> are best written together with
both their operands.

How to write access operators

a->foo(); /I Recommended
b.bar(); /I Recommended

Static members are members of the class and not of an object of the
class. Accessing such members as if they were object members
would therefore be confusing.

How to access static members

class G
{
public:
...
static G* create();
...

200

Industrial Strength C++

3

G* G::create()

{
return new G;
}
Gg;
G* gp = new G;

G* gpl = g.create(); // Not recommended
G* gp2 = gp->create(); // Not recommended
G* gp3 = G::create(); // Recommended

201

AppendixX Two

ABSTRACT BASE CLASS

ACCESS FUNCTION

ACCESSOR

BUILT-IN TYPE

CLASS INVARIANT

CONST CORRECT

Terminology

The terminology used by this book is as defined by the “Draft
Standard for The Programming Language C++" with some addi-
tions that are presented below.

An abstract base classs a class with at least one pure virtual
member function.

An access function (accessor$ a member function that returns
a value and that does not modify the object’s state.

A built-in type is one of the types defined by the language, such
as int, short, char and bool.

A classinvariant is a condition that defines all valid states for
an object. An class invariant is both a pre- and postcondition to a
member function of the class.

A program isconst correctif it has correctly declared functions,
parameters, return values, variables and member functions as
const.

COPY ASSIGNMENT
OPERATOR
COPY CONSTRUCTOR

DANGLING POINTER

DECLARATIVE REGION

DIRECT BASE CLASS

DYNAMIC BINDING

ENCAPSULATION

EXCEPTION SAFE

EXPLICIT TYPE
CONVERSION

FILE SCOPE

FLOW CONTROL
PRIMITIVE

FORWARDING FUNCTION

FREE STORE

GLOBAL OBJECT

GLOBAL SCOPE

Thecopy assignment operatoof a class is the assignment operator
taking a reference to an object of the same class as parameter.

Thecopy constructorof a class is the constructor taking a reference
to an object of the same class as parameter.

A dangling pointer is pointing at an object that been deleted.

A declarative regionis the largest part of a program where a name
declared in that region can be used with its unqualified name.

Thedirect base clasof a class is the classes explicitly mentioned as
base classes in its definition. All other base classeisdirect base
classes

A member function call idynamically bound if different functions
will be called depending on the type of the object operated upon.

Encapsulation allows a user to only depend on the class interface,
and not upon its implementation.

A class isexception safdf its objects do not loose any resources, do
not invalidate their class invariant or terminate the application when
they end their life-time because of an exception.

An explicit type conversionis when an object is converted from one
type to another, and where you have to explicitly write the resulting

type.

An object withfile scopeis only accessible to functions within the
same translation unit.

Theflow control primitives are:
if-else , switch , do-while , while andfor .

A forwarding function is a function which does nothing more than
call another function.

An object on thdree storeis an object allocated wittew.
A global objectis an object in global scope.

An object or type is iglobal scopeif it can be accessed from within
any function of a program.

204

Industrial Strength C++

IMPLEMENTATION-
DEFINED BEHAVIOR

IMPLICIT TYPE
CONVERSION

INHERITANCE

INLINE DEFINITION FILE

ITERATOR

LITERAL

MEMBER OBJECT

MODIFYING FUNCTION

MODIFIER

NON-COPYABLE CLASS

OBJECT-ORIENTED
PROGRAMMING

POLYMORPHISM

POSTCONDITION

PRECONDITION

RESOURCE

Code withImplementation-defined behavioris completely legal
C++, but compilers may differ. The compiler vendor is required to
describe what their particular compiler does with such code.

An implicit type conversion is when an object is converted from
one type to another, and where you don't have to explicitly write the
resulting type.

A derived classnherits state and behavior from a base class.

An inline definition file is a file that only contains definitions of
inline functions.

An iterator is an object used to traverse through collections of
objects.

A literal is a sequence of digits or characters that represent a con-
stant value.

Themember objectsof a class is its base classes and the data mem-
bers.

A modifying function (modifier) is a member function that changes
the value of at least one data member.

A class isnon-copyableif its objects cannot be copied.

A language supportsbject-oriented programming if it provides
encapsulation, inheritance and polymorphism.

Polymorphism means that an expression can have many different
interpretations depending on the context. This means that the same
piece of code can be used to operate upon many types of objects as
provided by e.g. dynamic binding and parameterization.

A postcondition is a condition that must be true on exit from a mem-
ber function, if the precondition was valid on entry to that function.
A class is implemented correctly if postconditions are never false.

A precondition is a condition that must be true on entry to a member
function. A class is used correctly if preconditions are never false.

A resourceis something that more than one program needs, but for
which there is a limit for how much that is available. Resources can
be acquired and released.

205

SELF-CONTAINED

SIGNATURE

SLICING

STACK UNWINDING

STATE

SUBSTITUTABILITY

TEMPLATE
DEFINITION FILE

TRANSLATION UNIT

UNDEFINED BEHAVIOR

UNSPECIFIED BEHAVIOR

USER-DEFINED
CONVERSION

VIRTUAL TABLE

A header file isself containedif nothing more than its inclusion is
needed to use the full interface of a class.

Thesignature of a function is defined by its return type, its parame-
ter types and their order, and the access given the object operated
upon (const or volatile).

Slicing means that the data added by a subclass is discarded when an
object of a subclass is passed or returned by value to or from a func-
tion expecting a base class object.

Stack unwinding is the process during exception handling when the
destructor is called for all local objects between the place where the
exception was thrown and where it is caught.

Thestateof an object is the data members of the object, and possibly
also other data which the object has access to, which affects the
observable behavior of the object.

Substitutability means that a derived class object can be used in a
context expecting an object of any class derived from one its base
class.

An template definition file is a file that only contains definitions of
non-inline template functions.

A translation unit is the result of merging a implementation file
with all its headers and header files.

Code withundefined behavior is not correct C++. The standard
does not specify what a compiler shall do with such code. It may
ignore the problem completely, issue an error or something else.

Code withunspecified behavioris completely legal C++, but com-
pilers may differ. The compiler vendor is not required to describe
what their particular compiler does with such code.

A user-defined conversioris a conversion from one type to another
introduced by a programmer, i.e. not one of the conversions defined
by the language. Such user-defined conversions are either a non-
explicit constructor taking only one parameter, or a conversion oper-
ator.

A virtual table is an array of pointers to all virtual member func-
tions of a class. Many compilers generate such tables to implement
dynamic binding of virtual functions.

206

Industrial Strength C++

Rules and
recommendations

Naming
Meaningful names

Rec 1.1 Use meaningful names.
Rec 1.2 Use English names for identifiers.
Rec 1.3 Be consistent when naming functions, types, variables and constants.

Names that collide

Rec 1.4 Onlynamespace names should be global.
Rec 1.5 Do not use globasing declarations andsing directives inside header
files.

Rec 1.6 Prefixes should be used to group macros.

Rec 1.7 Group related files by using a common prefix in the file name.
lllegal naming

Rule 1.8 Do not use identifiers that contain two or more underscores in a row.

Rule 1.9 Do not use identifiers that begin with an underscore.

207

Organizing the code

Rule 2.1
Rule 2.2
Rule 2.3

Rec
Rec

2.4
2.5

Comments

Rec
Rec

Rec
Rec
Rec

3.1
3.2

3.3
3.4
3.5

Control flow
Rule 4.1

Rec
Rec

Rec

Rec

4.2
4.3

4.4

4.5

Rule 4.6

Rec

Object Life Cycle

4.7

Each header file should be self-contained.

Avoid unnecessary inclusion.

Enclose all code in header files within include guards.

Definitions for inline member functions should be placed in a separate file.
Definitions for all template functions of a class should be placed in a sepa-
rate file.

Each file should contain a copyright comment.

Each file should contain a comment with a short description of the file con-
tent.

Every file should declare a local constant string that identifies the file.
Usd/ for comments.

All comments should be written in English.

Do not change a loop variable insidera-loop block.

Update loop variables close to where the loop-condition is specified.

All flow control primitivesif, else, while, for, do, switch

andcase) should be followed by a block, even if it is empty.

Statements followingcase label should be terminated by a statement that
exits theswitch ~ statement.

Allswitch statements should havelefault clause.

Usebreak andcontinue instead ofjoto .

Do not have too complex functions.

Initialization of variables and constants

Rec
Rec
Rec
Rec

51
5.2
5.3
54

Declare and initialize variables close to where they are used.

If possible, initialize variables at the point of declaration.

Declare each variable in a separate declaration statement.

Literals should only be used in the definition of constants and enumerations.

Constructor initializer lists

Rec

55

Rule 5.6

Rec

5.7

Initialize all data members.

Let the order in the initializer list be the same as the order of declaration in
the header file. First base classes, then data members.

Do not use or patkss in constructor initializer lists.

208

Industrial Strength C++

Copying of objects

Rec 5.8
Rule 5.9

Rec 5.10

Rec 5.11

Rule 5.12

Conversions

Rec 6.1
Rec 6.2

Rec 6.3
Rule 6.4

Avoid unnecessary copying of objects that are costly to copy.

A function must never return, or in any other way give access to, references
or pointers to local variables outside the scope in which they are declared.

If objects of a class should never be copied, then the copy constructor and
the copy assignment operator should be declanedte and not imple-

mented.

A class that manages resources should declare a copy constructor, a copy as-
signment operator, and a destructor.

Copy assignment operators should be protected from doing destructive ac-
tions if an object is assigned to itself.

Prefer explicit to implicit type conversions.

Use the new cast operatalmé@mic_cast, const_cast,
reinterpret_castand static_cast) instead of the old-style casts,
unless portability is an issue.

Do not cast away const.

Declare a data membemnagable if it must be modified by a const mem-
ber function.

The class interface

Inline functions

Rec 7.1
Rule 7.2

Make simple functions inline.
Do not declare virtual member functionsnéise

Argument passing and return values

Rec 7.3

Rec 7.4

Rec 7.5
Rule 7.6

Rule 7.7

Pass arguments of built-in types by value, unless the function should modify
them.

Only use a parameter of pointer type if the function stores the address, or
passes it to a function that does.

Pass arguments of class types by reference or pointer.

Pass arguments of class types by reference or pointer, if the class is meant
as a public base class.

The copy assignment operator should return a non-const reference to the ob-
ject assigned to.

Const Correctness

Rule 7.8

A pointer or reference parameter should be decatarestt if the function
does not change the object bound to it.

209

Rule 7.9

Rule 7.10
Rule 7.11

Rule 7.12

Rec 7.13

The copy constructor and copy assignment operator should always have a
const reference as parameter.

Only useonst char -pointers to access string literals.

A member function that does not change the state of the program should be
declaredconst .

A member function that gives non-const access to the representation of an
object must not be declarednst .

Do not let const member functions change the state of the program.

Overloading and default arguments

Rule 7.14

Rec 7.15

Rule 7.16

Rule 7.17

All variants of an overloaded member function should be used for the same
purpose and have similar behavior.

If you overload one out of a closely-related set of operators, then you should
overload the whole set and preserve the same invariants that exist for built-
in types.

If, in a derived class, you need to override one out of a set of the base class'
overloaded virtual member functions, then you should override the whole
set, or use using-declarations to bring all of the functions in the base class
into the scope of the derived class.

Supply default arguments with the function's declaration in the header file,
not with the function's definition in the implementation file.

Conversion functions

new and delete

Rec 7.18
Rec 7.19

Rule 8.1
Rule 8.2
Rule 8.3
Rec 8.4
Rec 8.5

Rec 8.6

Static Objects

Rec 9.1

Rec 9.2

One-argument constructors should be decteq@idit
Do not use conversion functions.

delete should only be used withew.
delete [] should only be used wittew []

Do not access a pointer or reference to a deleted object.

Do not deletthis

If you overloadperatornew for a class, you should have a correspond-
ing overloadedperator delete

Customize the memory management for a class if memory management is
an unacceptably-large part of the allocation and deallocation of free store
objects of that class.

Objects with static storage duration should only be declared within the scope
of a class, function or anonymous namespace.
Document how static objects are initialized.

210

Industrial Strength C++

Object-oriented programming
Encapsulation

Rule 10.1 Only declare data members private.
Rec 10.2 If a member function returns a pointer or reference, then you should docu-
ment how it should be used and for how long it is valid.

Dynamic binding
Rec 10.3 Selection statemenifs (@ndswitch) should be used when the flow of

control depends on an object's value, while dynamic binding should be used
when the flow of control depends on the object's type.

Inheritance
Rule 10.4 A public base class must either have a public virtual destructor or a protected
destructor.
Rule 10.5 If you derive from more than one base classes with the same parent, then that

parent should be a virtual base class.
The Class Interface

Rec 10.6 Specify classes using preconditions, postconditions, exceptions and class in-
variants.

Rec 10.7 Use C++ to describe preconditions, postconditions and class invariants.

Rule 10.8 A pointer or reference to an object of a derived class should be possible to
use wherever a pointer or reference to a public base class object is used.

Rec 10.9 Document the interface of template arguments.

Assertions

Rule 11.1 Do not let assertions change the state of the program.
Rec 11.2 Remove all assertions from production code.

Error handling
Different ways to report errors

Rec 12.1 Check for all errors reported from functions.
Rec 12.2 Use exception handling instead of status values and error codes.

When to throw exceptions

Rec 12.3 Only throw exceptions when a function fails to perform what it is expected
to do.

Rec 12.4 Do not throw exceptions as a way of reporting uncommon values from a
function.

Rule 12.5 Do not let destructors called during stack unwinding throw exceptions.

211

Rec 12.6 Constructors of types thrown as exceptions should not themselves throw ex-
ceptions.

Exception-safe code

Rec 12.7 Use objects to manage resources.

Rule 12.8 A resource managed by an object must be released by the object's destructor.

Rec 12.9 Use stack objects instead of free store objects.

Rec 12.10 Before letting any exceptions propagate out of a member function, make
certain that the class invariant holds, and if possible leave the state of the ob-
ject unchanged.

Exception types
Rec 12.11 Only throw objects of class type.

Rec 12.12 Group related exception types by using inheritance.
Rec 12.13 Only catch objects by reference.

Error recovery

Rule 12.14 Always catch exceptions the user is not supposed to know about.
Rec 12.15 Do not catch exceptions you are not supposed to know about.

Exception specifications

Rec 12.16 Use exception specifications to declare which exceptions that might be
thrown from a function.

Parts of C++ to avoid
Library functions to avoid

Rec 13.1 Useew anddelete instead omalloc , calloc ,realloc andfree .

Rule 13.2 Use thestream library instead of C-style 1/O.

Rule 13.3 Do not ussetjimp() andlongjmp()

Rec 134 Use overloaded functions and chained function calls instead of functions
with an unspecified number of arguments.

Language constructs to avoid

Rule 13.5 Do not use macros instead of constants, enums, functions or type defini-
tions.

Rec 13.6 Use an array class instead of built-in arrays.

Rec 13.7 Do not use unions.

Size of executables

Rec 14.1 Avoid duplicated code and data.
Rule 14.2 When a public base class has a virtual destructor, each derived class should

212 Industrial Strength C++

declare and implement a destructor.

Portability
General aspects of portability

Rule 15.1 Do not depend on undefined, unspecified or implementation-defined parts
of the language.

Rule 15.2 Do not depend on extensions to the language or to the standard library.

Rec 15.3 Make non-portable code easy to find and replace.

Including files

Rule 15.4 Headers supplied by the implementation should g® brackets; all other
headers should go I quotes.

Rec 15.5 Do not specify absolute directory names in include directives.

Rec 15.6 Include file names should always be treated as case sensitive.

The size and layout of objects

Rule 15.7 Do not make assumptions about the size of or layout in memory of an object.

Rule 15.8 Do not cast a pointer to a shorter quantity to a pointer to a longer quantity.

Rec 15.9 If possible, use plaim to store, pass or return integer values.

Rec 15.10 Do not explicitly declare integral typesigaed or unsigned

Rule 15.11 Make sure all conversions of a value of one type to another of a narrower
type do not slice off significant data.

Rec 15.12 Use typedefs or classes to hide the representation of application-specific
data types.

Unsupported language features

Rec 15.13 Always prefix global names (such as externally visible classes, functions,
variables, constants, typedefs and enuntgrifespace is not supported by
the compiler.

Rec 15.14 Use macros to prevent usage of unsupported keywords.

Rec 15.15 Do notreuse variables declared insifde aloop.

Other compiler differences

Rec 15.16 Only inclusion of the header file should be needed when using a template.
Rec 15.17 Do not rely on partial instantiation of templates.

Rec 15.18 Do not rely on the lifetime of temporaries.

Rec 15.19 Do notugwagmas.

Rule 15.20 Always return a value framain() .

Rec 15.21 Do not depend on the order of evaluation of arguments to a function.

213

Style
General Aspects of Style

Style 1.1 Do not mix coding styles within a group of closely related classes.
Naming conventions

Style 1.2 In names that consist of more than one word, the words are written together
and each word that follows the first begins with an uppercase letter.

Style 1.3 The names of classes, typedefs, and enumerated types should begin with an
uppercase letter.

Style 1.4 The names of variables and functions should begin with a lower-case letter.

Style 1.5 Let data members have a “M” as suffix.

Style 1.6 The names of macros should be in uppercase.

Style 1.7 The name of an include guard should be the name of the header file with all
illegal characters replaced by underscores and all letters converted to upper-
case.

Style 1.8 Do not use characters that can be mistaken for digits, and vice versa.

File-name extensions

Style 1.9 Header files should have the extensibh “.
Style 1.10 Inline definition files should have the extensidget” .
Lexical style

Style 1.11 The names of parameters to functions should be specified in the function
declaration if the type name is insufficient to describe the parameter.

Style 1.12 Always provide an access specifier for base classes and data members.

Style 1.13 The public, protected, and private sections of a class should be declared in
that order.

Style 1.14 The keywordtruct should only be used for a C-style struct.

Style 1.15 Define inline member functions outside the class definition.

Style 1.16 Write unary operators together with their operand.

Style 1.17 Write access operators together with their operands.

Style 1.18 Do not access static members witlor => '

214 Industrial Strength C++

Index

Symbols

175

* 200

++ 200

. 200

< 175

-> 200

~ 193, 195
8

A

abort 138
abstract base clas07, 108, 203
access function203
access operato200
access specifier
for base classl98
for data memberl 98
implicit 198
order of declarationl99
see also encapsulation
accessor203
ambiguous name, multiple inheritandel2
argument passing8-65, 66—67
passing arrayl64
array
see array class
see built-in array
array class, instead of built-in arral/64
array, see built-in array
assertion
assert macro 130
conditions to checkl19-120, 130-131

auto_ptr 146, 148
B

bad_excepton 155
base class

abstract107, 203
access specifiedl 98
destructor 110
duplicated 112
interface 107, 114
mix-in 110, 112
pointer or reference, using10, 120
pointer, using 164
virtual 37
bitwise copying 39
block, after flow control primitive27—28
break , seeswitch
built-in array
allocated witnew 88-89
using 164
built-in type 203
alignment in structl77
range of 179
size 177

C

C standard, see standard C
call chain 136
calloc 158
case 28
cast
different types 49
new-style 49
see also conversion
catch
as macrol183
base class referencé35, 151-153

integer 150
with ... 135, 146, 154
char

alignment of pointerl78
signed omnsigned 179
signed orunsigned 172
class

215

access specifierd 99
compared to strucfl99
data member access04—-105, 198
factory class107-109
forward-declaring13—14
header file 15
name 192, 194
non-copyable40, 205
resource managemewdil—42
singleton 97-98
specification 116, 119-120, 137
used for portability 180
see also base class
see also class interface
see also member function
class interfacel15-125
avoiding exception138
const correctnesy1-74
exception specificationl 55
supplier, obligations116
user, obligations105, 116
class invariant118, 203
as C++ expressiorl18
preserving 147
preserving in derived clas&21
class template
documenting typesl25
exception specificationl 55
instantiating 17, 186
see also template
code
duplicated 168—169
non-portable174-175
organization11-18
style 192
comment19-23
C++ style and C style22
copyright 20
file description 21
language22
template parameter behavid23
common identifier 6
compiler differences184—189
const
cast away52—?7?
correctness66—74, 203
data memberl62
instead of macro194

member function53, 70-74
parameter66—67
see alsanutable
const_cast , see new-style cast
constructor
assignment in body85
declaredexplicit 183
expected behaviod 47
implicit conversion 183
initializer list 35—38
inline 169
throwing exception142, 147
see alsmew
control flow 25-30
complexity 30
primitive 27, 204
selection statement307
with exception handlingl 37, 139
conversion47-53
arithmetic 179
between pointer typed 78
cast-expression49
explicit 204
explicit vs. implicit 48
from longer to narrower typd. 80
implicit 205
implicit with constructor 183
implicit with operator 160
using member functio8—49
conversion operator
for string class160, 188
overloading 49, 81-82
returning pointer to data membd87
copy assignment operat@04
exception safel48
return value65—?7?
self-assignmend3, 44
type of paramete67
when to implement40
see also member function
copy constructor204
throwing exception142
type of paramete67
when to implement40
see also member function
copyable class42
copyright comment20

216 Industrial Strength C++

D

dangling pointer204
how to avoid 43, 89
data member
access specified 04—105, 198
constant162
initialization 35
mutable 53
naming convention194
offset 178
static 97
declaration
class 199
return value 189
variable 34
declarative region204
default argument$80
defaultint 189
default , seeswitch
delete
accessing deleted obje8&9
andnew 88
derived class objeci1l
instead ofree 158
stack object90
when to call 106, 158
delete 88-91
derived class
compiler-generated destructdr70
delete through base pointdrll
implement base class interfad)7
object, copying151
overriding member functiond 08
destructor
called after exceptiorl34, 147
catching exceptionl40
compiler-generated. 70
exception safel47
explicit call 91
inline 169
mix-in class 110
releasing resourcd 45
virtual 110, 170
virtual or not 110
see alsalelete
see also member function
direct base clasf04
do-while , when to use27

dynamic binding106—109, 204
instead of union165

dynamic storage duration, seew

dynamic_cast , see new-style cast

E

encapsulation104-106, 204
enum
anonymous162
casting an integer td.73
instead of macro194
instead ofstatic const int 162
name 194
ermo 135, 152
error handling133-156
assertions and exceptioris30
code, location144
constructor 136
error description150-151
errors that cannot be preventdd7—-140
inside destructorl42
overloaded operatoid 36
status values and error codé84
unexpected value iswitch 29
error recovery153—-154, 159
evaluation order
argument189
subexpressionsl 89
exception
compared to status valu#34—136
representing the type of errdt50
specification 116
throwing class objecfl50
to terminate progranil38
translation of status valud 37
type 149-153, 154
unexpected155
unhandled134, 140
unknown type 154
when to throw 137-143
see alsdhrow
exception class
constructor 142
copy assignment operatd48
copy constructorl42
destructor 140
error description150-151

217

inheritance 135, 150, 151

nested 151
exception handlingl 33-156

bad_exception 155

one catch for many exceptior53

performancel47

preventing memory leak®2

proper use137-140

recover from exceptiorild7, 153—-154

resource managemerit45

rethrow exception140

simulating 159

stack unwinding140

terminate 140

uncaught_exception 140-141

unexpected exceptiod 55

when to throw exceptioril37—-143
exception safel43-149, 204
exception specificationl21, 155-156

to document class interfac&55
explicit 183
extension

C++ 174

standard library174
EXTERNAL_TEMPLATE_DEFINITION186

F

factory class107-109
false 183
file
description 21
identification 21
inclusion 175-177
name 8, 195-196
name, case sensitivé96
name, template implementatioh86
scope 204
see also header file
see also inline definition file
see also template header file
finalization function 99
flow control primitive 27, 204
for
loop index 26
scope of loop variablel84
when to use27
forwarding function 204

free 158
free store 204
seenew anddelete
function
calls, chained159-160
complexity 30
declaration189
evaluation of argumeni.89
lifetime of return value187
local linkage 169
name 194
ownership of return valueL06
returning reference or pointet05
returning status valud.34-135
unspecified number of argumenfis9—
160
wrapper 136
see also inline function
see also linker
see also template function
function paramete’59—65
const 66—-67
name 194, 197, 198
pointer to array164
reference to temporarit88
reference vs. pointe60—62
specifying constnes$2
to document function1 98
function template
exception specificationl 55
instantiating 17, 186
see also template

G

global
name 181
object 204
scope 204
goto 29

H

header file
extension196
how to avoid multiple included4
inclusion 14, 175
name 195

218 Industrial Strength C++

name, casel76-177

path name separatdt76

purpose 12

self-contained12

when to includel3

see also template header file
header, inclusion ofL75

I
identifier
language?2
separating words ifl93
if-else
see control flow
if-else 27,107
implementation file
extension 196
name extensiornl 96
implementation-defined behaviak72, 205
char signed orunsigned 179
data member offsel 78
include 176
include-directives175
layout of object177
lifetime of temporary objectl87
pragma 188
size of object177
subtracting with unsigned typek79
include
header175
header file 175
path namesl76
using ™ 175
using <> 175
see also header file
see also template header file
include guard14, 195
name 195
inheritance 110-114
instead of union165
multiple 112-114
private, protected or publid20
purpose 120
replacef-else andswitch 107
shared base class membkt 2
substitutability 120—122
initialization

data member35
instead of assignmen83
object 100-101

order, static object98-101

order, within translation uni©9

using function 99
variable 33
initializer list 35—38

calling member function38

order of initializers 37
passinghis 37

inline definition file 15, 205

extension 196
inline function 56-58
effect on compile timel3

, 57

effect on performance and siZ6, 169

failure to inline 169
inline member function
in separate filel5, 199
virtual 57
inlining
compiler-differences169
correct use56-57
when to avoid 169
int

conversion fronchar 178

out of range 179
performancel78
size 177-179
INT_MAX 179
INT_MIN 179
integral suffix 195
integral types
choosing 178
signed andunsigned
invariant
see class invariant
iostream
compared tstdio 158
performance159
1ISO 9126171
iterator 139-140, 205

K

keyword
as macro182
list 182

179

219

unsupported183

L

letters, casel 93-196
limits.h 179
linker 168
list of keywords 182
literal 205
type of string literal 69
where to use34
local variable
see variable
long int
instead ofnt 179
size 179
longimp 159
loop
block 27-28
selecting 27

M

macro
assert 130
constant161-162
EXTERNAL_TEMPLATE_DEFINITION1
86
function-like 162—163
include guard14
INT_MAX 179
INT_MIN 179
name 8, 161, 194-195
type alias 163
unsupported keywordl 83
used for portability 174
magic number, see literal
maintenance
adding classe<l 07
adding exception classek54
malloc 158
member function
compiler-generated member functiodsl
const -declared70-74
definition inside class199
destructor111
dynamic binding 107
exception specificationl 16

exception-safe implementatioh4 7
in struct 199
modifying data membeb3
name 198
postcondition116-118, 138
precondition 116—-118
pure virtual 107
throwing exception147
virtual 57, 107
where to definel5
see also conversion operator
see also copy assignment operator
see also copy constructor
see also destructor
see also inline function
see also inline member function
member object205
see base class
see data member
memory allocation
built-in array 88—89
exception safel45
mixing malloc andnew 158
performancel49
memory leak 145, 148
memory management
customized92-94
deleting derived class objedt11
memory managed by clask48
ownership of objectl06
mix-in base classl10, 112
modifier 205
modifying function 205
multiple inheritance112—-114
mutable
as macrol183
when to use53

N

name
allocation function106
ambiguous112
clash 181
consisting of several word393
file 8
illegal 8
include guard195
macro 8, 161

220 Industrial Strength C++

parameter194
prefix 181
qualified with base clasd12
scope 5
suffix 194
template requiremeni23
namespaceb—7
std 184
unnamed97-98
naming 1-9
abbreviations2
accessors and modifier$
convention 106, 193—-195
language?2
new
anddelete 88
bad_alloc 139
constructor 88
instead ofmalloc 158
performancel45
new 88-89
new-style cast
const_cast 50
dynamic_cast 49-50
reinterpret_cast 49-50
static_cast 49-50
non-copyable clas#l1, 205

@)

object
deleting 110
dynamically allocated88
how to copy 38—44
life cycle 31-44
ownership and lifetimel05
representationl04
size and layoutl77—180
size, passed toperator delete
static 96-101
using correctly116

object state
access105
class invariant118
how to modify 147, 148
modifying 147
preserving 147
specifying state changekl6

110

object-oriented programmind 03-125,
205

operator

access200

alternative textual name&82

unary 200
operator delete

size of object110

see also overloading
operator delete 88
operator delete]]

see also overloading
operator delete[] 89, 92
operator new

see also overloading
operatornew 88, 91
operator new(]

see also overloading
operator new(] 88, 92
operator+ 188
operator<< 160, 188
overloading 74-??

memory managemen®1-94

P

parameter
see function parameter
see template parameter
performance
caching 141
exception handlingl 39, 147
flexibility trade-off 148
inlining 169
jostream compared tetdio 159
memory allocation145, 149
program size168
removing assertiond 30
usingint 178
placemenhew 91
POD 199
pointer
base classl10, 120
casting 178
constness69
dangling 43, 89, 188
dereferencingl73
parameter59—62
return value 105

221

to array, using164
to free store objectl45
type 174
polymorphism 205
portability 171-189
general aspectd 72-175
ISO 9126 definition171
isolate non-portable cod& 74
see implementation-defined behavior
see undefined behavior
see unspecified behavior
postcondition116-118, 205
as C++ expressiorl18
strengthen in derived clask21
pragma
disabling of optimization188
once 188
pragma 188
precondition 116—-118, 205
as C++ expressiorl18
weaken in derived clas§21
when to check138
preprocessor
include guard14, 188, 195
pragma 188
printt 160
private 198, 199
program
correctness116, 138
size 167-170
terminated by exceptior134, 138
terminating 138

testing 119
protected 198
public

base classl10
data memberl04
public 198, 199
pure virtual member functiord 07

Q

qualification, base clasi12

R

realloc 158
reference

base classl20
inside struct199
parameter59—-62
return value105
reinterpret_cast , see new-style cast
representation of objecl 04
resource 205
leak, exception140
locally managedl146
managed byauto_ptr 146
managed by clas¢1—-42
managed by objecfl44
releasing 144
resource management
exception safel45
retum inswitch 28
return value
copy assignment operat@5—??
ownership 105
reuse, consequencekt8

S

scope
class 7
macro 161
namespaceb
self-contained206
setmp 159
shortint ,instead ofnt 179
signature 206
singleton class97-98
size of executablel67—170
inlining 169
slicing 151, 180, 206
stack allocation
instead of free stord 45
preventing 90
stack unwinding140, 206
standard C++182-184
compatibility with C 199
standard libraryl75

abort 138
array class164
assert 130

auto_ptr 146, 148
bad_exception 155
C memory handlingl58

222 Industrial Strength C++

find 139
names to avoidl84
printt 160
style 192
template requiremeni23
uncaught_exception 140-141
state 206
depending omssert 130
see also object state
static allocation96—101, 145
static member
accessing200
static object95-101
file scope 97, 98
function-local 99
static_cast , see new-style cast
stdio 158, 159
struct , data member accesk99
style 191-201
consistent192, 195
function parameter name$97-198
lexical 197-201
mixing libraries 192
substitutability 120-122, 206
switch
case-labels28
default -label 29
fall-through 28
how to terminate28
see control flow
switch 27, 107

T

template
compiler differencesl6, 186-187
documenting123-125
effect on compile timel85
exception handlingl47, 154
instantiating 17, 185-187
names qualified wittypename 4
template definition file 16, 186
template header file
including implementationl6, 186
inclusion 185-186
template parameter
behavior 63, 123-125
type constraint123

temporary object
creating 187

lifetime 187
terminate 140, 142
this

deletethis 90
in initializer list 37
to protect against self-assignme#8
throw
as macro183
compared to returril34
during assignmentl49
inside constructor92, 136, 147
inside overloaded operatdt36
instead of status valué36
of unknown exceptionl 54
rethrow 146
see also exception
translation unit99, 206
true 183
try
as macro183
managing memory withinl46
see alseatch
type
alignment 178
application-specific180
name 194
typedef
name 194
standard namel25
used for portability174, 180
typename 5

U

UINT_MAX 179

UINT_MIN 179

uncaught_exception 140-141

undefined behaviol72, 206

union, compared to clas§65

unspecified behaviol 72, 206
evaluation of argumeni.89
evaluation order of subexpressiod89
inline 169

unspecified number of argumenis59-160

unsupported language featur@81—-184
bool 183

223

exception handlingl59, 183
explicit 183
mutable 183
namespacel81
uncaught_exception 140
variable declared ifor -loop 184
user-defined conversio206
using declaration6, 7
using directive 7

\Y,

variable
declaring 34
initialization 33
local 194
local static 97, 98
name 194
returning reference to locad9
stack unwinding147
where to declare32
virtual
see virtual base class
see virtual member function
rtual base classl12—-114
initialization 37
rtual member function
destructor110
dynamic binding 106—109
implementation170
inline 169
linkage 168
overridden 108
replaceifelse andswitch 107
virtual table 170, 206

vV

Vi

w

while , when to use27
word size 178
wrapper function136

224 Industrial Strength C++

	Industrial Strength C++
	Mats Henricson Erik Nyquist
	Contents
	Naming� 1
	Organizing the�code� 11
	Comments� 19
	Control flow� 25
	Object Life Cycle� 31
	Conversions� 47
	The class interface� 55
	new and delete� 87
	Static Objects� 95
	Object-oriented programming� 103
	Assertions� 129
	Error handling� 133
	Parts of C++ to avoid� 157
	Size of executables� 167
	Portability� 171
	Style� 191
	AppendixTerminology� 203
	Rules and recommendations� 207
	Index� 215
	Acknowledgements

	Chapter ��One
	Naming
	Meaningful names
	RULES AND RECOMMENDATIONS
	Rec 1.1 Use meaningful names.
	Rec 1.2 Use English names for identifiers.
	Rec 1.3 Be consistent when naming functions, types, variables and constants.

	See Also
	Rec 1.1 Use meaningful names.
	EXAMPLE 1.1 Naming a variable
	Rec 1.2 Use English names for identifiers.
	Rec 1.3 Be consistent when naming functions, types, variables and constants.

	EXAMPLE 1.2 Different ways to print an object
	EXAMPLE 1.3 Naming accessors and modifiers
	EXAMPLE 1.4 Names used by a template function

	Names that collide
	RULES AND RECOMMENDATIONS:
	Rec 1.4 Only namespace names should be global.
	Rec 1.5 Do not use global using declarations and using directives inside header files.
	Rec 1.6 Prefixes should be used to group macros.
	Rec 1.7 Group related files by using a common prefix in the file name.

	See Also
	Rec 1.4 Only namespace names should be global.
	EXAMPLE 1.5 Namespace
	EXAMPLE 1.6 Accessing names from namespace
	EXAMPLE 1.7 Class as namespace
	EXAMPLE 1.8 Class names with prefixes
	Rec 1.5 Do not use global using declarations and using directives inside header files.
	Rec 1.6 Prefixes should be used to group macros. Rec 1.7 Group related files by using a common pr...

	EXAMPLE 1.9 Names of include files

	Illegal naming
	RULES AND RECOMMENDATIONS
	Rule 1.8 Do not use identifiers that contain two or more underscores in a row.
	Rule 1.9 Do not use identifiers that begin with an underscore.

	See Also
	Rule 1.8 Do not use identifiers that contain two or more underscores in a row. Rule 1.9 Do not us...
	EXAMPLE 1.10 Use of underscores in names

	Chapter ��Two
	Organizing the�code
	RULES AND RECOMMENDATIONS
	Rule 2.1 Each header file should be self-contained.
	Rule 2.2 Avoid unnecessary inclusion.
	Rule 2.3 Enclose all code in header files within include guards.
	Rec 2.4 Definitions for inline member functions should be placed in a separate file.
	Rec 2.5 Definitions for all template functions of a class should be placed in a separate file.

	See Also
	Rule 2.1 Each header file should be self-contained.
	EXAMPLE 2.1 Testing for self-containment
	Rule 2.2 Avoid unnecessary inclusion.

	EXAMPLE 2.2 Data member of class type
	EXAMPLE 2.3 Forward declaration
	Rule 2.3 Enclose all code in header files within include guards.

	EXAMPLE 2.4 Include guard
	Rec 2.4 Definitions for inline member functions should be placed in a separate file.

	EXAMPLE 2.5 Disable inlining by using inline definition files
	EmcString.icc
	EmcString.hh
	EmcString.cc
	Rec 2.5 Definitions for all template functions of a class should be placed in a separate file.

	EXAMPLE 2.6 Function template
	EXAMPLE 2.7 Class template
	EXAMPLE 2.8 Template header file
	EmcQueue.hh

	Chapter �Three
	Comments
	RULES AND RECOMMENDATIONS
	Rec 3.1 Each file should contain a copyright comment.
	Rec 3.2 Each file should contain a comment with a short description of the file content.
	Rec 3.3 Every file should declare a local constant string that identifies the file.
	Rec 3.4 Use // for comments.
	Rec 3.5 All comments should be written in English.

	See Also
	Rec 3.1 Each file should contain a copyright comment.
	Short copyright comment
	Long copyright comment

	Rec 3.2 Each file should contain a comment with a short description of the file content.
	Comment describing the file content

	Rec 3.3 Every file should declare a local constant string that identifies the file.
	EXAMPLE 3.1 Static string identifying the file
	Rec 3.4 Use // for comments.

	EXAMPLE 3.2 Comments in C++
	EXAMPLE 3.3 Nested C-style comment
	Rec 3.5 All comments should be written in English.

	Chapter ��Four
	Control flow
	RULES AND RECOMMENDATIONS
	Rule 4.1 Do not change a loop variable inside a for-loop block.
	Rec 4.2 Update loop variables close to where the loop-condition is specified.
	Rec 4.3 All flow control primitives (if, else, while, for, do, switch and case) should be followe...
	Rec 4.4 Statements following a case label should be terminated by a statement that exits the swit...
	Rec 4.5 All switch statements should have a default clause.
	Rule 4.6 Use break and continue instead of goto.
	Rec 4.7 Do not have too complex functions.

	See Also
	Rule 4.1 Do not change a loop variable inside a for-loop block.
	Rec 4.2 Update loop variables close to where the loop-condition is specified.
	1. Use a for loop if the loop variable is updated on exit from the block AFTER the loop condition...
	2. Use a do-while loop if the loop will execute at least once and if the loop variable is updated...
	3. Use a while loop if the loop variable is updated on entry to the block AFTER the loop conditio...

	Rec 4.3 All flow control primitives (if, else, while, for, do, switch and case) should be followe...
	EXAMPLE 4.1 Block after for-loop
	EXAMPLE 4.2 Blocks in switch-statement
	Rec 4.4 Statements following a case label should be terminated by a statement that exits the swit...

	EXAMPLE 4.3 How to write switch statements
	Rec 4.5 All switch statements should have a default clause.
	Rule 4.6 Use break and continue instead of goto.

	EXAMPLE 4.4 How to break out of a loop
	Rec 4.7 Do not have too complex functions.

	Chapter ��Five
	Object Life Cycle
	Initialization of variables and constants
	RULES AND RECOMMENDATIONS
	Rec 5.1 Declare and initialize variables close to where they are used.
	Rec 5.2 If possible, initialize variables at the point of declaration.
	Rec 5.3 Declare each variable in a separate declaration statement.
	Rec 5.4 Literals should only be used in the definition of constants and enumerations.

	See Also
	Rec 5.1 Declare and initialize variables close to where they are used.
	EXAMPLE 5.1 Initializing variables
	Rec 5.2 If possible, initialize variables at the point of declaration.

	EXAMPLE 5.2 Initialization instead of assignment
	EXAMPLE 5.3 Assignment instead of initialization
	Rec 5.3 Declare each variable in a separate declaration statement.

	EXAMPLE 5.4 Declaring multiple variables
	Rec 5.4 Literals should only be used in the definition of constants and enumerations.

	EXAMPLE 5.5 Correct use of “magic” number

	Constructor initializer lists
	RULES AND RECOMMENDATIONS
	Rec 5.5 Initialize all data members.
	Rule 5.6 Let the order in the initializer list be the same as the order of declaration in the hea...
	Rec 5.7 Do not use or pass this in constructor initializer lists.

	See Also
	Rec 5.5 Initialize all data members.
	EXAMPLE 5.6 Constructor initialization lists
	Rule 5.6 Let the order in the initializer list be the same as the order of declaration in the hea...

	EXAMPLE 5.7 Order of initializers
	Rec 5.7 Do not use or pass this in constructor initializer lists.

	Copying of objects
	RULES AND RECOMMENDATIONS
	Rec 5.8 Avoid unnecessary copying of objects that are costly to copy.
	Rule 5.9 A function must never return, or in any other way give access to, references or pointers...
	Rec 5.10 If objects of a class should never be copied, then the copy constructor and the copy ass...
	Rec 5.11 A class that manages resources should declare a copy constructor, a copy assignment oper...
	Rule 5.12 Copy assignment operators should be protected from doing destructive actions if an obje...

	See Also
	Rec 5.8 Avoid unnecessary copying of objects that are costly to copy.
	Rule 5.9 A function must never return, or in any other way give access to, references or pointers...
	EXAMPLE 5.8 Returning dangling pointers and references
	Rec 5.10 If objects of a class should never be copied, then the copy constructor and the copy ass...

	EXAMPLE 5.9 Non-copyable class
	Rec 5.11 A class that manages resources should declare a copy constructor, a copy assignment oper...

	EXAMPLE 5.10 Copyable class that manages memory
	Rule 5.12 Copy assignment operators should be protected from doing destructive actions if an obje...

	EXAMPLE 5.11 Self-assignment
	EXAMPLE 5.12 Implementing a copy assignment operator

	Chapter ��Six
	Conversions
	RULES AND RECOMMENDATIONS
	Rec 6.1 Prefer explicit to implicit type conversions.
	Rec 6.2 Use the new cast operators (dynamic_cast, const_cast, reinterpret_cast and static_cast) i...
	Rec 6.3 Do not cast away const.
	Rule 6.4 Declare a data member as mutable if it must be modified by a const member function.

	See Also
	Rec 6.1 Prefer explicit to implicit type conversions.
	EXAMPLE 6.1 Explicit conversions
	EXAMPLE 6.2 Conversion of string object to const char*
	Rec 6.2 Use the new cast operators (dynamic_cast, const_cast, reinterpret_cast and static_cast) i...

	EXAMPLE 6.3 Using static_cast
	EXAMPLE 6.4 New style casts
	Rec 6.3 Do not cast away const.

	EXAMPLE 6.5 Casting away const
	EXAMPLE 6.6 Object in write-protected memory
	Rule 6.4 Declare a data member as mutable if it must be modified by a const member function.

	EXAMPLE 6.7 Class with mutable data member

	Chapter �Seven
	The class interface
	Inline functions
	RULES AND RECOMMENDATIONS
	Rec 7.1 Make simple functions inline.
	Rule 7.2 Do not declare virtual member functions as inline.

	See Also
	Rec 7.1 Make simple functions inline.
	EXAMPLE 7.1 A class with inline member functions
	Rule 7.2 Do not declare virtual member functions as inline.

	Argument passing and return values
	RULES AND RECOMMENDATIONS
	Rec 7.3 Pass arguments of built-in types by value, unless the function should modify them.
	Rec 7.4 Only use a parameter of pointer type if the function stores the address, or passes it to ...
	Rec 7.5 Pass arguments of class types by reference or pointer.
	Rule 7.6 Pass arguments of class types by reference or pointer, if the class is meant as a public...
	Rule 7.7 The copy assignment operator should return a non-const reference to the object assigned to.

	See Also
	Rec 7.3 Pass arguments of built-in types by value, unless the function should modify them.
	EXAMPLE 7.2 Different types of function parameters
	EXAMPLE 7.3 Passing parameters by value
	Rec 7.4 Only use a parameter of pointer type if the function stores the address, or passes it to ...

	EXAMPLE 7.4 Pointer and reference arguments
	Rec 7.5 Pass arguments of class types by reference or pointer.

	EXAMPLE 7.5 Passing arguments of unknown type
	Rule 7.6 Pass arguments of class types by reference or pointer, if the class is meant as a public...

	EXAMPLE 7.6 Passing base class reference
	EXAMPLE 7.7 Passing base class object by value
	Rule 7.7 The copy assignment operator should return a non- const reference to the object assigned...

	EXAMPLE 7.8 Return value from assignment operators

	Const Correctness
	RULES AND RECOMMENDATIONS
	Rule 7.8 A pointer or reference parameter should be declared const if the function does not chang...
	Rule 7.9 The copy constructor and copy assignment operator should always have a const reference a...
	Rule 7.10 Only use const char-pointers to access string literals.
	Rule 7.11 A member function that does not change the state of the program should be declared const.
	Rule 7.12 A member function that gives non-const access to the representation of an object must n...
	Rec 7.13 Do not let const member functions change the state of the program.

	See Also
	Rule 7.8 A pointer or reference parameter should be declared const if the function does not chang...
	EXAMPLE 7.9 const-declared parameter
	EXAMPLE 7.10 Using parameter as a local variable
	Rule 7.9 The copy constructor and copy assignment operator should always have a const reference a...

	EXAMPLE 7.11 Copyable type parameter
	Rule 7.10 Only use const char-pointers to access string literals.

	EXAMPLE 7.12 Accessing string literals
	Rule 7.11 A member function that does not change the state of the program should be declared const.
	1. Only const member functions can be called for const objects.
	2. A const member function will not change data members.

	EXAMPLE 7.13 Implications of const
	EXAMPLE 7.14 Accessing objects inside const member function
	Rule 7.12 A member function that gives non-const access to the representation of an object must n...

	EXAMPLE 7.15 Accessing characters in a string
	Rec 7.13 Do not let const member functions change the state of the program.

	Overloading and default arguments
	RULES AND RECOMMENDATIONS
	Rule 7.14 All variants of an overloaded member function should be used for the same purpose and h...
	Rec 7.15 If you overload one out of a closely-related set of operators, then you should overload ...
	Rule 7.16 If, in a derived class, you need to override one out of a set of the base class' overlo...
	Rule 7.17 Supply default arguments with the function's declaration in the header file, not with t...

	See Also
	Rule 7.14 All variants of an overloaded member function should be used for the same purpose and h...
	EXAMPLE 7.16 Overloaded member functions
	Rec 7.15 If you overload one out of a closely-related set of operators, then you should overload ...

	EXAMPLE 7.17 Operator overloading
	EXAMPLE 7.18 Implementation of closely related operators
	Rule 7.16 If, in a derived class, you need to override one out of a set of the base class' overlo...

	EXAMPLE 7.19 Hiding member functions
	EXAMPLE 7.20 Inheriting overloaded virtual member functions
	Rule 7.17 Supply default arguments with the function's declaration in the header file, not with t...

	EXAMPLE 7.21 Adding default arguments
	EXAMPLE 7.22 Default arguments for member function

	Conversion functions
	RULES AND RECOMMENDATIONS
	Rec 7.18 One-argument constructors should be declared explicit.
	Rec 7.19 Do not use conversion functions.

	See Also
	Rec 7.18 One-argument constructors should be declared explicit.
	EXAMPLE 7.23 One-argument constructor
	Rec 7.19 Do not use conversion functions.

	EXAMPLE 7.24 How to avoid conversion operator function

	Chapter �Eight
	new and delete
	RULES AND RECOMMENDATIONS
	Rule 8.1 delete should only be used with new.
	Rule 8.2 delete [] should only be used with new [].
	Rule 8.3 Do not access a pointer or reference to a deleted object.
	Rec 8.4 Do not delete this.
	Rec 8.5 If you overload operator new for a class, you should have a corresponding overloaded oper...
	Rec 8.6 Customize the memory management for a class if memory management is an unacceptably-large...

	See Also
	Rule 8.1 delete should only be used with new. Rule 8.2 delete [] should only be used with new [].
	EXAMPLE 8.1 Allocate and deallocate free store object
	Rule 8.3 Do not access a pointer or reference to a deleted object.

	EXAMPLE 8.2 Dangerous access to deleted object
	Rec 8.4 Do not delete this.

	EXAMPLE 8.3 Objects that commit suicide
	Rec 8.5 If you overload operator new for a class, you should have a corresponding overloaded oper...

	EXAMPLE 8.4 Placement new
	EXAMPLE 8.5 Class with customized memory management
	Rec 8.6 Customize the memory management for a class if memory management is an unacceptably-large...

	Chapter ��Nine
	Static Objects
	RULES AND RECOMMENDATIONS
	Rec 9.1 Objects with static storage duration should only be declared within the scope of a class,...
	Rec 9.2 Document how static objects are initialized.

	See Also
	Rec 9.1 Objects with static storage duration should only be declared within the scope of a class,...
	EXAMPLE 9.1 Function local static object
	EXAMPLE 9.2 Static data member
	EXAMPLE 9.3 Unnamed namespace
	EXAMPLE 9.4 Static objects in file scope
	Rec 9.2 Document how static objects are initialized.

	EXAMPLE 9.5 Access to static object inside constructor
	EXAMPLE 9.6 Initialization order of static objects
	EXAMPLE 9.7 Initialization object

	Chapter ��Ten
	Object- oriented programming
	Encapsulation
	RULES AND RECOMMENDATIONS
	Rule 10.1 Only declare data members private.
	Rec 10.2 If a member function returns a pointer or reference, then you should document how it sho...

	See Also
	Rule 10.1 Only declare data members private.
	Rec 10.2 If a member function returns a pointer or reference, then you should document how it sho...
	EXAMPLE 10.1 Returning non-const reference to object
	EXAMPLE 10.2 Assigning to string element

	Dynamic binding
	RULES AND RECOMMENDATIONS
	Rec 10.3 Selection statements (if and switch) should be used when the flow of control depends on ...

	See Also
	Rec 10.3 Selection statements (if and switch) should be used when the flow of control depends on ...
	EXAMPLE 10.3 Factory class
	EXAMPLE 10.4 Dynamic binding

	Inheritance
	RULES AND RECOMMENDATIONS
	Rule 10.4 A public base class must either have a public virtual destructor or a protected destruc...
	Rule 10.5 If you derive from more than one base classes with the same parent, then that parent sh...

	See Also
	Rule 10.4 A public base class must either have a public virtual destructor or a protected destruc...
	EXAMPLE 10.5 Deleting a derived class object
	Rule 10.5 If you derive from more than one base classes with the same parent, then that parent sh...

	EXAMPLE 10.6 Virtual base class

	The Class Interface
	RULES AND RECOMMENDATIONS
	Rec 10.6 Specify classes using preconditions, postconditions, exceptions and class invariants.
	Rec 10.7 Use C++ to describe preconditions, postconditions and class invariants.
	Rule 10.8 A pointer or reference to an object of a derived class should be possible to use wherev...
	Rec 10.9 Document the interface of template arguments.

	See Also
	Rec 10.6 Specify classes using preconditions, postconditions, exceptions and class invariants.
	EXAMPLE 10.7 Pre- and postconditions
	EXAMPLE 10.8 Using member function with precondition
	EXAMPLE 10.9 Class with invariant
	Rec 10.7 Use C++ to describe preconditions, postconditions and class invariants.

	EXAMPLE 10.10 Using comments to specify class template
	EXAMPLE 10.11 Checking precondition
	Rule 10.8 A pointer or reference to an object of a derived class should be possible to use wherev...

	EXAMPLE 10.12 Substitutability
	EXAMPLE 10.13 Specification of overriden member function
	Rec 10.9 Document the interface of template arguments.

	EXAMPLE 10.14 Describing template argument requirements
	EXAMPLE 10.15 Checking type constraints
	EXAMPLE 10.16 Performance characteristics of types

	Chapter Eleven
	Assertions
	RULES AND RECOMMENDATIONS
	Rule 11.1 Do not let assertions change the state of the program.
	Rec 11.2 Remove all assertions from production code.

	See Also
	Rule 11.1 Do not let assertions change the state of the program.
	EXAMPLE 11.1 Standard assert macro
	Rec 11.2 Remove all assertions from production code.

	EXAMPLE 11.2 Assertions and exceptions

	Chapter Twelve
	Error handling
	Different ways to report errors
	RULES AND RECOMMENDATIONS
	Rec 12.1 Check for all errors reported from functions.
	Rec 12.2 Use exception handling instead of status values and error codes.

	See Also
	Rec 12.1 Check for all errors reported from functions. Rec 12.2 Use exception handling instead of...
	EXAMPLE 12.1 Checking status value
	EXAMPLE 12.2 Throwing an exception

	When to throw exceptions
	RULES AND RECOMMENDATIONS
	Rec 12.3 Only throw exceptions when a function fails to perform what it is expected to do.
	Rec 12.4 Do not throw exceptions as a way of reporting uncommon values from a function.
	Rule 12.5 Do not let destructors called during stack unwinding throw exceptions.
	Rec 12.6 Constructors of types thrown as exceptions should not themselves throw exceptions.

	See Also
	Rec 12.3 Only throw exceptions when a function fails to perform what it is expected to do.
	EXAMPLE 12.3 Member function with precondition
	Rec 12.4 Do not throw exceptions as a way of reporting uncommon values from a function.

	EXAMPLE 12.4 Returning special value to report failure
	Rule 12.5 Do not let destructors called during stack unwinding throw exceptions.

	EXAMPLE 12.5 Preventing exceptions inside destructors
	Rec 12.6 Constructors of types thrown as exceptions should not themselves throw exceptions.

	EXAMPLE 12.6 Exception class constructor

	Exception-safe code
	RULES AND RECOMMENDATIONS
	Rec 12.7 Use objects to manage resources.
	Rule 12.8 A resource managed by an object must be released by the object's destructor.
	Rec 12.9 Use stack objects instead of free store objects.
	Rec 12.10 Before letting any exceptions propagate out of a member function, make certain that the...

	See Also
	Rec 12.7 Use objects to manage resources.
	1. call function to acquire resource
	2. use the resource
	3. call function to release resource

	Rule 12.8 A resource managed by an object must be released by the object's destructor.
	Rec 12.9 Use stack objects instead of free store objects.
	EXAMPLE 12.7 Unsafe memory allocation
	EXAMPLE 12.8 Having a try-block to manage memory
	EXAMPLE 12.9 Exception safe allocation of free store objects
	Rec 12.10 Before letting any exceptions propagate out of a member function, make certain that the...

	EXAMPLE 12.10 Exception safe copy assignment operator

	Exception types
	RULES AND RECOMMENDATIONS
	Rec 12.11 Only throw objects of class type.
	Rec 12.12 Group related exception types by using inheritance.
	Rec 12.13 Only catch objects by reference.

	See Also
	Rec 12.11 Only throw objects of class type.
	EXAMPLE 12.11 Throwing object of built-in type
	Rec 12.12 Group related exception types by using inheritance. Rec 12.13 Only catch objects by ref...

	EXAMPLE 12.12 Inheritance of exception classes
	EXAMPLE 12.13 Handling many exceptions with one handler

	Error recovery
	RULES AND RECOMMENDATIONS
	Rule 12.14 Always catch exceptions the user is not supposed to know about.
	Rec 12.15 Do not catch exceptions you are not supposed to know about.

	See Also
	Rule 12.14 Always catch exceptions the user is not supposed to know about.
	Rec 12.15 Do not catch exceptions you are not supposed to know about.

	Exception specifications
	RULES AND RECOMMENDATIONS
	Rec 12.16 Use exception specifications to declare which exceptions that might be thrown from a fu...

	See Also
	Rec 12.16 Use exception specifications to declare which exceptions that might be thrown from a fu...
	EXAMPLE 12.14 Exception specification

	Chapter Thirteen
	Parts of C++ to avoid
	Library functions to avoid
	RULES AND RECOMMENDATIONS:
	Rec 13.1 Use new and delete instead of malloc, calloc, realloc and free.
	Rule 13.2 Use the iostream library instead of C-style I/O.
	Rule 13.3 Do not use setjmp() and longjmp().
	Rec 13.4 Use overloaded functions and chained function calls instead of functions with an unspeci...

	See Also
	Rec 13.1 Use new and delete instead of malloc, calloc, realloc and free.
	Rule 13.2 Use the iostream library instead of C-style I/O.
	EXAMPLE 13.1 C-style I/O is not adequate for objects
	Rule 13.3 Do not use setjmp() and longjmp().
	Rec 13.4 Use overloaded functions and chained function calls instead of functions with an unspeci...

	EXAMPLE 13.2 Passing objects to printf()
	EXAMPLE 13.3 Overloading of operator<<

	Language constructs to avoid
	RULES AND RECOMMENDATIONS
	Rule 13.5 Do not use macros instead of constants, enums, functions or type definitions.
	Rec 13.6 Use an array class instead of built-in arrays.
	Rec 13.7 Do not use unions.

	See Also
	Rule 13.5 Do not use macros instead of constants, enums, functions or type definitions.
	EXAMPLE 13.4 Macros do not obey scope rules
	EXAMPLE 13.5 Recommended way to define constants
	EXAMPLE 13.6 Using an enum instead of static const int
	EXAMPLE 13.7 Function-like macro, SQUARE
	EXAMPLE 13.8 Inline function, square
	EXAMPLE 13.9 Function-like macros are not type safe
	EXAMPLE 13.10 How to define synonyms for a type
	Rec 13.6 Use an array class instead of built-in arrays.

	EXAMPLE 13.11 Passing array to function
	Rec 13.7 Do not use unions.

	Chapter Fourteen
	Size of executables
	RULES AND RECOMMENDATIONS
	Rec 14.1 Avoid duplicated code and data.
	Rule 14.2 When a public base class has a virtual destructor, each derived class should declare an...

	See Also
	Rec 14.1 Avoid duplicated code and data.
	Rule 14.2 When a public base class has a virtual destructor, each derived class should declare an...

	Chapter Fifteen
	Portability
	General aspects of portability
	RULES AND RECOMMENDATIONS
	Rule 15.1 Do not depend on undefined, unspecified or implementation-defined parts of the language.
	Rule 15.2 Do not depend on extensions to the language or to the standard library.
	Rec 15.3 Make non-portable code easy to find and replace.

	See Also
	Rule 15.1 Do not depend on undefined, unspecified or implementation-defined parts of the language.
	1. Implementation-defined behavior
	2. Unspecified behavior
	3. Undefined behavior

	EXAMPLE 15.1 Implementation-defined behavior
	EXAMPLE 15.2 Unspecified behavior
	EXAMPLE 15.3 Undefined behavior
	Rule 15.2 Do not depend on extensions to the language or to the standard library.

	EXAMPLE 15.4 Language extension
	Rec 15.3 Make non-portable code easy to find and replace.

	EXAMPLE 15.5 Type of fixed size

	Including files
	RULES AND RECOMMENDATIONS
	Rule 15.4 Headers supplied by the implementation should go in <> brackets; all other headers shou...
	Rec 15.5 Do not specify absolute directory names in include directives.
	Rec 15.6 Include file names should always be treated as case sensitive.

	See Also
	Rule 15.4 Headers supplied by the implementation should go in <> brackets; all other headers shou...
	EXAMPLE 15.6 Good and bad way of including files
	Rec 15.5 Do not specify absolute directory names in include directives.

	EXAMPLE 15.7 Directory names in include directives
	Rec 15.6 Include file names should always be treated as case sensitive.

	EXAMPLE 15.8 Case-sensitivity of header file name

	The size and layout of objects
	RULES AND RECOMMENDATIONS
	Rule 15.7 Do not make assumptions about the size of or layout in memory of an object.
	Rule 15.8 Do not cast a pointer to a shorter quantity to a pointer to a longer quantity.
	Rec 15.9 If possible, use plain int to store, pass or return integer values.
	Rec 15.10 Do not explicitly declare integral types as signed or unsigned.
	Rule 15.11 Make sure all conversions of a value of one type to another of a narrower type do not ...
	Rec 15.12 Use typedefs or classes to hide the representation of application-specific data types.

	See Also
	Rule 15.7 Do not make assumptions about the size of or layout in memory of an object.
	EXAMPLE 15.9 Offset of data member
	Rule 15.8 Do not cast a pointer to a shorter quantity to a pointer to a longer quantity.

	EXAMPLE 15.10 Cast must obey alignment rules
	Rec 15.9 If possible, use plain int to store, pass or return integer values.
	Rec 15.10 Do not explicitly declare integral types as signed or unsigned.

	EXAMPLE 15.11 Mixing signed and unsigned integers
	EXAMPLE 15.12 chars can be signed or unsigned
	Rule 15.11 Make sure all conversions of a value of one type to another of a narrower type do not ...

	EXAMPLE 15.13 OS-specific typedef
	Rec 15.12 Use typedefs or classes to hide the representation of application-specific data types.

	Unsupported language features
	RULES AND RECOMMENDATIONS
	Rec 15.13 Always prefix global names (such as externally visible classes, functions, variables, c...
	Rec 15.14 Use macros to prevent usage of unsupported keywords.
	Rec 15.15 Do not reuse variables declared inside a for-loop.

	See Also
	Rec 15.13 Always prefix global names (such as externally visible classes, functions, variables, c...
	EXAMPLE 15.14 Prefixed name
	Rec 15.14 Use macros to prevent usage of unsupported keywords.

	EXAMPLE 15.15 Unsupported keyword as empty macro
	EXAMPLE 15.16 Forward-compatibility macros
	Rec 15.15 Do not reuse variables declared inside a for- loop.

	EXAMPLE 15.17 Reusing a loop variable

	Other compiler differences
	RULES AND RECOMMENDATIONS
	Rec 15.16 Only inclusion of the header file should be needed when using a template.
	Rec 15.17 Do not rely on partial instantiation of templates.
	Rec 15.18 Do not rely on the lifetime of temporaries.
	Rec 15.19 Do not use pragmas.
	Rule 15.20 Always return a value from main().
	Rec 15.21 Do not depend on the order of evaluation of arguments to a function.

	See Also
	Rec 15.16 Only inclusion of the header file should be needed when using a template.
	EXAMPLE 15.18 Using a template
	EXAMPLE 15.19 Template header file
	Rec 15.17 Do not rely on partial instantiation of templates.
	Rec 15.18 Do not rely on the lifetime of temporaries.

	EXAMPLE 15.20 Temporary objects
	Rec 15.19 Do not use pragmas.

	EXAMPLE 15.21 A pragma-directive
	Rule 15.20 Always return a value from main().

	EXAMPLE 15.22 How to declare main()
	Rec 15.21 Do not depend on the order of evaluation of arguments to a function.

	EXAMPLE 15.23 Evaluation order of arguments
	EXAMPLE 15.24 Evaluation order of subexpressions

	Appendix ��One
	Style
	General Aspects of Style
	RULES AND RECOMMENDATIONS
	Style 1.1 Do not mix coding styles within a group of closely related classes.

	Style 1.1 Do not mix coding styles within a group of closely related classes.

	Naming conventions
	RULES AND RECOMMENDATIONS
	Style 1.2 In names that consist of more than one word, the words are written together and each wo...
	Style 1.3 The names of classes, typedefs, and enumerated types should begin with an uppercase let...
	Style 1.4 The names of variables and functions should begin with a lower-case letter.
	Style 1.5 Let data members have a “M” as suffix.
	Style 1.6 The names of macros should be in uppercase.
	Style 1.7 The name of an include guard should be the name of the header file with all illegal cha...
	Style 1.8 Do not use characters that can be mistaken for digits, and vice versa.

	Style 1.2 In names that consist of more than one word, the words are written together and each wo...
	EXAMPLE 16.1 How to separate words in an identifier
	Style 1.3 The names of classes, typedefs, and enumerated types should begin with an uppercase let...

	EXAMPLE 16.2 Naming style
	Style 1.5 Let data members have a “M” as suffix.

	EXAMPLE 16.3 Data member suffix
	Style 1.6 The names of macros should be in uppercase.

	EXAMPLE 16.4 Names of macros
	Style 1.7 The name of an include guard should be the name of the header file with all illegal cha...

	EXAMPLE 16.5 Names of include guards
	Style 1.8 Do not use characters that can be mistaken for digits, and vice versa.

	EXAMPLE 16.6 Integral suffixes

	File-name extensions
	RULES AND RECOMMENDATIONS
	Style 1.9 Header files should have the extension “.hh”.
	Style 1.10 Inline definition files should have the extension “.icc”.

	See Also
	Style 1.9 Header files should have the extension “.hh”. Style 1.10 Inline definition files should...

	Lexical style
	RULES AND RECOMMENDATIONS
	Style 1.11 The names of parameters to functions should be specified in the function declaration i...
	Style 1.12 Always provide an access specifier for base classes and data members.
	Style 1.13 The public, protected, and private sections of a class should be declared in that order.
	Style 1.14 The keyword struct should only be used for a C- style struct.
	Style 1.15 Define inline member functions outside the class definition.
	Style 1.16 Write unary operators together with their operand.
	Style 1.17 Write access operators together with their operands.
	Style 1.18 Do not access static members with '.' or '->'.

	Style 1.11 The names of parameters to functions should be specified in the function declaration i...
	EXAMPLE 16.7 Specifying parameter names
	Style 1.12 Always provide an access specifier for base classes and data members.

	EXAMPLE 16.8 Implicitly given access specifiers
	EXAMPLE 16.9 Explicitly given access specifiers
	Style 1.13 The public, protected, and private sections of a class should be declared in that order.
	Style 1.14 The keyword struct should only be used for a C- style struct.
	Style 1.15 Define inline member functions outside the class definition.

	EXAMPLE 16.10 Where to implement inline member functions
	Style 1.16 Write unary operators together with their operand.

	EXAMPLE 16.11 How to write unary operators
	Style 1.17 Write access operators together with their operands.

	EXAMPLE 16.12 How to write access operators
	Style 1.18 Do not access static members with '.' or '->'.

	EXAMPLE 16.13 How to access static members

	Terminology
	abstract base class
	access function accessor
	built-in type
	CLASS invariant
	const correct
	copy assignment operator
	copy constructor
	dangling pointer
	declarative region
	direct base class
	dynamic binding
	encapsulation
	exception safe
	explicit type conversion
	file scope
	flow control �primitive
	forwarding function
	free store
	global object
	global scope
	implementation- defined behavior
	implicit type conversion
	inheritance
	inline definition file
	iterator
	literal
	member object
	modifying function modifier
	non-copyable class
	object-oriented programming
	polymorphism
	postcondition
	precondition
	resource
	self-contained
	signature
	slicing
	stack unwinding
	state
	substitutability
	template� definition file
	translation unit
	undefined behavior
	unspecified behavior
	user-defined conversion
	virtual table

	Rules and recommendations�����
	Naming
	Meaningful names
	Names that collide
	Illegal naming

	Organizing the�code
	Comments
	Control flow
	Object Life Cycle
	Initialization of variables and constants
	Constructor initializer lists
	Copying of objects

	Conversions
	The class interface
	Inline functions
	Argument passing and return values
	Const Correctness
	Overloading and default arguments
	Conversion functions

	new and delete
	Static Objects
	Object-oriented programming
	Encapsulation
	Dynamic binding
	Inheritance
	The Class Interface

	Assertions
	Error handling
	Different ways to report errors
	When to throw exceptions
	Exception-safe code
	Exception types
	Error recovery
	Exception specifications

	Parts of C++ to avoid
	Library functions to avoid
	Language constructs to avoid

	Size of executables
	Portability
	General aspects of portability
	Including files
	The size and layout of objects
	Unsupported language features
	Other compiler differences

	Style
	General Aspects of Style
	Naming conventions
	File-name extensions
	Lexical style

	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

