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Summary 

Oribatid mites are predominantly soil-living organisms reaching densities of up to 400,000 individuals 

per square meter in forest soils, where they contribute to decomposition processes and nutrient 

cycling. In acidic forests they are the main decomposer taxon, together with collembolans. Despite 

their outstanding importance for soil processes knowledge about their trophic ecology and factors 

structuring their communities is low.  

About ten percent of the 10,000 described species are thelytokous (i.e., they reproduce via 

female parthenogenesis); locally up to 80 % of all individuals in temperate forest soils are 

parthenogens. Oribatid mites likely originated in Cambrian or Precambrian times and include old 

thelytokous species-rich groups indicating an ancient origin of asexuality as well as parthenogenetic 

radiations. Sexual and parthenogenetic species coexist in forest soils and in agricultural soils; in 

temperate, tropical and arctic regions and also on the bark of dead and living trees. This makes 

oribatid mites a unique group for studying patterns of parthenogenetic reproduction and for 

studying factors influencing the relative frequency of sexual and parthenogenetic species (see 

Chapter 1).  

The present thesis focuses on oribatid mite reproductive mode and ecology and is divided into 

two parts. The first part investigates the trophic ecology of oribatid mites in soil and on bark analysed 

with stable isotope measurements (Chapter 2) and abiotic and biotic factors influencing oribatid mite 

density, diversity and community structure in soils of different forest types (Chapter 3). In the second 

part oribatid mites were used as model organisms to investigate the distribution of sexual and 

parthenogenetic individuals in forest soils in two regions in Germany and in different habitats 

worldwide in relation to food availability (Chapter 4). Further we investigated the effects of nutrient 

availability on oribatid mite density and the frequency of parthenogenetic individuals on tree trunks 

(Chapter 5). 

In Chapter 2 we used two stable isotopes (15N; 13C) for uncovering the trophic ecology of soil- and 

bark-living oribatid mites. The isotope 15N is usually used to detect the trophic level in food webs 

since it is enriched by about 3.4 delta units per trophic level, whereas 13C can be a marker for 

different food sources since different food source s can differ in their 13C signatures (e.g., lichens, C4 

and C3 plants), but those signatures are not enriched per trophic levels. It could be shown that 

oribatid mites span over four trophic levels, which was surprising since usually oribatid mites are 

treated in food webs as a single functional group, i.e., decomposers. However, our data clearly show 
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that oribatid mites are a trophically diverse group and should not be aggregated in food webs. 

Additionally, 13C signatures separated lichen feeders as well as species that burrow inside leaves and 

needles as juveniles (endophagous taxa) from the other species.  

In Chapter 3 we investigated the importance of regional versus local factors on oribatid mite 

community structure. Therefore, we studied oribatid mites in four differently managed forest types 

(coniferous 70y old age class forests; 30y old and 70y old beech age class forests, unmanaged beech 

forests mature with trees ~120y old) (local effects) at three different sites in Germany (Swabian Alb, 

Hainich, Schorfheide) (regional effects) in the framework of the DFG project “Biodiversity 

Exploratories”. We also measured environmental factors (litter mass, soil pH, C and N content of 

litter and fine roots, C content of soil) which might potentially explain oribatid mite density and 

community structure. Oribatid mite density was positively correlated with litter mass supporting the 

hypothesis that the litter serves as a habitat and also as a food resource for many oribatid mite 

species. Oribatid mite diversity was little affected by forest type indicating that in most forest types 

the number of niches for oribatid mites is similar. Overall, differences of oribatid mite communities 

were more pronounced between the three regions than between the four forest types within a 

region indicating that regional factors (mainly pH, litter mass and C content of litter) are more 

important than local factors for oribatid mite community structure. Overall, the predictability of 

density, diversity and community structure of oribatid mite communities in different regions 

indicates that oribatid mite communities are not randomly assembled.  

In Chapter 4 we investigated the hypothesis that parthenogenetic species should dominate in 

habitats with a good food supply where resources are not a limiting factor. In contrast, in habitats 

where resources are in short supply or strongly structured sexual reproduction should dominate 

since mixis processes potentially allow a better use of underutilized resources (”Structured Resource 

Theory of Sexual Reproduction” (SRTS); Scheu and Drossel 2007). Our data show a strong positive 

relationship between parthenogenetic reproduction and density (which we used as an indirect 

measurement for resource availability) supporting the hypothesis that availability of food in ample 

supply triggers parthenogenesis and allows the long-term maintenance of parthenogenetic 

reproduction.  

In Chapter 5 we experimentally investigated the hypothesis that increased resource availability 

increases the density of oribatid mites and also the prevalence of parthenogens. For this study we 

added nutrients in the form of cane sugar as a carbon source (C) and ammonium nitrate as a nitrogen 

source (N) on the tree trunks of beech trees (Fagus sylvatica). Oribatid mite density increased after C 

addition supporting the view that oribatid mites on the bark of trees are resource limited. However, 

the number of parthenogenetic individuals did not increase after resource addition (neither C or N) 
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which was mainly due to the fact that the bark is a habitat where sexual taxa dominate (~95 %). 

Migration of parthenogens from soil obviously was too low to affect community sex ratios. 

Reference 

Scheu, S., Drossel, B. (2007) Sexual reproduction prevails in a world of structured resources in short 
supply. Proceedings of the Royal Society B – Biological Sciences 274, 1225-1231. 
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1. Density, diversity and distribution of oribatid mites 

Oribatid mites are typical soil living microarthropods reaching densities of up to 200,000 

individuals per square meter in acidic raw humus of coniferous forests (Maraun and Scheu 

2000). With increasing soil pH oribatid mite densities decrease to ~ 20,000-60,000 individuals 

per square meter in mull soils of deciduous forests (Maraun and Scheu 2000). They are also 

common in agricultural soils, such as pastures and fields, but have lower densities of ~ 10,000 

individuals per square meter (Maraun and Scheu 2000). Living in almost all terrestrial habitats 

from deserts to polar regions, from fresh water to saltmarshes (Walter and Proctor 1999), 

oribatid mites are among the most abundant microarthropods in soil. Furthermore, oribatid 

mites also colonize a huge range of microhabitats including the surface of stones, lichens 

(Travé 1963, Gjelstrup and Sochting 1979), dead wood (Aoki 1967), tree trunks (Erdmann et al. 

2006) and suspended soils in tree crowns (Lindo and Winchester 2007). 

About 10,000 species of oribatid mites are described worldwide (Subias 2004, Schatz 2005) 

and a total number of 110,000 species is estimated to exist (Walter and Proctor 1999). On a 

global scale, diversity is lowest in Antarctica with 27 species (Stary and Block 1998) and 

increases with decreasing latitude being highest in boreal and the warm temperate regions, 

but does not increase further to the tropics (Maraun et al. 2007). In Germany 520 oribatid mite 

species are documented (Weigmann 2006) with typical numbers of 50-120 species in soil of 

single forests (Wunderle 1992, Norton and Behan-Pelletier 2009). Despite the seemingly 

homogeneous habitat soil organisms live in, the diversity of soil animals is very high (Giller 

1996). This phenomenon has been termed the “enigma of soil animal diversity” (Anderson 

1975).  

Overall density and community composition at the level of morphological and functional 

groups is predictable over a broad range for habitat types (Maraun and Scheu 2000). Caruso et 

al. (2011) investigated the dissimilarity of oribatid mite communities in two habitats 

(Mediterranean beech forest and grassland) at different geographical distances (from 

centimeters to tens and hundreds of meters). To a large extent the variation in oribatid mite 

community composition in space was independent of measured environmental variables (e.g., 

organic matter), but the dissimilarity of the communities did not match predictions of neutral 

models. The results suggest that both stochastic and deterministic processes contribute to 

oribatid mite assemblage structure. 
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The importance of bottom-up or top-down forces on oribatid mite communities is unclear 

and still debated (Salamon et al. 2006, Lenoir et al. 2007, Schneider and Maraun 2009). 

Predators of oribatid mites range from small vertebrates e.g., salamanders (Norton and 

McNamara 1978) and frogs (Saporito et al. 2007), over centipedes (Lebrun 1970) and insects, 

e.g., Scydmaenidae (Schuster 1966) and Formicidae (Wilson 2005), to other mites e.g,. 

Prostigmata and Mesostigmata (Wallwork 1980, Peschel et al. 2006). However, the impact of 

predation - at least for adult oribatid mites - is likely to be of minor importance. Oribatid mites 

are regarded as living in an enemy-free space due to chemical defense (Heethoff et al. 2011) 

and strongly hardened cuticle, but the latter is less pronounced in juveniles (Peschel et al. 

2006). Perturbations have been shown to detrimentally affect oribatid mites (Maraun et al. 

2003). Especially earthworms exert strong negative impacts on oribatid mite communities 

(Migge-Kleian et al. 2006, Eisenhauer 2010) which likely is due to litter comminution and 

mixing of litter and soil. 

2. Functioning and trophic ecology of oribatid mites 

Oribatid mites are predominantly decomposers, feeding on dead organic material and fungi. 

Especially in acidic soils (where earthworms are absent), oribatid mites carry out important 

decomposition processes (Lussenhop 1992) and play an important role in nutrient cycling, 

mineralization processes and humus formation (Krantz 2009). Further, they distribute fungal 

spores and bacteria that are attached to their body surface or transported in their gut which 

supports fungal colonization of dead organic material and decomposition processes (Maraun 

et al. 1998, Renker et al. 2005). 

Different approaches, such as gut content analysis (Hubert et al. 2001), analysis of enzyme 

activities (Siepel and deReuiter-Dijkmann 1993), measuring of cheliceral sizes (Kaneko 1988) 

and laboratory feeding experiments (Schneider et al. 2005, Koukol et al. 2009), resulted in 

different systems of distinct feeding categories. Schneider et al. (2004) investigated stable 

isotope signatures of oribatid mites in soil and demonstrated that species feed in a continuous 

range of three to four trophic levels including phycophages/fungivores (lichen and algae), 

primary decomposers (predominantly feeding litter), secondary decomposers (predominantly 

consuming fungi and in part litter) and carnivores/scavengers/omnivores (feeding on living and 

dead animals, e.g., nematodes (Heidemann et al. 2011), springtails and potentially mycorrhizal 

fungi).  
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Recent studies postulated that oribatid mites heavily rely on rhizosphere carbon (Pollierer 

et al. 2007). Additional micro habitats extend the variety of food resources oribatid mites feed 

on; e.g., oribatid mites on bark mainly feed on lichens and algae (Erdmann et al. 2007, Fischer 

et al. 2010a).  

3. Reproduction and life-history traits 

Oribatid mites are diplodiploid organisms with presumably holokinetic chromosomes (Norton 

et al. 1993). Females can easily be distinguished from males (Grandjean 1955, 1956) since 

females have a large ovipositor with a typical wavelike surface pattern. There are three pairs of 

genital papillae on the basis of the ovipositor. Throughout the year females carry eggs inside 

the notogaster. All three structures, ovipositor, genital papillae and eggs, can easily be seen 

under a microscope. The spermatophore depositor of the male is rather small and more 

difficult to see than the ovipositor.  

Sperm transfer usually takes place indirectly via stalked spermatophores. Eggs are laid in 

crevices, where they develop from prelarvae, larvae, deutonymphs and tritonymphs to adult 

organisms. Lifetime fecundity of oribatid mites is low, compared to other mite groups (Norton 

1994). They are considered as K-strategists with delayed maturity, low reproductive potential, 

iteroparity and long adult life (Norton 1994). The variation in generation times is high and 

fecundity differs seasonally. The species Oppiella nova carries single eggs and lays upto twelve 

eggs per week in culture (Woodring and Cook 1962) while Steganacarus magnus carries about 

six eggs and lays them at lengthy intervals (Webb 1989). Under laboratory conditions females 

of some species lay between six and twelve eggs during livetime (Nothrus biciliatus; Saichuae 

et al. 1972), whereas other females lay up to 250 eggs in a single year (Platynothrus peltifer; 

Grandjean 1950). Developmental rates vary in soils of the temperate zone between several 

months to over a year (Norton 1994). Sexual species had higher number of eggs than 

parthenogenetic species in laboratory experiments (Domes et al. 2007b). However, the total 

reproductive rate depends on generation time, mode of reproduction and number of eggs 

produced and is little understood (Domes et al. 2007b). Species with wide ecological 

distributions show a high degree of plasticity of life cycle duration with an elongation under 

cold conditions (Norton 1994).  

Interestingly, ten percent of the approximately 10,000 described oribatid mite species 

(Subias 2004, Schatz 2005) are thelytokous i.e., females produce daughters from diploid eggs 

without fertilization by males. No males or very few non-functional (spanandric) males exist 
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which do not genetically contribute to the next generation (Grandjean 1941, Taberly 1988, 

Palmer and Norton 1992, Norton et al. 1993).  

The classification of parthenogenetic species was carried out on the basis of rearing 

experiments or is suspected from the absence or rarity of males in natural populations (Norton 

et al. 1993). While sexual species have a sex ratio of approximately 1:1 (lowest recorded sex 

ratio of 1/4.4; Luxton 1981), the proportion of females in parthenogenetic species is 95-100 % 

(Norton and Palmer 1991, Palmer and Norton 1992, Cianciolo and Norton 2006, Domes et al. 

2007a). Cyclical or geographic parthenogenesis is not known for oribatid mites (Norton and 

Palmer 1991). 

Meiotic processes are involved in the reproductive mechanism. Automoxis with terminal 

fusion is probably the most common mechanism (Taberly 1987, Heethoff et al. 2006), but 

central fusion automixis and apomixis were proposed to explain the fixed heterozygosity which 

was found for nine oribatid mite species using isozyme techniques (Palmer and Norton 1992), 

but were not confirmed by molecular data of elongation factor (ef1α) and heat-shock protein 

(hsp82) (Schaefer et al. 2006). Wrensch et al. (1994) suggested inverted meiosis of holokinetic 

chromosomes to explain the occurrence of terminal fusion in combination with heterozygosity.  

4. Systematics of oribatid mites 

Mites belong to the Arthropoda and represent the most diverse and extant ancient lineage of 

the Chelicerata (Walter and Proctor 1999). The major taxa are Opilioacariformes, 

Parasitiformes (with Mesostigmata, Holothyrida and Ixodida) and Acariformes (including 

Sarcoptiformes, Trombidiformes and Endeostigmata) (Walter and Proctor 1999). Oribatid 

mites belong to the Sarcoptiformes and are classified into six groups according to 

morphological characters: the species-poor and basal Palaeosomata (weak sclerotization), the 

Enarthronota (transversal line on notogaster), Parhyposomata (continuous notogaster shield), 

paraphyletic Mixonomata (dichoid; with separated Proterosoma and Hysterosoma), 

paraphyletic Desmonomata (holoid) and species-rich Circumdehiscentia = Brachypylina 

(spatially separated genital and anal plate in a fused ventral shield) (Walter and Proctor 1999). 

Molecular analyses date the origin of oribatid mites back to the Precambrian (571 ±37 mya) 

and, therefore, they may represent an early component of terrestrial food webs (Schaefer et 

al. 2010).  
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Species-rich and exclusively parthenogenetic clades exist within the oribatid mites pointing 

to ancient asexuality and parthenogenetic radiations (Norton et al. 1993). This renders oribatid 

mites, next to bdelloid rotifers and darwinulid ostracods (which also radiated while being 

parthenogenetic) so called “evolutionary scandals” (Maynard Smith 1978). Parthenogenetic 

reproduction should result in evolutionary short-lived lineages and is assumed to be an 

evolutionary dead end (Maynard Smith 1978) due to the accumulation of deleterious 

mutations (Muller 1964, Kondrashov 1993) and/or a reduced adaptative potential to changing 

environments (Ghiselin 1974, Bell 1982). 

5. Oribatid mites as model organisms 

Oribatid mites are a suitable model organism for investigations of evolutionary processes 

(Norton and Palmer 1991, Schaefer et al. 2006, Domes et al. 2007a, Heethoff et al. 2009), but 

also for studying ecological aspects of parthenogenesis. Parthenogenetic and sexual oribatid 

mites coexist with different frequencies in a wide range of habitats. Parthenogenetic taxa, such 

as Brachychthoniidae, Oppiella nova and Tectocepheus spp., dominate in new or disclimax 

habitats (Norton and Palmer 1991), but occur in lower proportions also in climax habitats 

(Maraun and Scheu 2000). The proportion of parthenogenetic individuals, e.g., in 

Eulohmanniidae, Brachychthoniidae, Oppiidae and certain Epilohmanniidae, increases with 

increasing soil depth (Luxton 1982, Norton and Palmer 1991). Fresh water habitats are 

inhabited by parthenogenetic species, such as of Thrypochthoniidae; Malaconothridae, 

Limnozetidae and certain Hydrozetes spp. (Norton and Palmer 1991). Marine habitats are 

mainly inhabited by sexual species (Schuster 1979), such as Ameronothrus spp. and Halozetes 

spp. (Proches and Marshall 2001). 

Oribatid mites primarily live in soils, but also on the bark of trees. In forest soils of the 

temperate zone they comprise of 58 % to 87 % parthenogenetic individuals (Maraun et al. 

2003, Fischer et al. 2010a), while on the bark of tree trunks only 1-15 % of oribatid mites 

belong to parthenogenetic species (Erdmann et al. 2006, Fischer et al. 2010a). The proportion 

of parthenogenetic individuals fundamentally changes in a range of a few centimeters 

between forest soil and tree trunk. Investigating these patterns and indentifying the basic 

ecological factors and mechanisms which are responsible for the distribution of 

parthenogenetic and sexual oribatid mites is a promising approach to start solving the mystery 

of ecological advantages of sexual and parthenogenetic reproduction. 
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6. Theories about the maintenance of sexual reproduction 

In the last decades more than 25 hypotheses were developed trying to identify major factors 

which explain the dominance of sexual reproduction in animal taxa (Kondrashov 1993, Schoen 

2009). These theories differ with regard to the key factors triggering sexual reproduction, e.g., 

temporal or spatial variation, resource availability or parasitism rate, short- or long-term 

advantages (West et al. 1999, Scheu and Drossel 2007) and explain only parts of the ecological 

distribution of parthenogenetic reproducing organisms. Maynard Smith (1976) wrote “one is 

left with the feeling that some essential feature of the situation is being overlooked”. 

The two most common hypotheses are the ‘Tangled Bank’ and the ‘Red Queen’. The focus 

of the ‘Tangled Bank theory’ is a spatially heterogeneous environment in which the brake-up 

of locally favorable gene-combinations reduces sib-competition and may be advantageous for 

a better exploitation of resources in enclosed habitats (Williams 1975, Bell 1982). The ‘Red 

Queen theory’ focuses, in contrast to the ‘Tangled Bank theory’, on a temporally 

heterogeneous environment. Predators and parasites are adapted to prey on genotypes with 

highest frequencies. Sexual species produce genetically variable offspring which may be 

resistant against parasites or which may avoid or escape from predators (Glesener 1979, 

Hamilton 1980, Stearns 1985). 

Scheu and Drossel (2007) developed a model on the maintenance of sexual reproduction, 

integrating spatially and temporally variation - the ‘Structured Resource Theory of Sexual 

Reproduction’ (SRTS). The fundamental assumption of the SRTS is the availability of limited 

amounts of resources for a population with a limited number of genotypes consuming only 

part of these resources Thereby depleting this fraction of the resources available for the next 

generation. Sexual offspring can better exploit underutilized resources and outcompete 

asexual ones. The model differentiates explicitly between (a) biotic and abiotic density-

dependent factors and (b) physicochemical density-independent factors. These assumptions 

lead to predominance of asexual reproduction (1) in habitats with an excess of resources (no 

adaptation to limited resources needed) (2) in habitats with a small number of resources (3) in 

populations with a high number of genotypes which are able to exploit all possible resources 

to the same extent or (4) in habitats with strong density-independent effects, such as harsh, 

disturbed or novel environments (effects are unpredictable, individuals cannot adapt to these 

effects; resources are never fully exploited (Scheu and Drossel 2007)). 
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7. Overview 

This study consists of two main parts. The first part introduces the ecology of oribatid mites 

(Chapter 2 and 3) and presents data on trophic ecology and ecological factors which structure 

oribatid mite communities in temperate forest soils. In the second part (Chapter 4 and 5) 

oribatid mites were used as model organisms to test the predictions of the SRTS on the 

distribution of parthenogenetic individuals in below- and aboveground habitats. 

The oribatid mite diversity in forest soils is high; disentangling feeding niches may help to 

explain this phenomenon. Furthermore, availability of food resources is the basic feature in 

the SRTS of Scheu and Drossel (2007) and raises the question what kind of food resources 

oribatid mites consume. The investigation of trophic and feeding ecology of oribatid mites is 

challenging since they are tiny and the opaqueness of their habitat makes direct observations 

difficult. In the last years considerable progress has been made using the method of stable 

isotope analysis allowing novel insights into the trophic ecology of oribatid mites. Chapter 2 

reviews the trophic ecology of oribatid mites using the method of stable isotopes, summarizes 

previous results, gives perspectives for future studies and presents new data on the trophic 

structure of oribatid mite communities in forest soils for 26 species, compared with stable 

isotope data of 7 oribatid mite species from tree trunks (tree trunk data from Fischer et al. 

2010a). Oribatid mites in soil span three to four trophic levels and differ in their δ15N values 

compared to bark-living oribatid mites indicating feeding-niche differentiation in soil and 

between habitats. The additional analysis of δ13C provided additional informations on trophic 

niches. Taxa with endophagous juveniles were recognizable from other oribatid mites by 

enriched δ13C values. Lichens and oribatid mites diverged strong in their δ13C values and 

showed that bark-living oribatid mites feed mainly on lichens and not on mosses.  

In Chapter 3 the importance of biotic and abiotic environmental factors and their influence 

on density, diversity and the structure of oribatid mite communities in coniferous forests 

(Picea abies or Pinus sylvestris; depending on the study site); beech forests (Fagus sylvatica; 30 

y and 70 y old) and unmanaged beech forests was studied. The four forest types were 

replicated in three regions in Germany, spanning a latitudinal gradient of ~500 km. The study 

design allowed general conclusions on structuring factors for oribatid mite density, diversity 

and community composition in the four forest types. The investigated tree species and 

management types are most common and typical for Central Europe. We suspected highest 

densities in coniferous forests due to thick litter layer and highest diversity in old unmanaged 

forests due to increased habitat heterogeneity. Oribatid mite densities decrease from 

coniferous over 30 y and 70 y old beech forests to the unmanaged beech forests and were 
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correlated positively with the mass of litter layer and negatively with soil pH. Diversity of 

oribatid mites was little affected by forest type indicating that they harbor similar numbers of 

niches. The oribatid mite community structure differed more between the three regions than 

between the four forest types indicating the importance of regional factors rather than factors 

associated with forest types. Soil pH, which is a factor resulting from regional geological 

conditions and local forest types, strongly affected the oribatid mite communities. 

In Chapter 4 one prediction of the SRTS was tested for soil-living oribatid mites. Habitats 

with an excess of resources should be dominated by asexual organisms because adaptation to 

limited resources is not needed. That means, the proportion of parthenogenetic oribatid mites 

should increase with increasing availability of resources. The amount of food resources was 

estimated indirectly since food sources of oribatid mites are only partially known and their 

amount in soil is hardly detectable. Increased densities and respiration values of oribatid mites 

per square meter were assumed to indicate increased resource availability. An increase in the 

proportion of parthenogenetic oribatid mites with increasing densities or respiration of 

oribatid mites per square meter would support the assumption of the SRTS. The correlation of 

the proportion of parthenogenetic oribatid mites with densities or respiration of oribatid mites 

per square meter was tested and compared on the small scale (two regions in Germany: 

Schorfheide and Swabian Alb), as well as on the large scale (worldwide) in a meta analysis. The 

assumption of the SRTS was supported in the small scale and in the large scale analysis. 

Overall, oribatid mite densities correlated positively with the proportion of parthenogenetic 

individuals. Locally, the density and respiration of oribatid mites correlated significantly with 

the proportion of parthenogenetic individuals in Schorfheide, but not in the Swabian Alb. High 

densities of earthworms in the Swabian Alb may superimpose the effects of food-resources on 

oribatid mites compared with Schorfheide with low earthworm densities. 

The effect of resource availability on oribatid mite densities and on the proportion of 

parthenogenetic individuals was investigated on the bark of tree trunks in Chapter 5. One 

prediction of the SRTS is the prevalence of parthenogenesis in habitats with strong density-

independent effects, such as harsh, disturbed or novel environments (Scheu and Drossel 

2007). The bark of tree trunks is considered as harsh environment affected by desiccation, 

frost and solar radiation. In contrast to those theoretical expectations, the bark of tree trunks 

is dominated by sexual oribatid mite species (Erdmann et al. 2006, Fischer et al. 2010a). The 

SRTS states that sexual reproduction should dominate in habitats where resources are limited 

or little accessibly. The resource availability on tree trunks was manipulated by monthly 

fertilization of bark with nitrogen (N), carbon (C), both (N and C) and water as control. An 

increase of oribatid mite densities and in the proportion of parthenogenetic individuals due to 
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fertilization would indicate resource limitation rather than limitation by harsh abiotic 

conditions as predicted by the SRTS. The uptake of fertilizers by oribatid mites was evaluated 

using stable isotopes (14N/15N; 12C/13C). Oribatid mite densities increased in treatments with C 

fertilization. The fertilization with N had no effect. This is in accordance with stable isotope 

data indicating the incorporation of C but not of N of the fertilizers in the tissue of oribatid 

mites. The increase in oribatid mite densities due to C fertilization indicates food resource 

limitation on bark and supports the suggestions made by the SRTS. 

All studies were conducted in the framework of the Biodiversity Exploratories 

(www.Biodiversity-Exploratories.de), a long-term and large-scale project investigating forest 

and grassland sites, established in three regions in Germany (the Swabian Alb, the Hainich and 

the Schorfheide-Chorin). The aim of the Biodiversity Exploratories is the investigation of the 

role of land use and management on biodiversity, ecosystem functions and services (Fischer et 

al. 2010b) 
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Abstract 

In this review we summarize our knowledge of using stable isotopes (15N/14N, 13C/12C) to better 

understand the trophic ecology of oribatid mites. Our aim is to (a) recapitulate the history of 

stable isotope research in soil animals with a focus on oribatid mites, (b) present new stable 

isotope data for oribatid mites and the current state knowledge of oribatid mite trophic niche 

differentiation, (c) compile problems and limitations of stable isotope based analyses of 

trophic relationships and (d) suggest future challenges, questions and problems that may be 

solved using stable isotope analyses and other novel techniques for improving our 

understanding on the trophic ecology of soil invertebrates. We conclude that (1) in addition 

to 15N/14N ratios, 13C/12C ratios contribute to our understanding of the trophic ecology of 

oribatid mites, allowing e.g., separation of lichen- and moss-feeding species, (2) there likely are 

many lichen but few moss feeding oribatid mite species, (3) oribatid mite species that are 

endophagous as juveniles are separated by their stable isotope signatures from all other 

oribatid mite species, (4) fungivorous oribatid mite species cannot be separated further, e.g., 

the fungal taxa they feed on cannot be delineated. A particular problem in using stable isotope 

data is the difficulty in determining signatures for basal food resources since decomposing 

material, fungi and lichens comprise various components differing in stable isotope 

signatures; 13C/12C ratios and potentially other isotopes may help in identifying the role of 

these resources for decomposer animal nutrition.  

1. The history of the use of stable isotopes in soil food web analysis 

Terrestrial soil ecologists came rather late to the use of stable isotope ratios (mainly 15N/14N 

and 13C/12C) to analyze the structure of food webs. When we started with our now frequently-

cited study about stable isotope ratios (15N/14N) in soil-living oribatid mites (Schneider et al. 

2004) in 2003, stable isotopes had been used for decades to study trophic relationships in 

marine (Minagawa and Wada 1984, Sholto-Douglas et al. 1991) and freshwater systems (Gu et 

al. 1994, Hall 1995). In soil systems the seminal papers by Ponsard and Arditi (2000) and Scheu 

and Falca (2000) used stable isotopes (15N/14N and 13C/12C) for the first time to analyze the 

trophic structure of soil animal food webs in a comprehensive way. The results of these two 

studies indicated that food chains in soil are rather short, with decomposers being clearly 

separated from predators, but they suggested strong variation in the trophic position of 

species of both decomposers and predators.  
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Stable isotopes have been used not only to study trophic levels in food webs but also to 

investigate the trophic ecology of specific taxonomic groups, e.g., earthworms (Martin et al. 

1992), seabirds (Hobson et al. 1994), pinnipeds (Hobson et al. 1997), amphibians (Altig et al. 

2007) and lizards (Struck et al. 2002). Their application to soil animals started in the 1980s with 

the investigation of termites (Boutton 1983, Tayasu 1998) and was continued by studies on 

ants (Blüthgen et al. 2003) and earthworms (Schmidt and Ostle 1999). The results indicated 

marked trophic niche separation of the respective species. It was not until 2004 that stable 

isotopes were used to delineate trophic niches of a major group of putatively saprophagous 

soil mesofauna, the oribatid mites (Schneider et al. 2004), and one year later this study was 

followed by a similar investigation of Collembola (Chahartaghi et al. 2005). A third study 

focusing on the predatory soil mesofauna, i.e. mesostigmate (gamasid) mites, is pending (B. 

Klarner, unpublished data).  

Only nine species of oribatid mites were included in the stable isotope study of Scheu and 

Falca (2000) and none in that of Ponsard and Arditi (2000). Therefore, in Schneider et al. 

(2004) we chose to investigate the stable isotope ratios (15N/14N) of oribatid mite species of 

forests in a comprehensive way, by including all major taxa and comparing different forests. 

Further, for investigating variations in stable isotope ratios between habitats and between 

developmental stages we included oribatid mites from different microhabitats, e.g.,, the bark 

of trees, and analyzed both adults and juveniles of some species. For delineating the baseline, 

potential food resources of decomposer species were investigated.  

The use of stable isotopes for studying food webs was introduced by DeNiro and Epstein 

(1981), Minagawa and Wada (1984) and Wada et al. (1991). They found that the trophic 

structure of animal communities can be evaluated by analyzing the natural variation in 15N/14N 

and 13C/12C ratios. On average, animal tissues are enriched in 15N compared with their food 

source by about of 3.4 δ units per trophic level and in 13C by about 1 δ unit (Post 2002). This 

allows fast and standardized evaluation of the trophic structure of animal food webs even if 

little is known of predator - prey relationships. This is particularly advantageous for analyzing 

food web structure of cryptic communities like those in soil. Stable isotope analysis is 

particularly powerful in opening the structure of soil animal food webs if combined with other 

recently developed methods for analyzing food webs, such as fatty acid analysis (Chamberlain 

et al. 2004, Ruess et al. 2004, 2005a) and molecular gut content analysis (King et al. 2008), as 

these methods allow closer identification of trophic links. Similar to fatty acid analysis, but in 

contrast to molecular gut content analysis, stable isotope ratios of animal tissue reflect 

nutrition over long periods of time, allowing the delineation of general characteristics of the 
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trophic structure of food webs. Further, variations in 13C/12C ratios of food resources, e.g., 

between C3 and C4 plants, allow us to trace the transfer of carbon from major resources 

through animal food webs (Oelbermann et al. 2008, Pringle and Fox-Dobbs 2008).  

2. Uncovering the trophic structure of oribatid mite communities 

The analysis of the stable isotope ratios of nitrogen (15N/14N) and carbon (13C/12C) has 

contributed significantly to our understanding of the trophic structure of soil animal taxa and 

this started with the detailed analysis of oribatid mites (Schneider et al. 2004). First and most 

important, this study showed that stable isotope ratios of nitrogen in this single taxonomic 

group of soil invertebrates vary to an extent that was entirely unexpected. In fact, the results 

indicated that oribatid mites span about four trophic levels, similar to what had been 

suggested previously for the total invertebrate soil animal food web of deciduous forests 

(Scheu and Falca 2000). This is highly incongruent with the common practice of lumping 

oribatid mites into a single trophic group and indicates that soil food webs based on such 

coarse taxonomic units lack realism and represent caricatures of nature. 

Early studies based on physical gut content analyses and direct observation had already 

suggested that "mycophagous" soil invertebrates like oribatid mites in fact are trophically 

diverse and include species living as predators, scavengers, algal and lichen feeders (e.g., 

Walter 1987), but the findings remained somewhat anecdotal and were largely ignored. Using 

stable isotope analysis, and analyzing a wide range of oribatid mite species living in the same 

habitat, the study of Schneider et al. (2004) confirmed these observations and thereby 

received considerable attention. Based on oribatid mites sampled in different forests the study 

brought realism into previously scattered investigations of the feeding mode of decomposer 

soil mesofauna. Much previous knowledge derived from laboratory observations of species 

kept under artificial conditions and offered food materials without choice. For example, mites 

of the genus Hypochthonius were shown to consume fungi (Maraun et al. 1998) and algae 

(Norton and Behan-Pelletier 2009), but also living and dead animals, i.e. they can function as 

predators or necrophages (Riha 1951). High 15N/14N ratios of Hypochthonius rufulus in the 

study of Schneider et al. (2004) suggest that this species in fact predominantly lives on an 

animal diet, presumably nematodes or other small and slow moving soil invertebrates which 

these rather slow moving mites are able to catch, or on their dead remains. Similarly, stable 

isotope analyses support early assumptions of the diet of the bark-living species Mycobates 

parmeliae, which was been named after lichens of the genus Parmelia in which it is often 
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found. Lichens are characterized by very specific stable isotope signatures (low 15N/14N and 

high 13C/12C ratios), which separate lichens from most other food resources (Fischer et al. 

2010); therefore, oribatid mite species with signatures close to the lichens in which they live 

are likely to also feed on them. 

One of the remarkable findings of Schneider et al. (2004) was that a given oribatid mite 

species appears to occupy a very similar trophic niche even if living in rather different forests. 

Earlier findings based on stable isotope ratios suggested that trophic niches of soil 

invertebrates also differ little with soil depth (Scheu and Falca 2000). Further, Schneider et al. 

(2004) found little difference between signatures of adult and juvenile oribatid mite species, 

suggesting that trophic niches change little during ontogeny. Overall, these results point to a 

remarkable constancy of trophic niches in oribatid mites and presumably also other soil 

mesofauna, such as Collembola (Chahartaghi et al. 2005). Constancy and discreteness of 

trophic niches is particularly surprising considering the wide range of food materials of 

decomposer soil invertebrates, such as oribatid mites and Collembola, consume if offered in 

the laboratory (Ruess et al. 2005a). The similarity of a species’ stable isotope signature in 

different habitats (calibrated to stable isotope ratios of the predominant litter material) and in 

different studies further indicates that trophic niches vary little over time. Temporal constancy 

also is surprising as litter materials enter the decomposer system in a pulsed way - particularly 

in temperate forest ecosystems - and are colonized and broken down by a succession of 

different fungal species (Hudson 1968, Hayes 1979, Osono 2007). However, detailed data on 

temporal changes in stable isotope signatures in soil animal species remains scarce, so general 

conclusions on changes in trophic niches in time and space are difficult to draw. Also, the 

conclusion that trophic niches of oribatid mite species change little during ontogeny may be 

premature and needs further investigation. Generally, little is known about differences in 

feeding habits between juveniles and adults in oribatid mites and other soil invertebrates; 

stable isotope analyses may be particularly helpful in elucidating if marked changes in 

morphology in phylogenetically derived species - such as brachypyline oribatid mites - are 

associated with shifts in diets.  

Recent analyses of stable isotope signatures of bark-living oribatid mites (Erdmann et al. 

2007) support the conclusion of Schneider et al. (2004) that individual species occupy distinct 

trophic niches. However, as with soil species, the exact food materials of bark-living species 

remains unclear; their stable isotope ratios do not match the signatures of potential food 

resources analyzed so far, indicating that they feed on cryptic resources, potentially algae or 

filamentous fungi that decompose bark residues. Surprisingly, we could not ascribe a single 
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oribatid mite species to moss-feeding despite their collective common name, “moss mites”. 

Mosses are characterized by low 13C/12C and 15N/14N ratios (Bokhorst et al. 2007, Fischer et al. 

2010), which should allow identification of their consumers.  

3. Recent progress  

In Figure 1 we summarize recently obtained stable isotope data (15N/14N; 13C/12C) from the bark 

of trees (Fischer et al. 2010) and from soil (G. Erdmann, unpublished data). Compilation of data 

from different habitats needs calibration as stable isotope ratios of primary producers may 

differ. We calibrated the data based on members of the genus Ceratozetes that occurred in 

both habitats; i.e. Ceratozetes gracilis from soil in the Hainich = Ceratozetes minutissimus from 

bark in Austria (in the figure only C. gracilis is indicated) since no species simultaneously 

occurred on the bark of trees and in soil. Using such a calibration the stable isotope data of the 

soil living oribatid mite species remained unchanged whereas the signatures of the bark living 

species were slightly changed. The δ15N values of bark itself and of oribatid mites from the 

bark are much lower than those from litter and soil, which agrees with Schneider et al. (2004) 

and Heethoff et al. (2009). 

The combined analysis of 15N/14N and 13C/12C ratios of oribatid mites indicates that both are 

useful in delineating the structure of soil and bark food webs and the identification of food 

resources of oribatid mites. Since 13C is only little enriched in consumers (Wada and Minagawa 

1984, Post 2002, Martinez del Rio et al. 2009), it has been dismissed as a useful indicator of the 

trophic structure of soil communities (Ponsard and Arditi 2000). However, as indicated by our 

compilation of data (Fig. 1) and others (Schmidt et al. 2004, Tiunov 2007), δ13C values in fact 

may be a valuable tool to disentangle the trophic structure of soil and bark living invertebrates. 

In combination with δ15N values this suggests that the differences in the species composition 

of arthropods living on bark and in soil correlate with differences in food resources. Further, as 

documented recently, δ13C values of decomposer animals may allow us to disentangle the 

components of the litter material that detritivorous animals actually feed on (Pollierer et al. 

2009). Also, the combined analysis of δ15N and δ13C values may help us to distinguish 

organisms feeding on saprotrophic fungi from those feeding on ectomycorrhizal fungi since 

ectomycorrhizal fungi are enriched in 15N and depleted in 13C, compared to saprophages 

(Hobbie et al. 2007, 2009).  
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δ13C values of oribatid mites have also presented surprises. Some oribatid mites, mainly in 

the Ptyctima but also in a few other taxa, such as the brachypyline genera Carabodes and 

Liacarus, are enriched in 13C (Fig. 1). It is known that Ptyctima and Carabodes species 

incorporate calcium carbonate to harden their exoskeleton (Norton and Behan-Pelletier 1991) 

and this probably is reflected in their 13C signature. Presumably, these species use CO2 from 

their metabolism and calcium-rich diets to form calcium carbonate minerals in their cuticle 

(Norton and Behan-Pelletier 1991). A similar process has been described in the earthworm 

Lumbricus terrestris but here the formed calcium carbonate minerals are excreted as granules, 

presumably enhancing metabolic CO2 discharge (Canti 2009). If the carbonate is removed from 

the mites by addition of dilute HCl prior to stable isotope analysis, the 13C signature decreases 

by about 4 δ units (M.M. Pollierer, unpublished data; see signatures of Steganacarus magnus 

in Fig. 1). Interestingly, oribatid mite adults with atypical signatures are endophagous as 

juveniles, burrowing in decaying woody substrates or hard fungal sporophores as e.g., many 

Carabodes species (Norton and Behan-Pelletier 2009). In future studies using stable isotope 

signatures of animals that incorporate calcium carbonate in their cuticle those species should 

always be measured before and after the addition of diluted HCl.  

Stable isotope fractionation in below ground food webs from food resources (litter, roots, 

soil) to consumers (decomposer animals) differs greatly from that of above ground food webs. 

Usually, the δ15N values of decomposers are only slightly higher than those of their resource, 

whereas the δ13C values are much higher (about 3-4 delta units). This enigma may at least in 

part be solved by the different stable isotope signatures of the respective food components 

that are included in litter, i.e. lignin, cellulose, starch, lipids, proteins and sugars (Bowling et al. 

2008). The δ13C values of those components differ by about six delta units, and consumers only 

assimilate some components explaining their strong enrichment. In the future it is therefore 

highly recommended to measure not just the stable isotope signatures of potential food 

resources of decomposer animals but also those of the respective components (Pollierer et al. 

2009).  

The naturally high δ13C values of C4 plants, such as maize, sorghum and sugar cane, can be 

used for tracer experiments. These plants can be grown in the laboratory or in the field and 

their shoots and/or roots can be exposed in experimental plots of C3 plants; this allows 

following their characteristic 13C signal in the soil microbial and animal food webs (Oelbermann 

et al. 2008, Schallhart et al. 2009). Establishing a litter-exchange experiment in the framework 

of the Swiss Canopy Crane Project (Körner et al. 2005) allowed separation of the role of leaf 
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litter and root-derived resources for soil animal nutrition, showing that most of the carbon 

incorporated by soil animals originated from roots rather than leaf litter (Pollierer et al. 2007). 

 

 

Fig. 1  Mean (± standard deviation) of 13C and 15N values of oribatid mite species and potential food 
resources (names underlined, in italics, symbols as open circles) in the Hainich forest in Germany and 
from a small forest stand in Fliess (Austria). Green circles group lichens and lichen feeders, mosses are 
marked in blue; decomposing material and primary decomposers are marked and circled in black; 
oribatid mite taxa that are endophagous as juveniles are marked and circled in brown; secondary 
decomposer/fungal feeding taxa are marked and circled in grey; and predatory/scavenging species are 
marked and circled in red; circles are drawn by eye. Using a calibration the stable isotope data of the soil 
living oribatid mite species remained unchanged, whereas the signatures of the bark living species were 
slightly changed (for details see text). See Table 1 for full names of oribatid mite species, potential food 
resources and number of replicates measured. Most data from mosses, lichens and lichen feeding 
oribatid mites (in green) are from Fischer et al. (2010); other data are from the Hainich, a beech forest in 
Germany (G. Erdmann, unpublished data). 
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Tab. 1  Oribatid mite species names; their abbreviations used in fig. 1; their taxonomic affiliation; and 
their potential food resources 

      

   species names abbrev. supraspecific 

  
groups* 

      

   oribatid mites 
  Hypochthonius luteus Oudemans, 1917 Hypo_lute Enarthronota 

Hypochthonius rufulus Koch, 1835 Hypo_rufu Enarthronota 
Steganacarus magnus (Nicolet, 1855)  Steg_magn Mixonomata 
Atropacarus striculus (Koch, 1835) Atro_stric Mixonomata 
Phthiracaridae; undetermined Phth_spp Mixonomata 
Nothrus silvestris Nicolet, 1855 Noth_silv Desmonomata 
Nothrus palustris Koch, 1839 Noth_palu Desmonomata 
Platynothrus peltifer (C.L. Koch, 1839) Plat_pelt Desmonomata 
Camisia biurus (Koch, 1839) Cami_biur Desmonomata 
Hermannia sp; undetermined Herm_sp Desmonomata 
Porobelba spinosa (Sellnick, 1920) Poro_spin Damaeoidea 
Damaeus  clavipes (Hermann, 1804) Dama_clav Damaeoidea 
Damaeus riparius Nicolet, 1855 Dama_ripa Damaeoidea 
Tritegeus bisulcatus Grandjean, 1953 Trit_bisu Cepheoidea 
Amerus polonicus Kulczynski, 1902 Amer_polo Ameroidea 
Liacarus xylariae (Schrank, 1803) Liac_xyla Gustavoidea 
Carabodes femoralis (Nicolet, 1855) Cara_femo Carabodoidea 
Carabodes coriaceus Koch, 1835 Cara_cori Carabodoidea 
Carabodes labyrinthicus (Michael, 1879). Cara_laby Carabodoidea 
Pantelozetes paolii (Oudemans, 1913) Pant_paol Oppioidea 
Tectocepheus spp.; undetermined Tect_spp Tectocepheoidea 
Cymbaeremaeus cymba (Nicolet, 1855) Cymb_cymb Cymbaeremaeoidea 
Micreremus brevipes (Michael, 1888) Micr_brev Licneremaeoidea 
Eupelops sp.; undetermined Eupe_sp Phenopelopoidea 
Achipteria coleoptrata (Linnaeus, 1758) Achi_cole  Achipteroidea 
Phauloppia rauschenensis (Sellnick, 1908) Phau_raus Oripodoidea 
Phauloppia lucorum (Koch, 1841) Phau_luco Oripodoidea 
Ceratozetes gracilis (Michael, 1884) Cera_grac Ceratozetoidea 
Chamobates voigtsi (Oudemans, 1902) Cham_voig Ceratozetoidea 
Chamobates cuspidatus (Michael, 1884) Cham_cusp Ceratozetoidea 
Mycobates parmeliae (Michael, 1884) Myco_parm Ceratozetoidea 
Galumna lanceata (Oudemans, 1900) Galu_lanc Galumnoidea 

   potential food resources 
  Xanthoria parietina (L.) 
 

lichen (Ascomycota) 
Physcia sp. 

 
lichen (Ascomycota) 

litter (Hanich forest) 
 

beech leaf litter  
mosses 

 
undetermined mosses from 

  
the bark of trees in Austria 

      

   * after Norton & Behan-Pelletier (2009)  
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4. Challenges for the future 

When searching in literature databases for “oribatida” and “stable isotopes” six papers appear, 

of which five are from our group in Göttingen (formerly Darmstadt). This indicates that despite 

the high citation of the Schneider et al. (2004) paper few researchers have taken up our 

approach (Bokhorst et al. 2007). Perhaps this is because the measurements are expensive, or 

access to stable isotope facilities is not available, or soil ecologists believe there is little more 

to learn. We encourage scientists to use this methodology as it may help to answer some of 

the most persistent questions in soil animal ecology.  

(1) The factors responsible for the high diversity of soil animal species on small spatial 

scales are still little understood. The contribution of generalist vs. specialist species to oribatid 

mite diversity needs considerable further attention (Maraun et al. 2003). Some oribatid mite 

species indeed appear to be trophic specialists, for example by predominantly feeding on 

lichens (e.g., Mycobates parmeliae; Fischer et al. 2010) or basidiomycete fungi (e.g., 

Haffenrefferia gilvipes, Caleremaeus monilipes and some species of Carabodes; D. Augustin 

and M. Maraun unpublished data, Matthewman and Pielou 1971, O’Connell and Bolger 1997). 

Additionally, the almost exclusive colonization of bark or the canopy region by some oribatid 

mite species (e.g., Carabodes labyrinthicus and Dometorina plantivaga, respectively; Wunderle 

1992) may be due to trophic specialization. Further, the rather unique oribatid mite fauna in 

suspended soils on trees and rocks may reflect the presence of food resources that are only 

present in these microhabitats (Lindo and Winchester 2006, 2008). Some oribatid mite species, 

such as Trichoribates novus, Scheloribates laevigatus, Passalozetes africanus and Passalozetes 

intermedius, predominantly occur in arable systems and grassland, and this also may have a 

trophic basis (Fischer et al. 2010). 

(2) There is very little overlap in the species composition of oribatid mites between 

temperate and tropical regions (Maraun et al. 2007), implying that despite their small size not 

every mite is everywhere (cf. Fenchel et al. 1997). One explanation for the lack of similarity 

may be trophic niche differentiation. Oribatid mites in tropical forests may feed on VAM fungi 

whereas oribatid mites of temperate regions may feed mainly on saprotrophic and 

ectomycorrhizal fungi. This hypothesis might be tested by using stable isotope signatures since 

saprotrophic and ectomycorrhizal fungi (and presumably also VAM fungi) have different stable 

isotope signatures (Hobbie et al. 2007). However, this approach is hampered by the difficulty 

in getting stable isotope data from hyphae of saprotrophic and mycorrhizal fungi (Tiunov 

2007).  
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(3) A particularly promising approach is combining stable isotope and fatty acid analysis 

using fatty acid stable isotope probing (Chamberlain et al. 2004, 2006; Haubert et al. 2009). 

Recent studies suggest that fatty acids can be traced over several trophic levels (Pollierer et al. 

2010) and analyzing signatures of individual fatty acids in food chains may allow a much more 

detailed understanding of, e.g., the role of different basal resources, such as plant litter, 

bacteria and fungi, in soil animal food webs.  

(4) In addition to using the natural variation of stable isotopes for the study of the trophic 

ecology of soil invertebrates, materials with exceptional stable isotope signatures and 

materials enriched with (or depleted in) stable isotopes can be used in laboratory and field 

experiments, e.g., beech litter can be labeled with δ15N (Zeller et al. 2000) and this signature 

can be traced in the soil animal food web.  

To follow the carbon signal through a food web, C4 plants (maize, sorghum, sugar cane) and 

their residues can be used. Furthermore, the plants themselves can be labeled using 13CO2, 

which allows following the carbon signal from the plant into the rhizosphere as has been done 

for certain systems by Ruf et al. (2006) and Pollierer et al. (2007). The approach may help us 

understand under which conditions, and in which ecosystems, the soil animal food web 

predominantly relies on above- and belowground resources.  

(5) Stable isotopes also may be used to investigate the transfer of carbon and nitrogen 

among different habitats and ecosystems. For example, a sugar cane field may be close to a 

forest and animals that are linked trophically to one (or both) systems can be distinguished. 

This may also work for transition zones between aquatic and terrestrial systems by tracing the 

signatures of allochthonous and autochthonous resources, e.g., in recently deglaciated regions 

(Kaufmann 2001), in glacial streams (Zah et al. 2001) and islands (Polis et al. 1997), and for 

separating aboveground from belowground systems (Bardgett et al. 2005). Furthermore, by 

labeling certain fungal or bacterial species it may be possible to distinguish bacterial and fungal 

food chains in soil.  

(6) Finally, it is also important to find out factors that determine the isotopic compositions 

of whole animal bodies, e.g., dietary routing or food-tissue fractionation. Dietary routing 

implies that e.g., fatty acids are incorporated into consumer tissues without modification 

which has been shown for soil fungi and their grazers (Ruess et al. 2004). This in turn likely 

affects the fractionation of stable isotopes per trophic level. The stable isotope fractionation 

from the food resource to the consumer tissue may also differ greatly, e.g., the δ13C values of 

the fat body of Glomeris marginata (Diplopoda) are about three delta units (13C) lower than 

those of the tergites indicating that the fractionation differs considerably between the 
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different body tissues (M.M. Pollierer, unpublished data). Only some of that information can 

be obtained from descriptive studies; experimental approaches (i.e. laboratory feeding 

experiments) are needed to gain those data.  

5. Limitations and caveats 

The analysis of stable isotopes (15N/14N and 13C/12C) of oribatid mites is a success story that 

significantly contributed to our understanding of soil food webs, but it has limitations. While 

the method allows detection of trophic niches, it is of limited use for identifying precise food 

resources. This would be possible only if a resource had an unusual signature, e.g., bark living 

lichens, and if few other resources are available. Furthermore, the trophic levels are not 

distinct, e.g., some species in the middle of the trophic chain may be fungivorous but also may 

live as predators feeding on detritivores. Furthermore, since an individual’s stable isotope 

signature integrates the assimilated food of weeks or months, important switches in food 

resources may be unnoticed. In addition, similar signatures can have different causes; e.g.,, an 

increase in 3.4 δ units may result from feeding on a single resource one trophic level below the 

consumer, but also from a mixture of food resources with an average 15N signature 3.4 δ units 

below that of the consumer. Therefore, the role of omnivory in soil animal food webs may be 

difficult to evaluate, but inspecting the standard deviation of stable isotope signatures may 

give hints on variations in the diet of consumers (Bearhop et al. 2004).  

To conclude, the analysis of stable isotope ratios was and still is a very powerful method for 

understanding trophic niches of soil animal species and the trophic structure of soil 

invertebrate communities. Further, it allows us to evaluate basal resources of soil animal food 

webs and the role of trophic niches for animal diversity in ecosystems and microhabitats. We 

predict that the method will contribute significantly to illuminating these most pertinent issues 

in soil animal ecology in the near future. Their combination with other recently introduced 

methods, such as fatty acid and molecular gut content analyses, is about to revolutionize our 

understanding of the structure and functioning of the decomposer system.  
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Appendix 

 

 

 

 

  Species No. of 
replicates 

Mean no. of 
individuals 

per replicate 

Dry weight 
per individual 

(mg) 
          

     Enarthronota 
    Hypochthonioidea Hypochthonius luteus Oudemans, 1917 7 23,7 0,00509 

 
Hypochthonius rufulus C.L. Koch 1835 9 9,8 0,01798 

Mixonomata 
    Phthiracaroidea Atropacarus striculus (C.L. Koch, 1835) 12 43,3 0,00785 

 
Phthiracarus spp. 6 6,4 0,06564 

 
Steganacarus magnus (Nicolet, 1855) 14 2,4 0,13856 

Desmonomata 
    Crotonioidea Nothrus palustris C.L. Koch, 1839 3 2,3 0,05557 

 
Nothrus silvestris Nicolet, 1855 3 4,3 0,02162 

 
Platynothrus peltifer (C.L. Koch, 1839) 4 4,3 0,03359 

Hermannielloidea Hermaniella sp. 5 5,2 0,02031 
Brachypylina 

    Damaeoidea Damaeus clavipes (Hermann, 1804) 2 2,0 0,30600 

 
Damaeus riparius Nicolet, 1855 12 2,8 0,10142 

Cepheoidea Tritegeus bisulactus Grandjean, 1953 2 1,5 0,33833 
Gustavioidea Liacarus xylariae (Schrank, 1803) 6 3,7 0,02959 
Carabodoidea Carabodes coriaceus C.L. Koch, 1835 2 3,0 0,05000 

 
Carabodes femoralis (Nicolet, 1855) 3 7,7 0,02370 

Tectocepheoidea Tectocepheus spp.  1 80,0 0,00150 
Oppioidea Oppiella spp. 9 167,8 0,00122 

 
Pantelozetes paolii (Oudemans, 1913) 5 12,4 0,00348 

Phenopelopoidea Eupelops hirtus (Berlese, 1916) 4 3,8 0,07240 

 
Eupelops plicatus (C.L. Koch, 1836) 8 3,0 0,03946 

Achipterioidea Achipteria coleoptrata (Linnè, 1758) 14 7,4 0,02271 
Galumnoidea Galumna lanceata Oudemans, 1900 3 2,7 0,06363 
Ceratozetoidea Ceratozetes gracilis (Michael, 1884) 11 7,0 0,01144 

 
Chamobates cuspidatus (Michael, 1884) 4 12,5 0,00436 

 
Chamobates voigtsi (Oudemans, 1902) 8 35,5 0,00379 

          
 

 
 
Appendix 1  Species, no. of replicates of stable isotope measurement for each species, mean number of measured 
individuals per replicate and mean dry weight (mg) per individual of the stable isotope data of the species from forest soil in 
Hainich (Germany) 
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Abstract 

Most European forests are managed by humans. However, the manner and intensity of 

management vary. While the effect of forest management on above-ground communities has 

been investigated in detail, effects on the belowground fauna remain poorly understood. 

Oribatid mites are abundant microarthropods in forest soil and important decomposers in 

terrestrial ecosystems. Here, we investigated the effect of four different forest types (managed 

coniferous forests; 30 y, 70 y old managed age class beech forests; natural beech forests) on 

the density, diversity and community structure of oribatid mites (Acari). The study was 

replicated at three regions in Germany: the Swabian Alb, the Hainich and the Schorfheide. For 

relating changes in oribatid mite community structure to environmental factors litter mass, pH, 

C and N content of litter, fine roots and C content of soil were measured. Density of oribatid 

mites was highest in the coniferous forests and decreased in the order 30 y and 70 y old, and 

natural beech forests. Mass of the litter layer and density of oribatid mites were strongly 

correlated indicating that the litter layer is the most important factor regulating oribatid mite 

densities. Diversity of oribatid mites was little affected by forest type indicating that they 

harbor similar numbers of niches. Species composition differed between the forest types, 

suggesting different types of niches. The community structure of oribatid mites differed more 

strongly between the three regions than between the forest types indicating that regional 

factors are more important than effects associated with forest type. 

1. Introduction 

Central Europe comprises old cultivated land, modified by humans since thousands of years. 

Different management regimes influenced today’s fauna and flora. Today about 30% of Central 

Europe is covered by forests (European Environment Agency 2005). The overwhelming part of 

forest areas in Europe is subject to silviculture. The major form of forest management type is 

age-class forest (Fischer et al. 2010). These forests lack variability in age structure and stand 

composition. For economic reasons managed forests are dominated by beech, oak, pine and 

spruce (Ellenberg 1996). Beech is the natural occurring and most common tree species in 

central Europe, in contrast to spruce which was introduced into lowland ecosystems. In dry 

lowland regions pine was planted instead of spruce (Ellenberg 1996).  
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Silvicultural practices alter natural succession processes and decrease spatial heterogeneity 

of resources and environmental conditions (Halpern and Spies 1995). Thinning, harvesting and 

hauling of mature trees take place in managed forests causing drastic disturbances. The type 

of forest management affects plant diversity (Halpern and Spiess 1995) and community 

structure of aboveground animals, such as carabid beetles (Werner and Raffa 2000; Niemelä et 

al. 2007) and spiders (Brennan et al. 2006). Furthermore, ant, carabid beetle and spider 

diversity increase with increasing forest age (Niemelä et al. 1996). Paillet et al. (2010) found an 

overall increase in species richness in natural temperate and boreal forests in Europe in 

comparison to managed forests with bryophytes, lichens, fungi, saproxylic beetles and carabids 

being most affected. However, the effect of different forest management types on 

belowground organisms has been little studied (but see e.g. Lindo and Visser 2004; Cassagne 

et al. 2006). Forest management may reduce soil organic matter, increase soil compaction, 

change plant cover and modify microclimate. All of these effects affect the distribution, 

composition and activity of soil animal communities (Marshall 2000).  

Despite the seemingly homogeneous habitat soil organisms live in (Giller 1996), the 

diversity of soil animals is very high. This phenomenon has been termed the “enigma of soil 

animal diversity” (Anderson 1975). Especially the microarthropod taxa, such as Collembola and 

oribatid mites (Acari), have a high diversity with about 100 species in European forests (Norton 

and Behan-Pelletier 2009). Moreover, oribatid mites are abundant in virtually any forest 

reaching densities between 20,000 ind./m² in base rich forests and 200,000 ind./m² in acidic 

forests (Maraun and Scheu 2000). Oribatid mites are mainly decomposers feeding on dead 

organic material and fungi; however, recently is has been postulated that they also live directly 

or indirectly from rhizosphere carbon (Pollierer et al. 2007), feed on lichens (Erdmann et al. 

2007), as well as on dead or living animals (Maraun et al. 2011; Heidemann et al. 2011). Stable 

isotope signatures indicate that they span about three to four trophic levels including 

decomposers, fungal feeders, scavengers and predators (Schneider et al. 2004). 

The aim of this study was to identify general patterns of the effect of forest management 

and forest type on density, diversity and community structure of soil living oribatid mites in 

four different forest types: 30 y and 70 y old beech forests (Fagus sylvatica), natural beech 

forests (mature trees being approx. 120 y old) and 70 y old coniferous forests at large 

geographic ranges in Central Europe. The study was replicated at three regions in Germany; 

the Swabian Alb (Baden-Wuerttemberg), the Hainich (Thuringia) and the Schorfheide 

(Brandenburg) spanning a latitudinal gradient of more than 500 km. Due to soil and climate 
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conditions coniferous forests in the Hainich and Alb consist of spruce (Picea abies) and in 

Schorfheide of pine (Pinus sylvestris).  

We hypothesized that (1) oribatid mite density is highest in forests with thick organic layers 

(i.e., in acidic coniferous forests) providing habitat and food; (2) the diversity of oribatid mites 

is highest in unmanaged (natural) forests due to low disturbance and high microhabitat 

diversity and heterogeneity; and (3) the community structure of oribatid mites differs between 

forest types providing different types of niches.  

2. Materials and Methods 

2.1. Study sites 

We used experimental forest sites at three regions in Germany selected for long-term 

monitoring in the framework of the Biodiversity Exploratories, an integrative ecosystem 

research project (www.biodiversity-exploraties.de). The regions are located in the Swabian 

Alb, a low-mountain range in South-Western Germany (460-860 m a.s.l.), the Hainich, a hilly 

region in central Germany (285-550 m a.s.l.), and the Schorfheide, a glacial formed landscape 

in North-Eastern Germany (3-140 m a.s.l.). Parent rock is Jurassic shell limestone in the 

Swabian Alb, Triassic limestone in the Hainich and glacial till in the Schorfheide. Soil types at 

the study sites in the Swabian Alb are mainly Cambisols and partially Leptosols. In the Hainich 

Luvisol represent the main soil type and to a lesser extent Cambisol and Stagnosol. The 

Schorfheide is dominated by Cambisols interspersed with Luvisols (Fischer et al. 2010). Acidity 

of the soil ranged from pH 3.3 ± 0.19 in the Schorfheide to 4.51 ± 0.72 in the Swabian Alb to 

4.59 ± 0.67 in the Hainich. The mean annual precipitation in the Swabian Alb is 700-1000 mm 

with a mean annual temperature of 6-7°C; respective values at the Hainich and the 

Schorfheide are 500-800 mm and 6.5-8°C, and 500-600 mm and 8-8.5°C. More details on the 

Biodiversity Exploratories are given in Fischer et al. (2010). 

2.2. Sampling design 

Four forest types were investigated in each of the three regions, including approximately 70 y 

old coniferous forests (Picea abies in the Swabian Alb and Hainich; Pinus sylvestris in the 

Schorfheide), 30 and 70 y old beech forests (Fagus sylvatica) and natural beech forests with 

mature trees being 120 to 150 y old. The coniferous forests as well as the 30 and 70 year old 
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beech forests were planted forests (=age class forests); the natural forests were taken out of 

management at different dates (for details see Fischer et al. 2010).  

Soil samples were taken in April and May 2008. The four forest types were replicated four 

times in each of the three regions resulting in 48 sampled forests. The forests were at least 1 

km aside from each other. In each forest two soil cores were taken from a 5 × 5 m square and 

pooled for statistical analysis. Soil cores were taken with a soil corer (5 cm Ø) and separated 

into organic and soil layer (4 cm thickness). Soil animals were extracted by heat (Macfadyen 

1961) from both layers separately but data were pooled for the statistical analyses. Until 

determination animals were stored in 70% ethanol. Adult oribatid mites were determined 

using Weigmann (2006). Suctobelbidae and Brachychthoniidae were determined to family-

level; juvenile oribatid mites were counted.  

2.3. Environmental factors 

The litter layer of the soil cores used for arthropod extraction was weighed after drying during 

heat extraction. Soil pH of the soil cores was measured in 0.01 M CaCl2 solution. Carbon and 

nitrogen content of the litter and of fine roots, taken out of the soil cores after heat extraction, 

as well as carbon content of the soil were measured with an elemental analyzer (NA 1500, 

Carlo Erba, Milan). 

2.4. Statistical analysis 

Data of oribatid mite density and diversity were log transformed (counted data) or arc-sine 

transformed (proportional data) to improve homogeneity of variances and normal distribution; 

and analyzed using two-factorial ANOVA with the factors region (Swabian Alb, Hainich, 

Schorfheide) and forest type (coniferous forest, beech 30 y old, beech 70 y old, natural beech 

forest). In case of significance post-hoc tests (Tukey’s HSD) were performed to inspect 

differences between means. Means and standard deviations given in text and figures are 

based on untransformed data. Correlations of oribatid mite density with environmental factors 

were tested using Pearson Correlation. ANOVA and correlations were calculated with 

STATISTICA 9.1 software package (Statsoft, Tulsa, USA). 

The impacts of different levels of the treatments forest type and region on oribatid mite 

community composition were analyzed separately conducting two Discriminant Functional 

Analyses (DFA) following the procedure given in Tiunov and Scheu (2000). Species which 

occurred in less than four plots were excluded from the analysis. The DFA was performed using 

STATISTICA 9.1 software package (Statsoft Tulsa, USA). Multidimensional scaling (MDS) was 
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carried out prior to DFA to reduce the number of dimensions. Reduction to six dimensions was 

the best solution to minimize dimensions. Forest type or region were used as grouping 

variables in DFA and Squared Mahalanobis Distances between group centroids and the 

reliability of the sample classifications were determined. The extracted significant roots were 

correlated (Pearson) with environmental data to identify factors which are responsible for 

differences between forest types and regions. 

Ordination techniques were applied to correlate species and environmental factors 

structuring the communities in the regions and forest types. For Canonical Correspondence 

Analysis (CCA) species (present in at least 4 independent samples) and environmental data 

were log-transformed; forest types were coded as supplementary variables. CCA was 

performed using CANOCO 4.5 (Jongman et al. 1995; Braak and Smilauer 2002). 

3. Results 

3.1. Oribatid mite density 

Oribatid mite density (adults and juveniles together) differed significantly between the four 

forest types (F3,36 = 7.36; p < 0.001; Fig. 1), it decreased from coniferous forests (117.352 ± 

74.266 ind./m²) over 30 y old beech forests (59.920 ± 38.721 ind./m²) and 70 y old beech 

forests (53.683 ± 53.953 ind./m²) to natural beech forests (32.985 ± 17.134 ind./m²). Oribatid 

mite densities did not differ significantly between the three regions (F2,36 = 2.61; p = 0.09; 

59.814 ± 45.126, 53.451 ± 61.725 and 84.690 ± 64.799 ind./m² for the Swabian Alb, Hainich 

and Schorfheide, respectively).  

The proportion of juveniles (approx. 25% of all individuals) did not differ significantly 

between forest types (F3,36 = 1.08; p = 0.37) but between the regions (F2,36 = 6.49; p = 0.004). 

The proportion of juveniles was at a maximum in the Schorfheide with 32.5% ± 13.0 and 

significantly lower in the Swabian Alb with 19.3% ± 10.4, with the proportion in the Hainich 

being intermediate 23.1% ± 9.4 (and not significantly different from the two other regions). 

Oribatid mite density was positively correlated with the mass of litter layer (r² = 0.18, p = 

0.003), the concentration of carbon in litter (r² = 0.12, p = 0.015) and the concentration of 

carbon in soil (r² = 0.10, p = 0.026), and negatively correlated with pH (r² = 0.23, p = 0.001), 

concentration of nitrogen in fine roots (r² = 0.14, p = 0.01) and concentration of nitrogen in 

litter (r² = 0.11, p = 0.03). 
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3.2. Species numbers of oribatid mites 

Overall, 114 species of oribatid mites were found. The total number of species was highest in 

the Swabian Alb (78), lower in the Schorfheide (65), and lowest in the Hainich (57), with on 

average 79 and 78 species in coniferous and 30 y old beech forests, respectively, and 64 

species in both the 70 y old and natural beech forests. The average number of species per soil 

sample differed significantly between forest types (F3,36 = 3.02, p = 0.04). Although the total 

number of oribatid mites was highest in the Swabian Alb, lower in the Schorfheide and lowest 

in the Hainich, the average number of oribatid mite species per sample did not differ between 

regions (F2,36 = 0.08, p = 0.92), but variations with forest type differed between regions 

(significant region × forest type interaction; F6,36 = 3.77, p = 0.005), with the number of oribatid 

mite species per sample being highest in the coniferous forests of the Swabian Alb and lowest 

in the 70 y old and natural beech forests of the Schorfheide (Fig. 2). 

Fig. 1  Oribatid mite density in different forest types (Conif = coniferous forest; B30 = 30 y old 
beech forest; B70 = 70 y old beech forest; Bnat = natural beech forest). Boxes indicate the 25th and 
75th percentile, the line in the box marks the median, whiskers map the 90th and 10th percentile; 
dots display outliers; different letters indicate significant differences between means (Tukey's 
Honestly Significant Difference test, p < 0.05). 
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3.3. Community structure of oribatid mites  

Oribatid mite communities differed significantly between the four forest types (DFA: Wilk’s 

Lambda = 0.21, F18,110 = 4.57, p < 0.0001). The first of three extracted roots was significant and 

the oribatid mite communities of the forest types were separated along this axis. Oribatid mite 

communities of coniferous forests differed significantly from beech forests; but also among 

beech forests they differed significantly between 30 y old forests and natural forests. 

Generally, oribatid mite communities changed gradually from coniferous forests over 30 y old 

beech forests and 70 y old beech forests to natural beech forests. The mass of litter layer 

correlated positively (r²=0.21, p=0.001) and nitrogen concentrations in fine roots correlated 

negatively (r²=0.118, p=0.017) with the first DFA root. 

Oribatid mite species compositions also significantly differed between the three regions 

(DFA: Wilk’s Lambda = 0.02, F12,80 = 32.63, p < 0.0001). The oribatid mite community of the 

Schorfheide was separated along the first root from the other regions (Mahalanobis Distance 

(MD) between Schorfheide and Swabian Alb 41.37, F6,40 = 49.03, p < 0.0001, and between 
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Fig. 2  Number of oribatid mite species per sample in the three 
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Schorfheide and Hainich 32.97, F6,40 = 39.08, p < 0.0001). The second root separated Hainich 

and Swabian Alb (MD = 17.06, F6,40 = 20.22, p < 0.0001). Soil pH correlated negatively with the 

first root (r²=0.524, p<0.001) and positively with carbon concentrations in fine roots (r²=0.205, 

p=0.001). The second root correlated negatively with mass of litter layer (r²=0.184, p=0.002) 

and positively with nitrogen concentrations in fine roots (r²=0.106, p=0.024). 

Oribatid mite community varied most between the three regions but not between forest 

types (Canonical Correspondence Analysis, CCA; Fig. 3). Along the first CCA axis Schorfheide 

was separated from Swabian Alb and Hainich. Among environmental factors soil pH correlated 

closest with the first axis with higher acidity in the Schorfheide and more alkaline conditions in 

the Swabian Alb and Hainich. Oribatid mite communities of the Swabian Alb and Hainich also 

differed and were separated along the second axis. The second axis correlated closely with 

mass of litter layer with higher values in the Swabian Alb than the Hainich than in the 

Schorfheide, and with concentrations of carbon and nitrogen in fine roots with higher values in 

the Hainich than in the Swabian Alb. Some oribatid mite species analyzed in the CCA 

exclusively occurred in one of the three Biodiversity Exploratories: Chamobates subglobulus, 

Microtritia minima and Oppiella propinqua only occurred in the Schorfheide, Oppiella obsoleta 

and Tectocepheus minor only in the Hainich, and Quadroppia hammerae and Tectocepheus 

velatus velatus only in the Swabian Alb. 

In each of the three regions oribatid mite community composition in coniferous forests 

differed from that in beech forests. CCA indicated that this is due to lower pH in soil and higher 

mass of litter layer in coniferous forests. Coniferous forests were characterized by the oribatid 

mite species Chamobates borealis, Phthiracarus longulus, Platynothrus peltifer, Tectocepheus 

velatus alatus (except in the Swabian Alb) and high densities of Brachychthoniidae and 

Suctobelbidae. Oribatid mite species typical for 70 y old and natural beech forests were 

Atropacarus striculus, Ceratozetes gracilis (except in the Schorfheide), Chamobates cuspidatus, 

Damaeus riparius and Steganacarus magnus. The oribatid mite community in coniferous 

forests in Schorfheide (pine) differed from each of the other sites with high abundances of 

Adoristes ovatus, Carabodes labyrinthicus, Carabodes ornatus, Oppiella propinqua and 

Tectocepheus velatus sarekensis. Coniferous forests in Schorfheide were characterized by low 

soil pH, high mass of litter layer and low concentrations of nitrogen and carbon in fine roots. 
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4. Discussion 

4.1. Oribatid mite density 

Oribatid mite densities in the four forest types were highest in the coniferous forests 

(~120.000 ind/m²), lower in the 30 y old (~60.000 ind/m²) and the 70 y old (~50.000 ind/m²) 

beech forests and lowest in the natural beech forests (~30.000 ind/m²). High density of 

oribatid mites in coniferous compared to deciduous forests of the temperate zone have been 

reported before. Maraun and Scheu (2000) concluded that it is the humus form that affects 

oribatid mite densities with high densities in acidic mor and moder systems and low densities 

in base rich mull soils. A large number of biotic and abiotic factors correlate with the humus 

form including pH and presence of macroarthropods (Schaefer and Schauermann 1990), 

complicating disentangling causal mechanisms responsible for the differential density of 

oribatid mites. In our study oribatid, mite density correlated closely with the mass of litter 

layer suggesting that the thickness of the litter layer rather than the humus form determines 

oribatid mite densities (Migge et al. 1998; Osler et al. 2006). Forest type and tree species affect 

litter thickness thereby also affecting oribatid mite density. Similar to the correlation between 

mass of litter layer and oribatid mite density, soil pH also correlated with oribatid mite density, 

but the correlation was negative. Presumably, soil acidity does not directly affect oribatid mite 

densities, but via controlling the density of macro-decomposers in particular earthworms. As 

documented previously (Maraun and Scheu 2000; Migge-Kleian et al. 2006) oribatid mites also 

reach high densities in base-rich soils not colonized by earthworms indicating that the 

presence of earthworms reduces the density of oribatid mites. This scenario suggests that via 

soil pH parent rock affects colonization of earthworms (and other macro-decomposers) which 

in turn affects the thickness of the litter layer which eventually influences the density of 

oribatid mites (and other mesofauna; cf. Eisenhauer 2010). The litter layer is essential for 

oribatid mites as it functions both as habitat and as food resource (Ponge 1991; Schneider et 

al. 2004). 

Oribatid mite densities were negatively correlated with the concentration of nitrogen in 

litter and fine roots. Again, this might be due to high densities of macro-decomposers at those 

nitrogen-rich sites. As parent rock, litter quality essentially drives the density of macro-

decomposers including earthworms (Scheu et al. 2003; Salamon et al. 2005). Hence, by 

favoring macrodecomposers high quality litter may result in shallow litter layers; indeed, in the 

present study the mass of litter layer correlated negatively with concentrations of nitrogen in 

the litter and fine roots.  
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Oribatid mite densities were positively correlated with the concentration of carbon in soil. 

Apart from feeding on litter material and microorganisms living therein oribatid mites also 

acquire resources from the soil (Albers et al. 2006; Pollierer et al. 2007). A high proportion of 

carbon in soil, which may have originated from root exudates which in turn have supported 

the growth of fungi (Frey et al. 2003; Butenschoen et al. 2007; Broeckling et al. 2008), may 

have fostered fungal feeding oribatid mites.  

Unexpectedly, oribatid mite densities did not differ significantly between the three regions 

(Swabian Alb, Hainich, Schorfheide). This indicates that regional factors, such as precipitation, 

altitude and temperature, which differ between the regions (Fischer et al. 2010), affect 

oribatid mite densities less than forest type.  

The proportion of juvenile oribatid mites was highest in the Schorfheide. This is likely due to 

the high number of parthenogenetic species of the taxon Desmonomata (e.g., Nothrus 

sylvestris and Nanhermannia nana) in the Schorfheide. Those species develop slowly and have 

generation times of several years (Norton and Palmer 1991). Due to their slow development 

juvenile Desmonomata are present in high numbers throughout the year.  

4.2. Oribatid mite diversity 

Oribatid mite diversity varied little with forest type and region. Only in the coniferous forests 

in the Swabian Alb oribatid mite diversity was somewhat higher than in the 70 y old and 

unmanaged beech forests of the Schorfheide. Previous studies also found oribatid mite 

diversity to be little affected by forest stand age (Zaitsev et al. 2002) or tree species (Migge et 

al. 1998; Sylvain and Buddle 2010). The somewhat higher diversity of oribatid mites in the 

coniferous forests at the Swabian Alb might be related to planting spruce trees on base rich 

Cambisols, which may have increased the number of niches. The low species number in the 70 

y old unmanaged beech forests of the Schorfheide may at least in part result from the high 

density of Brachychthoniidae and Suctobelbidae which were not determined to species level.  

The diversity of oribatid mites and factors affecting it are still little understood (Anderson 

1978; Hansen 2000; Maraun et al. 2003). Results of the present study suggest that the number 

of (trophic) niches of oribatid mites in beech and coniferous forests in Central European 

forests is similar and little affected by forest management and forest type. The limited effect of 

forest management and forest type on soil living oribatid mite diversity contrasts strong 

effects on above ground organisms (Paillet et al. 2010). These differential effects deserve 

further attention.  
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4.3. Oribatid mite community structure 

Oribatid mite community composition differed between the coniferous and beech forests and 

between the young (30 y old) and the old (natural) beech forests. This suggests that the 

different forest types provide different niches for oribatid mites. Different niches are likely to 

be related to oribatid mite nutrition. It has been shown using a number of methods that 

oribatid mite species occupy very different trophic niches (Maraun et al. 2011; Schneider et al. 

2004; Koukol et al. 2009; Heidemann et al. 2011).  

Oribatid mite community structure in the beech forests changed gradually from the 30 y old 

over the 70 y old to the natural beech forests pointing to a slow but constant species turnover 

with ageing of the beech forests. This slow succession may be due to a parallel slow change in 

fungal and bacterial community structure (Visser 1995; Pennanen et al. 1999), but also in 

changes in the colonization by soil macrofauna (Scheu et al. 2003; Crow et al. 2009).  

Oribatid mite communities differed significantly between each of the three Exploratories. 

Although oribatid mites are poor dispersers (Berthet 1964; Ojala and Huhta 2001; Lehmitz et 

al. 2011) dispersal limitation is unlikely to be responsible for these differences as most oribatid 

mite species are widespread and have a palaearctic or holarctic distribution (Weigmann 2006). 

The clear differences in oribatid mite community structure between the three regions point to 

the existence of different niches in the respective systems. Oribatid mite community structure 

can be predicted (Maraun and Scheu 2000) indicating that these communities do not assemble 

by chance which supports the importance of different niches for the community structure of 

oribatid mites. However, the factors responsible for these different oribatid mite communities 

in the respective forests are still little understood. 

The oribatid mite communities of the four forest types within the investigated regions were 

more similar to each other than between regions. This points to the importance of regional 

factors, such as temperature, precipitation and parent rock, being more important as 

structuring forces for oribatid mite communities than forest types. Studying oribatid mite 

assemblages in forests of different harvesting regimes at local and regional scales Déchêne and 

Buddle (2009) also suggested regional factors to be superior to local factors.  

As indicated by CCA soil acidity was the most important environmental factor for oribatid 

mite communities. However, soil acidity unlikely affects oribatid mite communities directly 

since most oribatid mite species tolerate even very acidic conditions (Hagvar 1990). Rather, as 

discussed above, soil pH affects colonization of the forests by soil macro-decomposers and this 

affects oribatid mites via changes in the thickness of the litter layer. Further, soil pH affects soil 
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microorganisms (Baath and Anderson 2003; Dequiedt et al. 2011) which also is likely to affect 

oribatid mites.  

4.4. Conclusions 

Overall, oribatid mite density varied significantly with forest type, whereas the diversity and 

community structure of oribatid mites was little affected. The most important factor for 

oribatid mite density was mass of litter layer being at a maximum in coniferous forests and at a 

minimum in old-growth natural beech forests. This indicates that forest types changing the 

thickness of the litter layer and strongly affect oribatid mite densities. Among abiotic factors, 

soil acidity strongly affects oribatid mite community structure but this is likely due to indirect 

effects via affecting macro-decomposers, in particular earthworms, which detrimentally affect 

oribatid mites via bioturbation i.e., by reducing the thickness of organic layers and by mixing 

litter and mineral soil. Generally, variations in oribatid mite community structure were more 

pronounced at the regional scale (between the three regions), than at the local scale between 

forest types (within the regions).  
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Appendix 

Achi_cole – Achipteria coleoptrata (Linné, 1758); Ador_ovat – Adoristes ovatus (C.L. Koch, 

1839); Atro_stri – Atropacarus striculus (C.L. Koch, 1835); Bern_bica – Berniniella bicarinata 

(Paoli, 1908); Brach_sp. – Brachychthoniidae; Cara_laby – Carabodes labyrinthicus (Michael, 

1879); Cara_orna – Carabodes ornatus, Storkan, 1925; Cera_grac – Ceratozetes gracilis 

(Michael, 1884); Cham_bore – Chamobates borealis (Trägardh, 1902); Cham_cusp – 

Chamobates cuspidatus (Michael, 1884); Cham_subg – Chamobates subglobulus (Oudemans, 

1900); Cham_voig – Chamobates voigtsi (Oudemans, 1902); Dama_ripa – Damaeus riparius 

Nicolet, 1855; Diss_orna – Dissorhina ornata (Oudemans, 1900); Enio_minu – Eniochthonius 

minutissimus (Berlese, 1903); Eulo_riba – Eulohmannia ribagai (Berlese, 1910); Eupe_hirt – 

Eupelops hirtus (Berlese, 1916); Eupe_plic – Eupelops plicatus (C.L. Koch, 1835); Galu_lanc – 

Galumna lanceata (Oudemans, 1900); Hypo_lute – Hypochthonius luteus Oudemans, 1917; 

Hypo_rufu – Hypochthonius rufulus C.L. Koch, 1835; Meta_pulv – Metabelba pulverosa 

Strenzke, 1953; Micr_mini – Microtritia minima (Berlese, 1904); Micr_minu – Microppia minus 

(Paoli, 1908); Nanh_nana – Nanhermannia nana (Nicolet, 1855); Noth_silv – Nothrus sylvestris 

Nicolet, 1855; Oppi_falc – Oppiella falcata (Paoli, 1908); Oppi_nova – Oppiella nova 

(Oudemans, 1902); Oppi_obso – Oppiella obsoleta (Paoli, 1908); Oppi_prop – Oppiella 

propinqua Mahunka & Mahunka-Papp, 2000; Oppi_subp – Oppiella subpectinata (Oudemans, 

1900); Orib_calc – Oribatella calcarata (C.L. Koch, 1835); Orib_tibi – Oribatula tibialis (Nicolet, 

1855); Pant_paol – Pantelozetes paolii (Oudemans, 1913); Phth_comp – Phthiracarus 

compressus Jacot, 1930; Phth_glob – Phthiracarus globosus (C.L. Koch, 1841); Phth_laev – 

Phthiracarus laevigatus (C.L. Koch, 1844); Phth_lent – Phthiracarus lentulus (C.L. Koch, 1841); 

Phth_long – Phthiracarus longulus (C.L. Koch, 1841); Plat_pelt – Platynothrus peltifer (C.L. 

Koch, 1839); Poro_spin – Porobelba spinosa (Sellnick, 1920); Quad_hamm – Quadroppia 

hammerae Minguez, Ruiz & Subias, 1985); Quad_mons – Quadroppia monstruosa Hammer, 

1979 (sensu Minguez, Ruiz & Subias 1985); Quad_quad – Quadroppia quadricarinata (Michael, 

1885); Rhys_dupl – Rhysotritia duplicata (Grandjean, 1953); Sche_init – Scheloribates initialis 

(Berlese, 1908); Steg_herc – Steganacarus herculeanus Willmann, 1953; Steg_magn – 

Steganacarus magnus (Nicolet, 1855); Sucto_sp. – Suctobelbidae; Tect_alat – Tectocepheus 

velatus alatus Berlese, 1913; Tect_mino – Tectocepheus minor Berlese, 1903; Tect_sare – 

Tectocepheus velatus sarekensis Trägardh, 1910; Tect_vela – Tectocepheus velatus velatus 

(Michael, 1880) 
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Abstract  

Question: A number of theories have been proposed to explain the dominance of sexual 

reproduction in Metazoa. Using oribatid mites (Acari, Oribatida) as model organisms, we test 

the validity of the 'Structured Resource Theory of Sexual Reproduction' (SRTS) which suggests 

that limited resources result in the dominance of sexual processes, whereas ample resources 

favour parthenogenesis. Oribatid mites are mainly soil living animals that reproduce either 

sexually or by thelytoky.  

Key assumptions: Resource supply is reflected by animal density. Populations are controlled 

predominantly by bottom-up rather than top-down forces, such as predation, which is likely to 

be true for oribatid mites. 

Data studied: The relationship between oribatid mite density and the frequency of 

parthenogenetic reproduction was investigated at two spatial scales (1) regionally using data 

on oribatid mites from two different forests in Germany, and (2) globally compiling data on 38 

oribatid mite communities from different habitats.  

Conclusions: Predictions of the SRTS were supported at both scales, indicating that ample 

resources (as indicated by high population densities) in fact favour parthenogenetic 

reproduction.  

1. Introduction 

The perceived disadvantages of sexual compared to parthenogenetic reproduction are 

manifold and include, for example, the break-up of favourable gene combinations and the 

need to both find mating partners and produce male offspring (Maynard Smith, 1978). Despite 

these disadvantages, most species of animals reproduce sexually (Bell, 1982). Theories 

proposed to explain advantages and disadvantages of parthenogenetic and sexual 

reproductive modes might be viewed as either genetic (based on mutations) or ecological 

(based on species – environment interactions, including those with other species). Mutational 

theories state that parthenogens either accumulate detrimental mutations (Kondrashov’s 

hatchet; Kondrashov, 1988), or that in parthenogenetic populations mutation-free genotypes 

are more quickly lost than in sexual populations (Muller’s ratchet; Muller, 1964). Another 
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genetic theory assumes beneficial mutations to spread more quickly in sexual than 

parthenogenetic populations (Fisher-Muller-accelerated-evolution; Fisher, 1930; Muller, 1932). 

Ecological theories propose that strong biotic interactions foster sexual reproduction (Red 

Queen hypothesis; Jaenicke, 1978; Hamilton, 1980), or that spatially variable niches favor 

sexually produced offspring (Tangled Bank hypothesis; Ghiselin, 1974; Bell, 1982).  

These different and mutually exclusive theories led some authors to propose that multiple 

theories are needed to explain the various aspects associated with sexual reproduction (West 

et al., 1999). However, the recent structured resource theory of sexual reproduction' (SRTS; 

Scheu and Drossel, 2007) proposes an overarching explanation, that sexual reproduction 

favors the exploitation of complex resources that are in short supply. According to the SRTS, 

outcrossing and mixing shuffle new genotypes, allowing a more complete exploitation of local 

resources. Conversely, it predicts that the availability of ample resources favours 

parthenogenetic reproduction since parthenogenetic species exploit these resources more 

quickly. The SRTS resembles the Tangled Bank theory in that it relates advantages of sexual 

reproduction to variations in niche space, but it focuses on food resources rather than on 

abiotic conditions (Song et al., 2011). Thus, the SRTS incorporates sib-competition models in 

which sexually produced offspring benefit from being genetically different by relaxing 

intraspecific competition (Williams, 1966, 1975; Bell, 1982). In addition, the SRTS integrates 

aspects of the Red Queen theory, since parasites may be experienced by the host as 

aggravation of shortage of resources (Scheu and Drossel, 2007). Whether or not the SRTS is 

sufficient to explain all evolutionary aspects of these issues, we believe that it is a powerful 

predictor of the local distribution of reproductive modes –that is, of the relative dominance of 

sexual and parthenogenetic reproduction in local communities. This idea is best tested in 

environments where parthenogenetic taxa are frequent and widespread, where we can 

assume that mechanisms promoting the general dominance of sexual reproduction are more 

relaxed.   

Below-ground communities are ideally suited for investigating the relative merits of sexual 

and parthenogenetic reproduction, since parthenogenetic or asexual reproduction is common 

in protozoans, nematodes, enchytraeid worms, earthworms, collembolans, isopods and 

oribatid mites (Bell, 1982, 1988; Palmer and Norton, 1991; Christensen et al., 1992; Sbordoni 

et al., 1997; Doroszuk et al., 2006; Terhivuo and Saura, 2006; Chahartaghi et al., 2009; Fischer 

et al., 2010a). Sexual taxa are also common, and often co-exist with parthenogenetic taxa that 

are both closely related and ecologically similar. Thus understanding the high incidence of 
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parthenogenetic reproduction in soil may help to identify unifying concepts responsible for the 

maintenance and general dominance of sexual reproduction.  

Oribatid mites are among the most suited animal group for investigating mechanisms 

responsible for the maintenance of sexual reproduction in soil animal taxa. They are 

ubiquitous, occurring in high numbers in virtually all ecosystem (Maraun and Scheu, 2000). Of 

the approximately 10,000 species described today, nearly 10 % reproduce by parthenogenetic 

development of females, i.e. by thelytoky (Palmer and Norton, 1991; Norton and Palmer, 

1991; Norton, 1994), and parthenogenetic species can comprise up to 80 % of oribatid mite 

individuals in local faunas (Fischer et al., 2010).  

Using oribatid mites as model organisms, we tested the prediction of the SRTS that the 

proportion of parthenogenetic individuals is positively correlated with resource availability. 

The prediction was investigated at two spatial scales: regional (two forest systems in Germany) 

and global. Oribatid mite density was taken as a proxy for resource availability, since all current 

information shows that oribatid mites are controlled predominantly by bottom-up forces. 

Indeed, due to an array of defense mechanisms including strong cuticle, protective structures 

and body forms, and chemical repellants (Sanders and Norton, 2004; Heethoff et al., 2011) 

oribatid mites have been shown to be resistant to predation (Peschel et al., 2006). 

Using density as a proxy for resource availability is too simplistic, as it ignores changes in 

metabolism with body size. Allometric scaling predicts that smaller organisms have higher 

metabolic rates per unit body mass (Brown et al., 2004) and reach higher densities than larger 

organisms (Damuth, 1981). Therefore, at the regional scale we also investigated the 

relationship of oribatid mite reproductive mode to metabolism (i.e. respiration). The 

respiration of oribatid mites has been estimated to be equivalent to 16 % of the energy 

ingested (Luxton, 1975; Wallwork, 1983). 

Our regional sites comprised mull (Swabian Alb) and moder forests (Schorfheide) varying in 

macrofaunal density (Schaefer and Schauermann, 1990). Soil macrofauna is known to affect 

mesofauna (including oribatid mite) communities through mechanical disturbance, resource 

competition, predation and destruction of habitable space (Maraun et al., 2003; Eisenhauer, 

2010; Erdmann et al., 2012). Therefore, we expected the relationship between reproductive 

mode of oribatid mites and density and/or respiration to be most pronounced in the 

macrofauna-poor moder systems of the Schorfheide. On the global scale, we compiled data on 

the density of parthenogenetic oribatid mite species from 38 sites ranging from temperate and 

tropical forests, to fields and meadows, to the bark of trees. According to the SRTS, we 
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expected the density of oribatid mites to be positively correlated with the frequency of 

parthenogenetic individuals in both datasets. 

2. Materials and Methods 

2.1 Regional scale 

The sites of the regional dataset comprised forests in the southwest (Swabian Alb; 460-860 m 

a.s.l.) and the northeast (Schorfheide; 3-140 m a.s.l.) of Germany. They form part of the 

'Biodiversity Exploratories', a long-term monitoring and experimental study project (Fischer et 

al., 2010b). The Swabian Alb is dominated by European beech (Fagus sylvatica) growing on 

Jurassic limestone parent rock; the sampled forest types were on cambisols or leptosols (pH of 

4.51 ± 0.72) at about 700 m above sea level. The Schorfheide is located on glacial till, which 

often is covered by sand; the accompanying soil types are mostly dystric cambisols (pH 3.3 ± 

0.19), but occasionally podsols occur (for details see Fischer et al., 2010b). Mean annual 

precipitation in the Swabian Alb is 700-1000 mm and in the Schorfheide 500-600 mm, with a 

mean annual temperature of 6.0-7.0°C and 8.0-8.5°C, respectively (Fischer et al., 2010b). Four 

forest types were studied in each region: 30-year-old beech forests, 70-year-old beech forests, 

120-year-old unmanaged beech forests and 70-year-old coniferous forests (consisting of Picea 

abies in the Swabian Alb and Pinus sylvestris in the Schorfheide). 

In spring 2008, four soil samples were taken from each forest in each of the two regions. 

The 32 samples were taken with a corer (5 cm diameter) each separated into organic (L/F 

material) and soil (4 cm thick) layers, from which soil arthropods were extracted by heat 

(Macfadyen, 1961); mite data from these two layers were subsequently pooled for all analyses. 

Adult oribatid mites were identified following Weigmann (2006) and the gender of each 

individual was determined by examining genitalia (Grandjean, 1955, 1956). Suctobelbidae and 

Brachychthoniidae were identified only to family level. The mode of reproduction (sexual or 

parthenogenetic) was inferred from sex ratios in combination with data in the literature 

(Palmer and Norton, 1991; Cianciolo and Norton, 2006).  

For each species, fresh weight (M) was calculated from dry weight (dryM) of individuals 

(Hadley, 1994) as M = 4 × dryM or from the mean body length L [mm] given in Weigmann 

(2006) and the correlation constants a and b given in Huhta and Koskenniemi (1975) as logM = 

b log L + a, with a = 2.386 and b = 2.519. Respiration I [J/h/ind.] was calculated from fresh 
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weight M [mg] using a linear model (Brown et al., 2004, Downs et al., 2008). The values i0, a 

and E are specific for oribatid mites and were adopted from Ehnes et al. (2011): 

𝐼 = 𝑖0𝑀𝑎𝑒
−𝐸
𝑘𝑇  

with the normalization constant i0=e22.02277 J/h/mg, the allometric exponent a=0.6793706, 

the activation energy E=0.7060855 eV, the Boltzmann’s constant k=8.62*10-5 eV/K and T = 

mean annual temperature (Swabian Alb = 279.7 K; Schorfheide = 281.4 K). 

The calculated respiration per individual was multiplied by the density per square meter of 

each species; summing the respiration rates of all species present per square meter resulted in 

an estimate of the energy use of the whole oribatid mite community [J/h/m²]. 

2.2 Global scale 

The 38 sites investigated included a wide range of habitats: raw humus forests, moder forests, 

mull forests, riparian forests, peat bogs, meadows, fields, and lichen patches on the bark of 

trees (for details see Table 1; for references see Appendix). Most habitats were from 

temperate regions but we also included tropical forest sites. Sites strongly influenced by man 

such as agricultural systems were not included, as in such systems oribatid mites are unlikely 

to be controlled by resource availability.  

2.3 Statistical analysis 

The data (oribatid mite density, respiration, proportion of parthenogenetic individuals, and the 

respective residuals) were inspected using Kolmogorov-Smirnov test. Data were normally 

distributed (p>0.2). For the regional scale dataset, the relationships between the proportion of 

parthenogenetic individuals and oribatid mite density, oribatid mite respiration and site 

(Schorfheide and Swabian Alb) were examined using stepwise linear regression. Similarly, for 

the global scale dataset, the relationships between the proportion of parthenogenetic 

individuals or taxa and oribatid mite density or habitat type (the seven different habitats 

where the oribatid mites were collected; see Table 1) were examined with stepwise linear 

regression. Prior to the analysis data on the proportion of parthenogenetic individuals and taxa 

were arcsin square-root transformed. Regressions between the proportion of parthenogenetic 

individuals and oribatid mite density were calculated with untransformed and log-transformed 

data; only results of the latter are presented as the logarithmic regression explained more 

variation in the dataset. Statistical analyses were carried out using STATISTICA v.9 (StatSoft 

Inc., Tulsa, Ok) and SAS 9.13 (SAS Institute Inc., Cary, NC).  
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Tab. 1  Habitat type, site characteristics, soil type (if known) , country of the study site, oribatid mite abundance 

(ind./m²), percentage of parthenogenetic individuals of oribatid mites, percentage of parthenogenetic taxa of 

oribatid mites, and references for the 38 sites used for the meta-analysis of this study (for the references see 

Appendix) 

         
Site habitat 

type 
site humus 

form country abundance % parthen. % parthen.  publication  
no. characteristics (if known) of study  (ind./m²) individuals taxa 

                  

         

1 bark 

Western 
redcedar 
trees (Thuja 
plicata) 

 Canada 323 27 18 Lindo and Winchester 
(2007)  

2 meadow brown earth 
on loess  Germany 1482 8 27 Toschki (2008) 

3 bark 
oak trees 
(Quercus 
robur)  Germany 1940 2 13 Woltemade (1982) 

4 bark lime trees 
(Tilia cordata)  Germany 5000 1 19 Weigmann and Jung 

(1992) 

5 forest soil 

tropical 
montane 
rainforest 
(3000 m)  

raw 
humus Ecuador 5769 4 17 Eissfeller (2007) 

6 bark 
oak trees 
(Quercus 
robur)  Poland 6000 2 15 Erdmann (2004) 

7 forest soil 

tropical 
montane 
rainforest 
(3000 m)  

raw 
humus Ecuador 6004 25 18 Fronszek (2010) 

8 field brown earth 
on loess  Germany 6179 23 35 Hülsmann and Wolters 

(1998) 

9 forest soil beech forest 
(Carpathians) mull Romania 9200 6 21 Fabian (1997) 

10 riverine 
forest 

sandy soils 
with mainly 
grey alder 
(Alnus incana) 

 Austria 11100 17 13 Totschnig and Schatz 
(1997) 

11 peat bog 

Ledo-
Spagnetum 
with 
Calamagrostis 
stricta 

mor Germany 12200 43 35 Kehl (1997) 

12 forest soil 

tropical 
montane 
rainforest 
(1000 m)  

moder Ecuador 13677 43 31 Fronszek (2010) 

13 forest soil 

tropical 
montane 
rainforest 
(1000 m)  

moder Ecuador 15015 36 35 Eissfeller (2007) 

14 forest soil beech forest 
on limestone mull Germany 22134 36 44 Schulz  (1991) 

15 lichens on limestone 
walls  Sweden 23500 24 50 Fröberg et al. (2003) 

16 forest soil beech forest mull Denmark 34515 38 40 Luxton (1981) 

17 forest soil beech forest mull Germany 40373 19 23 Alberti (1996) 
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18 forest soil Scots pine 
forest moder France 42400 65 40 Garay (1981) 

19 forest soil 
mixed 
hardwood 
forest 

moder USA 44200 37 59 Lamoncha and 
Crossley (1998) 

20 forest soil 
mixed 
beech/spruce 
(Swabian Alb) 

mull Germany 53451 55 73 Erdmann (2012) 

21 forest soil 
mixed 
beech/spruce 
(Hainich) 

mull/ 
moder Germany 59814 43 68 Erdmann (2012) 

22 forest soil beech forest moder Germany 61981 68 40 Wunderle (1992) 

23 peat bog 
Ledo-
Spagnetum 
magellanici 

mor Germany 65000 77 43 Kehl (1997) 

24 forest soil beech forest, 
limed (Solling) moder Germany 66277 72 67 Heiligenstadt (1988) 

25 forest soil beech forest 
(Hainich) moder Germany 73980 68 58 Bayer (2008) 

26 forest soil 
mixed 
beech/pine 
(Schorfheide) 

moder Germany 84690 82 77 Erdmann (2012) 

27 forest soil coniferous 
forest hemimor Canada  91904 87 75 Berch et al. (2007) 

28 meadow Galio-
Molinetum  Germany 95500 80 42 Kehl (1997) 

29 forest soil 
beech forest, 
not limed 
(Solling) 

moder Germany 101301 84 77 Heiligenstadt (1988) 

30 forest soil 
pine forest 
with 
earthworms 

moder Canada 102013 45 54 McLean and Parkinson 
(1998) 

31 forest soil 

mixed oak, 
beech and 
hornbeam 
forest 

moder Germany 133000 74 51 Schneider (2001) 

32 forest soil 
pine forest 
without 
earthworms 

mull Canada 150447 50 56 McLean and Parkinson 
(1998) 

33 forest soil 
120 y old 
spruce forest 
(Solling) 

moder Germany 165264 85 62 Migge (1996); Migge 
et al (1998) 

34 forest soil Sessile oak 
forest moder France 182900 87 40 Garay (1981) 

35 forest soil 
coniferious 
forest 
(Tuusula) 

raw 
humus Finland 185800 85 71 Huhta et al. (1986) 

36 forest soil 
mixed beech 
and spruce 
stand (Solling) 

moder Germany 196137 90 60 Migge (1996); Migge 
et al (1998) 

37 forest soil 
coniferious 
forest 
(Tammela) 

raw 
humus Finland 276700 79 67 Huhta et al. (1986) 

38 forest soil 
coniferious 
forest 
(Saarijärvi) 

raw 
humus Finland 351500 78 66 Huhta et al. (1986) 
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3. Results 

3.1 Regional scale 

There were more parthenogenetic individuals in the Schorfheide than in the Swabian Alb 

(stepwise linear regression; r2=0.65, F2,29=56.24, p<0.0001). Furthermore, the proportion of 

parthenogenetic individuals correlated positively with oribatid mite density (r2=0.76, 

F2,29=14.82, p=0.0006) which was significant in the Schorfheide (r²=0.37, F1,14=8.12, p=0.013) 

and marginally significant in the Swabian Alb (r²=0.21, F1,14=3.72, p=0.074) (Fig. 1a). The 

proportion of parthenogenetic individuals also correlated positively with community 

respiration of oribatid mites (Fig. 1b) which was significant in the Schorfheide (r²=0.25, 

F1,14=4.68, p=0.048) but not in the Swabian Alb (r²=0.17, F1,14=2.92, p=0.109). However, 

including community respiration did not markedly increase the explained variance in the 

stepwise regression analysis, which was due to the high correlation between oribatid mite 

density and community respiration (r2=0.85).  
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3.2 Global scale 

The density of oribatid mites was significantly positively correlated with the percentage of 

parthenogenetic species and also with the percentage of parthenogenetic individuals 

(stepwise linear regression with log-transformed data; r²=0.61, F1,36=57.93, p<0.0001, and 

r²=0.66, F1,36=72.90, p <0.0001, respectively) (Fig. 2). Including habitat type did not increase 

the explained variance significantly.  
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Fig. 1  Relationship between the proportion of parthenogenetic individuals and 
oribatid mite density (a) and oribatid mite respiration (b) in Swabian Alb and 
Schorfheide.  
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4. Discussion 

4.1 Parthenogenetic reproduction in oribatid mites  

Results of our study suggest that the percentage of parthenogenetic individuals in oribatid 

mite communities is positively correlated with density, at both the regional and the global 

scale. The relationship also holds for metabolism as indicated by our regional scale dataset. 

Assuming that density and metabolism reflect the availability of resources, these relationships 

are consistent with predictions of the SRTS (Scheu and Drossel, 2007; Song et al., 2011). 

Oribatid mites were considered especially well-suited to test predictions of the SRTS, as they 

are little affected by top-down forces and therefore their density likely reflects resource 

availability (Schneider and Maraun, 2009; Heethoff et al., 2011). Although this may apply less 

strictly to soil invertebrates that are more subject to predation (Salamon et al., 2006; 

Schneider and Maraun, 2009), it would be interesting to investigate correlations between 

density and reproductive mode in a large range of soil invertebrate taxa, including in particular 

nematodes and collembolans.  
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parthenogenetic species and oribatid mite density on a global scale. For details see text 
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4.2 Regional scale 

Irrespective of the indicator of the resources available to oribatid mite communities (density or 

respiration), or of the soil type at the two sites (mull or moder) the proportion of individuals of 

parthenogenetic oribatid mite species correlated positively with the resource proxy. However, 

the correlation was weaker in mull (Swabian Alb) than in the moder forests (Schorfheide) and 

less strong for respiration than for density.  

The mull and moder forests studied differed both in the proportion of individuals of 

parthenogenetic oribatid mite species and in oribatid mite density (43% vs. 82% and 59,800 vs. 

84,700 individuals per m², respectively). The lower proportion of individuals of 

parthenogenetic species in the mull forests of the Swabian Alb, where oribatid mite density 

was lower, conforms to our expectations and is consistent with predictions of the SRTS. 

However, differences in habitat characteristics may also have contributed to the lower 

proportion of individuals of parthenogenetic oribatid mite species, since at this site the 

parthenogenetic Brachychthoniidae were rare. Low abundance of Brachychthoniidae is typical 

for mull forests and is likely to be due to disturbances by earthworms (Maraun and Scheu, 

2000; Eisenhauer 2010). Macrofauna activity, in particular that of earthworms, has a 

detrimental effect on mesofauna communities, including those of the slow-developing long-

lived oribatid mites, weakening bottom-up control via resource availability.  

4.3 Global scale 

On the global scale, the proportion of parthenogenetic taxa (as well as parthenogenetic 

individuals) fitted best with density on a logarithmic scale. This reflects the high proportion 

(typically > 60%) of parthenogenetic taxa in temperate and boreal forests where the density of 

oribatid mites spans a wide range from moderate to high (Behan-Pelletier, 1999). The shape of 

the curve further shows that the high incidence of parthenogenetic species (and individuals) in 

temperate forests is in contrast with that elsewhere, where parthenogenetic species are much 

less abundant, such as tropical forests, meadows and the bark of trees. According to the SRTS, 

the high proportion of parthenogenetic oribatid mites in temperate forests should be due to 

high availability of resources. Both above- and belowground inputs of resources (i.e. leaf litter 

and root derived resources) are likely to contribute to this high resource pool (Pollierer et al., 

2007). Low densities of oribatid mites in tropical systems are probably related to poor litter 

quality; indeed, it is increasingly recognized that, compared with temperate and boreal forests, 

litter in tropical forests decomposes slowly (Haettenschwiler et al., 2011). This is consistent 

with the finding that tropical forests lack true decomposer animal taxa (Illig et al., 2005). The 
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low density of oribatid mites on the bark of trees (and associated high proportion of sexual 

species) presumably relates to the fact that many bark-living oribatid mites feed on lichens 

which are well defended by secondary compounds (Fischer et al., 2010a).  

Overall, the results indicate a somewhat counterintuitive interrelationship, i.e., with 

increasing oribatid mite density the importance of resource limitation declines. Presumably, in 

temperate and boreal forests oribatid mites are structured predominantly by density-

independent factors such as cold winters but also by pulsed resource inputs via litter and root 

deposits. In contrast, in habitats where sexual reproduction of oribatid mites dominates, i.e., 

on the bark of trees and in soil of tropical forests, resources likely are limiting. Again this is 

counterintuitive, as animal communities on the bark of trees are exposed to harsh 

environmental conditions, suggesting that bark living communities are structured by density 

independent factors. In fact, oribatid mites are well adapted to cold winter conditions and, by 

feeding predominantly on lichens, presumably are regulated by the availability of food 

resources that are well defended (e.g., by producing secondary compounds such as usnic acid) 

(Seyd and Seaward, 1984). Also, the low density of oribatid mites in tropical forest soils 

suggests a predominance of resource control, reflecting that tropical soils are poor in nutrients 

and leaves of tropical trees are of low food quality. Low densities of oribatid mites on the bark 

of trees and in tropical forests therefore also are conform to the predictions of the SRTS.  

4.4 The structured resource theory of sexual reproduction as an integrative theory 

Compared with other theories that attempt to explain the predominance of sexually 

reproducing species, the SRTS focuses on resource availability as the main factor responsible 

for the mode of reproduction (Scheu and Drossel, 2007; Song et al., 2011). Results of the 

present study support this view by providing evidence that oribatid mite communities of low 

density and with a high proportion of sexual species are controlled predominantly by density-

dependent factors (i.e. the availability of food resources). In contrast, resources presumably 

are of limited importance as regulating factor of oribatid mite populations in soils of temperate 

and boreal forests where they reach high densities and where parthenogenetic species and 

individuals prevail. We propose that these somewhat counterintuitive relationships explain 

one of the most striking patterns in oribatid mite ecology, i.e., the dominance of parthenogens 

in certain ecosystems, such as temperate and boreal forests. This view is consistent with the 

assumption that the reproductive mode in oribatid mites is not controlled by biotic 

interactions (Cianciolo and Norton, 2006).  
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Overall, both the regional and global scale datasets analyzed in this study are consistent 

with predictions of the SRTS, suggesting that the high incidence of parthenogenetic 

reproduction in soil animal taxa is related to periods of relaxed resource competition allowing 

parthenogenetic taxa to outgrow sexual ones. Experiments manipulating the resource supply 

of soil animal communities are needed to prove these conclusions. Soil animal communities 

are well suited for such experiments, as many parthenogenetic species of different taxonomic 

affiliation co-exist on small spatial scales, allowing tests of the generality of the SRTS in 

explaining sexual versus parthenogenetic reproduction in Metazoa. 
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Abstract 

The bark of trees forms a habitat exposed to harsh abiotic conditions, contrasting the soil as 

habitat with buffered climatic conditions. Oribatid mites are typical soil living arthropods, 

however, a large number of species also occur on the bark of trees. Ten percent of the 10,000 

described species reproduce parthenogenetically. In contrast to the high frequency of 

parthenogenetic species in habitats with strongly fluctuating climatic conditions, the bark of 

trees in the temperate zone is dominated by sexual reproducing oribatid mites, whereas in soil 

species reproducing parthenogenetically predominante. The ´Structured Resource Theory of 

Sexual Reproduction´ (SRTS) aims at explaining this contradiction. According to this theory 

sexual reproduction dominates in habitats where resources are limited or difficult to access. 

We investigated if resource availability limits the density of oribatid mites and the fraction of 

parthenogenetic individuals on the bark of trees as predicted by the SRTS. Resource availability 

was manipulated by monthly fertilization of bark with nitrogen, carbon, both nitrogen and 

carbon, and water as control. The uptake of resources by oribatid mites was evaluated after 

three months of fertilization using stable isotopes (15N, 13C). Oribatid mites incorporated C but 

little N of the added resources. C addition increased densities of oribatid mites, indicating that 

the bark of trees indeed is a resource-limited habitat for oribatid mites. The occurrence of 

parthenogenetic individuals was generally scarce. The results confirm predictions of the SRTS 

and suggest that the lack of oribatid mite species reproducing parthenogenetically on the bark 

of trees in temperate regions is due to the limited availability of resources with the sexual 

species present being well adapted to fluctuating and harsh environmental conditions. 

1. Introduction 

The evolution and maintenance of sexually reproducing species bearing the two-fold costs of 

producing males in comparison to asexuals has been termed ‘the queen of problems’ in 

evolutionary biology (Maynard Smith 1971, Williams 1975). Weismann (1889) proposed the 

production of genetically variable offspring as main advantage of sex and recombination. 

Several theories exist trying to identify the factors responsible for the dominance of sexual 

reproduction in most animal taxa. The theories fundamentally differ in the considered factors 

ranging from temporal and spatial variations in abiotic factors to resource availability to 
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parasite load (West et al. 1999, Scheu and Drossel 2007). Recently, an integrative approach 

focusing on resources as major driving force of sexual reproduction has been proposed, i.e., 

the ‘Structured Resource Theory of Sexual Reproduction’ (SRTS) (Scheu and Drossel 2007, Song 

et al. 2012). 

The fundamental assumption of the SRTS is the availability of limited amounts of resources 

for a population with a limited number of genotypes consuming only part of these resources 

which are not or only partly available to the next generation. Sexual offspring can exploit 

underutilized resources and thereby outcompete asexually produced offspring relying on 

identical resources as their parents. The model differentiates explicitly between biotic and 

abiotic density-dependent factors, and physicochemical density-independent factors. The 

model predicts asexual reproduction to predominate (1) in habitats with an excess of 

resources (no adaptation to limited resources needed), (2) in habitats with a small number of 

resources (exploited successfully by well adapted clonal linages), (3) in populations with a high 

number of genotypes of asexuals (successfully competing with sexually produced progeny), 

and (4) in habitats with high mortality due to density-independent factors, i.e., in habitats 

characterized by harsh and/or strongly fluctuating environmental conditions (Scheu and 

Drossel 2007, Song et al. 2012).  

Soils in temperate forests are climatically buffered and experience low amplitudes in 

temperature and moisture. In contrast, the bark of tree trunks forms a habitat with strongly 

fluctuating temperature and moisture conditions (Nicolai 1986, 1989) and, therefore, bark 

living species are considered to be exposed to harsh abiotic conditions (Wunderle 1992, 

Proctor et al. 2002). Based on these assumptions death rates should be high and density-

independent; according to SRTS resulting in high frequency of parthenogenetic species. 

Oribatid mites are good model organisms to investigate mechanisms responsible for the 

dominance of sexual vs. asexual reproduction (Norton and Palmer 1991). They are typical soil 

living microarthropods which also colonize the bark of trees. Oribatid mites reproduce sexually 

or parthenogenetically via thelytoky (presumably by terminal fusion automixis; Heethoff et al. 

2009). Ten percent of the 10,000 described oribatid mite species worldwide (Subias 2004, 

Schatz 2005) are parthenogenetic (Norton and Palmer 1991, Norton et al. 1993). Geographic 

or cyclical parthenogenesis is not known (Palmer and Norton 1991, Norton et al. 1993). 

Oribatid mites have slow reproduction cycles with generation times of 50 weeks or more for 

common species in temperate zones (Heethoff et al. 2009). Within oribatid mites large asexual 

clusters exist indicating that asexual lineages are ancient (Maraun et al. 2004). 
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Oribatid mites are dominant microarthropods in forest soils. Densities of > 100,000 

individuals per square meter are typical for base poor forests of the temperate zone. Typically, 

parthenogenetic oribatid mites dominate in forest soils of the temperate zone (Maraun et al. 

2003, Fischer et al. 2010a). In contrast, few parthenogenetic oribatid mites occur on the bark 

of trees (Erdmann et al. 2006, Fischer et al. 2010a) apparently contradicting predictions of the 

SRTS. The frequency of parthenogenetic oribatid mites changes fundamentally within few 

centimeters along the transect from soil to the bark of trees (Wunderle 1992, Proctor et al. 

2002, Fischer et al. 2010a). This suggests that on the bark of trees factors favouring sexual 

reproduction predominate which is consistent with the finding that the bark-living Crotoniidae 

reevolved sexual reproduction from parthenogenetic ancestral Camisiidae living in soil (Domes 

et al. 2007a). 

We experimentally manipulated the resource availability on the bark of trees to investigate 

whether the sexually reproducing bark living oribatid mites are limited by resources as 

assumed by the SRTS. We added nitrogen (ammonium nitrate, naturally rich in 15N) and carbon 

(cane sugar; naturally rich in 13C) to the bark surface to differentiate between the limitation by 

algae (fostered by addition of N) and saprotrophic fungi (fostered by addition of glucose). 

Uptake of the added elements by oribatid mites was followed by analyzing stable isotope 

ratios in oribatid mites.  

Oribatid mites were sampled after three and eight months to investigate (1) the 

incorporation of N an C in the added resources into oribatid mites, (2) changes in oribatid mite 

density due to increased resource availability, (3) and changes in the proportion of 

parthenogenetic oribatid mites with increasing amount of resources indicating a resource-

limitation. 

2. Materials and Methods 

2.1 Study sites 

The study was conducted at six forest sites located in the surrounding of the National Park 

Hainich in Central Germany (285-550 m a.s.l.). The sites form part of the ´Biodiversity 

Exploratories´, a long term monitoring project and experimental platform (Fischer et al. 2010b; 

www.biodiversity-exploraties.de). The study area is characterized by a mean annual 

precipitation of 500-800 mm and a mean annual temperature of 6.5-8.0 °C. Soil type is Luvisol 

on Triassic Limestone. The six forest sites were at least one km and at most 20 km away from 
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each other. Three forests were age class forests with approx. 70 y old beech trees (Fagus 

sylvatica) and three were selective cutting forests with 70-100 y old mature beech trees.  

2.2 Sampling design 

The experimental design was full-factorial with the two factors carbon and nitrogen as 

fertilizers, and the six forest sites as blocks. A solution containing 0.4 g ammonium nitrate (N) 

and 4.2 g cane sugar (C), and a combination of both (CN) was sprayed on the bark of beech 

trees using a plant moistener. Trees sprayed with deionized water served as control (Ctrl). 

Spraying was done in breast height on an area of 30*60 cm (1800 cm²) at the weather side of 

the trees were algal cover is high. Trees were sprayed at monthly intervals to continuously 

increase resource availability. The amount of nitrogen and carbon added resembled the input 

of nitrogen and carbon via leaf litter to the forest soil (7.27 ± 0.38 gN m-2 y-1, 278.32 ± 14.81 gC 

m-2 y-1; Cotrufo et al. 2001). Samples were taken after three and eight months. The experiment 

started on April 7th, 2009. As treatment effects did not vary among sampling dates, data of the 

two samplings were pooled. 

For sampling the bark first was brushed using a smooth toothbrush then the topmost layer 

of the bark was cut off with a knife to collect the oribatid mites in crevices. The bark samples 

were extracted by heat (Macfadyen 1961), collected in ethylene glycol and stored in 70% 

ethanol. Adult oribatid mites were determined to species level using Weigmann (2006), 

juveniles were counted.  

Oribatid mites from the first sampling date, bark samples from the first sampling date, 

ammonium nitrate and cane sugar were weighed into tin capsules for stable isotope analysis. 

Stable isotope measurements for bark were replicated twice, those for ammonium nitrate and 

cane sugar four times. Stable isotopes of the most abundant bark inhabiting oribatid mite 

species Chamobates subglobulus, Chamobates pusillus, Chamobates borealis, Eupelops hirtus 

and Oribatella calcarata, were measured. Stable isotopes were measured by a coupled system 

of an elemental analyser (NA 1500, Carlo Erba, Milan) and a mass spectrometer (MAT 251, 

Finnigan). Stable isotope ratio was expressed as δ notation with δ15N (‰) or δ13C (‰) = 

(Rsample-Rstandard)/Rstandard*1000. Rsample and Rstandard representing the respective isotope ratios of 

the sample or of the standard. For 15N atmospheric nitrogen and for 13C PD belemnite (PDB) 

served as the primary standard. Acetanilide (C8H9NO, Merck, Darmstadt) was used for internal 

calibration. 



Chapter 5                                     Oribatid mite density on tree trunks  
 

 

86 

2.3 Statistical analysis 

Variances of oribatid mite densities and arcsine-transformed proportions of parthenogenetic 

individuals were homogeneous (Levene’s test, p > 0.07 for oribatid mite density; p > 0.5 for 

proportion of parthenogenetic individuals). Two-factorial ANOVAs with the main factors N and 

C, and with forest sites as blocks were carried out. Tukey’s Honestly Significant Difference test 

(HSD) was performed for comparison of means. Statistical analyses were implemented using 

SAS v.9.2 (SAS Institute Inc., Cary, NC, USA). Means and standard errors in text and graphs are 

shown for untransformed data. 

Species encountered less than twice in the pooled dataset were excluded from the analysis. 

Data were log(x+1) transformed to improve homogeneity of variances. Differences in oribatid 

mite species composition among the forest sites and fertilization treatments (with fertilization 

treatments as supplementary variable) were analyzed with PCA using CANOCO 4.5 (Jongman 

et al. 1995, Braak and Smilauer 2002). 

For each individual tree differences in stable isotope signatures between the bark and the 

respective oribatid mites were calculated. Changes in stable isotope signatures of the oribatid 

mite species studied due to experimental treatments were inspected using Discriminant 

Function Analysis (DFA). Squared Mahalanobis Distances between group centroids and the 

reliability of the sample classifications were determined. DFA was calculated with STATISTICA 

9.1 software package (Statsoft Tulsa, USA).  

3. Results 

3.1 Density 

Pooled oribatid mite densities in the control and N treatment were similar with 80.6 ± 22.7 and 

77.0 ± 34.8 ind. per 1800 cm², respectively (Fig. 1). In contrast, oribatid mite densities were 

significantly increased due to the addition of C and CN reaching 180.2 ± 75.5 and 144.2 ± 63.4 

ind. per 1800 cm², respectively (F1,15 = 4.90; p = 0.043 for the effect of C). Further, oribatid 

mite density varied significantly among forest sites (F5,15 = 6.69, p = 0.002 for the effect of 

block). Neither the addition of N (F1,15 = 0.28; p = 0.61) nor the interaction of N and C (F1,15 = 

0.18; p = 0.674) were significant. 
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Fig. 1 Changes in the density of oribatid mites on the bark of trees after 
addition of N (ammonium nitrate), C (cane sugar) and CN (ammonium nitrate 
and cane sugar), and water as control (Ctrl). Pooled data after 4 and 8 
months; means ± standard error; for statistical analysis see text. 

The fraction of individuals of parthenogenetic species was low and averaged 3.8 ± 1.2% and 

did not vary significantly with experimental treatments (F8,15 = 1.22; p = 0.351 for the overall 

model). 

 

 

 

 

 

 

3.2 Community structure 

Oribatid mite communities differed significantly between forest sites (data not shown) but also 

between experimental treatments (Fig. 2). Community structure was similar in the control and 

N treatment, whereas in C and CN treatments the community shifted towards higher 

abundances of the species Chamobates borealis and Zygoribatula exilis and of juvenile oribatid 

mites. 
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Fig. 2  Principal Components Analysis (PCA) of the community structure of oribatid mites (species names in 
italics; for full species names see Appendix) on the bark of trees after addition of N (ammonium nitrate), C (cane 
sugar) and CN (ammonium nitrate and cane sugar), and water as control (Ctrl). Eigenvalues of the 1st axis 0.327 and 
of the 2nd axis 0.150. 

 

3.3 Stable isotopes 

The δ15N value of ammonium nitrate was 2.71 ± 0.01‰, the δ13C value of cane sugar was -

11.18 ± 0.01‰. Values of δ15N and δ13C of the bark of trees averaged 5.45 ± 0.20‰ and -27.26 

± 0.11‰. On average, oribatid mites were enriched in 15N relative to the bark by 1.65 ± 0.23‰, 

1.64 ± 0.16‰, 0.80 ± 0.22‰ and 0.96 ± 0.31‰ in control, N, C and CN treatments, 

respectively. Respective values for 13C were 1.42 ± 0.09‰, 1.25 ± 0.18‰, 2.34 ± 0.30‰ and 

2.22 ± 0.16. 

Stable isotope values differed significantly between the four treatments (Wilk’s Lambda = 

0.70, F6,148 = 4.89, p < 0.0001; Fig. 3) with the first root being significant. The enrichment in 13C 

of oribatid mites relative to the bark was responsible for the significant differences between 

the treatments (Wilk’s Lambda = 0.90, F3,74 = 7.18, p < 0.0003). Oribatid mites of the C and CN 

treatments were significantly more enriched in 13C than oribatid mites of the control and N 

treatments (p < 0.001). In contrast to 13C, 15N values of oribatid mites relative to the bark did 

not differ between the treatments (Wilk’s Lambda = 0.748; F3,74 = 1.828; p = 0.149). 
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Fig. 1 Discriminant Function Analysis (DFA) of δ15N and δ13C values in the bark of trees and in oribatid mites 
after addition of N (ammonium nitrate), C (cane sugar) and CN (ammonium nitrate and cane sugar), and water as 
control (Ctrl). Ellipses represent confidence ranges at P=0.2. Treatments labeled with different letters (in 
parenthesis) differ significantly at P < 0.05). 

4. Discussion 

Results of our study showed that bark living oribatid mite communities on tree trunks are 

dominated by sexual species, and that oribatid mite densities are limited by the availability of 

food resources. These findings appear counterintuitive as tree trunks are exposed to strong 

variations in environmental conditions suggesting that populations are structured by density-

independent factors favoring species with parthenogenetic reproduction as indicated by SRTS 

(Scheu and Drossel 2007, Song et al. 2012). In contrast to these assumptions, results of the 

present study indicate that bark living oribatid mites are in fact regulated by the availability of 

food resources i.e., by density-dependent factors favoring sexually reproducing species. Sexual 

organisms produce genetically variable offspring allowing the use of underutilized resources 

left over from the parental generation.  
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Addition of cane sugar caused an increase in 13C/12C ratios of oribatid mites towards the 

ratios of cane sugar. Obviously, oribatid mites incorporated cane sugar C presumably via 

consumption of saprotrophic fungi. However, enrichment in 13C varied markedly among 

oribatid mite individuals suggesting that some individuals did not incorporate cane sugar C, 

while others fed on resources containing cane sugar C.  

The 15N/14N ratio of oribatid mites did not differ between treatments with and without N 

addition (ammonium nitrate). We expected N to be incorporated by algae and lichens (Ullrich 

et al. 1998) which are assumed to be an important food source of bark living oribatid mites 

(Erdmann et al. 2007, Maraun et al. 2011). Potentially, the label was not strong enough to be 

detected in the next trophic level or may have resulted in the production of defense 

compounds rather than biomass as observed in plants (Koricheva 2002). Further experiments 

are needed to trace the pathway of nitrogen from mineral sources to algae and lichens to 

microarthropod consumers on the bark of trees. 

Oribatid mite densities increased significantly in treatments with C but not in those with N. 

This supports the findings of the stable isotope analysis that the addition of N did not improve 

oribatid mite nutrition. The increase in oribatid mite density by the addition of C was due to an 

increase of typical bark living oribatid mite species and juveniles suggesting that the increased 

resource supply increased reproduction of these species. Addition of C and/or N did not affect 

the proportion of parthenogenetic individuals of oribatid mites. Primarily, fertilization affected 

the resident species which are mainly sexual. Overall, the results confirm that oribatid mites on 

the bark of trees are limited by food resources rather than being structured by harsh abiotic 

conditions.  

Results of this study indicate that oribatid mites are well adapted to the harsh conditions on 

the bark of tree trunks. It has been shown recently that oribatid mites evolved adaptations to 

the bark habitat convergently (Maraun et al. 2009). Karasawa and Hijii (2004, 2008) found 

more tridactylous oribatid mite species in the stem region than in soil with more 

monodactylous species, and interpreted this as adaptation to maintain the grip in the arboreal 

wind and rain-exposed habitat. Further, bark-living oribatid mite species retreat into crevices 

in the bark to avoid unfavorable conditions (Wunderle 1992). Sexual oribatid mite species also 

dominate other harsh environments, such as polar regions, deserts (Wallwork et al. 1986), 

mangroves (Karasawa and Hijii 2004) and saltmarshes (Proches and Marshall 2001). Further, 

oribatid mites are well adapted to other environmental stresssors such as flooding (Messner et 

al. 1992), freezing and desiccation (Schatz and Sømme 1981, Sjursen and Sømme 2000, 

Worland and Lukesova 2000). Such adaptations likely also took place in oribatid mite species 
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living on tree trunks. Indeed, bark-living oribatid mites survive freezing and flooding (G. 

Erdmann, unpubl. data). Therefore, fluctuations in environmental conditions in fact may be of 

minor importance for oribatid mites on the bark of trees.  

Oribatid mites on bark presumably feed mainly on lichens and algae (Erdmann et al. 2007; 

Fischer et al. 2010a). The limited resource availability could be caused by low amounts, low 

nutritional values or unpalatability of the resources. All three factors may apply to lichens 

growing on tree trunks. Most lichens are characterized by slow growth rates, have to deal with 

low nutrient availability on bark and produce secondary compounds as defense against grazers 

(Barkman 1958, Lawrey 1983). Oribatid mites were observed to feed specifically on certain 

lichen species (Reutimann and Scheidegger 1987, Fröberg et al. 2003, Edmund et al. 2008) and 

to avoid lichens with secondary compounds. Adaptations are needful for oribatid mites on the 

bark habitat, and sexual species are likely to adapt faster to resources which are difficult to 

access and to overcome defense strategies of living resources such as lichens more easily than 

parthenogenetically reproducing species. 

Food quality triggers the reproductive mode in cyclical parthenogenetic species (Koch et al. 

2009) and is supposed to be a major factor explaining the mode of reproduction in long-lived 

organisms as concluded by the SRTS (Song et al. 2012). The high fraction of sexual oribatid 

mites and the resource limitation on bark is conform to these conclusions. 
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Appendix: 

juvenile – juvenile Oribatida; Achi_col – Achipteria coleoptrata; Cami_seg – Camisia segnis; 

Cara_lab – Carabodes labyrinthicus; Cham_bor – Chamobates borealis; Cham_cus – 

Chamobates cuspidatus; Cham_pus – Chamobates pusillus; Cham_sub – Chamobates 

subglobulus; Cymb_cym – Cymberemaeus cymba; Dama_rip – Damaeus riparius; Diap_hum – 

Diapterobates humeralis; Eupe_hir – Eupelops hirtus; Lieb_hum – Liebstadia humerata; 

Micr_bre – Micreremus brevipes; Minu_pse – Minunthozetes pseudofusiger; Oppi_nov – 

Oppiella nova; Orib_cal – Oribatella calcarata; Phth_lon – Phthiracarus longulus; Sche_asc – 

Scheloribates ascendens; Suct_sub – Suctobelbella subcornigera; Tect_vel – Tectocepheus 

velatus velatus; Tric_nov – Trichoribates novus; Zygo_exi – Zygoribatula exilis 
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Oribatid mites are mainly soil-living microarthropods, but also occur in other habitats, e.g. on 

tree trunks, in freshwater and in saltmarshes (Walter and Proctor 1999). They are species rich 

(until today ~ 10,000 species are described), distributed worldwide (Walter and Proctor 1999, 

Subias 2004, Schatz 2005), and are one of the oldest arthropods, with a Cambrian or 

Precambrian origin (Schaefer et al. 2010). Sexual and parthenogenetic species coexist in many 

habitats with parthenogens dominating in soils of temperate regions and sexual species 

dominating on the bark of trees and in tropical habitats (Bell, 1982). Geographical and cyclical 

parthenogenesis are not known until today (Norton and Palmer 1991). 

Oribatid mites are suitable model organisms to verify theories which try to explain the 

short- and long-term maintenance of parthenogenetic reproduction, e.g. the ‘Structured 

Resource Theory of Sexual Reproduction’ (SRTS) (Scheu and Drossel, 2007). The SRTS is the 

most recent and an integrative theory aiming to explain the dominance of sexual reproduction. 

It explains the pattern of cyclical parthenogenesis (Scheu and Drossel, 2007); of geographical 

parthenogenesis (Song et al. 2010) and of parthenogenesis in multi-cellular long-lived 

organisms (Song et al. 2012). The SRTS states that sexual populations should prevail in habitats 

with structured resources or little accessible resources. In such cases sexual species are 

assumed to more efficiently exploit resources and to use underutilized resources. Sexual 

populations should therefore mainly be regulated by density-dependent factors. In contrast, 

parthenogenetic species should prevail in environments with an excess of food where 

adaptations are of limited use, or in habitats where population density is mainly limited by 

density independent factors. In the latter case sexual reproduction is of limited use, since 

populations would not benefit from mixis processes (Scheu and Drossel, 2007). Instead, they 

should benefit from the two-fold higher reproductive rates. 

Using oribatid mites as model organisms for investigating the maintenance of sexual 

reproduction and interpreting their ecological distribution requires a better understanding of 

their ecology and phylogeny. The present thesis focused on oribatid mite ecology. In the first 

part we investigated the trophic ecology of oribatid mites (Chapter 2), and abiotic and biotic 

factors influencing their density, diversity and community structure in soils of four forest types 

in Germany (Chapter 3). In the second part oribatid mites were used as model organisms to 

investigate the pattern of the distribution of sexual and parthenogenetic individuals in soils in 

different habitats worldwide (Chapter 4), and the effects of nutrient addition on density and 

the reproductive mode of oribatid mites on tree trunks (Chapter 5).  
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1. Stable isotope analysis of soil- and bark-living oribatid mites 

The investigation of trophic ecology and the identification of feeding niches of oribatid mites 

are important to disentangle soil food webs and may help to explain the high oribatid mite 

diversity. We investigated the trophic ecology of oribatid mites using the method of stable 

isotope analysis and reviewed previous studies which applied this method (Scheu and Falca 

2000, Schneider et al. 2004; Pollierer et al. 2009, Fischer et al. 2010). The method is based on 

the enrichment of δ15N by about three δ-units and of δ13C by about one δ-unit in the body 

tissue of the consumer in relation to the food-source (DeNiro and Epstein 1981, Minagawa and 

Wada 1984, Post 2002). Schneider et al. (2004) conducted the first comprehensive study of 

stable isotope analysis for oribatid mites using δ15N and found values in the range of three to 

four trophic levels in four forests and classified them as phycophages/fungivores, primary 

decomposers, secondary decomposers and carnivores/scavengers/omnivores. Our data mainly 

confirmed the results of Schneider et al. (2004). However, we additionally measured δ13C and 

investigated soil- as well as bark-living oribatid mite species. The use of δ13C gave additional 

information about the trophic ecology of oribatid mites and showed a reduced depletion in 

adults with endophagous juvenile stages. The specific shift in δ13C is caused by incorporation of 

calcium carbonate as hardening agent in the cuticle in addition to chitin (Norton and Behan-

Pelletier 1991, Pollierer et al. 2009). Analysis of oribatid mite species from the bark of tree 

trunks showed different δ13C and δ15N values compared to soil-living species, indicating 

fundamentally different trophic niches. The measurement of stable isotopes of potential food 

sources on tree trunks indicates that many oribatid mite species feed on lichens (Fischer et al 

2010a) and on algae (Erdmann, 2007) but not on mosses as the common name ‘moss-mites’ 

misleadingly suggests (Fischer et al. 2010a).  

Compared with other stable isotope analyses of oribatid mites in soil, the values of δ15N in 

different forest sites are relatively similar for the same species, indicating constant trophic 

niches for most species. Two examples are given to illustrate this pattern: Hypochthonius 

rufulus had highest δ15N values in the studies of Scheu and Falca (2000), Schneider et al. 

(2004), Pollierer et al. (2009) and our study, indicating predation or scavenging. Platynothrus 

peltifer had lowest values in all above listed studies which classifies the species as primary 

decomposer feeding mainly on litter material. The wide range of δ15N and δ13C values found in 

oribatid mite species reflects the high diversity of food sources for the former ´decomposer´ 

taxon.  

The method of stable isotope analysis of δ15N and δ 13C provides information on trophic 

levels of organisms, i.e. on the range of incorporated food sources resulting in an enrichment 
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of δ15N and δ13C in the cuticle and body tissue since the last moulting of the animal (Minagawa 

and Wada 1984). However, the specific food sources, seasonal variation or short-term food 

preferences remain unclear. Investigating these finer scales of oribatid mite diets should be 

the next step in uncovering the details of oribatid mite feeding ecology. Further methods are 

necessary such as molecular gut content analyses (Sheppard et al., 2005; King et al., 2008), 

fatty acid analyses (Ruess et al. 2005; Haubert et al. 2006) and tracer experiments with 

isotope-labeled N or C (Simon et al. 2003; Pollierer et al. 2007). 

2. Effect of forest types on oribatid mites 

Oribatid mites are most abundant in temperate and boreal forest soils (Huhta et al. 1986, 

Maraun and Scheu 2000). Most forests in Europe are managed with varying intensity and 

manner of management. Management and tree types influence the density and diversity of 

above-ground animals and plants (Halpern and Spiess 1995, Niemelä et al. 1996, Paillet et al. 

2010). Effects on below-ground animals are little investigated but are important to identify 

since microarthropods in soil contribute to ecosystem processes and services (Lussenhop 

1992, Krantz 2009). Here we investigated the density, diversity and community structure of 

oribatid mites and factors potentially affecting them. The aim of this study was to identify the 

main factors structuring oribatid mite communities in different forest types. 

Four forest types with the most common tree species for Central Europe were studied: 70 y 

old coniferous age-class forests (Picea abies or Pinus sylvestris, depending on the investigated 

region); 30 y old and 70 y old beech age-class forests (Fagus sylvatica) and unmanaged beech 

forests with mature trees being ~120y old. The experimental setup of the Biodiversity-

Exploratories – a large scale biodiversity monitoring and experimental project (Fischer et al. 

2010b) gave the opportunity to investigate the four forest types in three regions in Germany 

(Swabian Alb, Hainich and Schorfheide) spanning a latitudinal gradient of about 500 km. 

Investigating this large geographic scale allows general conclusions on the influence of the 

investigated forest types and related factors on oribatid mites. For relating changes in oribatid 

mite community structure to environmental factors, the litter mass, soil pH, C and N content of 

litter and fine roots and C content of soil were measured. We assumed highest oribatid mite 

densities in coniferous forests due to thick litter layer and highest oribatid mite diversity in 

unmanaged beech forests due to increased habitat diversity. 

Oribatid mite densities were highest with ~120,000 individuals per square meter in 

coniferous forests and decreased from 30 y old beech with ~60,000 individuals per square 
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meter over 70 y old beech with ~50,000 individuals per square meter to unmanaged beech 

stands with ~30,000 individuals per square meter. The mass of the litter layer correlated 

positively and the soil pH negatively with oribatid mite density. The litter layer is both habitat 

and food source for oribatid mites, where they feed directly on or consume the fungi and 

bacteria which grow on the substrate (Ponge 1991; Schneider et al. 2004). With decreasing pH 

oribatid mite densities increase. Oribatid mites likely are not acidophilic (Hagvar, 1990) since 

they have high densities in more base-rich soils in Canada which are post glacially not yet 

colonized by earthworms (Migge-Kleian et al., 2006). This clearly shows a negative effect of 

earthworms on oribatid mite densities. High soil pH was positively correlated with earthworm 

densities (B. Klarner, unpublished data) which may in turn have had a detrimental effect on 

oribatid mites. The causal factors of macrofauna-mesofauna antagonistic interactions are 

discussed in detail by Eisenhauer et al. (2010). Mechanical perturbation and resource 

competition are considered as negative impacts of earthworms on oribatid mites and on 

mesofauna in general (Eisenhauer et al. 2010). 

Diversity of oribatid mites was only little affected by the four forest types, indicating a 

similar number of niches. However, the community structure of oribatid mites differed, 

indicating different types of niches. The oribatid mite communities varied strongest between 

coniferous and beech forests, and changed gradually within the beech forests from 30 y old 

beech forests over 70 y old beech forests to the unmanaged beech forests. More pronounced 

than the community shift along the forest types was the difference in oribatid mite community 

structure between the three regions. Obviously, factors associated with regions were more 

important in structuring oribatid mite communities than the local effects of forest type within 

a region. Caruso et al. (2011) concluded that demographic stochasticity and limited dispersal 

did not fully explain the spatial patterns of oribatid mite communities and suggested that 

environmental factors and niche-mediated competition play a role in oribatid mite community 

composition. In our study, the most important factor structuring oribatid mite communities 

was soil pH. Soil pH affects earthworm densities (Migge-Kleian et al. 2006, Eisenhauer 2010) 

and influences the main resources of oribatid mites, fungi and bacteria (Baath and Anderson, 

2003; Dequiedt et al., 2011). Further studies on microbial communities in soil and effects of 

earthworms on basal food sources and mesofauna are needed to relate them to oribatid mite 

community composition. 
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3.  Frequency of parthenogenetic oribatid mites related to resources in 

soils  

The above study identified factors related to oribatid mite densities and communities in forest 

soils. In a further study we investigated the frequency of sexual and parthenogenetic 

individuals in these forests in a small scale study, and additionally in a large number of other 

habitats from all over the world in a meta analysis. Our data supported one assumption of the 

SRTS which states that parthenogenesis dominates in habitats with an excess of food 

resources, where adaptations to limited food-resources are not needed (Scheu and Drossel 

2007). 

Exact food resources of oribatid mites are hard to identify and to quantify (see Chapter 2). 

Oribatid mites are assumed to live in an ‘enemy-free space’ (Peschel et al. 2006) due to a 

variety of defense mechanisms (Raspotnig et al. 2003, Sanders and Norton 2004, Heethoff et 

al. 2011) and populations are probably predominantly controlled by bottom-up forces. 

Therefore, we supposed that oribatid mite density reflects the food availability and used it as 

an indirect measurement for resource accessibility. A better approximation for the amount of 

resources within a habitat is the respiration of oribatid mite communities since it regards 

changes in metabolism with body size (Damuth, 1981; Brown et al., 2004). Respiration of 

oribatid mites was calculated for the small scale study. The relation of oribatid mite density 

and population respiration to the frequency of parthenogenetic individuals was studied at 

small scale in two regions in Germany representing a gradient from mull to moder systems 

(Swabian Alb and Schorfheide). In a meta analysis at a global scale, only the densities of 

oribatid mites were related to the frequency of parthenogenetic individuals in different 

habitats such as temperate and tropical forests, fields, meadows and tree trunks. 

With increasing oribatid mite densities and respiration the frequency of parthenogenetic 

oribatid mites increased significantly in the Schorfheide. In the Swabian Alb the same trend 

occurred but without statistical significance. The effect of resources on oribatid mite densities 

and respiration might have been superimposed by the higher macrofauna density and activity 

(e.g., earthworms; see Chapter 3) in the Swabian Alb (B. Klarner, unpublished data) typical for 

mull systems (Schaefer and Schauermann, 1990). Especially earthworms compete for the same 

basal resources as oribatid mites, but also disturb the habitat by burrowing, litter comminuting 

and litter consumption, and perturbation is detrimental for mesofauna communities (Maraun 

et al., 2003). 
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The meta analysis at the global scale included a wider range of habitats, oribatid mite 

densities and frequencies of parthenogenetic oribatid mites. The correlation between oribatid 

mite densities and frequency of parthenogenetic oribatid mites was not linear as in the local 

scale study but logarithmic. The frequency of parthenogenetic individuals was generally high in 

temperate forests with ~ 60 % and declined below 30 % in meadows, fields, tropical forests 

and on the bark of trees. This indicates that meadows, fields, tropical forests and the bark of 

trees are resource limited habitats for oribatid mites and this was confirmed in Chapter 5 for 

the bark of trees. High C/N ratios of leaf litter in tropical forests (Haettenschwiler et al. 

2011) and the lack of primary decomposers (Illig et al. 2005) indicate the low nutritional 

quality of tropical forest soils.  

The curve of the correlation between oribatid mite densities and frequency of 

parthenogenetic individuals became flattened at higher densities indicating that with 

increasing oribatid mite densities the importance of resource limitation declines. Other factors 

than the amount of resources likely limit the frequency of parthenogenetic individuals at high 

densities but remain speculative. The coexistence of parthenogenetic and sexual individuals in 

the same habitat may be due to different feeding niches with distinct resource availability or 

due to historical resource limitation events with a slow recover of oribatid mites which are 

typical K-strategists (Norton 1994, Zaitsev et al. 2009). 

Overall, the results of the global and local analysis support the assumptions of the SRTS, 

stating that parthenogenetic organisms prevail in habitats with an excess of food resources. 

4. Tree trunks – a resource-limited habitat for oribatid mites 

In contrast to the soil, tree trunks are dominated by sexual oribatid mites (Erdmann et al. 

2006; Fischer et al. 2010) as shown in Chapter 4, indicating resource limitation according to 

the SRTS. This pattern seems counterintuitive since the bark, in contrast to the soil, is an 

exposed habitat, assumed to be dominated by harsh abiotic conditions. Harsh abiotic 

conditions should foster parthenogenetic individuals which recover faster after disturbances 

due to the two-fold reproductive advantage of parthenogenetic populations (Williams, 1975; 

Scheu and Drossel, 2007). The resource limitation on oribatid mites on bark was tested in 

Chapter 5. Food-resources on the bark of tree trunks were manipulated by fertilization to 

investigate if oribatid mite densities and the frequency of parthenogenetic individuals 

increase, indicating food-resource limitation rather than limitation by harsh abiotic conditions. 
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The bark of tree trunks was fertilized monthly with an N-source (ammonium nitrate), a C-

source (cane sugar), a combination of both (C and N) dissolved in water and water as control. 

Treatment effects of samples taken after three and eight months fertilization did not vary and 

were pooled for further analysis.  

Fertilization had no effect on the fraction of parthenogenetic oribatid mites. Primarily, 

fertilization affected the bark-living oribatid mites which are mainly sexual. The invasion of 

parthenogenetic species from soil is probably too infrequent to result in an increase of 

parthenogenetic individuals on bark in the period of the experiment. However, oribatid mite 

densities increased with C and CN fertilization, while N had no effect. The main effect was 

caused by C. Stable isotope analysis verified the incorporation of C of cane sugar into the tissue 

of oribatid mites. N of ammonium nitrate was not incorporated in oribatid mites which is in 

accordance with the observed oribatid mite densities which were not affected by N 

fertilization.  

The increase of oribatid mite densities under C fertilization confirmed the assumption of 

the SRTS. The bark is a resource-limited habitat. The limited availability of food resources could 

indicate low quantity and/or low nutritional value of algae and lichens which are presumably 

the main food source (Erdmann, 2007, Fischer et al. 2010). However, also secondary 

compounds in lichens (serving as repellents against herbivory) reduce the accessibility of the 

food resource (Lawrey, 1983; Reutimann and Scheidegger, 1987). Sexual individuals have a 

higher potential to adapt to limited and changing food resources, and to overcome chemical 

defense compounds (Ghiselin 1974, Bell 1982, Hairston et al. 1999). The high fraction of sexual 

oribatid mites on tree trunks supports the theory.  

The high frequency of sexual oribatid mites in other habitats such as polar regions or 

saltmarshes may indicate the importance of resource limitation rather than of harsh abiotic 

factors despite the apparent harsh abiotic conditions. 

5. Conclusions 

The present thesis provided new stable isotope data (15N and 13C) of oribatid mites. Stable 

isotope values of 15N reflected the wide range of trophic levels and the fundamental difference 

in diets between soil- and bark-living oribatid mites. The additional measurement of 13C 

increased the resolution of dietary composition and allowed identification of oribatid mite 
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species with endophagous juvenile stages. The data suggest that the classification of oribatid 

mites as decomposers in most food webs is far too simplistic. 

For the first time, oribatid mite density and community structure in different forest types 

(coniferous and beech forests) from a wide geographical range were investigated in Central 

Europe, allowing general conclusions on structuring forces. Oribatid mite densities were 

highest in coniferous forests and were associated with high litter mass and low soil pH. Both 

factors are intercorrelated with the presence of earthworms preferring high pH values and 

processing and reducing the litter. Oribatid mite community composition differed more 

between regions than between the forest types in the region indicating factors associated with 

the respective region rather than forest management or tree type influencing oribatid mite 

community composition.  

An important factor structuring oribatid mite community composition, concerning the 

frequency of parthenogenetic individuals, is the availability and structure of food resources. 

The relation of oribatid mite densities (used as indirect measurement for resource availability) 

with the frequency of parthenogenetic individuals was shown in a local analysis for forest soils 

and globally in a meta analysis including a variety of habitats. The results support an 

assumption of the SRTS which states that limited resources promote sexual reproduction. 

Sexual reproducing species have a higher potential to adapt to limited resources and exploit 

them more effectively than parthenogenetic species. The availability of resources also limited 

the densities of oribatid mites on tree trunks, as indicated by an increase of oribatid mites due 

to fertilization with C. This result was counterintuitive since we expected a limitation by harsh 

abiotic factors in this exposed habitat and expected a high frequency of parthenogenetic 

oribatid mites. However, the conclusion of the SRTS for habitats dominated by sexual 

individuals, such as tree trunks, that resources are limiting was confirmed by our results. The 

application of assumptions of the SRTS on oribatid mite communities is an important step to 

explain the frequency of parthenogenetic individuals in different habitats.  
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