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Abstract—This paper presents an application of a two-point es-
timate method (2PEM) to account for uncertainties in the optimal
power flow (OPF) problem in the context of competitive electricity
markets. These uncertainties can be seen as a by-product of the
economic pressure that forces market participants to behave in
an “unpredictable” manner; hence, probability distributions of
locational marginal prices are calculated as a result. Instead of
using computationally demanding methods, the proposed ap-
proach needs 2 runs of the deterministic OPF for uncertain
variables to get the result in terms of the first three moments of the
corresponding probability density functions. Another advantage
of the 2PEM is that it does not require derivatives of the nonlinear
function used in the computation of the probability distributions.
The proposed method is tested on a simple three-bus test system
and on a more realistic 129-bus test system. Results are compared
against more accurate results obtained from MCS. The proposed
method demonstrates a high level of accuracy for mean values
when compared to the MCS; for standard deviations, the results
are better in those cases when the number of uncertain variables
is relatively low or when their dispersion is not large.

Index Terms—Electricity markets, probabilistic optimal power
flow (OPF), probability distribution, two-point estimate method
(2PEM), uncertainty.

I. INTRODUCTION

DEREGULATION and privatization have changed the way
power systems around the world are being operated nowa-

days; this has had significant impact on the planning and the op-
eration of power systems. For example, market participants’ be-
havior has become somewhat unpredictable, which can be con-
sidered as one of the main factors for electricity price volatility
in some markets. Another “by-product” of deregulation is the re-
duction in power system stability margins as a result of reduced
capital investment in infrastructure and changes in dispatch and
loading patterns.

In order to cope with the increased uncertainty imposed by
the introduction of electricity markets, the application of sto-
chastic tools should be useful to study and thus understand the
system and its associated market [1], [2]. For a power system
operator, a tool that is able to take into account uncertainties
in some parameters should be useful. In markets based on op-
timal power flows (OPF) to calculate electricity prices, one may
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use stochastic analysis tools for market studies to see the im-
pact of participants’ behavior on electricity prices. Since OPF
is a deterministic tool, it would have to be run many times to
encompass all, or at least the majority of, possible operating
conditions. More accurate MCS, which are able to handle “com-
plex” random variables, are an option but are computationally
more demanding and, as such, of limited use for online types
of applications. Computationally effective but still accurate and
reliable methods are therefore of significant interest. There are
also other uncertainties that can be considered in the problem
such as equipment outages; however, this paper concentrates on
studying the effect of bid and load uncertainty in prices, which is
an issue of significant relevance at this point in electricity mar-
kets (e.g., Ontario).

In the literature, several approximate methods that can be
used for analysis of engineering systems under uncertainty
have appeared. Examples of these methods include the trun-
cated Taylor series expansion method [3]; the discretization
method [4]; the common uncertain source method [5], [6]; the
first-order second-moment method (FOSMM) [1], [7], which
is basically a variant of the Taylor series expansion method; the
cumulant method [2], [8], [9]; and the point estimate method
[10]–[12]. The main idea behind these methods is to use ap-
proximate formulas for calculating the statistical moments of
a random quantity that is a function of random variables, as
opposed to a more accurate Monte Carlo approach, which is
computationally more demanding.

In this paper, stochastic behavior of market participants is in-
troduced in the OPF calculation by means of a two-point esti-
mate method (2PEM). Every uncertain variable is replaced with
only two deterministic points placed on each side of the corre-
sponding mean, which enables the use of the deterministic OPF.
The results are the moments of the variables of interest, which
in this paper are locational marginal prices (LMPs). One of the
main advantages of the proposed approach is reduced computa-
tional burden, since only runs of the deterministic OPF are
needed for uncertain variables.

This paper is organized as follows: The probabilistic optimal
power flow (P-OPF) problem is discussed in Section II, including
an overview of the 2PEM. The results obtained on a three-bus test
system and on a more realistic 129-bus test system are presented
and discussed in Section III. Finally, in Section IV, the main
contributions of this paper are summarized.

II. PROBABILISTIC OPTIMAL POWER FLOW

Power systems are stochastic in nature. This renders power-
systems analysis tools, at least to some extent, inaccurate
when deterministic data are used. To account for uncertainties
inherent to power systems, probabilistic techniques have been
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used since the early 1970s [13], where the uncertainty in system
demand was first considered in a standard power flow problem.
Several different approaches have been proposed to address the
problem, such as the formulation of the problem as a general
probabilistic linear transformation, FOSMM when the problem
is treated as a general nonlinear problem, or fast Fourier trans-
forms to account for different types of distributions.

The problem of optimal dispatch is considered as a proba-
bilistic problem in [14], where the authors use Gram–Charlier
series to represent the probability density function (PDF) of the
system load, which is the only uncertainty considered in this
case. In [15], the authors propose a more general approach to ac-
count for uncertainties in all the OPF variables based on the same
Gram–Charlier series technique. In [1], the term P-OPF is pro-
posed; optimality conditions are treated in this case as a general
nonlinear probabilistic transformation, and FOSMM is used to
find the statistical characteristics of the output variables, which
are bus voltages and angles, and active and reactive powers. In
[1], bus loading is considered as the only uncertain parameter.

The cumulant method for probabilistic power system simu-
lation is discussed in [8]. In [2] and [9], the authors propose
the cumulant method for the P-OPF. They make use of the fact
that the inverse of the Hessian in the logarithmic barrier inte-
rior point method can be seen as a linear mapping. For inelastic
demand, which is considered uncertain, the method gives cumu-
lants for unknown system variables, which are bus voltages and
angles, and active and reactive powers. The problem is basically
the same as in [1], and results are compared in [7], where the au-
thors show that the results using the FOSMM exactly match the
results using the cumulant method for some combinations of in-
dependent Gaussian distributions.

Although some of the above references note that the proposed
approaches could be used for any OPF variable, none of them
actually considered the LMPs as uncertain variables; however,
the LMPs are important in the context of electricity markets. This
problem of bidding uncertainty is discussed in Section III to show
some problems that are not observed when only load uncertainty
is considered. This paper studies these specific issues, proposing
a computationally efficient technique to calculate the PDFs of the
LMPs as a result of uncertain behavior of market participants.

A. Problem Formulation

This paper considers a typical deterministic OPF-based
market model, as discussed in [16], i.e., the following security
constrained optimization problem is studied:

Min social welfare

s.t. power flow equations

supply bid limits

demand bid limits

security limits

thermal limits

voltage limits

generator limits (1)

where and are vectors of supply and demand bids
in $/MWh, respectively; stand for the generator reactive
powers; and represent the bus phasor voltages and angles,
respectively; and represent the power flowing through
the lines in both directions and are used to model system secu-
rity by limiting the transmission line power flows, together with
line current and thermal limits and bus voltage limits; and

and represent bounded supply and demand power bids
in MW, respectively. In this model, which is typically referred
to as a security constrained OPF, and limits are obtained
by means of offline angle and/or voltage stability studies. Here,
the objective is to maximize social welfare, which is basically
the sum of consumers’ and producers’ surplus, respectively.
In case of inelastic demand, demand powers are known,
which can be represented by setting to 0 in (1).

When some of the input variables are uncertain, (1) becomes
probabilistic. By solving the OPF problem (1) using an inte-
rior point method technique, (1) is transformed into a nonlinear
equation of the general form (2), which is better known as a La-
grangian function. Therefore, generally speaking, the OPF can
be seen as a multivariate nonlinear function of the form

(2)

where capital letters denote random variables. In this paper, the
input vector can be written as

(3)

and the output vector can be written as

(4)

where is a vector of Lagrangian multipliers. In the context
of electricity markets, the Lagrangian multipliers of the power
flow equations are of special interest, since they can be directly
associated with the system LMPs [16], [17]. It has to be noted
that uncertain input vector renders all output variables uncertain
as well; however, this paper mostly concentrates on the analysis
of the uncertainty associated with the LMPs.

B. Two-Point Estimate Method

In order to account for uncertainties in the P-OPF, a 2PEM
[12], which is basically a variation of the original point estimate
method (PEM) described in [10] and [11], is used to decompose
(2) into several subproblems by taking only two deterministic
values of each uncertain variable placed on both sides of the
corresponding mean. The deterministic OPF is then run twice
for each uncertain variable, once for the value below the mean,
and once for the value above the mean, with other variables kept
at their means. This method is described in detail below.

Suppose that is a general nonlinear multivariate
function as in (2). The goal is then to find the PDF of

when the PDF is known, where and .
As mentioned before, there are several approximate methods to
address this problem. One of the disadvantages of both the trun-
cated Taylor series expansion method [3] and the FOSMM [1],
[7] is that these require the evaluation of the derivatives of
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with respect to . The discretization method [4], on the other
hand, uses discrete probability distributions to replace contin-
uous probability distributions; this method is simple to use, but
it may be computationally intensive (e.g., suppose that the un-
derlying nonlinear function consists of 20 vari-
ables and each of them is replaced by three discrete values only;
hence, to estimate the probability distribution of the output, one
needs more than evaluations). Finally, the common uncer-
tain source method [5], [6] assumes that the input variables are
dependent and normally or lognormally distributed.

The PEM is a simple-to-use numerical method for calculating
the moments of the underlying nonlinear function. The method
was developed by Rosenblueth in the 1970s [10], [11] and is
used to calculate the moments of a random quantity that is a
function of one or several random variables. Although the mo-
ments of the output variables are calculated, one has no informa-
tion on the associated probability distribution (PD). Generally
speaking, this PD can be any PD with the same first three mo-
ments; however, when the PD of the input variables is known,
the output variables tend to have the same PD, as illustrated in
this paper for the OPF problem, where both input and output
variables are normally distributed. However, in some cases, the
discrete behavior of the OPF results in PD of the output vari-
ables that is not normal anymore, as illustrated in Section III.

Let denote a random variable with PDF ; for
, the PEM uses two probability concentrations to replace
by matching the first three moments of . When

is a function of random variables, the PEM uses proba-
bility concentrations located at points to replace the original
joint PDF of the random variables by matching up to the second-
and third-order non-crossed moments. The moment of , i.e.,

, , 2, where is the expectation, is then calcu-
lated by weighting the value of to the power of evaluated
at each of the points. When becomes large, the use of
probability concentrations is not economical. Hence, a simpli-
fied method that makes use of only estimates was proposed in
[12], referred to as a 2PEM. More recently, a 2PEM was applied
to power systems in [18], where the authors use this method to
assess the power transfer capability uncertainty.

In this paper, the method originally proposed in [12] is ap-
plied to the OPF problem in the context of competitive elec-
tricity markets, since the proposed 2PEM shows significant ad-
vantages over other methods that use rather than point
concentrations. Thus, the method used here considers also the
skewness of the PDF, shown in [12] to be more accurate than its
rivals.

C. Computational Procedure

As discussed in [10]–[12], when one is not interested in the
distribution of but only in an approximation to its first few
moments, the ’s PDF can be ignored by using only the cor-
responding moments; the solution in this case will be indepen-
dent of the distribution assigned to . Any distribution having
the same first moments as the given distribution will furnish the
exact solution when is a linear function of . If is non-
linear but sufficiently smooth, the solution will be sufficiently
accurate in the neighborhood of the expectation of , provided

’s dispersion is not too large. It has to be noted that this ap-
proach works for all distribution of with identical first three
moments. The full derivation of the basic formulas on which the
method is based is given in the Appendix.

Note that the method can be used for any number of con-
centrations, depending on the assumed PDF of input variables.
The order of the point estimate method used in this paper is
chosen based on the assumption that the probability distribu-
tions of input variables are normal; therefore, the two-point esti-
mate method suffices. If the distributions of input variables were
of a higher order, a higher order point estimate method would be
needed. However, when one is interested in only the first three
moments, namely, the mean, standard deviation, and skewness,
only two concentrations for each uncertain variable suffice. Note
that, since a normal distribution for input variables is assumed
here, the third moment equals zero.

The procedure for computing the moments of the output vari-
ables for the OPF problem can be summarized in the following
steps.

1) Determine the number of uncertain variables .
2) Set and .
3) Set .
4) Determine the locations of concentrations and and

the probabilities of concentrations and

(5)

(6)

(7)

5) Determine the two concentrations and

(8)

(9)

where and are the mean and the standard devi-
ation of , respectively.

6) Run the deterministic OPF for both concentrations
using .

7) Update and

(10)

(11)

8) Calculate the mean and the standard deviation

(12)

(13)

9) Repeat steps 4) to 8) for until the list of uncertain
variables is exhausted.
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III. RESULTS

The proposed method was tested on a three-bus test system
and on a more realistic 129-bus test system. For a three-bus test
system, both demand bids and supply bids were considered un-
certain and were, therefore, represented with appropriate PDFs.
For the 129-bus test system, demand was considered inelastic,
since this is the typical case in most electricity markets nowa-
days (e.g., Ontario). The three-bus test system was chosen be-
cause it is simple enough to give a clear insight into the nature of
the problem while still retaining some of the features of “real”
power systems. The 129-bus test system is used here as it has
been used for market studies before [17], [19], [20] since this
hypothetical system model has a realistic number of players and
a realistic representation of a transmission system.

Normal distribution with the mean value set at the initial value
was assumed in all cases, since this is typically the case. No-
tice, however, that other types of distributions (e.g., gamma, log-
normal) could be readily used. Several different standard devi-
ations were used to represent market participants’ behavior. All
the results were obtained in MATLAB, using PSAT [21] to solve
the required OPFs.

A. Comparison of the Results

For all scenarios, the mean and the standard deviation of the
2PEM are compared with the corresponding values obtained
with the MCS, which were considered “accurate,” and are cal-
culated as

(14)

(15)

where is number of Monte Carlo samples, and is the vari-
able for which the mean and the standard deviation
are calculated. The errors for the mean and standard deviation,
respectively, are therefore defined as

(16)

(17)

As shown in the examples below, the output variables tend to
have the same PD as the input variables, which in this paper is a
normal distribution. Therefore, a normal distribution is fitted to
the MCS results using the mean (14) and the standard deviation
(15) to highlight the difference between the two sets of results,
particularly throughout the plots depicted in this section. How-
ever, in some of the cases discussed below, the “discrete” be-
havior of the OPF skews the PD of the output variables. In such
cases, the normal distribution fitted to the MCS results does not
fit very well, which also affects the comparison of the results.

There are also other possible ways of comparing the results.
One option is to compare the corresponding cumulative density
functions (CDF), as for example in [22]. However, this does
not allow to readily compare the results for all output variables,
especially when dealing with a relatively large number of them.

Therefore, in this paper, the comparisons are made using the
corresponding mean and standard deviation of the 2PEM and
MCS results, respectively, as in [2], which works reasonably
well in most cases, given the fact that output variables tend to
be normally distributed. This approach also gives an idea of how
good the estimates for the actual mean and standard deviation
are.

B. Three-Bus Test System

The three-bus test system represents three generation compa-
nies (GENCOs) and two supply companies (ESCOs) that pro-
vide supply and demand bids. The test system is extracted from
[23], where a complete data set can be found. Since this test
system is not based on a real system, no particular attention
was paid to the representation of bidders’ behavior, in the sense
that the probability distributions used do not necessarily reflect
the actual behavior of market participants; the bids were chosen
to simply test the proposed technique and illustrate a possible
use of the proposed analysis techniques. In order to simplify the
analysis, the same standard deviation was assumed for all supply
bidders and for all demand bidders, respectively. Several dif-
ferent scenarios were considered. Thus, for both suppliers and
bidders, standard deviation of corresponding bids was assumed
to be 0, 0.1, 0.5, 1.0, and 1.5; the bids’ means correspond to the
base-case values, which can be found in [23]. With five different
probability distributions for suppliers and bidders, one gets 25
different scenarios.

The results were compared against MCS with 10 000 sam-
ples. Although fewer numbers of samples could be used to ob-
tain reasonable results with MCS, the computational burden is
not really an issue with the three-bus test system, thus the rela-
tively large number of MCS samples. The error in the standard
deviation obtained for the proposed 2PEM with respect to the
MCS results was well below 10% in most cases, whereas the
error in the mean values never exceeded 0.33%. However, there
are some scenarios where the estimated standard deviation dif-
fered from the MCS value by almost 40%. By inspecting these
scenarios more closely, it can be observed that the normal dis-
tribution fitted to the MCS results was far from accurate, as ex-
plained in more detail below. The assumption of the demand
bids’ standard deviation being equal to zero, i.e., not dispersed
or purely deterministic, which can be expected in the case of
inelastic demand, yielded LMPs with very small standard devi-
ation values, or even zero in some cases.

Three representative sets of results are shown in Figs. 1, 2,
and 4. Fig. 1 shows the result for the LMP at bus 3 where the
proposed method gives good results. Three plots are shown: The
first one is a result of the 2PEM; the histogram is a result of
the MCS; and the dotted curve is the curve fitted to the MCS
results (MCS fit). The same standard deviation of 0.5 was as-
sumed for both the GENCOs’ and the ESCOs’ bids. Observe
that the MCS and the 2PEM yield almost the same results. This
can be explained based on the fact that the OPF, which is basi-
cally a nonlinear function, is reasonably smooth, i.e., it does not
experience sharp jumps. However, this is not always the case, as
depicted in Figs. 2 and 4 for the LMP at bus 3.

In Fig. 2, the GENCOs’ bids are considered deterministic,
i.e., their standard deviation is zero, while the ESCOs’ bids have
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Fig. 1. LMP at Bus 3 for three-bus system. �(C ) = 0:5, �(C ) = 0:5.

Fig. 2. LMP at Bus 3 for three-bus system. �(C ) = 0:0, �(C ) = 1:5.

a rather large standard deviation of 1.5. Notice that beyond a cer-
tain point, the LMP does not increase any further, which causes
a sharp jump in its PDF. This is due to the fact that, no matter
how much an ESCO is willing to pay, the LMP cannot increase
any further, because ESCO’s demand is at its upper limit. This
is basically the case of inelastic demand. If the ESCO’s demand
limit were higher, the LMP would increase further depending
on the marginal GENCO. It has to be noted, however, that in
realistic systems with a large number of supply bids, this phe-
nomenon is expected to be much less pronounced than in this
simple example where the number of bidders is very small. In
spite of this, the PDF estimation is still quite accurate because
the spike in the PDF somewhat compensates for the “missing
tail” beyond the maximal LMP. This problem can be better ex-
plained based on the simplified market clearing mechanism de-
picted in Fig. 3, where, for the sake of simplicity, only the bid
price of ESCO 2 is considered uncertain, and congestion and
system losses are neglected. The dashed line corresponds to the
bid’s lower and upper limits. As long as the bid of ESCO 2 is

Fig. 3. Market clearing for uncertain ESCO 2’s bid price for three-bus system.

Fig. 4. LMP at Bus 3 for three-bus system. �(C ) = 1:5, �(C ) = 0:1.

lower than the bid of GENCO 3, the market is cleared at 150
MW with GENCO 1 being the marginal generator (point O).
Above that point, GENCO 3 becomes marginal, which results
in the market clearing at 200 MW (point B). The market clearing
price (MCP) varies between the values corresponding to points
A and B, respectively. Observe that the MCP cannot increase
any further than MCP at point B because ESCO 2 is at its upper
limit, regardless of the ESCO’s bid; i.e., there is an upper limit
to the MCP, as shown in Fig. 2.

Fig. 4 illustrates the case where GENCOs’ bids have a large
standard deviation of 1.5, while the ESCOs’ bids are assumed
to be “narrow,” with a relatively small standard deviation of 0.1.
This figure shows a different phenomenon than in the previous
case; here, the LMP has a long “tail” on the left-hand side of
the LMP’s PDF. This can be explained using the simplified
market clearing description illustrated in Fig. 5. In this case,
only GENCO 3’s bid price is considered uncertain to simplify
the problem. Note that, as long as the bid of GENCO 3 remains
above the bid of ESCO 2, the MCP will remain at point O, with
market clearing at 150 MW. The MCP will change only if the
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Fig. 5. Market clearing for uncertain GENCO 3’s bid price for three-bus
system.

bid of GENCO 3 is lower than the bid of ESCO 2. In that case,
the MCP is between points A and O, and market is cleared at 200
MW. Note that point A in Fig. 5 corresponds to the lowest pos-
sible bid of GENCO 3, denoted by the dashed line. Observe that
if ESCO 2’s bid varies in a narrow range, the MCP follows ac-
cordingly, which explains the narrow variation around the mean
shown in Fig. 4.

From these examples, it can be seen that the accuracy of the
proposed method largely depends on the “smoothness” of the
OPF seen as a general nonlinear probabilistic function. This
behavior is difficult to predict in advance, since it depends
on the bidders’ behavior, i.e., on the submitted bids and their
uncertainty.

C. 129-Bus Test System

The 129-bus test system used in this paper is taken from [17],
where more details about the system can be found; the system
is a simplified model of a European system. It was assumed
that 32 generators participate in the market auction, and de-
mand was considered inelastic. Bids were assumed to be around
$30–40/MWh based on the average prices in the European elec-
tricity markets in the last few years. Fixed generation was as-
sumed to be around 65% of total demand, with the remaining
capacity being offered on an OPF-based market.

In the case of the three-bus system, no assumptions with re-
gards to risk-proneness of market participants were made, i.e.,
the same standard deviation was assumed for all generators and
loads, respectively. In reality, this assumption is not realistic.
Therefore, in the case of this test system, the market partici-
pants that sell most of the energy by long-term contracts were
assumed to be able to take greater risk (“large” standard de-
viation). On the other hand, those participants who offer most
of their energy on the spot market were assumed to be more
risk-averse (“small” standard deviation).

Three different scenarios were considered. In Scenario 1,
all generators offer some capacity on the market. In Scenarios
2 and 3, some of the most expensive generators can exercise

Fig. 6. MCS samples analysis.

market power due to insufficient cheap generation. In Sce-
nario 2, supply bid prices of the six most expensive generators
were assumed uncertain, while in Scenario 3, supply bid
prices of the same six generators were assumed deterministic
but higher than in the base case. With regards to loads, in
Scenarios 1 and 2, loads were assumed inelastic and fixed,
while in Scenario 3, loads were assumed to be inelastic but
varying with a small standard deviation (this is similar to what
has been observed in the Ontario market). Results obtained
with the 2PEM were compared against results obtained with
1000-sample MCS. Since the MCS were used only for com-
parison purposes, no attempt has been made to determine the
optimal number or reduce the number of MCS samples, nor any
other techniques, such as variance reduction techniques, have
been used to achieve a desired accuracy level. By observing the
convergence of the mean and standard deviation (see Fig. 6),
a number of 1000 samples was determined to be sufficient in
order to obtain an adequate level of accuracy. No simulations
resulted in divergent OPFs.

1) Scenario 1: In the first scenario, those participants that sell
most of the energy by long-term contracts are assumed to take
greater risk on the spot market, since their income mostly de-
pends on fixed contracts. Therefore, their bids vary more com-
pared to the bids of those generators that offer more capacity
on the spot market. These latter players are considered more
risk-averse, since their income depends more on their success on
the spot market. Thus, Table I summarizes fixed generation ,
supply bid block , supply bid price , and standard devia-
tion of supply bid price , respectively, for all GENCOs.
Standard deviation for bids varied between $0.24/MWh and
$1.4/MWh, depending on the risk taken by the suppliers as ex-
plained above.

Fig. 7 depicts the LMPs at the bus with the best (Bus 4) and
worst PDF approximations (Bus 21), respectively (due to large
number of buses, only LMPs at two representative buses are
shown), and the error of estimating the mean and the standard
deviation of the LMP distribution using the 2PEM, considering
that the results obtained with a 1,000-sample MCS are “accu-
rate” and therefore used as a benchmark. Observe that the results
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TABLE I
129-BUS TEST SYSTEM, SUPPLY BIDS FOR SCENARIO 1

Fig. 7. Scenario 1 for the 129-bus system: LMP at Bus 4 and Bus 21 with the
best and worst mean and standard deviation estimation errors �(�) and �(�),
respectively, for a wide range of bid variations and for a reduced variation of
supply bids.

for the mean value of the LMP distribution using the 2PEM are
well within 1% of the corresponding MCS values. In the case
of standard deviation, the 2PEM results do not agree that well
with the MCS results; in some cases, the error can be up to 35%.
The reason for poor performance of the 2PEM in this case is
a relatively large number of uncertain variables in the P-OPF
problem, since the 2PEM calculates the impact of players before

TABLE II
129-BUS TEST SYSTEM, SUPPLY BIDS FOR SCENARIO 2

Fig. 8. Scenario 2 for the 129-bus system: LMP at Bus 84 and Bus 6 with the
best and worst mean and standard deviation estimation errors �(�) and �(�),
respectively.

linearly combing all the impacts to come up with the final esti-
mate. Thus, according to (5), the position of each of the 2PEM
concentrations depends on the number of uncertain vari-
ables ; as increases, concentrations are taken further
away from the mean of the corresponding variable. Sometimes,
from a certain point on, “the impact” of a given variable does not
increase any more, hence the bigger error. Therefore, if the bids’
standard deviation is reduced to values between $0.04/MWh and
$0.21/MWh, the error in estimating the LMP’s mean and stan-
dard deviation is greatly reduced as shown in Fig. 7.

2) Scenario 2: Here, the available capacity of the cheapest
generators was reduced by 2875 MW, thus simulating condi-
tions where more expensive generators can exercise market
power. As opposed to the first scenario, only bids of the six
most expensive generators were assumed uncertain here, as
shown in Table II. In this scenario, Bus 1 has the best and Bus
83 the worst PDF approximations, respectively, as illustrated in
Fig. 8. Observe that the most expensive generators can indeed
take advantage of lack of cheap generation, since increasing
their bids leads to prices that are considerably higher than in the
first scenario, which is clear when comparing Figs. 7 and 8.

As in the previous case, Fig. 8 also shows the error for the
mean and the standard deviation of the LMP distribution using
the 2PEM. It is interesting to observe that the error for standard
deviation is much lower that in the previous scenario and barely
exceeds 3%; the error for the mean is again very low. The reason
for much performance of the 2PEM in this case is the lower
number of uncertain variables in the P-OPF problem.
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Fig. 9. Scenario 3 for the 129-bus system with uncorrelated demand: LMP at
Bus 84 and Bus 88 with the best and worst mean and standard deviation estima-
tion errors �(�) and �(�), respectively.

3) Scenario 3: In this scenario, the available capacity of the
cheapest generators was again reduced by 2875 MW, thus sim-
ulating similar market conditions as in Scenario 2. As opposed
to the first two scenarios, only demand power at all load buses
was assumed uncertain, with a standard deviation of 2%. Bids
of the six most expensive generators (6, 10, 16, 18, 24, and 25)
were assumed fixed and $2/MWh higher than those used in Sce-
nario 1.

In the first set of results, demand power levels were consid-
ered uncorrelated, while in the second set, they were considered
correlated. The assumption of the demand being correlated is
reasonable since some factors (e.g., weather) likely influence
large groups of consumers in the same way. Note that the orig-
inal 2PEM cannot handle correlated variables; however, if de-
mand is assumed correlated in such a way that the demand of
a given node would be high if the demand of any other node
is high as well, one can assume that all demand power levels
are scaled by one variable. This new variable is then treated as
a new uncertain variable in (2). The use of only one variable
for demand power levels also reduces the total number of vari-
ables, thus reducing the error of the 2PEM and the computa-
tional burden.

As in the previous cases, Figs. 9 and 10 depict buses with the
best and worst PDF approximations, respectively. Note that in
Fig. 10, two curves are fitted to the MCS results for LMP at Bus
1; the first one (MCS fit 1) considers full MCS results, while
the second one (MCS fit 2) neglects “the outliers” in the MCS
results. The outliers are due to the fact that, in some cases, dif-
ferent generators set the price, depending on the loading level. If
the load is high, some more expensive generators are dispatched;
on the other hand, when the load is low, there is enough cheap
generation, which results in a lower price. Observe in Fig. 9 that
if demand power levels are uncorrelated, the LMPs vary only
slightly, since the total demand does not change much. However,
if the demand is correlated, the LMPs change more, as observed
in Fig. 10, where a slight variation in demand power levels pro-

Fig. 10. Scenario 3 for the 129-bus system with correlated demand: LMP at
Bus 1 and Bus 73 with the best and worst mean and standard deviation estima-
tion errors �(�) and �(�), respectively, with and without “outliers.”

duces significant variations in LMPs (this is a phenomenon that
has been observed in the Ontario market).

Figs. 9 and 10 also show the error for the mean and the
standard deviation of the LMP distribution using the 2PEM
for uncorrelated and correlated demands, respectively. Observe
that the 2PEM gives good results if demand is uncorrelated,
while for the correlated demand, the error can be as high
as 100%. The higher error is due to the “outliers” in the
MCS results. This phenomenon can be observed for Bus 73 in
Fig. 10, where the LMP is almost discrete except the “outliers,”
which skew the results. If the 2PEM results are compared to
the MCS results that neglect “the outliers,” the results are much
better. It is interesting to observe that the error for standard
deviation is almost the same for all the buses, except for Bus
22, where the error is zero because the LMP has zero standard
deviation at this bus and both MCS and the 2PEM yield the
correct result.

4) Computational Issues: One of the advantages of the pro-
posed method is computational efficiency. Table III summa-
rizes the computational “burden” for different scenarios for the
129-bus test system, given in terms of the number of OPF runs,
since these are the main computational steps in MCS and the
proposed technique, hence allowing for platform-independent
comparisons. Bare in mind that the computational burden of
the 2PEM is directly proportional to the number of uncertain
variables, since the proposed method needs exactly two runs of
the deterministic OPF for each uncertain parameter, whereas for
MCS, this is proportional to the number of samples used. Note
that the number of MCS samples could be reduced given the
desired level of accuracy; however, this particular issue is not
considered in this paper.

Observe in Table III that the proposed approach is com-
putationally significantly faster then MCS, especially if the
number of uncertain variables is low. If the number of uncertain
variables is large, MCS can be a viable alternative, given its
accuracy.
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TABLE III
COMPARISON OF COMPUTATIONAL BURDEN FOR THE 129-BUS TEST SYSTEM

IV. CONCLUSIONS

In this paper, a new approach using the 2PEM for accounting
for uncertainties in bidding in the OPF problem has been pro-
posed. Bids of market players were considered uncertain, and
the first two moments of the LMP’s PDF were calculated as a re-
sult. The approach was tested on a simple three-bus test system
with demand and supply-side bidding and on a more realistic
129-bus test system with inelastic demand.

The proposed approach is accurate provided that the OPF is
“well behaved” and that the number of uncertain parameters is
not “too large.” In large systems with many market players, the
first condition tends to be fulfilled given the large number of
market players. If the number of players is small, as in the case
of the three-bus test system, the results may not be sufficiently
accurate due to “discrete” behavior of the OPF in some cases. In
larger systems, with many market players, the 2PEM does not
perform well if the number of uncertain variables is too large.
With lower numbers of uncertain variables, the performance is
adequate.

The proposed method is computationally significantly faster
than using an MCS approach. This is especially true when the
number of uncertain parameters is low, since the computational
time is directly proportional to the number of uncertain vari-
ables. When the number of random variables is large, MCS is a
better alternative, given its accuracy.

APPENDIX

TWO-POINT ESTIMATE METHOD

For sake of completeness, this Appendix provide the full
derivation of the basic formulas used in this paper. Thus,
suppose that is a general nonlinear multivariate
function. The goal is to find the PDF of when the PDF

is known.

A. Function of One Variable

First, a fictitious distribution of is chosen in such a way that
the first three moments exactly match the first three moments
of the given PDF of . In order to estimate the first three mo-
ments of , one can choose a distribution of having only two
concentrations placed unsymmetrically around the ’s expec-
tation. If that is the case, one has enough parameters to take into
account the first three moments of and to obtain a third-order
approximation to the first three moments of . A particularly
simple function satisfying these requirements consists in two
concentrations, and , of the probability density function

, respectively, at and

(18)

where the lowercase letters denote specific values of a random
variable, and is Dirac’s delta function.

Choosing , , 2, where and
are the mean and the standard deviation of , respectively, one
can calculate the first three moments of . Thus, the th
moment is defined as

(19)

Alternatively, the central moments are

(20)

The zeroth and the first moment always equal 1 and 0, respec-
tively. The zeroth and the first three central moments of (18) are
then

(21)

(22)

(23)

(24)

where is the skewness of .
Using the Taylor series expansion of about yields

(25)

where , , denotes the th derivative of
with respect to . The mean value of can be calculated by
taking the expectation of the above equation, resulting in

(26)

Let , , 2, denote the th location,
where and are constants to be determined. Let be the
probability concentrations at location , , 2. Multiplying
(25) by with , , 2, and summing them up leads to

(27)

One can match the first four terms of the right side of (26) and
(27), which results in

(28)
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This system of four equations has four unknowns, i.e., , ,
, and . The solution of the system is

(29)

where . Hence, for a normal
distribution where

(30)

Now, from (27) and (28), one has that

(31)

Substituting (31) into (26) gives

(32)

Therefore

(33)

is a third-order approximation. If is a third-order polyno-
mial, meaning that the derivatives of the order higher than three
are zero, the 2PEM gives the exact solution to .

Similarly, one can show that the second- and the third-order
moment of , respectively, can be approximated by

(34)

(35)

B. Function of Several Variables

Let denote a random quantity that is a function of random
variables, i.e., . Let ,

, and denote the mean, standard deviation, and skew-
ness of , respectively, where the variables are uncorrelated.
Let denote the concentrations (or weights) located at

, where

(36)

One can expand in a multivariate Taylor series about
the mean values of . Thus, similar to the case of a function of
one variable, one can establish three equations for each of the
random variable , by matching the first three moments of the
probability density function of , leading to

(37)

where . Since the sum of the concentrations is
one, one has

(38)

By specifying that the sums of the concentrations satisfy

(39)

four equations with four unknowns for each random variable
are established, yielding the solution

(40)

where , and . For sym-
metric probability distributions, where skewness , and as a
result , equal zero, (40) further simplifies into

(41)

where .
The first three moments can then be approximated by

(42)

(43)

(44)
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