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Abstract 
One of the most important extensions of the capacitated vehicle routing problem (CVRP) is the vehicle 

routing problem with simultaneous pickup and delivery (VRPSPD) where customers require simultaneous 

delivery and pick-up service. In this paper, we propose an effective ant colony optimization (EACO) 

which includes insert, swap and 2-Opt moves for solving VRPSPD that is different with common ant 

colony optimization (ACO). ACO is a meta-heuristic algorithm inspired by the foraging behavior of real 

ants. Artificial ants are used to build a solution for the problem by using the pheromone information from 

previously generated solutions. An extensive numerical experiment is performed on 68 benchmark 

problem instances involving up to 200 customers available in the literature. The computational result 

shows that EACO not only presented a very satisfying scalability, but also was competitive with other 

meta-heuristic algorithms such as tabu search, large neighborhood search, particle swarm optimization 

and genetic algorithm for solving VRPSPD problems. 
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1.  Introduction 
The capacitated vehicle routing problem (CVRP) is one of the most important combinatorial 

optimization problems which recently has been receiving much attention by researchers and 

scientists. CVRP deals with servicing a set of delivery customers or a set of pickup customers by 

a set of vehicles stationed at a central depot. Each vehicle, visits a set of customers such that 

every customer is visited exactly once and by exactly one vehicle. Furthermore, the capacity of 

each vehicle must not be violated. The objective of CVRP is to plan a set of routes to service all 

customers while minimizing the total travel distance. An example of a single solution consisting 

of a set of routes constructed for a CVRP is presented in Figure 1, where m=3 (number of 

vehicles) and n=14 (number of customers). To make CVRP models more realistic and 

applicable, there are many varieties of CVRP obtained by adding constraints to the basic model.
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 Examples of such extensions are Asymmetric CVRP (ACVRP) if the cost matrix is not 

symmetric (Laporte et al., 1986), VRP with pickup and delivery if the vehicles need to pick up 

loads (Tang and Galvao, 2006), open VRP if the vehicles have not return to the depot (Li et al., 

2007b), multi-depot VRP if the problem has multiple depots (Kuo and Wang, 2012), 

heterogeneous fleet VRP if capacity of vehicles are different (Subramanian et al., 2012), VRP 

with time windows if the services have time constraint (Hong, 2012), VRP with backhauls if the 

customers with delivery demand should be visited before the customers with pickup demand 

(Toth and Vigo, 1997), VRP with Mixed Pickup and Delivery (VRPMPD) if the delivery or 

pickup demand of some customers are set to zero (Nagy, and Salhi, 2005) and others. 

The vehicle routing problem with pickup and delivery (VRPPD) is a variant of CVRP where 

customers require pick-up and delivery service from a single depot in which the vehicles are not 

only required to deliver goods to customers but also to pick some goods up at customer 

locations. The major difference between this problem and CVRP is that customers may receive 

or send goods, while in CVRP all customers just receive goods from a depot. In the context of 

these problems, customers who only receive goods are called delivery, while those only sending 

goods are called pickup, in many applications however customers will both send and receive 

goods. The core constraint of the VRPPD is that the capacity of the vehicle cannot be exceeded. 

Furthermore, other constraints such as maximum distance or time windows may exist may be 

considered in this problem. If customer distances and demands (these include both pickup and 

delivery demands) are given, the objective is to find a set of routes to minimize the total 

travelling cost while meeting customer demands.  

  

 
Figure 1: Feasible solution for CVRP 

 

The VRPDP belongs to the field of reverse logistics context from a practical point of view. This 

is gaining increasing importance due to more people becoming environmentally conscious. 

Besides, companies are increasingly faced with the task of managing the reverse flow of finished 

goods or raw-materials. They get involved with reverse logistics because they can economics 

profit from it; or they are obliged legislation; or they feel socially impelled (de Brito and Dekker, 

2004). Several most important variants of VRPPD are VRP with backhauls (VRPB), VRP with 

mixed Pickup and Delivery; dial-a-ride problem; and the VRP with Simultaneous Pickup and 

Delivery (VRPSPD). In the VRPB, the customer set is partitioned into two subsets. The first one 

contains the customers with delivery demand and the second contains the customers with pickup 

demand. Customers in the second subset should be visited after all those in the first one. 

Furthermore, the VRPB may be considered as a special case of CVRP where either the delivery 

demand or the pick-up demand of each customer equal zero. In this work, we deal, particularly, 

with the vehicle routing problem with simultaneously pickups and deliveries (VRPSPD). In this 
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variant of the VRPPD, customers require simultaneous pick-up and delivery service from a 

single depot in which the vehicles are not only required to deliver goods to customers but also to 

pick some goods up at customer locations. Deliveries are supplied at the start of the vehicle’s 

service, while pick-up loads are taken to the same depot at the end of the service. One important 

characteristic of this problem is that a vehicle’s load in any given route is a mix of pick-up and 

delivery loads. 

It should be noted that VRPSPD can be seen as a pickup and delivery problem (PDP) in the 

recent classification on static PDP by Berbeglia et al. (2007). VRPSPD is also called the multi-

vehicle Hamiltonian one-to-many-to-one PDP with combined demands. By this definition, the 

deliveries are from the depot and the pickups will be returned to depot; the customer demand is 

combined which means that there is at least one customer with non-zero pickup and delivery 

demand. One obvious difference among CVRP, VRPB and VRPSDP is the variation of the 

vehicle load during the whole route. In CVRP, the load decreases (increases) monotonously 

while in the VRPB, it firstly decreases to zero and then starts to increase. Neither of the two 

cases is true in the VRPSDP. In this problem, the load of vehicles varies rulelessly and the 

maximum may appear in the middle of the route. Furthermore, if the total demand of all the 

customers assigned to the same vehicle does not exceed the capacity limit in CVRP, then the 

feasibility of the route would always behold, no matter what the visiting sequence is. Case in the 

VRPB is similar. However, it is quite different in the VRPSDP as we show in Figure 2. In this 

example, the vehicle capacity is 20 and the customers’ demands are defined. In this figure, the 

left side route is infeasible because the load of the vehicle exceeds its capacity after visiting 

customer v3, while the right side route is feasible where customer v3 is visited after v4. So the 

feasibility in the VRPSDP is not only related to the sum of the demands, but also strongly 

depends on the visiting order. 

 

 
Figure 2: Feasible and infeasible examples for the VRPSDP 

 

There are few references to VRPSPD in the literature. There exist, however, abundant references 

related to routing problems in which clients require pick-up and delivery service, but not 

simultaneously. There are theoretical relationships between these problems and VRPSPD and it 

is possible to transform VRPSPD into other routing problems with pick-up and delivery service. 

From a mathematical point of view, VRPSPD is an NP-hard combinatorial optimization 

problem; hence there are some serious difficulties in finding an exact solution in reasonable time. 

Therefore, researchers use meta-heuristic algorithms to solve the problem such as ant colony 

optimization (ACO), tabu search, etc. In addition, ACO algorithm is one of the optimal 

algorithms for solving a routing scheme problem, and is also an effective method to find optimal 

solutions to difficult discrete optimization problems, especially in the routing problem. This 

algorithm is a probabilistic technique that simulates the ant’s food-hunting behavior and is used 

for solving problems that do not have a known efficient algorithm. The purpose of this paper is 

to present an effective hybrid metaheuristic algorithm for VRPSPD. The proposed metaheuristic 

development is a hybrid of a well-known metaheuristic methodology, namely EACO. To help 
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EACO overcome premature local optima encountered, several local search algorithms are 

employed. In this way, the proposed algorithm evolves towards diverse trajectories of the 

solution space, and a more extensive search is accomplished. The proposed framework was 

applied to 68 VRPSPD benchmark instances derived from the literature and involving from 50 to 

200 customers. The results show the proposed algorithm not only obtained several of the best 

known solutions, but also presented very satisfying solutions for other instances.  

The rest of this paper is organized as follows. In section 2, a mixed integer linear programming 

of VRPSPD is presented and the literature review is reported in section 3. In section 4, ACO and 

the EACO are explained and performance of the proposed algorithm will be described. The 

results of EACO will be compared with some of the other algorithms on standard problems in 

section 5. Finally, the conclusions are presented in section 6. 

 

2. Problem formulation 

From a graph theoretical point of view, we can define VRPSPD as follows. Let G = (V, E) be an 

undirected connected graph with  V 0,1,...,n as the set of vertexes and the set of 

arcs  E (i, j):0 i, j n   (if the graph is not complete, we can instead lack of each arc with the 

arc that has infinite size). Node 0 is the depot and the customer set C consists of n customers, i.e., 

 C 1,2,...,n . A nonnegative cost  ijc  ( iic 0, 0 i n   ) associated with each arc (i, j) E.  0 

represents the depot and each customer has a demand di for delivery and pi for pickup. Let 

C={1,2,…,m} be the set of homogeneous vehicles with capacity Q.  

VRPSPD deals with finding the minimum total transportation cost for a set up to m routes so that 

the following constraints are taken into account: 

 The vehicles start to move simultaneously from the depot and return to the depot after 

visiting customers. 

 All the pickup and delivery demands are accomplished. 

 The vehicle’s capacity is not exceeded 

 Each customer is visited by only a single vehicle  

 The number of vehicles used cannot exceed m. 

 We present following mathematical formulation for HFFVRP using variables ij ijx ,P  and 

ijD where,
Error! Bookmark not defined.

 take the value 1 if denotele travels directly from 

customer i to customer j, and 0 otherwise; denotes the route. The flow non-negative variables ijP  

and ijD specify the quantity of pickup and delivery goods that a vehicle is carrying when leaves 

customer i to service customer j.  
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The objective function (1) gives the sum of the total cost of the vehicles. Constraints (2) mean 

that only one arc can be exited for each customer; however, the maximum number of vehicles is 

guaranteed by constraints (3). Constraints (4) show that number of exited and entered arcs for 

each customer are same. Equality equations (5) and (6) insure that the quantity of pickup and 

delivery goods of each customer is fully satisfied in one visit. Constraints (7) state that the 

vehicle capacity is never exceeded. Restrictions (8) force the flow to remain non-negative and 

finally, constraints (9) describe that each arc in the network has the value 1 if it is used and 0 

otherwise.  

 

3. Literature Review 
VRPSPD was first proposed almost two decades ago by (Min, 1989). Min first inspired 

VRPSPD from a distribution problem of a public library, with one depot, two vehicles and 22 

customers and presented a heuristic to solve for this real-life problem. His algorithm used to 

solve this problem involved the following stages:  

(i) Customers are first clustered in such a way that the vehicle capacity is not exceeded in 

each group.  

(ii)  One vehicle is assigned to every cluster as Traveling Salesman Problem.  

(iii) The TSP is solved for each group of customers. 

In during the algorithm, the infeasible arcs were penalized and the problems are resolved. 

Dell'Amico et al. (2006) firstly proposed an exact method based on column generation, dynamic 

programming, and branch and price method for this problem. However, the computational 

complexity of VRPSPD is evident from the computational result, in which an hour of 

computational time sometimes is not enough for solving a small size problem consist of 40 

customers. Angelelli and Mansini (2002) also developed a branch-and-price algorithm for 

VRPSPD with time-windows constraints. 

Although exact algorithms are suitable for instances with small size, they are not often suitable 

for real instances owing to the computational time required to obtain an optimal solution. 

Therefore, heuristics are thought to be more efficient for complex VRPSDP and have become 

very popular for researchers. For examples, Salhi and Nagy (1999) proposed four insertion-based 

heuristics for generating solution for VRPSPD. Also, these authors introduced the weak 

feasibility and the strong feasibility of a solution, which are claimed to be helpful in dealing with 

the VRPSDP, and presented a number of heuristics (Nagy and Salhi, 2005). Furthermore, 

Dethloff considered this problem comprehensively and discussed the importance of VRPSPD in 

the reverse logistics operations (Dethloff, 2001). He proposed a new insertion criterion RCRS, 

which combined the concepts of both “residual capacity” and “radial surcharge” with “travel 

distance”. It is shown that RCRS outperformed the other three criteria through experiments on 

both the instances generated randomly and those taken from the literature. Bianchessi and 

Righini (2007) proposed heuristic algorithms for solving VRPSPD. Their work comprised of 

four different constructive algorithms, including local search algorithms with various 

neighboring structures. 
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If Pj = 0 (j ∈ J), or even Pj ≤ Dj  (j ∈ J) then the problem reduces to the VRP which is known to 

be NP-hard (Garey and Johnson, 1979), thus indicating that the VRPSDP is NP-hard, too. This 

means that the VRPSDP solution time grows exponentially with the increase in distribution 

points. In other words, the computational time required to solve adequately large problem 

instances is still prohibitive and heuristic methods become trapped in local optima and cannot 

gain a good suboptimal solution. Therefore, the focus of most researchers, is given to the design 

of meta-heuristic approaches capable of producing high quality near optimum solutions with 

reasonable computational time. As a result, many recent studies have been published on using 

advanced meta-heuristic techniques to solve VRPSPD. Some of the well-known meta-heuristics 

which have more ability for finding optimal solution are as follows:  

Emmanouil et al. proposed a hybrid solution approach for VRPSPD incorporating the rationale 

of tabu search and guided local search which has proven to be effective for routing problem 

variants (Emmanouil et al., 2009). The performance of their meta-heuristic algorithm was tested 

on benchmark instances involving from 50 to 400 customers. Moreover, an improved differential 

evolution algorithm for solving VRPSPD with time window was proposed in (Mingyong and 

Erbao, 2010). In this algorithm, the novel decimal coding to construct an initial population is 

firstly adopted, and then used some improved differential evolution operators unlike the existing 

algorithm. A Large Neighborhood Search (LNS) heuristic associated with a procedure similar to 

the VNS meta-heuristic is developed to solve several variants of the VRP including VRPSPD 

(Ropke and Pisinger, 2004). Vural proposed some evolutionary based meta-heuristics for the 

problem such as two Genetic Algorithms in 2003. The first one is inspired on the random key 

technique while the second one consists in an improvement heuristic that applies Or-opt 

movements. 

A modified ant colony algorithm is offered in which a new saving based visibility function and 

pheromone updating procedure (Catay, 2010). Zhang et al (2011) developed a new scatter search 

approach for the one of the most important extensions of VRPSPD called stochastic travel time 

VRPSPD by incorporating a new chance constrained programming method. They also proposed 

a genetic algorithm approach to this problem. In this paper, the Dethloff data will be used to 

evaluate the performance characteristics of both approaches. 

Cruz et al. considered VRPSPD and applied a heuristic algorithm called GENVNS-TS-CL-PR. 

The proposed algorithm combines several heuristic algorithms, including cheapest insertion, 

cheapest insertion with multiple routes, GENIUS, variable neighborhood search, variable 

neighborhood descent, tabu search and path relinking (Cruz et al., 2012). In GENVNS-TS-CL-

PR algorithm, first three procedures are used to obtain a high quality initial solution, and the last 

two algorithms are applied as local search methods. In more details, tabu search and path 

relinking are called after some iterations without any improvement through of the variable 

neighborhood search and after each variable neighborhood search iteration respectively, and it 

connects a local optimum with an elite solution generated during the search. The results showed 

that not only the algorithm was competitive other famous algorithms, but also it was able to 

generate high quality solutions for some standard instances. 

Goksal et al., presented a heuristic solution algorithm based on particle swarm optimization in 

which a local search is performed by a variable neighborhood descent algorithm (VND) (Goksal 

et al., 2013). Moreover, it implements an annealing-like strategy to preserve the swarm diversity. 

The effectiveness of the proposed algorithm is investigated by an experiment conducted on 

benchmark problems available in the literature. The computational results indicate that the 

proposed algorithm competes with the heuristic approaches in the literature and improves several 

best known solutions. 

Wassan et al. investigated a class of extensions to VRP including different problem versions and 

some more well-known recent versions and placed in taxonomy (Wassan and Nagi, 2014). In this 

paper, a central focus was done on novel problem classes and an integer linear programming
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formulation was also presented. In addition, it is also shown how this formulation can be adapted 

to cater for other problem versions of VRP. Finally, various solution algorithms, including meta-

heuristics were discussed to solve the models and what more is needed VRP.A variant of the 

basic VRP, where the vehicles serve delivery as well as pick up operations of the clients under 

time limit restrictions, is VRPSPD with Time Limit (VRPSPDTL). VRPSPDTL determines a set 

of vehicle routes originating and terminating at a central depot such that the total travel distance 

is minimized. For this problem, Polat et al (2015) presents a mixed-integer mathematical 

optimization model and a perturbation based neighborhood search algorithm combined with the 

classic savings heuristic, variable neighborhood search and a perturbation mechanism. The 

numerical results show that the proposed method produces superior solutions for a number of 

famous benchmark problems compared to those reported in the literature and reasonably good 

solutions for the remaining test problems. 

The Vehicle Routing Problem with Mixed Pickup and Delivery (VRPMPD) differs from 

VRPSPD in that the customers may have either pickup or delivery demand. However, the 

solution approaches proposed for VRPSPD can be directly applied to the VRPMPD. In this 

paper, an adaptive local search solution approach is developed for both VRPSPD and the 

VRPMPD, which hybridizes a Simulated Annealing inspired algorithm with Variable 

Neighborhood Descent (Avci et al., 2015). The algorithm uses an adaptive threshold function 

that makes the algorithm self-tuning. The proposed approach is tested on well-known VRPSPD 

and VRPMPD benchmark instances derived from the literature. 

Finally, Avci and Topaloglu considered an applied version of VRP called heterogeneous 

VRPSPD (Avci and Topaloglu, 2016). In this problem, the original version of VRPSPD is 

extended by assuming the fleet of vehicles to be heterogeneous. This problem, which can arise in 

many transportation systems involving both distribution and collection operations, is considered 

to be an NP-hard problem because it generalizes the classical VRP. So, a hybrid local search 

algorithm in which a non-monotone threshold adjusting strategy is integrated with tabu search 

was proposed for this new problem. In order to test the efficiency of the proposed algorithm, a 

set of randomly generated problem instances was considered and the results indicate that the 

developed algorithm obtains efficient and effective solutions.  

 

4. Our algorithm 
In this section, first, the ACO is presented and then the EACO will be analyzed in great detail. 

 

4.1. Ant colony optimization 

Ant colony optimization (ACO) is one of the most popular meta-heuristic algorithms inspired by 

the behavior of real ants seeking a path between their colony and a source of food. As the ants 

move, they deposit a trail of pheromone as a communication medium for ants. The probability 

that any ant chooses one path over other increases as the amount of pheromone present increases. 

The pheromone also evaporates over time, so that it will become less apparent on longer trails, 

which take more time to traverse. Therefore, longer trails will be less attractive, which is useful 

to the colony. The first version of ACO called Ant System (AS) is proposed by Dorigo aimed at 

searching for an optimal path between two nodes in a graph (Dorigo, 1992). A problem is 

divided into some sub-problems in which the simulated ants are expected to select the next node. 

The decision for choosing the unvisited Ni node by ant k located at node i is made based on the 

formula (10) in which both  and  are parameters and can be changed by the user.  
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k
i

ij ij k
i

k ij ijij
j N

k
i

if j N
P

if j N

                                       (10) 

Where  

:ij Amount of the pheromone of edge (i,j). 

:ij  The inverse distance of edge (i,j). 

 

Moreover, ants release “pheromone information”( )ij  on the respective path while moving 

from node i to node j (formula (11)).  

( ) ( )ij ij ijt t                                                                   (11) 

The algorithm like its natural version makes use of pheromone evaporation in order to prevent 

the rapid convergence of ants to a sub-optimal path (formula (12)).  Pheromone density is 

reduced in each iteration by 0 1  which is set by the user. In this formula, is the matrix for 

the existing pheromone on the edges of the respective graph.  

(1 ) [0,1]                                                       (12) 

 

AS is the first version of ACO was applied in traveling salesman problem (TSP) because it was 

well adapted to this problem and a lot of algorithms have been implemented in TSP (Figure 3). 

Since AS could not produce acceptable results compared with meta-heuristic algorithms of the 

time such as Genetic Algorithm GA) and Simulated Algorithm (SA), several variants of ACO 

such as elite ant system (EAS), ACS, rank based ant system (RAS) and max-min ant system 

(MMAS) have been derived from the basic AS. These algorithms were able to produce better 

results for many combinatorial optimization problems, such as the scheduling problems (Merkle 

and Middendorf, 2003), assignment problems (Maniezzo and Carbonaro, 2000), and Vehicle 

Routing Problems (VRPs) (Gambardella et al., 1999).  

 

4.2. Proposed Algorithm 

Our EACO algorithm is based on the ACO algorithm. In the EACO, m ants as much as number 

of vehicles are initially positioned on n vertices randomly. Each ant builds a tour and then 

modifies the pheromone level on the visited edges. When all ants have completed their tours, the 

pheromone level on each edge is modified again, which favors the edges associated with the best 

tour found from the start. The EACO mainly consists of the iteration of the three steps, including 

each ant builds the solution independently for n groups and carries out a local pheromone update, 

apply the local search to improve the solution, and update the global pheromone information.  

It should be noted that although the proposed algorithm strongly inspired by AS, achieves 

performance improvements through the introduction of new mechanisms based on ideas not 

included in the original AS. The EACO differs from the AS due to its strategy of constructing an 

observation schedule. This strategy features two major changes to the rules employed in the AS 

algorithm, namely: 
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Figure 3: The AS for the TSP 

 

 (1) A new transition rule is introduced that favors exploration. From node i, the next node j in 

the route is selected by ant k, among the unvisited nodes k

iN , according to the following transition 

rule which shows the probability of each city being visited: 

0

k
i

ij ij ij k
i

k ij ij ijij
j N

k
i

if j N
P

if j N

                                    (13) 

Where 

  A control parameter set by the user 

1

1

  


 

k k k

j j ij

ij k k

ij ij

p q 

 
  

max{ },.   k k k k

ij j j ip q s t j N  

min{ },.   k k k k

ij j j ip q s t j N  

k

jp Pickup demand of customer j which is not visited by ant k.  

k

jq Delivery demand of customer j which is not visited by ant k. 

It is noted that k

ij always is between 0 and 1. Besides, if each unvisited customer j by ant k has 

a more value of k k

j jp q , value of the 
k

ij is increased. Here ij is defined inverse distance from 

the edge (I, j).  

(2) In the proposed EACO, the pheromone of all edges belonging to the route obtained by ants 

will be updated. The pheromone updating includes local and global updating rules. The 

pheromone updating formula was used to simulate the change in the amount of pheromone due 

to both the addition of a new pheromone deposited by ants on the visited edges, and the 

pheromone evaporation. The aim of the local updating rule is to make better use of the 
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pheromone information by dynamically changing the desirability of paths. Using this rule, ants 

will search in a wide neighborhood of the best previous schedule. As the ant moves between 

nodes i and j, it updates the amount of pheromone on the traversed edge using the following 

formula: 

0
( 1) (1 ). ( ) { ( , ) }

ij ij k
t t if edge i j T                                    (14) 

In this formula, the parameter 0 1   represents pheromone evaporation and deposited 

pheromone is discounted by a factor  . It results in the new pheromone trail being a weighted 

average between the old pheromone value and the amount of pheromone deposited. Furthermore, 

0  is the initial pheromone level assumed to be a small positive constant distributed equally on 

all the paths of the network since the start of the survey. The effect of local updating is that when 

an ant traverses an edge (i,j), its pheromone trail ij  is reduced, so that the edges become less 

desirable for the ants in future iterations. This encourages an increase in the exploration of edges 

that have not been visited yet. Local updating helps avoid poor stagnation situations. 

When all n groups of ants have completed their schedule and after using local search algorithms, 

the pheromone level is updated by applying the global updating rule only on the paths that 

belong to the best found solutions since the beginning. This proposed algorithm ranks the 

solutions constructed by ants. What distinguishes this algorithm from the other algorithms is the 

fact that in EACO the amount of releasing pheromone is based on the rank of the groups of ants 

in finding solutions. The formula is (15) instead of formula (12) in AS: 

1
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Q : A constant coefficient determined by the user. 

 : The number of groups of ants, which have been ranked and the pheromone has been 

deposited on their edges. 

 : The variable indicating ranking index from 1 to  . 

S 
: The edges traversed by an ant group which has gained the  th rank in finding the best 

solution. 

In our EACO,  best groups of ants of the algorithm have been allowed to lay pheromone on the 

arcs they traversed. The idea of the elitist strategy in the context of the proposed algorithm is to 

give extra emphasis to the best paths found so far in every iteration. This modification leads to 

balance between exploitation (through emphasizing global best ant) as well as exploration 

(through the emphasis to iteration best ant). 

After all ants have constructed their routes and before updating global pheromone, several local 

searches are performed to further reduce the routes length. A local search approach starts with an 

initial solution and searches within neighborhoods for better solutions. These algorithms are 

important parts of the proposed algorithm shown in Figure 4. In this figure, we present three 

types of local search schemes: 2- opt scheme, insert and swap moves. However, local search is a 

time-consuming procedure of EACO. To save the computation time, we will only apply local 

search to the best solution in each iteration. The idea here is that a better solution may have a 

better chance to find a global optimum.  
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Figure 4: Insert (left), swap (middle) and 2-opt exchanges (right) 

 

In insert algorithm, a customer is moved to another route (in Figure 4 (left).). However, in swap 

algorithm a customer in a certain route is swapped with another customer from a different route 

(in Figure 4 (middle)). One of the most commonly encountered moves is the 2-Opt. In multiple 

routes, two edges belong to a same route or different routes which form a criss-cross are selected 

and two new edges are replaced. This move is demonstrated in Figure 4 (right). It also should be 

noted that the new solution will be only accepted in state that first, VRPSPD constraints are not 

violated specially about each vehicle’s capacity and second, novel tour will gain better value for 

problem than previous solutions. 

After each iteration, the stop condition is checked. If this condition is met, the algorithm ends. 

Otherwise, if stop conditions do not satisfy, the algorithm is iterated by returning to transition 

rule. To end the loop, the algorithm is iterated until the best solution is not changed 5 times. If 

the condition is met, the algorithm ends and the obtained results and values up to now are 

considered as the best values and results of the algorithm. The pseudo code of EACO for solving 

VRPSPD is presented in Figure 5. 

 

 

 
 

Figure 5: The EACO for VRPSPD 

 

 

1) Set the parameters. 

2) For n groups, place m ants at n vertices randomly. 

3) Select a nest node for each ant based on a new proposed formula and candidate 

list. 

4) Deposit local pheromone. 

5) If there is a node that has not been visited, go to step 3.  

6) Save the best solution and its value obtained in current iteration. 

7) Apply local search to the best solution in each iteration. 

8) Update the best solution and its value obtained until now. 

9) Update global pheromone on each edge belonging to the ranked groups. 

10) If the best solution till now is improved within five iterations, go to step 2. 

11) Print the best solution and its value. 
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5. Numerical Analysis  
At the first stage in this section, sensitivity analyses of parameters in the EACO are performed 

and at the second and third stages, the proposed algorithm, which is discussed in the previous 

section, is analyzed by using two sets of benchmark problems available in the literature for 

VRPSPD. The EACO is coded in Matlab 11 programming language and executed on a PC 

equipped with an Intel Pentium IV processor running at 3500 MHz; Core i3 and 8 GB of RAM 

running Microsoft Windows 7 Ultimate. Because the EACO is a meta-heuristic algorithm, the 

results are reported for ten independent runs and the best solution found in each instance is 

reported.  

 

5.1. Sensitivity analyses of parameters 

There are many parameters in the EACO affected by the final solution's quality. Consequently, a 

parameter setting procedure is necessary to reach the best balance between the qualities of the 

solutions. Because there is no way of defining the most effective values of the parameters, 

selections of some of the best parameters are considered and the best one is finally selected. We 

know that the most influential parameters in the proposed algorithm, which directly affect the 

quality of the final solution are  ,  ,  , and  , so in this section, the parameters in our 

algorithm are tuned. The ranges of four parameters of the proposed algorithm are considered in 

Table 1 and the instance SCA8-6 was determined as the test problem. It is noted that the 

algorithm with each parameter is tested 10 times and the best solution is reported in Figure 6. In 

this figure, the horizontal axis shows the range of parameters and the vertical axis indicates the 

Gap of these algorithms. The Gap is computed by using formula (8) where 
**( )c s  is the best 

solution found by each algorithm for a given instance, and 
*( )c s is the overall BKS for the same 

instance on the Web. A zero gap indicates that the best known solution of instance is found by 

the algorithm. 


 

** *

*

( ) ( )
100

( )

c s c s
Gap

c s
                                                                                                   (17)                                                                          

Based on the gained results shown in Figure 6 and column 3 in Table 1, the algorithm with the 

smaller weight parameter alpha of pheromone trails possesses higher performance. This may be 

attributed to that in the proposed algorithm the initial pheromone trails are large values. By using 

the large control factor of pheromone trail, the effect of visibility value is weakened and results 

in a premature convergence. In addition, the qualities of the solutions of the algorithms with 

Beta=1 and landa=3 are better than other parameters. Furthermore, from the test results, it can be 

found that by setting the evaporation factor to 0.5, the proposed algorithm can yield better 

solutions. This can be attributed to that if pheromone evaporation is too rapid or slow, it is more 

easily that result in the search to be trapped in local minimum. In other words, the suitable 

evaporation factor can ensure the sufficient diversity of search space and guide following ants to 

explore better solutions. As a result, the pack of optimal parameters obtained through several 

tests is shown in Table 1.  
Table 1: Range of parameters of the proposed algorithm 

Parameters The tested candidates The best value 

 (Alpha) 1 1.5 2 2.5 3 3.5 4 4.5 5 1 

  (Beta) 1 1.5 2 2.5 3 3.5 4 4.5 5 1 

 (Landa) 1 1.5 2 2.5 3 3.5 4 4.5 5 3 

 (Rho) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.5 
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Figure 6: Parameters tuning of the proposed algorithm 

 

5.2. The first data set of Benchmark instances 
In this sub-section, the computational experiment is conducted on the benchmark data set of 

Dethloff (Dethloff, 2001). Instances are classified into four sets, namely SCA3, SCA8, CON3 

and CON8. Each data set consists of 10 instances of a 50-customer problem. SCA data sets are 

generated with customers scattered uniformly in the service region of 100 _ 100. CON data sets 

are generated with half of the customers located uniformly in the service region and the other 

half are concentrated in the interval [100/3,100/3]. The delivery demand of customer i (di) is 

generated from a uniform distribution in the interval [0,100] and then pickup demand (pi) is 

calculated from the equation of pi = (0.5 + ri) di, where ri is a random number between [0, 1]. 

The numbers 3 and 8 after SCA or CON indicate the parameter for determining vehicle capacity. 

There are 10 problems in each group of problems. As mentioned earlier, VRPSPD is formulated 

by Dethloff as the problem to minimize the total traveled distance subject to the maximum 

capacity constraint of the vehicle. Hence, the following problem parameters are set as follows:  

f = 0 (fixed cost per vehicle)  

g=1 (variable cost per distance unit)  

D=∞ (service duration limit)  

The results found by the proposed algorithm in the instances are shown in Table 2, where C is 

the number of customers; V  represents the number of vehicles; EACO shows the best found 

solution by the proposed algorithm in ten time iteration; BKS indicates the best solution found 

on the Web; it is the execution time related to the run where the best solution was found; Avg. 

Sol. represents the average solution obtained by the EACO in ten iterations; Avg. t corresponds 

to the average execution runtime; and Gap is the deviation of the EACO with respect to the BKS. 

From Table 2 it is possible to affirm that the proposed algorithm demonstrated a consistent 

performance, since the average gap between the best solutions obtained by EACO and the BKS 
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solutions was only 0.06% with the highest value in all the instances. It can be observed from 

Table 2 that among the 40 instances, the EACO has produced the high quality results of 10 

instances and equaled another 30. 

  
Table 2: Results obtained in Dethloff’s instances 

Problem C V EACO BKS t (s) Avg. Sol. Avg. t. (s) Gap 

SCA3-0 50 4 635.93 635.62 1.83 636.1 3.11 0.05 

SCA3-1 50 4 697.84 697.84 2.33 697.8 3.17 0 

SCA3-2 50 4 659.34 659.34 3.11 659.3 3.81 0 

SCA3-3 50 4 680.04 680.04 1.99 680.6 2.99 0 

SCA3-4 50 4 690.50 690.50 2.88 690.5 3.14 0 

SCA3-5 50 4 659.90 659.90 3.82 659.9 3.91 0 

SCA3-6 50 4 651.09 651.09 4.23 651.1 3.82 0 

SCA3-7 50 4 659.17 659.17 2.45 666.1 2.97 0 

SCA3-8 50 4 719.47 719.47 3.88 719.5 3.99 0 

SCA3-9 50 4 681.00 681.00 4.10 681.0 3.82 0 

SCA8-0 50 9 964.81 961.50 2.99 975.1 3.72 0.34 

SCA8-1 50 9 1049.65 1049.65 2.31 1052.4 2.81 0 

SCA8-2 50 9 1042.64 1039.64 2.77 1044.5 2.86 0.29 

SCA8-3 50 9 983.34 983.34 3.11 999.1 4.01 0 

SCA8-4 50 9 1065.49 1065.49 4.01 1065.5 3.82 0 

SCA8-5 50 9 1027.08 1027.08 3.21 1027.1 3.27 0 

SCA8-6 50 9 975.19 971.82 2.98 977.0 3.61 0.35 

SCA8-7 50 10 1051.28 1051.28 2.04 1061.0 2.87 0 

SCA8-8 50 9 1071.18 1071.18 1.98 1071.2 2.85 0 

SCA8-9 50 9 1062.34 1060.5 2.35 1060.5 2.97 0.17 

CON3-0 50 4 616.52 616.52 2.89 616.5 2.90 0 

CON3-1 50 4 554.47 554.47 3.15 554.5 3.61 0 

CON3-2 50 4 519.89 518.00 3.61 521.4 3.71 0.36 

CON3-3 50 4 591.19 591.19 3.41 591.2 2.76 0 

CON3-4 50 4 588.79 588.79 3.88 588.8 3.57 0 

CON3-5 50 4 563.70 563.70 2.67 563.7 3.71 0 

CON3-6 50 4 500.21 499.05 3.46 500.8 2.79 0.23 

CON3-7 50 4 576.48 576.48 3.41 576.5 3.79 0 

CON3-8 50 4 523.05 523.05 2.73 523.1 2.49 0 

CON3-9 50 4 578.25 578.25 2.39 586.4 4.03 0 

CON8-0 50 9 859.93 857.17 3.51 857.2 4.47 0.32 

CON8-1 50 9 740.85 740.85 3.93 740.9 3.82 0 

CON8-2 50 9 712.89 712.89 3.82 716.0 3.93 0 

CON8-3 50 9 811.07 811.07 3.87 811.1 3.82 0 

CON8-4 50 9 772.25 772.25 3.59 772.3 3.72 0 

CON8-5 50 9 754.88 754.88 2.86 755.7 3.59 0 

CON8-6 50 9 678.92 678.92 2.81 693.1 3.82 0 

CON8-7 50 9 812.55 811.96 2.59 814.8 3.78 0.07 

CON8-8 50 9 769.79 767.53 2.83 774.0 3.49 0.29 

CON8-9 50 9 809.00 809.00 3.85 809.3 3.19 0 

 

Generally, meta-heuristic solutions tend to be better than the heuristic solutions. Therefore, in 

Table 1, the efficiency and performance of the EACO are compared with the following meta-

heuristic algorithms given in the literature for VRPSPD.  
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TS     Tabu Search proposed by Tang and Galvao in 2006. 

LNS  Large Neighborhood Search proposed by Ropke and Pisinger in 2006. 

PSO  Particle Swarm Optimization proposed by Ai and Kachitvichyanukul in 2009. 

GA   Genetic Algorithm proposed by Zhao et al. in 2009.  

In this table, the first column includes the instance name, the second column (C) shows the 

number of customers, and the third column (V) presents the number of used vehicles, which for 

all of these instances is fixed at the minimum possible. It should be noted that these instances do 

not have the maximum route length restriction. The fourth and fifth columns of Table 3 are LNS 

and TS. The results of the EACO are in the seventh column and the last column includes the 

optimal values of these instances obtained in the literature (BKS). It should be noted that 

reported results for each instance is the best one over multiple runs. While LNS, TS and the 

proposed algorithm run 10 times for each instance.  

The reason considering GA and PSO in the comparison to EACO is to draw a conclusion about 

performances of population-based heuristics in VRPSPD. It is also important to test the 

performance of the proposed algorithm against the TS and LNS since these meta-heuristic 

algorithms are the most effective algorithms recently proposed in the literature. 

As can be seen from this table, the EACO finds the optimal solution for 30 out of 40 problems. 

The results also indicate that the proposed algorithm is a competitive approach compared to the 

LNS and TS. On the other hand, it is seen that LNS and TS fail to reach the best results for 18 

and 23 out of 40 instances, respectively.  

In 17 instances, both the EACO and TS are same. However, in other instances the proposed 

algorithm finds a better solution than TS. From this comparison we also conclude that the 

proposed method has better solution than the LNS for sixteen instances and equal solution for 

twenty two instances. As a result,  the best algorithm is EACO which has found the best known 

solutions in 78%. The algorithms in terms of their performance from the worst to the best are: 

LNS, TS and EACO. 

 
Table 3: Total tour length obtained by different algorithms 

Problem C V LNS TS EACO BKS 

SCA3-0 50 4 636.1 640.55 635.93 635.62 

SCA3-1 50 4 697.8 697.84 697.84 697.84 

SCA3-2 50 4 659.3 659.34 659.34 659.34 

SCA3-3 50 4 680.6 680.04 680.04 680.04 

SCA3-4 50 4 690.5 690.50 690.50 690.50 

SCA3-5 50 4 659.9 659.90 659.90 659.90 

SCA3-6 50 4 651.1 653.81 651.09 651.09 

SCA3-7 50 4 666.1 659.17 659.17 659.17 

SCA3-8 50 4 719.5 719.47 719.47 719.47 

SCA3-9 50 4 681.0 681 681.00 681.00 

SCA8-0 50 9 975.1 981.47 964.81 961.50 

SCA8-1 50 9 1052.4 1077.44 1049.65 1049.65 

SCA8-2 50 9 1044.5 1050.98 1042.64 1039.64 

SCA8-3 50 9 999.1 983.34 983.34 983.34 

SCA8-4 50 9 1065.5 1073.46 1065.49 1065.49 

SCA8-5 50 9 1027.1 1047.24 1027.08 1027.08 

SCA8-6 50 9 977.0 995.59 975.19 971.82 

SCA8-7 50 10 1061.0 1068.56 1051.28 1051.28 

SCA8-8 50 9 1071.2 1080.58 1071.18 1071.18 
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Problem C V LNS TS EACO BKS 

SCA8-9 50 9 1060.5 1084.8 1062.34 1060.5 

CON3-0 50 4 616.5 631.39 616.52 616.52 

CON3-1 50 4 554.5 554.47 554.47 554.47 

CON3-2 50 4 521.4 522.86 519.89 518.00 

CON3-3 50 4 591.2 591.19 591.19 591.19 

CON3-4 50 4 588.8 591.12 588.79 588.79 

CON3-5 50 4 563.7 563.70 563.70 563.70 

CON3-6 50 4 500.8 506.19 500.21 499.05 

CON3-7 50 4 576.5 577.68 576.48 576.48 

CON3-8 50 4 523.1 523.05 523.05 523.05 

CON3-9 50 4 586.4 580.05 578.25 578.25 

CON8-0 50 9 857.2 860.48 859.93 857.17 

CON8-1 50 9 740.9 740.85 740.85 740.85 

CON8-2 50 9 716.0 723.32 712.89 712.89 

CON8-3 50 9 811.1 811.23 811.07 811.07 

CON8-4 50 9 772.3 772.25 772.25 772.25 

CON8-5 50 9 755.7 756.91 754.88 754.88 

CON8-6 50 9 693.1 678.92 678.92 678.92 

CON8-7 50 9 814.8 814.5 812.55 811.96 

CON8-8 50 9 774.0 775.59 769.79 767.53 

CON8-9 50 9 809.3 809 809.00 809.00 

 

Because average result over the 10 instances for each data set was reported in (Ai and 

Kachitvichyanukul, 2009; Zhao et al., 2009), our results in the same way is presented to make a 

fair comparison of the heuristic approaches in Figure 7. Consequently, the relation average of 

percentage deviation (Gap) of PSO, GA and EACO from the BKS on specific benchmark 

instances is shown in the Figure 7. In this figure, the horizontal axis shows the name of four 

groups of instances and the vertical axis indicates the Gap of these algorithms. Generally, the 

results show that the PSO and GA have had a weak performance, but the results of the GA are 

much better than PSO. As a result, the EACO is the best algorithm and the performances from 

the worst to the best belong to PSO, GA and EACO. As it is shown in (Tarantilis et al. 2008), 

direct comparisons of the required computational times cannot be conducted as they closely 

depend on various factors such as the processing power of the computers, the programming 

languages, the coding abilities of the programmers, the compilers and the running processes on 

the computers. 

In Figure 7, the computational results for all instances are compared between three algorithms. 

As it can be seen from this Figure, it is possible to affirm that the EACO demonstrated a 

consistent performance, since the average gap between the best solutions and the average 

solutions was better than two other algorithms. Furthermore, the GA performs better than the 

PSO. These results indicate that EACO is a competitive approach compared to mentioned 

algorithms and the results are much better than the ones found by these algorithms.  
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Figure 7: Comparison between PSO, GA and EACO for 4 groups of instances 

 

 
Figure 8: Comparison of mean gap for PSO, GA and EACO 

 

In order to further analyze the results of six mentioned algorithms, including PSO, GA and the 

proposed algorithm, one way analysis of variance (ANOVA) was conducted in order to 

determine if there are significant differences in the mean obtained solutions of the algorithms. 

This ANOVA analysis is conducted using the Minitab software in which the null hypothesis is 

that all means solutions of the three algorithms are equal, the alternative hypothesis is that at 

least one mean is different and the significance level is α = 0.05. In more details, equal variances 

were assumed for the analysis and rejecting the null hypothesis would mean that there is a 

significant difference between at least two of the algorithms. The results in Table 4 show that the 

p-value is 0.992, which is bigger than 0.05. Hence, the null hypothesis is not rejected when the 

level of significance is set at α = 0.05. In other words, there is no significant difference for mean 

of the all algorithms. Furthermore, it can be observed from Figure 9 that the proposed Algorithm 

is a little better than two other algorithms including GA and PSO.  

 
Table 4: ANOVA of mean results of the three algorithms 

Source DF Adj SS Adj MS F-Value P-Value 

Factor 2 549 274.6 0.01 0.992 

Error 117 3846543 32876.4   

Total 119 3847092    



M. Sayyah , H. Larki , M. Yousefikhoshbakht  

Journal of Industrial Engineering and Management Studies (JIEMS), Vol. 3 , No. 1 Page 32 

EACOTSLNS

1100

1000

900

800

700

600

500

D
a
ta

Boxplot of LNS, TS, ...

EACOTSLNS

820

800

780

760

740

720

700

D
a
ta

Interval Plot of LNS, TS, ...
95% CI for the Mean

The pooled standard deviation is used to calculate the intervals.  
Figure 9: Comparing results of the three algorithms for test problems 

 

5.3. The second data set of Benchmark instances 
The second data set of problem instances is suggested by Salhi and Nagy (1999). This data set 

has been modified from seven problems originally proposed by Christofides, Mingozzi, and Toth 

(1979) for the VRP with capacitated VRP. It is noted that these instances consist of 50 to 199 

customers and the cost matrix is found by calculating the Euclidean distances between vertices. 

Salhi and Nagy (1999) utilize following scheme to modify capacitated VRP instances for 

VRPSPD: xi and yi coordinates for customer i are considered as in the original problem and a 

ratio ri is calculated as ri=min (xi/yi, yi/xi). Let dmi be the demand of customer i. To obtain the 

first 7 VRPSPD instances, namely X-series, the delivery and pickup quantities for customer i are 

calculated as di=ri .dmi and pi=(1-ri).dmi, respectively. The other seven VRPSPD instances, 

namely Y-series, are generated by swapping the di and pi values for every customer (Gajpal & 

Abad, 2009). 

Table 5 shows the results of the proposed algorithm for VRPSPD instances. In this table, 

Columns 2-6 show the problem size C, the number of vehicles V, the best value result of the 

EACO, the CPU time of the MTSEAS for the best value result over the ten runs for each 

problem and the best known solutions (BKS). The most right column indicates the percentage of 

EACO improvement compared to the BKS (Gap). This table shows that the proposed algorithm 

can be used to solve VRPSPD effectively. In details, among the 28 instances, the EACO has 

produced the high quality results of 18 instances. Furthermore, it can be seen that among these 

test problems, the maximum relative error is 2.32% and the average relative error is 0.47%.  

 
Table 5: Results of the MTSEAS for 14 VRPSPD instances 

Instance C V Best solution 
Average 

Solutions 
Time(s) 

Average 

Time(s) 
BKS Gap 

CMT1X 50 3 466.77 466.77 3.72 4.23 466.77 0 

CMT2X 75 6 668.77 675.73 7.46 8.23 668.77 0 

CMT3X 100 5 721.27 765.14 15.62 14.13 721.27 0 

CMT4X 150 7 852.46 898.23 29.81 18.34 852.46 0 

CMT5X 199 10 1029.25 1099.13 45.82 49.23 1029.25 0 

CMT6X 50 6 556.06 556.66 4.72 4.54 556.06 0 

CMT7X 75 11 901.22 901.22 8.23 8.99 901.22 0 

CMT8X 100 9 865.51 898.01 13.27 15.65 865.51 0 

CMT9X 150 15 1198.62 1298.52 25.82 29.83 1173.44 2.15 

CMT10X 199 19 1442.71 1602.61 44.72 51.13 1424.06 1.31 

CMT11X 120 4 835.26 839.62 22.72 25.72 835.26 0 
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Instance C V Best solution 
Average 

Solutions 
Time(s) 

Average 

Time(s) 
BKS Gap 

CMT12X 100 5 651.76 687.24 16.31 15.23 644.70 1.09 

CMT13X 120 11 1551.25 1591.62 16.92 15.11 1551.25 0 

CMT14X 100 10 821.75 832.48 13.78 14.67 821.75 0 

CMT1Y 50 3 466.77 467.83 4.53 5.92 466.77 0 

CMT2Y 75 6 663.25 663.25 8.23 7.25 663.25 0 

CMT3Y 100 5 721.27 731.72 15.93 18.25 721.27 0 

CMT4Y 150 7 852.46 899.73 28.71 35.72 852.35 0.01 

CMT5Y 199 10 1033.55 1167.72 46.14 54.87 1029.25 0.42 

CMT6Y 50 6 556.68 556.68 3.82 3.67 556.68 0 

CMT7Y 75 11 901.22 904.72 6.82 5.83 901.22 0 

CMT8Y 100 9 875.72 903.38 14.02 13.92 865.68 1.16 

CMT9Y 150 15 1197.82 1278.52 24.82 29.73 1171.95 2.21 

CMT10Y 199 19 1449.73 1565.62 41.92 50.41 1419.79 2.11 

CMT11Y 120 4 832.63 887.62 21.72 28.34 830.39 0.27 

CMT12Y 100 5a 659.52 687.19 18.25 19.26 659.52 0 

CMT13Y 120 11 1583.61 1675.83 17.72 17.45 1547.75 2.32 

CMT14Y 100 10 822.35 876.59 14.98 18.02 822.35 0 

 

We utilize the best algorithms reported in the literature (as per our knowledge) to evaluate the 

performance of the proposed EACO for VRPSPD in Table 6: 

RTS: Reactive tabu search (Wassan et al., 2008). 

ACS: Ant colony system (Gajpal & Abad, 2009). 

AMM: Adaptive memory methodology (Zachariadis et al., 2010). 

PILS: Parallel iterative local search (Subramanian et al., 2010). 

PSO: Particle swarm optimization (Ai & Kachitvichyanukul, 2009a). 

LNS: Large neighborhood search (Ropke & Pisinger, 2006). 

RTS: Reactive tabu search (Wassan et al., 2008). 

MA: A mixed Insertion-based heuristics (Dethloff, 2001).  

It is important to point out that Wassan et al. may have used another approach to generate the 

instance CMT1Y. The optimum solution of this instance (466.77) was found by means of the 

mathematical formulation presented in (Min, 1989). This value is greater than the one obtained 

by Wassan et al. (458.96). It should be noted that the optimum solution coincides with the 

solution found in (Subramanian et al., 2010), (Gajpal & Abad, 2009) and by the proposed 

algorithm. It can be observed from Table 4 that among the 14 instances, the proposed algorithm 

has obtained the best results of 10 instances from 14 instances.  

The results of this comparison show that the EACO gains worse solutions than the RTS in 

CMT4Y, CMT12X, CMT10Y and CMT11Y and it gains better or equal solutions than this 

algorithm in other problems. Furthermore, the results indicate that although the PILS obtains a 

better solution than the proposed algorithm for CMT11X, this algorithm cannot maintain this 

advantage in the rest of the examples and the EACO yields better or equal solutions than this 

algorithm for other instances. The MA, PSO and LNS are not powerful algorithms for solving 

instances of VRPSPD and gains worse or equal solutions compared to the EACO for all 

instances. Moreover, the computational experiments also show that in general the MTSEAS 

produces better results compared to ACS algorithms in terms of the quality of the solution and 

could find better solutions for 12 of the 14 instances. 
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Table 6: Comparison between EACO and other meta-heuristic algorithms 

Instance ACS AMM PSO LNS PILS MA RTS EACO BKS 

CMT1X 466.77 469.80 467 467 466.77 501 468.30 466.77 466.77 

CMT2X 684.21 684.21 710 704 684.21 782 668.77 668.77 668.77 

CMT3X 721.40 721.27 738 731 721.27 847 729.63 721.27 721.27 

CMT4X 854.12 852.46 912 879 852.46 1050 876.50 852.46 852.46 

CMT5X 1034.87 1030.55 1167 1108 1029.25 1348 1044.51 1029.25 1029.25 

CMT6X - - - - - 584 556.06 556.06 556.06 

CMT7X - - - - - 961 903.05 901.22 901.22 

CMT8X - - - - - 928 879.60 865.51 865.51 

CMT9X - - - - - 1299 1220.00 1198.62 1173.44 

CMT10X - - - - - 1571 1464.58 1442.71 1424.06 

CMT11X 839.66 838.66 895 837 833.92 959 861.97 835.26 835.26 

CMT12X 663.01 662.22 691 685 662.22 804 844.70 651.76 644.70 

CMT13X - - - - - 1576 1647.51 1551.25 1551.25 

CMT14X - - - - - 871 823.95 821.75 821.75 

CMT1Y 466.77 469.80 467 467 466.77 501 458.96 466.77 466.77 

CMT2Y 684.94 684.21 710 685 684.21 782 663.25 663.25 663.25 

CMT3Y 721.40 721.27 740 738 721.27 847 745.46 721.27 721.27 

CMT4Y 855.76 852.46 913 876 852.46 1050 870.44 852.46 852.35 

CMT5Y 1037.34 1030.55 1142 1146 1029.25 1348 1054.46 1033.55 1029.25 

CMT6Y - - - - - 584 558.17 556.68 556.68 

CMT7Y - - - - - 961 903.36 901.22 901.22 

CMT8Y - - - - - 936 917.42 875.72 865.68 

CMT9Y - - - - - 1299 1213.11 1197.82 1171.95 

CMT10Y - - - - - 1571 1419.79 1449.73 1419.79 

CMT11Y 840.19 837.08 900 920 833.92 1070 830.39 832.63 830.39 

CMT12Y 663.50 662.22 697 675 662.22 825 659.52 659.52 659.52 

CMT13Y - - - - - 1576 1647.04 1583.61 1547.75 

CMT14Y - - - - - 871 823.34 822.35 822.35 

 

For better showing the quality of the proposed algorithm, the Gap of the obtained solutions are 

computed and compared to other solutions in Figure 10. From this Figure, we conclude that the 

EACO has the best deviation from the BKS in most of the instances. In more detail, the proposed 

HACO is the best algorithm which has found the best known solutions for all 15 out of 28 

examples and is very competitive with other algorithms. However, in other instances, the 

proposed algorithm finds nearly the BKS, i.e. the gap is about as high as 2.  

A simple criterion to measure the efficiency and the quality of an algorithm is to compute the 

average Gap of solutions on specific benchmark instances. In Figure 11, these criteria are 

reported for each algorithm. From this figure, it is possible to affirm that the EACO 

demonstrated a consistent performance, since the average gap between the best solutions and the 

average solutions was only 0.46%. Moreover, we see that the average Gap of solutions for MA, 

PILS, LNS, PSO, AMM, ACS and RTS are 13.66, 0.65, 4.07, 6.09, 0.82, 0.65 and 0.92 

respectively. As a result, the performance comparison of the results shows that the proposed 

algorithm clearly yields better solutions than the other algorithms4. The algorithms in terms of 

their performance from the worst to the best are: MA, PSO, LNS, ACS, AMM, RTS, PILS, and 

EACO.  
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Figure 10: Comparison results of the algorithms 
 

 
Figure 11: Comparison of mean gap for the algorithms 

 

Finally, Table 7 and Figure 12 show results of ANOVA of the eight algorithms for second data 

instances. By attention to this table, it is conducted that if the null hypothesis is equality of all 

means for the algorithms and the significance level is α = 0.05, there is no significant difference 

between the all algorithms (p-value=0.373 which is greater than 0.05). So, the null hypothesis is 

not rejected. Furthermore, this Figure shows that the proposed algorithm has high quality 

solutions compared to other seven metaheuristic algorithms for the problems. It is also concluded 

that the competition of the EACO, PILS and RTS is so close.  

 



M. Sayyah , H. Larki , M. Yousefikhoshbakht  

Journal of Industrial Engineering and Management Studies (JIEMS), Vol. 3 , No. 1 Page 36 

  
Table 7: ANOVA of mean common results of the eight algorithms 

Source DF Adj SS Adj MS F-Value P-Value 

Factor 7 285021 40717 1.09 0.373 

Error 104 3874560 37255   

Total 111 4159581    
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Figure 12: Comparing results of the eight algorithms for common test problems 

 

6. Conclusion 
In this research, we have proposed an effective ant colony optimization (EACO) that adopts a 

new state transition rule, a pheromone updating rule and three local search methods. A wide 

numerical experiment is performed on benchmark problem instances available in the literature. 

The proposed algorithm was tested in 68 benchmark problems with 50 to 199 customers and it 

was found capable of equaling with BKS for 48 instances. Computational results demonstrate 

that our algorithm has proven to be highly competitive in terms of quality of the solutions and 

CPU time for solving VRPSDP. Furthermore, this algorithm is effective compared to other meta-

heuristics such as MA, LNS, PILS, PSO and ACS. It seems that combining the proposed 

algorithm with strong local algorithms like Lin-Kernigan algorithm can lead to better results for 

the proposed algorithm. Besides, some complex VRPSDP with more constraints such as time 

windows and multi-depots are a lot of research work in this field. 
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