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A GEOMETRIC PERSPECTIVE ON
THE RIEMANN ZETA FUNCTION’S PARTIAL SUMS

Carl Erickson

ABSTRACT

The Riemann Zeta Function, ζ(s), is an important complex function whose
behavior has implications for the distribution of the prime numbers among the
natural numbers. Most notably, the still unsolved Riemann Hypothesis, which states
that all non-trivial zeros of the zeta function have real part one-half, would imply
the most regular distribution of primes possible in the context of current theory.
The Riemann Zeta Function is the simplest of the Dirichlet series and is represented
in its Dirichlet series form as ζ(s) =

∞
n+1 n−s = 1−s +2−s +3−s + . . . . This

series only converges when the real part of s, (s), is greater than 1, outside
the area of the complex plane relevant to the distribution of the primes. This
area is called the critical strip: {s ∈ C : 0 < (s) < 1}. The result of our
investigation of the geometric distribution will be to draw connections between the
partial sums of the Dirichlet series and the value of ζ(s) with s in the critical
strip despite the series’ divergence. This article will illustrate connections between
existing theory of the Riemann Zeta Function and geometric analysis of the partial
sums through visual representations. From the connections between the visually
accessible geometry and this theory, we illuminate and explore potentially provable
improvements of the theory based on symmetry among the partial sums.

1. The Importance of the Riemann Zeta

Function

Very complex mathematical ideas often spring from the in-
vestigation of questions that are simple to understand. The
subject of this article - the behavior of the Riemann Zeta
Function - is one such complex mathematical object. How-
ever, the study of the function’s theory sprung from an in-
vestigation of the prime numbers’ distribution. The prime
numbers will seem very removed from most of the discus-
sion in this article. 2, 3, 5, 7, 11, 13... they appear so sim-
ple at first. And the question of their distribution? Simply
finding the next known prime might appear to be sufficient,
but this is not the case. Mathematicians are unsatisfied with
knowing simply a large number of primes and observing their
distribution, for there are an infinite number of primes1 [5];
instead, they seek a general rule that will dictate the distri-
bution of the primes of any magnitude. This search gradually
led mathematicians like Bernhard Riemann to utilize the the-
ory of complex functions to describe the distribution of the
primes [7].

Before discussing Riemann’s work more, preliminaries
about complex numbers and complex function must be laid
out. Also, the experienced math reader should keep in mind
that a rigorous exposition and careful attention to detail is

beyond the scope of this journal; the focus is to illustrate a
connection between geometry and analysis.

Complex Numbers
Complex numbers are less familiar than prime numbers.

Yet most of the numbers discussed, like the argument of the
function s, the value of the function ζ(s), and each partial
sum, are complex numbers. Thus, if complex numbers are
unfamiliar, read this section before moving on or see [1] or
more briefly [11].

A complex number is a number a + bi where a and b are
real numbers (a, b ∈ R) and i =

√
−1. By high school we

learn that -1 has no square root, which is correct considering
only the real numbers, for no real number squared is nega-
tive. Complex numbers are critical objects exactly because
they solve this problem: given any complex polynomial equa-
tion, all of its solutions are complex.2 So, for example, the
polynomial equation x2 + 1 = 0 has solutions i and −i,
which are complex numbers.

Geometric Interpretation of
Complex Numbers

Whether or not complex numbers are new to the reader, it
will be convenient to simply visualize of the complex numbers
as a plane of numbers of the form z = (a, b) where a is the

1Euclid proved that there are an infinite number of primes around 300 B.C.

2This property is called algebraic closure.
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real part of z (a = (z)), its component along the real axis,
and b is the imaginary part of z (b = (z)), its component
along the imaginary axis. This plane is called the complex
plane, and is shown in figure 1.
The “polar form” of complex numbers is important to their

visual, geometric interpretation: any complex number can be
represented by its non-negative distance from the origin r and
its angle from the positive real axis θ as in figure 2. It is then
equal to reiθ; an important geometric corollary to this fact
is that multiplication by eiθ is equivalent to a rotation by θ
around the origin.
A final important complex operation is that of conjuga-

tion; its geometric meaning is also important. The conjugate
of s is denoted by s and the conjugate of a + bi is a − bi;
the sign of the imaginary part is changed, which is equivalent
to a flip over the real axis. For example, 1 + i is flipped
to 1 − i. A critical fact about conjugation is that for any
complex function,

(1.1) f(s) = f(s).

Conventions Regarding the Zeta Function
For the remainder of this text, let s represent the argument

of the zeta function and let σ = (s) and t = (s) so that
s = σ+ it. Assume t to be positive, which does not result in
any loss of generality because ζ(σ + it) = ζ(σ − it). The
function ζ(s) accepts a point on the plane, s = (σ, t), and
gives an output that is a point on the plane. Likewise, a par-
tial sum is the sum of the two components of each summand.
Also, let Ps(n) represent the nth partial sum of the series
with argument s. Keep in mind that addition of complex
numbers follows the pattern of vector addition:

Ps(n) =
n

k=1

k−s =
n

k=1

�
(k−s),(k−s)



=
 n

k=1

(k−s),
n

k=1

(k−s)

.

(1.2)

For example, figure 3 shows the the first five3 partial sums
of the zeta function when s = 1/2+500i. Each partial sum
n differs from partial sum n−1 by the n−s, or in vector form
by

�
(n−s),(n−s)


. This vector forms the nth branch in

the “connect the dots” pattern of the partial sums.

Analytic Continuation
A final preliminary issue with repect to complex numbers

to resolve is the fact that ζ(s) is well defined for s for which
the Dirichlet series

∞
k=1 k−s does not converge. Many an-

alytic complex functions like ζ(s) have an analytic continu-
ation that extends a primary definition to additional areas of
the complex plane. In the case of ζ(s), its Dirichlet series is

defined for (s) > 1, but additionally, ζ(s) has a unique
value for all values of s by continuation. For more infomation
see [1] or [9].

3The 0th partial sum is 0.

Figure 1: The complex plane.  From [12].

Figure 2: A complex number x+iy expressed in 
polar form, reiθ where r is the circle’s radius.  
From [11].

Figure 3: The first ten partial sums, Ps(n), 
with s = 1⁄2 + 500i.  
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Riemann’s Work
In 1859, Riemann proved a connection between the non-

trivial4 zeros of ζ(s) =


k≥1 k
−s and the density of the

prime numbers among the natural numbers. In 1896, De la
Vallée Poussin and Hadamard proved independently that the
non-trivial zeros of ζ(s) lie in the critical strip (see figure 4),
0 < σ < 1 (recalling that σ represents the real part of s), a
fact from which the prime number theorem follows [8]. The
prime number theorem is a rule for the density of the primes:
it states that

(1.3) π(x) ≈
 x

2

1

lnx
dx

where π(x) is the number of prime numbers less than than
x [5].

Additionally, in Riemann’s 1859 paper he stated a func-
tional equation that implies symmetry across the line σ =
1/2: ζ(1 − s) = γ(s)ζ(s) where the gamma factor will
be described later. Also, he formulated the famous Riemann
Hypothesis, which conjectures that all non-trivial zeros lie on
the critical line, σ = 1/2 [18]. The hypothesis, which states
that the zeros of the zeta function lies on the critical line,
implies that to the prime number theorem’s estimate of the
distribution of the prime numbers being as accurate as pos-
sible [8], [5]. Figure 5 shows the critical line in the complex
plane along with trivial and non-trivial zeros.

The Behavior of the Zeta Function
in the Critial Strip

To this day, the Riemann Hypothesis remains neither dis-
proven nor proven and the behavior of ζ(s) in the critical
strip remains mysterious; ten trillion zeros have been calcu-
lated, and all lie on the critical line [20]. See [3] for a detailed
description of this mystery. The work I describe in this article
may be the start of a new perspective from which to demystify
the zeta function’s behavior. Certainly, I do not claim any
sort of significant progress toward the Riemann Hypothesis
or important questions in analytic number theory; however,
these methods may inform the analysis of the zeta function.
Any conclusions that can be drawn about ζ(s) in the critical
strip are significant, and these methods are first steps toward
such conclusions.

2. Observing Geometric Patterns in the

Partial Sums

The Partial Sums and ζ(s)
Figure 6 shows the the first 13000 partial sums of the Rie-

mann Zeta Function ζ(s) with s ≈ 1/2 + 33704.56i. The
swirling shapes of the partial sums stand out in the figure. In
fact, that shape is called a Cornu spiral (see figure 7).

While these spiraling shapes are significant, the first inter-
esting pattern is not inherent in the picture itself: If a dot
were put down for each partial sum after the 13000th one, the
dots would not end at the final spiral, labeled C0. They only
get close to that point. But continuing onward, they fill up
the picture spiraling outward in a circle. This final outward
spiraling is a visual representation of the series’ divergence:
there is no point at which the series will end. This divergence
follows from the fact that 1/2 + 33704.56i is in the critical
strip, and there the Dirichlet series of ζ(s) does not converge.

The first key observation that began this research is that
this final spiral appears to diverge in a regular, outward spi-
raling pattern around ζ(s) for all values of s in the crit-
ical strip. For example, C0 is around 0 in figure 6, and
ζ(1/2 + 33704.56) = 0. Note that because the Dirich-
let series does not converge for this point, ζ(s) is derived
by analytic continuation and is not given by its series repre-
sentation. Suspecting that this circling was no coincidence,
I investigated a method for finding the complex number at
C0 with the hypothesis that any formula for it would be the
value of the zeta function.

4The Riemann Zeta Function has trivial zeros at all negative even integers [7].

Figure 4: The critical strip: all of those com-
plex number with real part greater than 0 and 
less than 1.  From [15].

Figure 5: The critical line with zeros 
of the zeta function.  As in this figure, 
all zeros of the zeta function in the 
critical strip calculated to date line on 
the critical line.  From [14].
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Geometrically Finding the
Center of the Spiral

The method to find this center consists of applying prop-
erties of smooth functions to three consecutive partial sums
with the goal of finding a function to “correct” the outward
spiraling back to its center. Properties of smooth functions
can be applied to three consecutive partial sums because, in
the critical strip, the distance between consecutive partial
sums vanishes as the partial sum index increases. Visually,
the partial sums become increasingly close together as their
index increases, and begin to look like a smooth curve. Math-
ematically,

lim
n→∞

|n−s| = 0.

Then, differential properties of curves can be expressed in
terms of the partial sum index after being derived from the
geometry of the partial sums. The experienced mathemati-
cal reader will notice that I discuss approximations without
giving bounds on error. Unfortunately, this critical issue is
beyond the scope of this article, but error bounds in central
results will be stated in “big-O” form: O(f(x)) denotes an
error term bounded by a constant times f(x) as x→∞ [10].

Figure 6: The first 13000 partial sums with s = 1⁄2 + 33704.56.  This is a zero of the zeta function, evidenced by C0, which 
is the same as ζ(s), being at the origin.  Note the mirror symmetry between partial sums and the centers of the spirals 
across the line of symmetry.  

Figure 7: A cornu spiral.  In a cornu spiral, the 
curvature is proportional to the distance along 
the curve from the origin.  From [13].
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Observe figure 8, showing nine partial sums from index
n+1 to n+4 and their spiraling pattern. Because the angle
change between the vector from Ps(n−1) to Ps(n) and the
vector from Ps(n) to Ps(n + 1) is approximately t/n and
the length of each vector is n−σ, the radius rn of the uniquely
defined circle going through partial sums Ps(n− 1), Ps(n),
and Ps(n + 1) (displayed in figure 8) is approximately

(2.1) rn =
n1−σ

2t
.

Recall that s = σ + it. Also, the length that the smooth
curve covers as the index n increases by 1 is n−σ and the
total length δ is approximately

δ =
n1−σ

1− σ
.

Combining these two facts, the following expression for cur-
vature5, κ, in terms of arc length δ follows:

(2.2) κ =
1

rn
=

t

δ(1− σ)
.

An equation expressing the curvature of a smooth curve
in terms of arc length is called an “intrinsic equation” and
determines the curve up to the factor of scale [2], [16]. This
intrinsic equation is that of a logarithmic spiral (see figure
9). A logarithmic spiral is a polar function of the form
r(θ) = aebθ. Solving this equation given the intrinsic equa-
tion, the b-constant is

(2.3) b =
1− σ

t
.

Then it remains to state the angle θ in terms of the par-
tial sum index n and find the a-constant. A convenient fact
is that the logarithmic spiral is also equiangular; that is, it
intersects a given axis at the same angle each time it passes
around. Therefore the tangent angle of the curve and the
central angle θ differ by a constant, which is

(2.4) arctan
 t

1− σ


.

The tangent angle in terms of the partial sum index n is

(2.5) −t lnn.

With θ and b set, the scaling constant a is

(2.6) a =
1

(1− σ)2 + t2
.

Combining all of these results, the function that shares its
differential behavior with the partial sums is

(2.7)
n1−σ


(1− σ)2 + t2

e−it lnn+i arctan t
1−σ .

Amazingly, recalling that s = σ + it, this function of n
simplifies via complex arithmetic to

(2.8)
n1−s

1− s
.

To check the equivalence between 2.7 and 2.8, apply the com-
plex arithmetic rules from the introduction section.
Thus the center of this final spiral in the progression of the

partial sums, which I label C0, is given by

(2.9) C0 := lim
n→∞


n

k=1

k−s − n−s

1− s


.

It is necessary to take n to infinity because of the issues with
error mentioned earlier. This error vanishes for large n.

5The curvature of a smooth curve is the reciprocal of the radius of a tangent circle. Thus a curve with tangent circle of radius 2 has curvature

of 1/2 and a straight line has curvature 0.

Figure 8: A demonstration of the geometric process 
for determining C0.  Given the lengths and angles, the 
curvature of the spiral and its center can be calculated.  
Keep in mind that this portion of the spiraling occurs as 
the partial sums spiral regularly away from C0 after the 
point that they are displayed in Figure 6.  

Figure 9: The logarithmic spiral.  This is the family of 
curve that the partial sums approximate as they diverge in 
this spiraling pattern with C0 in the center.  From [17].
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The Significance of this Result
Via geometric operations, we have found a center to the

spiraling of the partial sums. By itself, the center has no
meaning with respect to the zeta function. However, in 1921
the mathematicians Hardy and Littlewood proved by com-
pletely different means that this same formula is the value of
ζ(s) [8], [4]. We may then conclude that

(2.10) ζ(s) = C0

This conclusion is the first key component of my research;
however, the logical implictions are somewhat subtle. Note
that nothing new has been proven about the actual value of
the zeta function per se. Rather, we now know that the geom-
etry of the partial sums is connected to the value ζ(s) in the
pattern of divergence of the partial sums. Or in other words,
the geometry of the partial sums has a connection to the value
of ζ(s), giving an even finer characterization of ζ(s) than the
Hardy-Littlewood identity alone implies. The patterns in the
partial sums have been investigated by Hugh Montgomery
and others (see [6]), but a direct geometric derivation of the
connection between geometric properties of the partial sums
(most importantlyC0) and ζ(s) is evidently new to this work.
This new technique for approaching the zeta function may be
useful, for any conclusions that can be drawn regarding the
geometry of the partial sums are important; they may be used
as a foundation for conclusions about C0, and thereby ζ(s),
even when s is in the critical strip.

3. Symmetry in the Partial Sums

The Approximate Functional Equation
We are now ready to discuss the main result of this arti-

cle: the correspondence between geometric patterns and the
approximate function equation for the Riemann Zeta Func-
tion. To do this, we will examine symmetries among partial
sums for (s) = 1

2
that allow us to draw conclusions about

C0 that parallel the approximate functional equation. Then
because we know from the previous section that C0 = ζ(s),
any fact about C0 applies to ζ(s).
More precisely, the approximate functional equation is

stated as follows.

Theorem 3.1 (Approximate Functional Equation).

Given s ∈ C in the critical strip (0 < (s) < 1) and

real parameters X,Y ≥ 1 such that 2πXY = (s),
then

ζ(s) =

k≤X

k−s + γ(1− s)

k≤Y

ks−1

+O(X1/2−(s)(X−1/2 + Y −1/2) logXY ).

(3.1)

Here γ(s) denotes the arithmetic factor in the func-

tional equation for the Riemann zeta function. It

can be written as

γ(s) = π1/2−s Γ(s/2)

Γ((1− s)/2)
.

This is an analog to the previously mentioned functional
equation of Riemann, replacing the infinite series of the zeta
function with finite sums and accounting for the error. With-
out a context, the consequences of this theorem are rather
opaque; the geometric picture illuminates the statement and
the structure that it describes. Consider figure 6, a example
of the structure of the approximate functional equation. The
figure shows the first partial sums of the Dirichlet series of
the zeta function for s ≈ 1/2+33704.56i. The part of the
approximate function equation equal to these partial sums is
the leftmost term,


k≤X k−s. Each dot is a representation

of this sum for successiveX ’s - for example, P (2) is this sum
withX = 2. Now we will explain the rest of the approximate
functional equation geometrically, referring to figure 6.

Understanding the Approximate
Functional Equation Geometrically

Let us consider the simplest case for the value of Y : X
and Y must be at least 1 and the second summand is taken
over all integers less than or equal to Y , so let us consider
1 ≤ Y < 2. Then the sum


k≤Y k−s = 1−s = 1 and

the value of the second term in the approximate functional
equation is simply γ(1− s).
To understand what values X takes on as Y varies from 1

to 2, the relation 2πXY = t is key; as Y varies from 1 to 2,
X varies from t

2π
to t

4π
respectively. The approximate func-

tional equation implies that all of these partial sums should
approximate ζ(s) − γ(1 − s), for the sum up to X is the
only part of the equation that varies.
How can all of these partial sums of index in this range ofX

give approximations to ζ(s)? The answer to this predicament
lies in the Cornu spiral shape of the partial sums mentioned
previously. We will investigate how the partial sum index X
corresponds to the partial sum’s position on the progression
of spirals. Since we know that for very large X the partial
sums spiral out centered at ζ(s), we can start by examin-
ing the index of the partial sums as they get closest to ζ(s).
At this point, consecutive partial sums remain close to ζ(s)
because consecutive differences between partial sums cancel
each other out. This happens when the vector connecting
Ps(X − 1) to Ps(X) and the vector connecting Ps(X) to
Ps(X+1) is near π; for then each difference between partial
sums doubles back to where the last one started. Stated in
terms of “connect the dots,” if one drew an arrow from dot
X − 1 to dot X , and then from dot X to dot X + 1 as in
figure 8, the arrows would point opposite directions for partial
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sums near one of the Cn in figure 6; we call these places Cn

“centers.”
We have seen that centers occur when consecutive partial

sums double back on themselves. Now let’s characterize this
mathematically: th change in angle between these consecutive
vectors in terms of the index X is

(3.2)
t

X
,

which is an approximation for the difference of two consec-
utive terms of equation 2.5. Now we can turn this equation
on its head to find at what partial sums these centers occur.
Solving for X ,

t

X
≡ π mod 2π,

or, equivalently,

X =
t

π(2j − 1)
for some positive integer j. The mod 2π equivalence reflects
the fact that the quantities are angles and all functions of an-
gles are periodic with period 2π. We have now determined a
family of X ’s for which PX(s) is near a center.
As labeled in figure 6, C0 is the final center in the ordered

progression of partial sums; therefore the index X corre-
sponding to C0 is thus the greatest value for which t/X ≡ π
mod 2π. This value is X = t

π
. The index X = t

3π
is the

second largest X for which the change in angle will be π,
so the partial sums around this index must be at the second
to last swirl - this swirl is labelled C1 in figure 6. Each of
the consecutive swirls obey this property as well, and each is
labelled Cn leading up to C0. Thus, in general, the index X
of the partials sums around Cn is

(3.3) X =
t

π(2n+ 1)
.

Likewise, solving for the change in angle between consecu-
tive partial sums congruent to 0 mod 2π, we may determine
the indices X for which partial sums are halfway between
swirls. By applying equation 3.2 to 0 instead of π, we find
that the index of the partial sums halfway between Cn and
Cn−1 is

(3.4) X =
t

2nπ
.

Parallels between Geometry and
the Approximate Functional Equation

Now that we’ve found at what indices X the partial sums
approximate the centers C0, C1, etc., let’s use this knowledge
to explain the relationship between X and Y in the approx-
imate functional equation. Again, we will refer to figure 6.
As shown in the previous section, as Y varies from 1 to 2,

X varies from t
4π
to t

2π
. We now know that the partial sum

with index X = t
3π
is located at the center C1. According

to the identity 2πXY = t, Y must be 3/2 for X = t
3π
.

Therefore, the approximate functional equation claims, with
appropriate error bounds, that

(3.5) ζ(s) ≈ Ps(
t

3π
) + γ(1− s).

This statement can be rephrased in terms of geometrically
meaningful quantities:

(3.6) C0 ≈ C1 + γ(1− s).

That is, the difference between the locations C0 and C1 is
γ(1− s)!
To state other Cn in terms of γ(1−s), let’s consider other

choices of Y and X in the approximate functional equation
such that Y < X . When 2 ≤ Y < 3, then X ranges from
t

4π
to t

6π
respectively, a of partial sums range on either side of

the swirl C2 around index X = t
5π
. The resulting equation

stated in terms of geometrical quantities is

(3.7) ζ(s) = C0 ≈ C2 + γ(1− s)
�
1s−1 + 2s−1


.

Extending this analysis in general for Y = 2m+1
2

with m
a positive integer, then X = t

mπ
is the index of partial

sums around Cm, and according to the approximate func-
tional equation
(3.8)

C0 ≈ Cm+γ(1−s)
2m+1
2

k=1

ks−1 = Cm+γ(1−s)P1−s(m).

Note that the sum with Y has argument 1−s instead of s as
usual, and that summing up to 2m+1

2
is the same as summing

up to m.
This conclusion gives an approximate formula for the Cn:

(3.9) Cn = ζ(s)− γ(1− s)P1−s(n).

Now not only do we have simple approximation for Cn, but
this equation suggests a correspondence among the partial
sums of the Riemann Zeta Function. However, this corre-
spondence is not direct; the factors that remain to be resolved
are:

• The γ-factor.
• The relationship between Ps(n) and P1−s(n).

Symmetry among the Partial Sums
with s on the Critical Line

Both of these factors behave simply and imply a symme-
try among the partial sums exactly when s is on the critical
line; that is, the real part of s is one half: σ = 1

2
. For the

remainder of this section, assume that (s) = 1
2
.

The γ(1− s) variable comes from the functional equation
for ζ(s), which closely relates the value of ζ(s) and ζ(1−s).
An expression for γ(1 − s) was given in the statement of
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the approximate functional equation. The absolute value of
γ(1− s) is one if and only if s is on the critical line:
(3.10)

|γ(1− s)| = 1⇐⇒ 1− σ =
1

2
⇐⇒ σ =

1

2
(see [8]).

Likewise, there is no simple relationship between Ps(n)
and P1−s(n) except when σ = 1

2
. When σ = 1

2
, then s and

1−s are conjugate, for recalling the definition of conjugation
we get that

(3.11) s = σ + it =
1

2
− it = 1−

�1
2
+ it


= 1− s.

Any complex analytic function f satisfies f(s) = f(s).
Since a given partial sum is an analytic function of s, this
powerful property ensures that

(3.12) P1−s(n) = Ps(n) when σ =
1

2
.

These two facts together, |γ(1− s)| = 1 and P1−s(n) =

Ps(n), interpreted geometrically, imply a symmetry among
the partial sums. First, note that because |γ(1 − s)| = 1,
γ(1− s) = eiθ for some θ, using the polar form of complex
numbers. Recall that multiplication by eiθ is equivalent to ro-
tation by θ and that conjugation is a flip over the real axis as
we saw in the geometric interpretation of complex numbers.
Applying the new identity s = s− 1 and keeping in mind

the geometric interpretation of conjugation and multiplica-
tion by γ(1 − s), then P1−s(n) = Ps(n) = Ps(n); with
equation 3.9,
(3.13)

Cn = ζ(s) + γ(1− s)P1−s(n) = ζ(s) + eiθPs(n).

The geomtric interpretation of this equation yields an al-
gorithm to calculate Cn from Ps(n):

• Ps(n): Flip the point Ps(n) over the real axis

• eiθPs(n): Rotate the result by θ

• ζ(s) + eiθPs(n): Translate the result by ζ(s)
One may check that a composition of a reflection with

translations and rotations is simply a reflection over a differ-
ent line. Thus the approximate functional equation predicts
a mirror symmetry over a certain line which is given by the
factors γ(s) and ζ(s). This symmetry is denoted by the line
in figure 6.

The Implications of this Symmetry
The reader should keep in mind that this symmetry only

holds for (s) = 1
2
. Certainly, the conjugation functions

and multiplication by γ(s) have meaning when s is off the
critical line, but recall that |γ(s)| = 1 for (s) = 1

2
, so the

geometric correspondence between Cn and Ps(n) involves a
scaling factor, and hence destroys the symmetry. Perhaps the
most important symmetry to keep in mind is that between
C0 and Ps(0)6.
Now reach back to the beginning and recall the motivation

for this entire discussion. Any sort of conclusion about the
behavior of the Riemann Zeta Function in the critical strip
is valuable, especially one that has possible relations to the
Riemann Hypothesis, which conjectures that

(3.14) ζ(s) = 0 =⇒ (s) = 1

2
.

Ideally, a symmetry result on C0, which is identical to
ζ(s), would show that the zeta function can be zero only
when there is the prescribed symmetry among the partial
sums. Since Ps(0) = 0 for any s, and there is only sym-
metry when σ = 1

2
, it may seem intuitively true that when

ζ(s) = 0, then there must be symmetry since C0 = Ps(0)
and one point has mirror symmetry with itself.
Clearly this is not possible because huge approximations

were taken along the way, and to boot, we defined the line of
symmetry in terms of ζ(s), the quantity in question. There
is a long and perhaps impassible path from any of these con-
clusions to any important conclusions. My work has a great
deal to do with seeking well-defined notions of the Cn other
than C0.
However, this geometric approach is not without substance.

The approximate functional equation only predicts an ap-
proximate symmetry between approximate locations of par-
tial sums. It predicts nothing about the Cornu spiral shape!
Of course, the proof of the approximate functional equation
depends on this underlying truth that we can observe visually,
but it does not capture the whole reality. This shortcoming
suggests that the geometric interpretation of the zeta func-
tion’s partial sums may have a surprisingly wide vocabulary
to address the value of ζ(s) in the critical strip.

4. Applications to the Behavior of ζ(s) in

the Critical Strip

Chronologically, my research progressed in the opposite di-
rection of this exposition. After completing the work on find-
ing that ζ(s) = C0, I visually observed the symmetry among
the partial sums described in the previous section. It then
took a good deal of investigation to find that this symme-
try was predicted by existing theory, namely the approximate
functional equation.
However, this fact does not mean that all geometric ef-

forts are doomed to be fruitless because of their duplication
of analytic results like the approximate functional equation.
Though it goes beyond the scope of this journal, my work

6The 0
th

partial sum is defined to be 0, the sum of the first 0 terms
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now consists in reproving the approximate functional equa-
tion using geometric techniques. This is surprisingly diffi-
cult given how “obvious” the approximate functional equation
seems given the geometry. In other words, we can see visu-
ally that the approximate functional equation holds, so the
geometric perspective on the partial sums and ζ(s) seems
stronger than that of analysis. With this highly descriptive
perspective, where we can “see the Riemann Hypothesis hold
true,” it would seem natural for a result like the less descrip-
tive approximate functional equation would follow easily from
the geometric perspective.
Though there is certainly no ease, there is some progress.

Starting with the connection between the analytically mean-
ingful ζ(s) and the geometrically meaningful C0, my current
work seeks to prove the approximate functional equation by
proving equation 3.13, which is an expression for Cn, by in-
duction, using a base case of C0 = ζ(s) and then attempting

to show by geometrically analyzing the partial sums between
Cn andCn+1 that the difference between the two is appropri-
ate for equation 3.13. As of press time I have derived sufficient
conditions in error bounds for results and am now working on
those areas.
Ultimately, complete proofs having to do with the Rie-

mann Zeta Function must use analysis, for geometry quickly
falls into approximation. The usefulness of the geometric per-
spective on this problem lies in its applications to analysis.
Research into smooth representations of the progression of
the partial sums as in figure 6 suggest via the geometric per-
spective that variations on the methods of Fourier analysis,
which unfortunately exceed the bounds of this article, may
be sufficient to define the Cn clearly and investigate an exact
symmetry. This method would provide a powerful tool for
analyzing the Riemann Zeta Function in the critical strip.
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