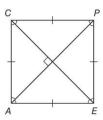
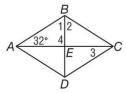
6-5 Study Guide and Intervention


Rhombi and Squares

Properties of Rhombi and Squares A **rhombus** is a quadrilateral with four congruent sides. Opposite sides are congruent, so a rhombus is also a parallelogram and has all of the properties of a parallelogram. Rhombi also have the following properties.

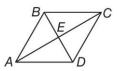
$R_{\bigcirc \bigcirc $	$\vdash \supset H$
B	//
$\neg M \longrightarrow + \emptyset$	Δ_0


The diagonals are perpendicular.	$\overline{\it MH} \perp \overline{\it RO}$
Each diagonal bisects a pair of opposite angles.	\overline{MH} bisects $\angle RMO$ and $\angle RHO$. \overline{RO} bisects $\angle MRH$ and $\angle MOH$.

A **square** is a parallelogram with four congruent sides and four congruent angles. A square is both a rectangle and a rhombus; therefore, all properties of parallelograms, rectangles, and rhombi apply to squares.

Example: In rhombus ABCD, $m \angle BAC = 32$. Find the measure of each numbered angle.

ABCD is a rhombus, so the diagonals are perpendicular and $\triangle ABE$ is a right triangle. Thus $m \angle 4 = 90$ and $m \angle 1 = 90 - 32$ or 58. The diagonals in a rhombus bisect the vertex angles, so $m \angle 1 = m \angle 2$. Thus, $m \angle 2 = 58$.



A rhombus is a parallelogram, so the opposite sides are parallel. $\angle BAC$ and $\angle 3$ are alternate interior angles for parallel lines, so $m \angle 3 = 32$.

Exercises

Quadrilateral ABCD is a rhombus. Find each value or measure.

- **1.** If $m \angle ABD = 60$, find $m \angle BDC$. **60**
- **2.** If AE = 8, find AC. **16**

- **3.** If AB = 26 and BD = 20, find AE. **24**
- **4.** Find $m \angle CEB$. **90**
- **5.** If $m \angle CBD = 58$, find $m \angle ACB$. **32**
- **6.** If AE = 3x 1 and AC = 16, find x. **3**
- 7. If $m \angle CDB = 6y$ and $m \angle ACB = 2y + 10$, find y. 10
- **8.** If AD = 2x + 4 and CD = 4x 4, find x. **4**

6-5 Study Guide and Intervention (continued)

Rhombi and Squares

Conditions for Rhombi and Squares The theorems below can help you prove that a parallelogram is a rectangle, rhombus, or square.

If the diagonals of a parallelogram are perpendicular, then the parallelogram is a rhombus.

If one diagonal of a parallelogram bisects a pair of opposite angles, then the parallelogram is a rhombus.

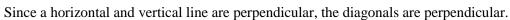
If one pair of consecutive sides of a parallelogram are congruent, the parallelogram is a rhombus.

If a quadrilateral is both a rectangle and a rhombus, then it is a square.

Example: Determine whether parallelogram ABCD with vertices A(-3, -3), B(1, 1), C(5, -3), D(1, -7) is a *rhombus*, a *rectangle*, or a *square*.

$$AC = \sqrt{(-3-5)^2 + ((-3-(-3))^2} = \sqrt{64} = 8$$

$$BD = \sqrt{(1-1)^2 + (-7-1)^2} = \sqrt{64} = 8$$


The diagonals are the same length; the figure is a rectangle.

Slope of
$$\overline{AC} = \frac{-3 - (-3)}{-3 - 5} = \frac{0}{-8} = 0$$

The line is horizontal.

Slope of
$$\overline{BD} = \frac{1 - (-7)}{1 - 1} = \frac{8}{0} = undefined$$

The line is vertical.

Parallelogram *ABCD* is a square which is also a rhombus and a rectangle.

Exercises

Given each set of vertices, determine whether $\square ABCD$ is a *rhombus*, *rectangle*, or *square*. List all that apply. Explain.

1. *A*(0, 2), *B*(2, 4), *C*(4, 2), *D*(2, 0)

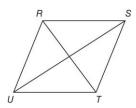
Rectangle, rhombus, square; the four sides are \cong and consecutive sides are \perp .

2. A(-2, 1), B(-1, 3), C(3, 1), D(2, -1)

Rectangle; consecutive sides are 1.

3. A(-2, -1), B(0, 2), C(2, -1), D(0, -4)

Rhombus; the four sides are \cong and consecutive sides are not \perp .


4. *A*(-3, 0), *B*(-1, 3), *C*(5, -1), *D*(3, -4)

Rectangle; consecutive sides are 1.

5. PROOF Write a two-column proof.

Given: Parallelogram RSTU. $\overline{RS} \cong \overline{ST}$

Prove: *RSTU* is a rhombus.

Statements

- 1. RSTU is a parallelogram $\overline{RS} \cong \overline{ST}$
- **2.** $\overline{RS} \cong \overline{UT}$, $\overline{RU} \cong \overline{ST}$
- 3. $\overline{UT} \cong \overline{RS} \cong \overline{ST} \cong \overline{RU}$
- 4. RSTU is a rhombus

- Reasons
- 1. Given
- 2. Definition of a parallelogram
- 3. Substitution
- 4. Definition of a rhombus