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Abstract. A well-known experiment from 1986 involving entangled pairs is
examined. The data, which until now have not been modeled quantitatively, is shown
not to be in agreement with the quantum measurement postulate using von Neumann
projectors. On the other hand, the data agree with the postulate using a more general
positive operator valued measure (POVM). The peculiarity of the POVM proposed
here is that it is only conditionally a POVM; i.e. it is not complete (trace-preserving)
on the entire Hilbert space but only on a subset, although the POVM elements
are positive semidefinite observables on the entire space. The state vector of the
aforementioned experiment is in the subset where completeness holds. An extension
of the conditional POVM is then applied to a proposed experiment involving three-
particle Greenberger-Horne-Zeilinger (GHZ) entangled states. As with the Aspect
experiment, completeness holds for the conditional POVM upon application to the
GHZ state. Violation of the Bell inequality in the GHZ experiment does not occur
upon application of von-Neumann projectors; however the conditional POVM allows
for Bell inequality violation.

PACS numbers: 03.65.Ta,03.65.Ud



Experimental evidence for a non-globally trace-preserving POVM 2

1. Review of the experiment

The experimental evidence examined here is from Aspect, Grangier and Roger [1],

hereafter referred to as the Aspect experiment. In the experiment, systems of correlated

photon pairs were produced from a single source. The photons, being correlated, are

represented by a system of the following form:

|ψ〉 =
1
√

2
(|ϕ1, θ1〉 + eiα|ϕ2, θ2〉) (1)

where ϕ and θ represent the two photons, the subscripts 1 and 2 signify polarity and

α is a relative phase factor. For each pair produced by the source, photon ϕ passes

through an observers (Alice) Mach-Zehnder (MZ) interferometer and photon θ serves

as a registration gatekeeper, collected by a second observer (Bob). The purpose of the

latter is to eliminate noise from singles passing into the interferometer. The experimental

set-up is shown in figure 1, and Alices data from the experiment is shown in figure 2.

Fig 1. The experimental set-up of Grangier, Aspect and Roger [1]. A two-photon system

is emitted by the source. Alices apparatus on the right is a MZ interferometer

together with detectors D1 and D2. Bobs apparatus consists of a single detector

D3 whose photon serves as a gatekeeper for Alices photon counting; i.e. data from

D1 and D2 are collected only in coincidence with D3 registration.

In the original article, the authors did not provide a theoretical fit to the data in

figure 2. Here, one is provided. First however, we will apply the quantum measurement

postulate using von Neumann projectors, and show it does not match the experimental

data.
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Fig 2. Data from the Aspect experiment [1]. Shown is signal intensity vs. relative phase

δ between arms of MZ. These data match the calculations using the conditional

POVM (13) and not the calculation using von Neumann projectors (3).

2. Data cannot be modeled by von Neumann Projectors Pk

The quantum measurement postulate (MP) for a discrete finite system is the following

[2]:

MP The probability of measuring eigenvalue k of observable A on a normalized system

|ψ〉 =
∑

ij aij|ϕ
j
i 〉 ∈ E(A) = eigenspace of A is given by

pA(k) =

Jk∑

j=1

|〈ϕj
k|ψ〉|

2 (2)

where Jk is the dimension of the kth eigensubspace.

If the eigenspace is that of a cross product A⊗B of two observables A and B that

do not have degenerate eigenvalues, then equation (2) can undergo a minor notational

change in order to calculate the probability of Alice, whose observable is A, obtaining

eigenvalue k, by treating the eigenvectors of Bobs B eigenspace as degeneracies in A:

MP2 The probability of Alice measuring eigenvalue k of observable A on a normalized

non-degenerate two-particle system |ψ〉 =
∑

ij aij|ϕi, θj〉 ∈ E(A ⊗ B) is given by:

pA(k) =
J∑

j=1

|〈ϕk, θj|ψ〉|
2. (3)
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where J is the dimension of Bobs B eigenspace.

Equation (3) can be rewritten in terms of von Neumann projectors Pk:

pA(k) = 〈ψ|Pk|ψ〉 (4)

where

Pk =
J∑

j=1

|ϕk, θj〉〈ϕk, θj|. (5)

Next, let Alices eigenvalue k = 1, 2 in state (1) correspond to reflection or

transmission upon interaction with the first half-silvered mirror in MZ respectively.

These are in general not the same as those which correspond to detection in detectors

D1 and D2. To obtain those, it is first necessary to transform the state (1) into a new

basis using the rotation transform (”quantum gate”):

[
cos δ − sin δ

sin δ cos δ

]

(6)

where δ is the rotation angle, proportional to the phase shift between arms in MZ.

Applying transform (6) to state (1) results in:

|ψ〉 =
1
√

2
(cos δ|ϕD1, θ1〉 − sin δ|ϕD2, θ1〉 + eiα sin δ|ϕD1, θ2〉 + eiα cos δ|ϕD2, θ2〉). (7)

Note that state (7) has degeneracies: |ϕD1, θ1〉, |ϕD1, θ2〉 which span the eigensubspace of

Alices eigenvalue 1, corresponding to registration by detector D1, and |ϕD2, θ1〉, |ϕD2, θ2〉
span that of eigenvalue 2, corresponding to detector D2 registration. These two

eigenvalues Alice will measure. Applying state (7) to equation (4) results in the following

probabilities for D1 and D2 registration, respectively:

pA(1) = pA(2) =
1

2
. (8)

Note that these probabilities do not match the data in figure 2; they are flat lines vs.

δ. Thus the experimental data in the Aspect experiment cannot be accounted for using

von Neumann projectors. In the next section, we will define a generalization of the von

Neumann projectors called a ”positive operator valued measure” (POVM) and construct

a POVM which predicts the data. A peculiarity of the POVM constructed is that it is

not a POVM for the entire space E(A⊗B), but only on a proper subset. Nevertheless,

the state (7) is in that subset.

3. Construction of the conditional POVM P̃k which models the data

First, a definition [3]:
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Definition. A set {Ej} of observable positive semidefinite operators Ej over some space X is

said to be a POVM on X if the sum of the operators over the entire set is the

identity in that space; i.e.:
∑

j

Ej = IX . (9)

This property is referred to as completeness. In particular, von Neumann projectors

obey the completeness requirement (9), and so are a subcategory of POVM operators.

Eigenvalue probabilities of a system |ψ〉 are calculated from POVM operators in the

same manner as with projectors; i.e.:

p(k) = 〈ψ|Ek|ψ〉. (10)

(c.f. equation (4).) Only with projectors Pk, there is the added restriction that they be

idempotent:

P 2
k = Pk. (11)

Equation (11) does not hold for POVM operators in general. Note that a POVM is

defined as a set. However, occasionally elements of that set are referred to as a ”POVM”

as well.

The conditional POVM operator on E(A ⊗ B) which will be used to match the

Aspect data is defined as follows:

P̃k =
J∑

j1,j2=1

|ϕk, θj1〉〈ϕk, θj2 |. (12)

This operator was introduced previously by R. Srikanth [4] who applied it to an

experiment involving entangled photons and a double slit [5]. The probability of

obtaining eigenvalue k using operator (12) is

p̃A(k) =
1

N2
〈ψ|P̃k|ψ〉 (13)

where N =
√∑

k p̃A(k) is a normalization constant which equals 1 if and only if

completeness (9) holds for P̃k. Let U ⊆ E(A ⊗ B) be the subset where completeness

holds; i.e.

UA = {|ψ〉 ∈ E(A ⊗ B)|
∑

k

〈ψ|P̃k|ψ〉 = 1}. (14)

UA is nonempty, since e.g.
∑

i aii|ϕi, θi〉 ∈ UA. The ”A” subscript signifies that

measurement is done on Alices end. It will be shown below that P̃k is a positive

semidefinite observable on the entirety of E(A ⊗ B). Thus P̃k is a POVM on UA.

Since in general UA 6= E(A ⊗ B), also shown below, P̃k is said to be a conditional

POVM.
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Before continuing with the theory, we show that P̃k predicts the Aspect data:

applying equation (13) to the state (7) (N = 1; therefore it is in UA), one obtains

the following probabilities for detectors D1 and D2, respectively:

p̃A(1) =
1

2
[1 + sin 2δ cos α]

p̃A(2) =
1

2
[1 − sin 2δ cos α].

(15)

Unlike the probabilities (8), the probabilities (15) match the normalized experimental

data with proper selection of δ; in particular when α = 0.

It still needs to be shown that P̃k is positive semidefinite and an observable. Let

X be a finite Hilbert space and |ψ〉 ∈ X. A positive semidefinite operator A on X, [6]

is one which is self-adjoint and where

〈ψ|A|ψ〉 ≥ 0. (16)

An observable is a self-adjoint operator that has only real eigenvalues. Let A and B be

I ′ and J-dimensional respectively, and

|ψ〉 = a11|ϕ1, θ1〉 + a12|ϕ1, θ2〉 + ... + a1J |ϕ1, θJ〉

+ a21|ϕ2, θ1〉 + a22|ϕ2, θ2〉 + ... + a2J |ϕ2, θJ〉

+ ...

+ ak1|ϕk, θ1〉 + ak2|ϕk, θ2〉 + ... + akJ |ϕk, θJ〉

+ ...

+ aI′1|ϕI′ , θ1〉 + aI′2|ϕI′ , θ2〉 + ... + aI′J |ϕI′ , θJ〉

(17)

be an arbitrary normalized element of E(A⊗B) (thus
∑

j1,j2
|aj1j2 |

2 = 1). The operator

(12), expanded, looks like:

P̃k = |ϕk, θ1〉〈ϕk, θ1| + |ϕk, θ1〉〈ϕk, θ2| + ... + |ϕk, θ1〉〈ϕk, θJ |

+ |ϕk, θ2〉〈ϕk, θ1| + |ϕk, θ2〉〈ϕk, θ2| + ... + |ϕk, θ2〉〈ϕk, θJ |

+ ...

+ |ϕk, θJ〉〈ϕk, θ1| + |ϕk, θJ〉〈ϕk, θ2| + ... + |ϕk, θJ〉〈ϕk, θJ |,

(18)

which, due to its symmetry, is clearly self-adjoint. Applying the operator (18) to the

state (17), one obtains:

P̃k|ψ〉 = ak1|ϕk, θ1〉 + ak1|ϕk, θ2〉 + ... + ak1|ϕk, θJ〉

+ ak2|ϕk, θ1〉 + ak2|ϕk, θ2〉 + ... + ak2|ϕk, θJ〉

+ ...

+ akJ |ϕk, θ1〉 + akJ |ϕk, θ2〉 + ... + akJ |ϕk, θJ〉

= (|ϕk, θ1〉 + |ϕk, θ2〉 + ... + |ϕk, θJ〉)(ak1 + ak2 + ... + akJ).

(19)
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Thus

〈ψ|P̃k|ψ〉 = (a∗
k1 + a∗

k2 + ... + a∗
kJ)(ak1 + ak2 + ... + akJ)

= (ak1 + ak2 + ... + akJ)∗(ak1 + ak2 + ... + akJ)

= |ak1 + ak2 + ... + akJ |
2 ≥ 0,

(20)

which proves that P̃k is positive semi-definite. All that remains to be done to

demonstrate that P̃k is an observable is to show that it has only real eigenvalues. This

is done by contradiction: suppose z ∈ C− R is an eigenvalue of P̃k. Then:

P̃k|ψ〉 = z|ψ〉 (21)

where |ψ〉 is the associated eigenvector. Combining equations (20) and (21):

|(ak1 + ak2 + ... + akJ)|2 = 〈ψ|P̃k|ψ〉 = z〈ψ|ψ〉 = z (22)

which implies that z ∈ R; a contradiction. Thus P̃k is an observable. Note that

observability and positive semidefiniteness hold throughout the entire space, it is only

completeness which does not hold globally. We summarize:

Theorem A. The operator P̃k is a POVM on the set UA defined by equation (14),

and

Theorem B. The operators P̃k predict the Aspect data shown in figure 2 whereas the von Neumann

projectors Pk do not. Further, the state which gives the Aspect data is in UA.

In the case I ′ = J = 2 (which is the case in the Aspect experiment), the condition for

the set UA (14) can be written in a way which makes it easy to check whether |ψ〉 is in

UA or not. From equation (22) applied to the normalized state |ψ〉 =
∑2

i,j=1 aij |ϕi, θj〉
we have that:

〈ψ|P̃1|ψ〉 = |a11 + a12|
2

〈ψ|P̃2|ψ〉 = |a21 + a22|
2.

(23)

Now if {P̃1, P̃2} has the completeness property; i.e. |ψ〉 ∈ UA, then

1 = 〈ψ|P̃1|ψ〉 + 〈ψ|P̃2|ψ〉 = |a11 + a12|
2 + |a21 + a22|

2

= 1 + a∗
11a12 + a11a

∗
12 + a∗

21a22 + a21a
∗
22.

(24)

Equation (24) holds if and only if

a∗
11a12 + a11a

∗
12 + a∗

21a22 + a21a
∗
22 = 2[re(a11a

∗
12) + re(a21a

∗
22)] = 0. (25)

Note that this is a condition on symmetry. In fact, it is easily shown that if a two-

particle state is symmetric under entanglement swapping i.e. ”envariant” [7], the state

is in UA. For the general case of a I ′ × J space, the condition can be written as

0 =
I′∑

i=1

J−1∑

j=1

J∑

k=j+1

re(a∗
ijaik) (26)
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Consider for example, the ”asymmetric” state |ψ〉 where a11 = a12 = a21 =

1/(2
√

2) = a22/
√

5. Then

a∗
11a12 + a11a

∗
12 + a∗

21a22 + a21a
∗
22 =

1 +
√

5

4
6= 0; (27)

which means that completeness does not hold for the P̃k in that case; i.e. |ψ〉 /∈ UA. This

raises an important question, but first, some notes: At this point, it should be evident,

from the Aspect data, that the POVM P̃k is one which accounts for interference effects in

two-particle systems, whereas the von Neumann operator Pk does not. This is because

for the latter, the sum appears outside of the norm in equation (3), whereas for the

former, we have, from equation (13),

p̃A(k) =
1

N2
|

J∑

j=1

〈ϕk, θj|ψ〉|
2; (28)

i.e. the sum appears inside the norm. The reason for this difference between equations

(3) and (28) is similar to that of the measurement equations for single-particle systems;

they are necessary for application when Alice can in principle know, and when she cannot

know, which degenerate eigenvector gave rise to her measurement result, respectively.

With this in mind, the question arises as to whether a state |ψ〉 /∈ UA can give rise to

interference effects. This is important because it is generally accepted that incomplete

operations are forbidden in quantum theory. If that is the case, then the POVM P̃k is

inapplicable to such a state; therefore interference effects should not be observable with

such a state.

As was mentioned earlier, a POVM does not in general, have the idempotent

property. In particular, for P̃k we have that:

Theorem C. P̃ 2
k = JP̃k where J is the dimension of Bobs eigenspace E(B).

Proof. From equation (18):

P̃ 2
k = [|ϕk, θ1〉〈ϕk, θ1| + |ϕk, θ1〉〈ϕk, θ2| + ... + |ϕk, θ1〉〈ϕk, θJ |

+ |ϕk, θ2〉〈ϕk, θ1| + |ϕk, θ2〉〈ϕk, θ2| + ... + |ϕk, θ2〉〈ϕk, θJ |

+ ...

+ |ϕk, θJ〉〈ϕk, θ1| + |ϕk, θJ〉〈ϕk, θ2| + ... + |ϕk, θJ〉〈ϕk, θJ |]P̃k.

(29)

Consider the first term in the first row of equation (29), |ϕk, θ1〉〈ϕk, θ1|. Multiplying it

by P̃k, one obtains an entire copy of the first row of P̃k:

|ϕk, θ1〉〈ϕk, θ1|P̃k = |ϕk, θ1〉〈ϕk, θ1| + |ϕk, θ1〉〈ϕk, θ2| + ... + |ϕk, θ1〉〈ϕk, θJ |. (30)

Multiplying the second term in the first row of equation (29) by P̃k, one obtains an

entire copy of the second row of P̃k:

|ϕk, θ1〉〈ϕk, θ2|P̃k = |ϕk, θ2〉〈ϕk, θ1| + |ϕk, θ2〉〈ϕk, θ2| + ... + |ϕk, θ2〉〈ϕk, θJ |, (31)
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...and so on until the last term in the first row of equation (29) gives an entire copy of

the Jth row of P̃k:

|ϕk, θ1〉〈ϕk, θJ |P̃k = |ϕk, θJ〉〈ϕk, θ1| + |ϕk, θJ〉〈ϕk, θ2| + ... + |ϕk, θJ〉〈ϕk, θJ |. (32)

Thus it is evident from equations (30), (31) and (32), that multiplying the entire first

row in equation (29) with P̃k gives an entire copy of P̃k itself:

[|ϕk, θ1〉〈ϕk, θ1| + |ϕk, θ1〉〈ϕk, θ2| + ... + |ϕk, θ1〉〈ϕk, θJ |]P̃k = P̃k. (33)

Similarly, multiplying the second row of equation (29) by P̃k gives a copy of P̃k also:

[|ϕk, θ2〉〈ϕk, θ1| + |ϕk, θ2〉〈ϕk, θ2| + ... + |ϕk, θ2〉〈ϕk, θJ |]P̃k = P̃k (34)

...and so on, down to the final Jth row, which also gives a copy of P̃k:

[|ϕk, θJ〉〈ϕk, θ1| + |ϕk, θJ〉〈ϕk, θ2| + ... + |ϕk, θJ〉〈ϕk, θJ |]P̃k = P̃k. (35)

From equations(29), (33), (34) and (35), it follows that J copies of P̃k result from P̃ 2
k .

�
In the case of ensembles of several states |ψi〉 with frequency pi, one works with

density operators ρ =
∑

i pi|ψi〉〈ψi|, and a more general form of equation (2) for

calculating Alices probabilities, if Bob performs a projective measurement:

pA(k) = tr(Pkρ), (36)

where ”tr” is trace. If Bob destroys his which-way information, then equation (13)

generalizes to:

p̃A(k) =
1

N2
[tr(P̃kρ)] (37)

where N2 =
∑

k tr(P̃kρ). If N2 6= 1 then the P̃k are said to not be trace-preserving,

hence the title of this article. Trace-preservation is equivalent to completeness. Since

P̃k does sometimes preserve the trace, it is referred to here as a non-globally trace-

preserving POVM, to distinguish it from, as well as elevate its status from, ordinary

sets of operators which exhibit completeness nowhere within the space.

A proposed Greenberger-Horne-Zeilinger (GHZ) experiment is analyzed in the next

section, using an extension of P̃k to three particle systems. As in the Aspect experiment,

measurements are done in a complete basis, whether or not Bob destroys which-way

information.

4. Operators P̃k model GHZ experiment

GHZ states involve entanglements of more than two particles. Here we will consider a

3-photon state given by

|ψ〉 =
1
√

2
[|A1〉|B1〉|C1〉 + |A2〉|B2〉|C2〉] (38)
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where A, B and C represent entangled photons, and these can each occur in one of two

states, 1 or 2, hence the subscripts. In this gedanken experiment the three photons are

emitted by a common source along coplanar trajectories. Photons A, B and C each

encounter a beam splitter, which splits its beam within a plane, at an angle α, β and

γ respectively, with respect to the normal vector n to the original plane. Alice receives

photons B and C and Bob receives photon A. The set-up has some similarities to that

of Mermins gedanken experiment [8] and is sketched in figure 3. The basic idea of the

experiment is as follows:

Alice measures correlation between her two photons A and B vs. relative angle

between her two polarizers, and Bob has the choice of making a projective

measurement on his photon C or destroying its ”which-way” information.

”Relative angle” is defined below. To the authors knowledge, this experiment has not

yet been performed.

Fig 3. A sketch of the GHZ experimental set up. Three photons are emitted by a source

and travel in the same blue plane. Two go to Alice, and one to Bob. Each photon

reaches a beam splitter and afterwards may take one of two paths within a yellow

plane. The yellow planes have relative angles α, β or γ with respect to the normal

of the blue plane. In the experiment, Alice measures correlation between her two

photons with respect to relative angle β − γ, and Bob has a choice of measuring

eigenvalue information from his photon or destroying it.

State (38) can be transformed into the basis of the beam splitters using the rotation

transform (6):

|ψ〉 =
1
√

2
[(cos α cos β cos γ + sin α sin β sin γ)|A1〉|B1〉|C1〉

+ (sin α sin β cos γ − cos α cos β sin γ)|A1〉|B1〉|C2〉

+ (sin α cos β sin γ − cos α sin β cos γ)|A1〉|B2〉|C1〉

+ (cos α sin β sin γ − sin α cos β cos γ)|A2〉|B1〉|C1〉

+ (cos α sin β sin γ + sin α cos β cos γ)|A1〉|B2〉|C2〉

+ (sin α cos β sin γ + cos α sin β cos γ)|A2〉|B1〉|C2〉

+ (sin α sin β cos γ + cos α cos β sin γ)|A2〉|B2〉|C1〉

+ (cos α cos β cos γ − sin α sin β sin γ)|A2〉|B2〉|C2〉].

(39)



Experimental evidence for a non-globally trace-preserving POVM 11

For calculating the joint probability of Alice finding eigenvalues ( i.e. registration by

detectors numbered) b and c (b, c = 1, 2), given angles α, β and γ, an extension of

equation (3) is used, since Bob will be measuring ”which-way” information on his end:

p(b ∧ c|α ∧ β ∧ γ) =
∑

j

|〈Aj , Bb, Cc|ψ〉|
2

= 〈ψ|Pbc|ψ〉
(40)

where the projector Pbc =
∑

j |Aj , Bb, Cc〉〈Aj , Bb, Cc|. Applying the state (39) to

equation (40), one finds the probability for example, of both photons B and C being

detected by detectors numbered 1, given angles α, β and γ:

p(1 ∧ 1|α ∧ β ∧ γ) =
1

2
[cos2 β cos2 γ + sin2 β sin2 γ]. (41)

Note that probability (41) is independent of Bobs polarizer angle α; therefore α is

dropped hereafter on the left hand side. To continue, define the relative angle θ between

Alices angles β and γ as:

θ = β − γ. (42)

Applying equation (42), probability (41) becomes

p(1 ∧ 1|β ∧ γ) = p(1 ∧ 1|β ∧ θ)

=
1

4
+

1

8
[cos 2θ + cos(4β − 2θ)].

(43)

To get the probability of measuring b = c = 1 given relative angle θ and any absolute

angle β, probability (43) is integrated over the domain of the uniform random variable

β and normalized:

p(1 ∧ 1|θ) =

∫ π

0
p(1 ∧ 1|β ∧ θ)dβ

∫ π

0
dβ

=
1

8
+

1

4
cos2 θ.

(44)

Similarly,

p(1 ∧ 2|θ) = p(2 ∧ 1|θ) =
1

8
+

1

4
sin2 θ,

p(2 ∧ 2|θ) =
1

8
+

1

4
cos2 θ.

(45)

Note that probabilities (44), (45) sum to unity. This is to be expected, since the von

Neumann projectors Pbc are complete. Next, we claim that equations (44), (45) obey

the Bell inequality [9]: given four variables b1, b2, c1 and c2 each with domain {−1, 1},
the function

Γ = b1c1 + b1c2 + b2c1 − b2c2 (46)
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must have range {−2, 2} and hence the average 〈Γ〉 over many trials must obey

|〈Γ〉| ≤ 2. (47)

Suppose then that {b1, b2} and {c1, c2} are sets of outcomes of photons B and C at

angles (β =)β1, β2 and (γ =)γ1, γ2 respectively. These outcomes each are either 1 or −1,

representing detector 1 or 2 registration, respectively. Further, suppose that

|β2 − γ1| = ϕ = |β1 − γ1| = |β1 − γ2| =
1

3
|β2 − γ2|; (48)

as illustrated in figure 4.

Consider the two angles β and γ set to β1 and γ1 respectively. For photon B, the

outcome b1 can be 1 or −1. Likewise, for photon C, the outcome c1 can be 1 or −1.

Then, the expected value of the product b1c1 is

〈b1c1〉 =
1∑

b1,c1=−1

p(b1, c1)b1c1

= p(−1,−1) − p(1,−1) − p(−1, 1) + p(1, 1)

= p(2 ∧ 2|ϕ) − p(1 ∧ 2|ϕ) − p(2 ∧ 1|ϕ) + p(1 ∧ 1|ϕ)

=
1

2
cos 2ϕ.

(49)

Fig 4. Diagram showing the relative angles between Alices polarizer settings β1, β2 and

γ1, γ2.

Similarly,

〈b1c2〉 = 〈b2c1〉 =
1

2
cos 2ϕ,

〈b2c2〉 =
1

2
cos 6ϕ.

(50)
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Averaging equation (46), utilizing linearity of 〈∙〉 and applying equations (49), (50)

results in:

〈Γ〉 = 〈b1c1〉 + 〈b1c2〉 + 〈b2c1〉 − 〈b2c2〉

=
3

2
cos 2ϕ −

1

2
cos 6ϕ.

(51)

Since

|〈Γ〉| = |
3

2
cos 2ϕ −

1

2
cos 6ϕ| ≤ 2, (52)

it follows from inequality (52) that

Theorem D. In the GHZ gedanken experiment, Bells inequality is satisfied for Alice if Bob

measures eigenvalue or which-way information; i.e. if von Neumann projectors

Pbc are used in the calculation.

For the case where Bob destroys which-way information, Alices probabilities are

predicted using an extension of equation (13). To make the calculations easier, Bob

fixes his polarizer angle to α = 0. (Since Bob needs to destroy which-way information,

he might set up an MZ to accomplish this with the plane of MZ set to this angle.) This

reduces state (39) to

|ψ〉 =
1
√

2
[cos β cos γ|A1〉|B1〉|C1〉 − cos β sin γ|A1〉|B1〉|C2〉

− sin β cos γ|A1〉|B2〉|C1〉 + sin β sin γ|A2〉|B1〉|C1〉

+ sin β sin γ|A1〉|B2〉|C2〉 + sin β cos γ|A2〉|B1〉|C2〉

+ cos β sin γ|A2〉|B2〉|C1〉 + cos β cos γ|A2〉|B2〉|C2〉].

(53)

From state (53), Alices probability of measuring 1 from both photons given angles β

and θ is then:

p̃(1 ∧ 1|β ∧ θ) = |
∑

j

〈Aj , B1, C1|ψ〉|
2

=
1

2
cos2 θ.

(54)

Since probability (54) is independent of angle β, it follows that

p̃(1 ∧ 1|θ) =
1

2
cos2 θ. (55)

Similarly,

p̃(1 ∧ 2|θ) = p̃(2 ∧ 1|θ) =
1

2
sin2 θ,

p̃(2 ∧ 2|θ) =
1

2
cos2 θ.

(56)

Note that probabilities (55), (56) sum to unity, again, as expected from a measurement

done in a complete basis. In fact, it is a simple exercise in notation to show that their
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associated projection operators P̃bc =
∑

j,k |Aj , Bb, Cc〉〈Ak, Bb, Cc| form a conditional

POVM, using the results in the previous section. Further, it is straightforward to show

using the method above that the Bell correlation function Γ̃ derived from probabilities

(55), (56) is related to correlation function (51), upon averaging, by a constant; i.e.

〈Γ̃〉 = 3 cos 2ϕ − cos 6ϕ = 2〈Γ〉. (57)

From equation (57) it is evident that probabilities (55), (56) give rise to a violation of

the Bell inequality (47), in particular, at ϕ = π/8. Hence:

Theorem E. If Bob destroys which-way information, i.e. if the conditional POVM P̃bc is used in

the calculation, then Alice will determine a violation of Bells inequality in the GHZ

gedanken experiment.

5. Conclusion

It has been shown that there exists experimental evidence of a non-globally trace-

preserving POVM from the Aspect experimental data involving entangled pairs of

photons. The data cannot be modeled using von Neumann projectors. The reason

for this has to do with interference effects which the POVM accounts for, and the von

Neumann projectors do not. The interference effects arise since the second photons

”which-way” information is not measured as the primary photon passes through the

Mach-Zehnder interferometer. Had the which-way information been measured, then

there would be no interference effects in the data and hence the data could be modeled

with von Neumann projectors. Since the POVM is conditional, it is not a POVM on the

entire space, but only a proper subset. This is due entirely to completeness; the operators

are positive semidefinite observables over the entire space. It is not known whether the

conditional POVM can be applied to states outside this subset; it is generally accepted

that completeness is necessary in quantum theory.

The conditional POVM is also applied to a proposed experiment involving three-

particle entangled Greenberger-Horne-Zeilinger states. In this experiment, Alice receives

two photons from every entangled triple, and Bob, one. Alice then measures correlations

between her two photons, while Bob chooses to measure which-way information or

destroy it. The von Neumann projectors are applicable to the former case, and the

POVM to the latter. No violation of Bells inequality on Alices end occurs in the former,

but does occur in the case of the latter.
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