
Mathematica Programming
Dennis Silverman

Mathematical Physics 212 B
U.C. Irvine

� Built−in Programming
�

Mathematica already has several important built � in programming capabilities
over and above standard programming languages.

�
Graphics is immediately done without having to first output data and then entering
a graphics program .

�
Matrix and vector algebra are built in, saving the usual multiplicative
loops.

�
Functions are easily defined in place.

�
Standard functions are automatically calculated without adding
subroutine links or encoding interpolating functions.

�
Complicated algebra and complex numbers are automatically handled.

�
Variables do not always have to be typed or dimensioned.

�
Differential equations are directly solved numerically without direct programming.

�
Tables of functions can be directly calculated without having to write loops.

� Input and Output of Data

?OpenWrite

OpenWrite "file" opens a file to write output to it, and returns an OutputStream object.

?OpenAppend

OpenAppend "file" opens a file to append output to it, and returns an OutputStream object.

outstream � OpenWrite "temp"

OutputStream temp, 21

? Write

Write channel, expr1, expr2, ... writes the expressions expri in sequence, followed
by a newline, to the specified output channel.

Write outstream, 1

Write outstream, 2

program.nb 1

Write outstream, 3

Write outstream, 4

Close outstream

temp

� �
temp

1
2
3
4

readin � OpenRead "temp"

InputStream temp, 22

?Read

Read stream reads one expression from an input stream, and returns the expression.
Read stream, type reads one object of the specified type. Read stream, type1,
type2, ... reads a sequence of objects of the specified types.

Read readin, Number

1

Read readin, Number

2

a � ReadList "temp", Table Number, 2

1, 2 , 3, 4

Close readin

temp

Close "temp"

temp

Type assignments for data are : Byte, Character, Real, Number, Word,
Record, String, Expresssion, and Hold Expression .

� Assignments in Loops

i � � increment i by 1
i � � decrement i by 1

� � i pre � increment i
� � i pre � decrement i
i � � di add di to i
i � � di subtract di from i
x � � c multiply x by c
x � c divide x by c

program.nb 2

� Loops

?Do

Do expr, imax evaluates expr imax times. Do expr, i, imax evaluates expr
with the variable i successively taking on the values 1 through imax in steps
of 1 . Do expr, i, imin, imax starts with i � imin. Do expr, i, imin, imax,
di uses steps di. Do expr, i, imin, imax , j, jmin, jmax , ... evaluates
expr looping over different values of j, etc. for each i.

Do Print i , i, 0, 6, 2

0

2

4

6

For a nested loop :

Do Print i, j , i, 3 , j, 3

1, 1

1, 2

1, 3

2, 1

2, 2

2, 3

3, 1

3, 2

3, 3

� Testing Loops

? While

While test, body evaluates test, then body, repetitively, until test first fails to give True.

n � 10; While n � n � 1 � 5, Print n

9

8

7

6

program.nb 3

?For

For start, test, incr, body executes start, then repeatedly evaluates body and
incr until test fails to give True.

For i � 1, i 	 4, i � � , Print i^2

1

4

9

start and body can be multiple statements separated by semicolons.
Semicolons separate statements that are executed without displaying

the results.

� Transfers

?Label

Label tag represents a point in a compound expression to which control can be
transferred using Goto.

?Goto

Goto tag scans for Label tag , and transfers control to that point.

q � 2; Label begin ; Print q ; q � � 1; If q 	 6, Goto begin

General::spell1 :
Possible spelling error: new symbol name "begin" is similar to existing symbol "Begin".

2

3

4

5

?Break

Break exits the nearest enclosing Do, For or While.

?Continue

Continue exits to the nearest enclosing Do, For or While in a procedural program.

?Return

Return expr returns the value expr from a function. Return returns the value Null.

� If Statements

?If

If condition, t, f gives t if condition evaluates to True, and f if it evaluates
to False. If condition, t, f, u gives u if condition evaluates to neither True nor False.

program.nb 4

Or you can regard this in Fortran as :
If test, then, else .

Do Print i ; If i � 5, Break , Continue , i, 10

1

2

3

4

5

6

For nested if statements :

Do If i � 2, If i � � 3, Print i , Print 10 i , Print � i , i, 5

 1

 2

3

40

50

The multiple if transfer statement is :

? Which

Which test1, value1, test2, value2, ... evaluates each of the testi in turn,
returning the value of the valuei corresponding to the first one that yields True.

i � 4

4

Which i 	 1, out � 0, i 	 4, out � 1, i 	 10, out � 2 ; out

2

� Compile

?Compile

Compile x1, x2, ... , expr creates a compiled function which evaluates expr assuming
numerical values of the xi. Compile x1, t1 , ... , expr assumes that xi is of a type
which matches ti. Compile x1, t1, n1 , ... , expr assumes that xi is a rank
ni array of objects each of a type which matches ti. Compile vars, expr, p1,
pt1 , ... assumes that subexpressions in expr which match pi are of types which match pti.

program.nb 5

� Modules

?Module

Module x, y, ... , expr specifies that occurrences of the symbols x, y, ... in expr
should be treated as local. Module x � x0, ... , expr defines initial values for x,

program.nb 6

