TCSv2n4.qxd 4/24/2008 11:56 AM_Page 1 _ﬂ
1T
[

Foundations and Trends® in
Theoretical Computer Science
2:4

v:¢ SOl 1YJ

This book is originally published as ISBN 978 1-60198-106-6
Foundations and Trends® in Theoretical Computer Science || ””ml” m ||”H H
781601 981066

Volume 2 Issue 4, ISSN: 1551-305X.

9 ‘

Algorithms and Data
Structures for External

Memory

Algorithms and Data
Structures for External
Memory

Jeffrey Scott Vitter

Department of Computer Science
Purdue University

West Lafayette

Indiana, 47907-2107

USA

Jjsv@purdue.edu

Nnow

the essence of knowledge

Boston — Delft

Foundations and Trends® in
Theoretical Computer Science

Published, sold and distributed by:
now Publishers Inc.

PO Box 1024

Hanover, MA 02339

USA

Tel. +1-781-985-4510
www.nowpublishers.com
sales@nowpublishers.com

Outside North America:
now Publishers Inc.

PO Box 179

2600 AD Delft

The Netherlands

Tel. +31-6-51115274

The preferred citation for this publication is J. S. Vitter, Algorithms and Data
Structures for External Memory, Foundation and Trends® in Theoretical Computer
Science, vol 2, no 4, pp 305-474, 2006

ISBN: 978-1-60198-106-6
(© 2008 J. S. Vitter

All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, mechanical, photocopying, recording
or otherwise, without prior written permission of the publishers.

Photocopying. In the USA: This journal is registered at the Copyright Clearance Cen-
ter, Inc., 222 Rosewood Drive, Danvers, MA 01923. Authorization to photocopy items for
internal or personal use, or the internal or personal use of specific clients, is granted by
now Publishers Inc. for users registered with the Copyright Clearance Center (CCC). The
‘services’ for users can be found on the internet at: www.copyright.com

For those organizations that have been granted a photocopy license, a separate system
of payment has been arranged. Authorization does not extend to other kinds of copy-
ing, such as that for general distribution, for advertising or promotional purposes, for
creating new collective works, or for resale. In the rest of the world: Permission to pho-
tocopy must be obtained from the copyright owner. Please apply to now Publishers Inc.,
PO Box 1024, Hanover, MA 02339, USA; Tel. +1-781-871-0245; www.nowpublishers.com;
sales@nowpublishers.com

now Publishers Inc. has an exclusive license to publish this material worldwide. Permission
to use this content must be obtained from the copyright license holder. Please apply to now
Publishers, PO Box 179, 2600 AD Delft, The Netherlands, www.nowpublishers.com; e-mail:
sales@nowpublishers.com

Foundations and Trends® in
Theoretical Computer Science
Volume 2 Issue 4, 2006
Editorial Board

Editor-in-Chief:

Madhu Sudan

Department of CS and EFE
MIT, Stata Center, Room G640
32 Vassar Street,

Cambridge MA 02139,

USA

madhu@mit.edu

Editors

Bernard Chazelle (Princeton)

Oded Goldreich (Weizmann Inst.)

Shafi Goldwasser (MIT and Weizmann Inst.)
Jon Kleinberg (Cornell University)
Lész16 Lovasz (Microsoft Research)
Christos Papadimitriou (UC. Berkeley)
Prabhakar Raghavan (Yahoo! Research)
Peter Shor (MIT)

Madhu Sudan (MIT)

Eva Tardos (Cornell University)

Avi Wigderson (IAS)

Editorial Scope

Foundations and Trends® in Theoretical Computer Science

will publish survey and tutorial articles in the following topics:

e Algorithmic game theory
e Computational algebra

e Computational aspects of
combinatorics and graph theory

e Computational aspects of
communication

e Computational biology

e Computational complexity
e Computational geometry
e Computational learning

e Computational Models and
Complexity

Information for Librarians

Computational Number Theory

Cryptography and information
security

Data structures

Database theory

Design and analysis of algorithms
Distributed computing
Information retrieval

Operations Research

Parallel algorithms

Quantum Computation

Randomness in Computation

Foundations and Trends® in Theoretical Computer Science, 2006, Volume 2,
4 issues. ISSN paper version 1551-305X. ISSN online version 1551-3068. Also
available as a combined paper and online subscription.

Foundations and Trends® in
Theoretical Computer Science

Vol. 2, No. 4 (2006) 305-474 n‘w

© 2008 J. S. Vitter
DOI: 10.1561/0400000014 the essence of knowledge

Algorithms and Data Structures
for External Memory

Jeffrey Scott Vitter

Department of Computer Science, Purdue University, West Lafayette,
Indiana, 47907-2107, USA, jsv@purdue.edu

Abstract

Data sets in large applications are often too massive to fit completely
inside the computer’s internal memory. The resulting input/output
communication (or I/O) between fast internal memory and slower
external memory (such as disks) can be a major performance bottle-
neck. In this manuscript, we survey the state of the art in the design
and analysis of algorithms and data structures for ezternal memory (or
EM for short), where the goal is to exploit locality and parallelism in
order to reduce the I/O costs. We consider a variety of EM paradigms
for solving batched and online problems efficiently in external memory.

For the batched problem of sorting and related problems like per-
muting and fast Fourier transform, the key paradigms include distribu-
tion and merging. The paradigm of disk striping offers an elegant way
to use multiple disks in parallel. For sorting, however, disk striping can
be nonoptimal with respect to I/O, so to gain further improvements we
discuss distribution and merging techniques for using the disks inde-
pendently. We also consider useful techniques for batched EM problems
involving matrices, geometric data, and graphs.

In the online domain, canonical EM applications include dictionary
lookup and range searching. The two important classes of indexed
data structures are based upon extendible hashing and B-trees. The
paradigms of filtering and bootstrapping provide convenient means in
online data structures to make effective use of the data accessed from
disk. We also re-examine some of the above EM problems in slightly
different settings, such as when the data items are moving, when the
data items are variable-length such as character strings, when the data
structure is compressed to save space, or when the allocated amount of
internal memory can change dynamically.

Programming tools and environments are available for simplifying
the EM programming task. We report on some experiments in the
domain of spatial databases using the TPIE system (Transparent Par-
allel I/O programming Environment). The newly developed EM algo-
rithms and data structures that incorporate the paradigms we discuss
are significantly faster than other methods used in practice.

Preface

I first became fascinated about the tradeoffs between computing and
memory usage while a graduate student at Stanford University. Over
the following years, this theme has influenced much of what I have
done professionally, not only in the field of external memory algorithms,
which this manuscript is about, but also on other topics such as data
compression, data mining, databases, prefetching/caching, and random
sampling.

The reality of the computer world is that no matter how fast com-
puters are and no matter how much data storage they provide, there
will always be a desire and need to push the envelope. The solution is
not to wait for the next generation of computers, but rather to examine
the fundamental constraints in order to understand the limits of what
is possible and to translate that understanding into effective solutions.

In this manuscript you will consider a scenario that arises often in
large computing applications, namely, that the relevant data sets are
simply too massive to fit completely inside the computer’s internal
memory and must instead reside on disk. The resulting input/output
communication (or I/O) between fast internal memory and slower
external memory (such as disks) can be a major performance

X Preface

bottleneck. This manuscript provides a detailed overview of the design
and analysis of algorithms and data structures for ezternal memory
(or simply EM), where the goal is to exploit locality and parallelism in
order to reduce the I/O costs. Along the way, you will learn a variety
of EM paradigms for solving batched and online problems efficiently.

For the batched problem of sorting and related problems like per-
muting and fast Fourier transform, the two fundamental paradigms
are distribution and merging. The paradigm of disk striping offers an
elegant way to use multiple disks in parallel. For sorting, however,
disk striping can be nonoptimal with respect to I/O, so to gain fur-
ther improvements we discuss distribution and merging techniques for
using the disks independently, including an elegant duality property
that yields state-of-the-art algorithms. You will encounter other useful
techniques for batched EM problems involving matrices (such as matrix
multiplication and transposition), geometric data (such as finding inter-
sections and constructing convex hulls) and graphs (such as list ranking,
connected components, topological sorting, and shortest paths).

In the online domain, which involves constructing data structures
to answer queries, we discuss two canonical EM search applications:
dictionary lookup and range searching. Two important paradigms
for developing indexed data structures for these problems are hash-
ing (including extendible hashing) and tree-based search (including
B-trees). The paradigms of filtering and bootstrapping provide con-
venient means in online data structures to make effective use of the
data accessed from disk. You will also be exposed to some of the above
EM problems in slightly different settings, such as when the data items
are moving, when the data items are variable-length (e.g., strings of
text), when the data structure is compressed to save space, and when
the allocated amount of internal memory can change dynamically.

Programming tools and environments are available for simplifying
the EM programming task. You will see some experimental results in
the domain of spatial databases using the TPIE system, which stands
for Transparent Parallel 1/O programming Environment. The newly
developed EM algorithms and data structures that incorporate the
paradigms discussed in this manuscript are significantly faster than
other methods used in practice.

Preface xi

I would like to thank my colleagues for several helpful comments,
especially Pankaj Agarwal, Lars Arge, Ricardo Baeza-Yates, Adam
Buchsbaum, Jeffrey Chase, Michael Goodrich, Wing-Kai Hon, David
Hutchinson, Gonzalo Navarro, Vasilis Samoladas, Peter Sanders, Rahul
Shah, Amin Vahdat, and Norbert Zeh. I also thank the referees and edi-
tors for their help and suggestions, as well as the many wonderful staff
members ['ve had the privilege to work with. Figure 1.1 is a modified
version of a figure by Darren Vengroff, and Figures 2.1 and 5.2 come
from [118, 342]. Figures 5.4-5.8, 8.2-8.3, 10.1, 12.1, 12.2, 12.4, and 14.1
are modified versions of figures in [202, 47, 147, 210, 41, 50, 158], respec-
tively.

This manuscript is an expanded and updated version of the article in
ACM Computing Surveys, Vol. 33, No. 2, June 2001. I am very appre-
ciative for the support provided by the National Science Foundation
through research grants CCR-9522047, ETA-9870734, CCR-9877133,
1IS-0415097, and CCF-0621457; by the Army Research Office through
MURI grant DAAH04-96-1-0013; and by IBM Corporation. Part of
this manuscript was done at Duke University, Durham, North Carolina,;
the University of Aarhus, Arhus, Denmark; INRIA, Sophia Antipolis,
France; and Purdue University, West Lafayette, Indiana.

I especially want to thank my wife Sharon and our three kids (or
more accurately, young adults) Jillian, Scott, and Audrey for their ever-
present love and support. I most gratefully dedicate this manuscript to
them.

West Lafayette, Indiana — J.S. V.
March 2008

Contents

1 Introduction

1.1

Overview

2 Parallel Disk Model (PDM)

2.1
2.2
2.3

PDM and Problem Parameters
Practical Modeling Considerations
Related Models, Hierarchical Memory,
and Cache-Oblivious Algorithms

3 Fundamental I/O Operations and Bounds

4 Exploiting Locality and Load Balancing

4.1
4.2

Locality Issues with a Single Disk
Disk Striping and Parallelism with Multiple Disks

5 External Sorting and Related Problems

5.1
5.2
5.3
5.4
9.5
5.6
5.7

Sorting by Distribution

Sorting by Merging

Prefetching, Caching, and Applications to Sorting
A General Simulation for Parallel Disks

Handling Duplicates: Bundle Sorting

Permuting

Fast Fourier Transform and Permutation Networks

xiii

11
14

16

21

25

26
27

29

31
38
42
52
93
54
54

xiv Contents

6 Lower Bounds on I/O

6.1 Permuting
6.2 Lower Bounds for Sorting and Other Problems

7 Matrix and Grid Computations

7.1 Matrix Operations
7.2 Matrix Transposition

8 Batched Problems in Computational Geometry

8.1 Distribution Sweep
8.2 Other Batched Geometric Problems

9 Batched Problems on Graphs

9.1 Sparsification
9.2 Special Cases
9.3 Sequential Simulation of Parallel Algorithms

10 External Hashing for Online Dictionary Search

10.1 Extendible Hashing
10.2 Directoryless Methods
10.3 Additional Perspectives

11 Multiway Tree Data Structures

11.1 B-trees and Variants

11.2 Weight-Balanced B-trees

11.3 Parent Pointers and Level-Balanced B-trees
11.4 Buffer Trees

12 Spatial Data Structures and Range Search

12.1 Linear-Space Spatial Structures
12.2 R-trees

57

57
61

65

65
66

69

71
76

77

80
81
81

83

84
87
87

89

89
92
93
95

99

102
103

Contents XV

12.3 Bootstrapping for 2-D Diagonal Corner

and Stabbing Queries 107
12.4 Bootstrapping for Three-Sided Orthogonal

2-D Range Search 110
12.5 General Orthogonal 2-D Range Search 112
12.6 Other Types of Range Search 114
12.7 Lower Bounds for Orthogonal Range Search 116
13 Dynamic and Kinetic Data Structures 119
13.1 Dynamic Methods for Decomposable Search

Problems 119
13.2 Continuously Moving Items 121
14 String Processing 123
14.1 Inverted Files 123
14.2 String B-Trees 124
14.3 Suffix Trees and Suffix Arrays 127
14.4 Sorting Strings 127
15 Compressed Data Structures 129
15.1 Data Representations and Compression Models 130
15.2 External Memory Compressed Data Structures 133
16 Dynamic Memory Allocation 139

17 External Memory Programming

Environments 141
Conclusions 145
Notations and Acronyms 147

References 151

1

Introduction

The world is drowning in data! In recent years, we have been deluged by
a torrent of data from a variety of increasingly data-intensive applica-
tions, including databases, scientific computations, graphics, entertain-
ment, multimedia, sensors, web applications, and email. NASA’s Earth
Observing System project, the core part of the Earth Science Enterprise
(formerly Mission to Planet Earth), produces petabytes (10 bytes)
of raster data per year [148]. A petabyte corresponds roughly to the
amount of information in one billion graphically formatted books. The
online databases of satellite images used by Microsoft TerraServer (part
of MSN Virtual Earth) [325] and Google Earth [180] are multiple ter-
abytes (10'2 bytes) in size. Wal-Mart’s sales data warehouse contains
over a half petabyte (500 terabytes) of data. A major challenge is to
develop mechanisms for processing the data, or else much of the data
will be useless.

For reasons of economy, general-purpose computer systems usually
contain a hierarchy of memory levels, each level with its own cost
and performance characteristics. At the lowest level, CPU registers
and caches are built with the fastest but most expensive memory. For
internal main memory, dynamic random access memory (DRAM) is

2 Introduction

B=%B ,_up B=8KB
ns
\ \ Disk
CPU

Disk

Cache

32-256 KB 1-12MB 100GB—-1PB
1-32GB

=
&

[[
I I
T TMemory
I I
[[

Fig. 1.1 The memory hierarchy of a typical uniprocessor system, including registers, instruc-
tion cache, data cache (level 1 cache), level 2 cache, internal memory, and disks. Some sys-
tems have in addition a level 3 cache, not shown here. Memory access latency ranges from
less than one nanosecond (ns, 1079 seconds) for registers and level 1 cache to several mil-
liseconds (ms, 1073 seconds) for disks. Typical memory sizes for each level of the hierarchy
are shown at the bottom. Each value of B listed at the top of the figure denotes a typical
block transfer size between two adjacent levels of the hierarchy. All sizes are given in units
of bytes (B), kilobytes (KB, 103 B), megabytes (MB, 10° B), gigabytes (GB, 10° B), and
petabytes (PB, 10'® B). (In the PDM model defined in Chapter 2, we measure the block
size B in units of items rather than in units of bytes.) In this figure, 8 KB is the indicated
physical block transfer size between internal memory and the disks. However, in batched
applications we often use a substantially larger logical block transfer size.

typical. At a higher level, inexpensive but slower magnetic disks are
used for external mass storage, and even slower but larger-capacity
devices such as tapes and optical disks are used for archival storage.
These devices can be attached via a network fabric (e.g., Fibre Channel
or iSCSI) to provide substantial external storage capacity. Figure 1.1
depicts a typical memory hierarchy and its characteristics.

Most modern programming languages are based upon a program-
ming model in which memory consists of one uniform address space.
The notion of virtual memory allows the address space to be far larger
than what can fit in the internal memory of the computer. Programmers
have a natural tendency to assume that all memory references require
the same access time. In many cases, such an assumption is reasonable
(or at least does not do harm), especially when the data sets are not
large. The utility and elegance of this programming model are to a
large extent why it has flourished, contributing to the productivity of
the software industry.

3

However, not all memory references are created equal. Large address
spaces span multiple levels of the memory hierarchy, and accessing the
data in the lowest levels of memory is orders of magnitude faster than
accessing the data at the higher levels. For example, loading a register
can take a fraction of a nanosecond (107Y seconds), and accessing
internal memory takes several nanoseconds, but the latency of access-
ing data on a disk is multiple milliseconds (10~% seconds), which is
about one million times slower! In applications that process massive
amounts of data, the Input/Output communication (or simply I/0)
between levels of memory is often the bottleneck.

Many computer programs exhibit some degree of locality in their
pattern of memory references: Certain data are referenced repeatedly
for a while, and then the program shifts attention to other sets of
data. Modern operating systems take advantage of such access patterns
by tracking the program’s so-called “working set” — a vague notion
that roughly corresponds to the recently referenced data items [139].
If the working set is small, it can be cached in high-speed memory so
that access to it is fast. Caching and prefetching heuristics have been
developed to reduce the number of occurrences of a “fault,” in which
the referenced data item is not in the cache and must be retrieved by
an I/O from a higher level of memory. For example, in a page fault,
an 1/0 is needed to retrieve a disk page from disk and bring it into
internal memory.

Caching and prefetching methods are typically designed to be
general-purpose, and thus they cannot be expected to take full advan-
tage of the locality present in every computation. Some computations
themselves are inherently nonlocal, and even with omniscient cache
management decisions they are doomed to perform large amounts
of I/O and suffer poor performance. Substantial gains in performance
may be possible by incorporating locality directly into the algorithm
design and by explicit management of the contents of each level of the
memory hierarchy, thereby bypassing the virtual memory system.

We refer to algorithms and data structures that explicitly manage
data placement and movement as external memory (or EM) algorithms
and data structures. Some authors use the terms I/O algorithms or
out-of-core algorithms. We concentrate in this manuscript on the I/O

4 Introduction

communication between the random access internal memory and the
magnetic disk external memory, where the relative difference in access
speeds is most apparent. We therefore use the term I/O to designate
the communication between the internal memory and the disks.

1.1 Overview

In this manuscript, we survey several paradigms for exploiting local-
ity and thereby reducing I1/O costs when solving problems in external
memory. The problems we consider fall into two general categories:

(1) Batched problems, in which no preprocessing is done and
the entire file of data items must be processed, often by
streaming the data through the internal memory in one or
more passes.

(2) Online problems, in which computation is done in response
to a continuous series of query operations. A common tech-
nique for online problems is to organize the data items via a
hierarchical index, so that only a very small portion of the
data needs to be examined in response to each query. The
data being queried can be either static, which can be pre-
processed for efficient query processing, or dynamic, where
the queries are intermixed with updates such as insertions
and deletions.

We base our approach upon the parallel disk model (PDM)
described in the next chapter. PDM provides an elegant and reason-
ably accurate model for analyzing the relative performance of EM algo-
rithms and data structures. The three main performance measures of
PDM are the number of (parallel) 1/0 operations, the disk space usage,
and the (parallel) CPU time. For reasons of brevity, we focus on the first
two measures. Most of the algorithms we consider are also efficient in
terms of CPU time. In Chapter 3, we list four fundamental I/O bounds
that pertain to most of the problems considered in this manuscript.
In Chapter 4, we show why it is crucial for EM algorithms to exploit
locality, and we discuss an automatic load balancing technique called
disk striping for using multiple disks in parallel.

1.1 Overview b

Our general goal is to design optimal algorithms and data struc-
tures, by which we mean that their performance measures are within
a constant factor of the optimum or best possible.! In Chapter 5, we
look at the canonical batched EM problem of external sorting and the
related problems of permuting and fast Fourier transform. The two
important paradigms of distribution and merging — as well as the
notion of duality that relates the two — account for all well-known
external sorting algorithms. Sorting with a single disk is now well under-
stood, so we concentrate on the more challenging task of using multiple
(or parallel) disks, for which disk striping is not optimal. The challenge
is to guarantee that the data in each I/O are spread evenly across the
disks so that the disks can be used simultaneously. In Chapter 6, we
cover the fundamental lower bounds on the number of I/Os needed to
perform sorting and related batched problems. In Chapter 7, we discuss
grid and linear algebra batched computations.

For most problems, parallel disks can be utilized effectively by
means of disk striping or the parallel disk techniques of Chapter 5,
and hence we restrict ourselves starting in Chapter 8 to the concep-
tually simpler single-disk case. In Chapter 8, we mention several effec-
tive paradigms for batched EM problems in computational geometry.
The paradigms include distribution sweep (for spatial join and find-
ing all nearest neighbors), persistent B-trees (for batched point loca-
tion and visibility), batched filtering (for 3-D convex hulls and batched
point location), external fractional cascading (for red-blue line segment
intersection), external marriage-before-conquest (for output-sensitive
convex hulls), and randomized incremental construction with grada-
tions (for line segment intersections and other geometric problems). In
Chapter 9, we look at EM algorithms for combinatorial problems on
graphs, such as list ranking, connected components, topological sort-
ing, and finding shortest paths. One technique for constructing I/O-
efficient EM algorithms is to simulate parallel algorithms; sorting is
used between parallel steps in order to reblock the data for the simu-
lation of the next parallel step.

In this manuscript we generally use the term “optimum” to denote the absolute best
possible and the term “optimal” to mean within a constant factor of the optimum.

6 Introduction

In Chapters 10-12, we consider data structures in the online setting.
The dynamic dictionary operations of insert, delete, and lookup can be
implemented by the well-known method of hashing. In Chapter 10,
we examine hashing in external memory, in which extra care must be
taken to pack data into blocks and to allow the number of items to vary
dynamically. Lookups can be done generally with only one or two I/Os.
Chapter 11 begins with a discussion of B-trees, the most widely used
online EM data structure for dictionary operations and one-dimensional
range queries. Weight-balanced B-trees provide a uniform mechanism
for dynamically rebuilding substructures and are useful for a variety
of online data structures. Level-balanced B-trees permit maintenance
of parent pointers and support cut and concatenate operations, which
are used in reachability queries on monotone subdivisions. The buffer
tree is a so-called “batched dynamic” version of the B-tree for efficient
implementation of search trees and priority queues in EM sweep line
applications. In Chapter 12, we discuss spatial data structures for mul-
tidimensional data, especially those that support online range search.
Multidimensional extensions of the B-tree, such as the popular R-tree
and its variants, use a linear amount of disk space and often perform
well in practice, although their worst-case performance is poor. A non-
linear amount of disk space is required to perform 2-D orthogonal range
queries efficiently in the worst case, but several important special cases
of range searching can be done efficiently using only linear space. A use-
ful design paradigm for EM data structures is to “externalize” an effi-
cient data structure designed for internal memory; a key component
of how to make the structure I/O-efficient is to “bootstrap” a static
EM data structure for small-sized problems into a fully dynamic data
structure of arbitrary size. This paradigm provides optimal linear-space
EM data structures for several variants of 2-D orthogonal range search.

In Chapter 13, we discuss some additional EM approaches useful
for dynamic data structures, and we also investigate kinetic data struc-
tures, in which the data items are moving. In Chapter 14, we focus
on EM data structures for manipulating and searching text strings. In
many applications, especially those that operate on text strings, the
data are highly compressible. Chapter 15 discusses ways to develop
data structures that are themselves compressed, but still fast to query.

1.1 Overview 7

Table 1.1 Paradigms for I/O efficiency discussed in this manuscript.

Paradigm Section
Batched dynamic processing 11.4
Batched filtering 8
Batched incremental construction 8
Bootstrapping 12
Buffer trees 11.4
B-trees 11, 12
Compression 15
Decomposable search 13.1
Disk striping 4.2
Distribution 5.1
Distribution sweeping 8
Duality 5.3
External hashing 10
Externalization 12.3
Fractional cascading 8
Filtering 12
Lazy updating 11.4
Load balancing 4
Locality 4.1
Marriage before conquest 8
Merging 5.2
Parallel block transfer 4.2
Parallel simulation 9
Persistence 11.1
Random sampling 5.1
R-trees 12.2
Scanning (or streaming) 2.2
Sparsification 9
Time-forward processing 11.4

In Chapter 16, we discuss EM algorithms that adapt optimally to
dynamically changing internal memory allocations.

In Chapter 17, we discuss programming environments and tools that
facilitate high-level development of efficient EM algorithms. We focus
primarily on the TPIE system (Transparent Parallel I/O Environment),
which we use in the various timing experiments in this manuscript. We
conclude with some final remarks and observations in the Conclusions.

Table 1.1 lists several of the EM paradigms discussed in this
manuscript.

2

Parallel Disk Model (PDM)

When a data set is too large to fit in internal memory, it is typically
stored in external memory (EM) on one or more magnetic disks. EM
algorithms explicitly control data placement and transfer, and thus it
is important for algorithm designers to have a simple but reasonably
accurate model of the memory system’s characteristics.

A magnetic disk consists of one or more platters rotating at con-
stant speed, with one read/write head per platter surface, as shown
in Figure 2.1. The surfaces of the platters are covered with a mag-
netizable material capable of storing data in nonvolatile fashion. The
read /write heads are held by arms that move in unison. When the arms
are stationary, each read/write head traces out a concentric circle on
its platter called a track. The vertically aligned tracks that correspond
to a given arm position are called a cylinder. For engineering reasons,
data to and from a given disk are typically transmitted using only one
read/write head (i.e., only one track) at a time. Disks use a buffer for
caching and staging data for I/O transfer to and from internal memory.

To store or retrieve a data item at a certain address on disk, the
read/write heads must mechanically seek to the correct cylinder and
then wait for the desired data to pass by on a particular track. The seek

10 Parallel Disk Model (PDM)

spindle .
platter — track read/write

\ head

tracks

arms

(a) (b)

Fig. 2.1 Magnetic disk drive: (a) Data are stored on magnetized platters that rotate at
a constant speed. Each platter surface is accessed by an arm that contains a read/write
head, and data are stored on the platter in concentric circles called tracks. (b) The arms
are physically connected so that they move in unison. The tracks (one per platter) that are
addressable when the arms are in a fixed position are collectively referred to as a cylinder.

time to move from one random cylinder to another is often on the order
of 3 to 10 milliseconds, and the average rotational latency, which is the
time for half a revolution, has the same order of magnitude. Seek time
can be avoided if the next access is on the current cylinder. The latency
for accessing data, which is primarily a combination of seek time and
rotational latency, is typically on the order of several milliseconds. In
contrast, it can take less than one nanosecond to access CPU registers
and cache memory — more than one million times faster than disk
access!

Once the read /write head is positioned at the desired data location,
subsequent bytes of data can be stored or retrieved as fast as the disk
rotates, which might correspond to over 100 megabytes per second.
We can thus amortize the relatively long initial delay by transferring a
large contiguous group of data items at a time. We use the term block
to refer to the amount of data transferred to or from one disk in a
single I/O operation. Block sizes are typically on the order of several
kilobytes and are often larger for batched applications. Other levels of
the memory hierarchy have similar latency issues and as a result also

2.1 PDM and Problem Parameters 11

use block transfer. Figure 1.1 depicts typical memory sizes and block
sizes for various levels of memory.

Because 1/0O is done in units of blocks, algorithms can run con-
siderably faster when the pattern of memory accesses exhibit locality
of reference as opposed to a uniformly random distribution. However,
even if an application can structure its pattern of memory accesses and
exploit locality, there is still a substantial access gap between internal
and external memory performance. In fact the access gap is growing,
since the latency and bandwidth of memory chips are improving more
quickly than those of disks. Use of parallel processors (or multicores)
further widens the gap. As a result, storage systems such as RAID
deploy multiple disks that can be accessed in parallel in order to get
additional bandwidth [101, 194].

In the next section, we describe the high-level parallel disk model
(PDM), which we use throughout this manuscript for the design and
analysis of EM algorithms and data structures. In Section 2.2, we con-
sider some practical modeling issues dealing with the sizes of blocks and
tracks and the corresponding parameter values in PDM. In Section 2.3,
we review the historical development of models of I/O and hierarchical
memory.

2.1 PDM and Problem Parameters

We can capture the main properties of magnetic disks and multiple disk
systems by the commonly used parallel disk model (PDM) introduced
by Vitter and Shriver [345]. The two key mechanisms for efficient algo-
rithm design in PDM are locality of reference (which takes advantage
of block transfer) and parallel disk access (which takes advantage of
multiple disks). In a single I/O, each of the D disks can simultaneously
transfer a block of B contiguous data items.
PDM uses the following main parameters:

N = problem size (in units of data items);
M = internal memory size (in units of data items);

B = block transfer size (in units of data items);

12 Parallel Disk Model (PDM)

D = number of independent disk drives;
P = number of CPUs,

where M < N and 1 < DB < M/2. The N data items are assumed to
be of fixed length. The ith block on each disk, for ¢ > 0, consists of
locations B, iB + 1, ..., (i +1)B — 1.

If P < D, each of the P processors (or cores) can drive about D/P
disks; if D < P, each disk is shared by about P/D processors. The
internal memory size is M /P per processor, and the P processors are
connected by an interconnection network or shared memory or combi-
nation of the two. For routing considerations, one desired property
for the network is the capability to sort the M data items in the
collective internal memories of the processors in parallel in optimal
O((M/P)log M) time.! The special cases of PDM for the case of a sin-
gle processor (P = 1) and multiprocessors with one disk per processor
(P = D) are pictured in Figure 2.2.

Queries are naturally associated with online computations, but they
can also be done in batched mode. For example, in the batched orthog-
onal 2-D range searching problem discussed in Chapter 8, we are given
a set of N points in the plane and a set of () queries in the form of
rectangles, and the problem is to report the points lying in each of
the @ query rectangles. In both the batched and online settings, the
number of items reported in response to each query may vary. We thus
need to define two more performance parameters:

@@ = number of queries (for a batched problem);

7 = answer size (in units of data items).

It is convenient to refer to some of the above PDM parameters in
units of disk blocks rather than in units of data items; the resulting
formulas are often simplified. We define the lowercase notation

N M Q Z

E’ m = — q:— z = — (2].)

"= B’ B’ B

L' We use the notation logn to denote the binary (base 2) logarithm log, n. For bases other
than 2, the base is specified explicitly.

2.1 PDM and Problem Parameters 13

(a) D (b) D
Internal Internal Internal
Internal memory
memory memory memory

CPU |CPU| |CPU| |CPU|

Interconnection
network

Fig. 2.2 Parallel disk model: (a) P =1, in which the D disks are connected to a common
CPU; (b) P = D, in which each of the D disks is connected to a separate processor.

to be the problem size, internal memory size, query specification size,
and answer size, respectively, in units of disk blocks.

We assume that the data for the problem are initially “striped”
across the D disks, in units of blocks, as illustrated in Figure 2.3, and
we require the final data to be similarly striped. Striped format allows a
file of N data items to be input or output in O(N/DB) = O(n/D) 1/Os,
which is optimal.

Do D1 Dy Dy Dy
stripe0| 0 1| 2 3| 4 5| 6 7| 8 9
stripe 110 11|12 13|14 15|16 17|18 19
stripe 2 |20 21|22 23|24 25|26 27|28 29
stripe 3 |30 31|32 33 |34 35|36 37|38 39

Fig. 2.3 Initial data layout on the disks, for D =5 disks and block size B = 2. The data
items are initially striped block-by-block across the disks. For example, data items 6 and 7
are stored in block 0 (i.e., in stripe 0) of disk D3. Each stripe consists of DB data items,
such as items 0-9 in stripe 0, and can be accessed in a single I/O.

14 Parallel Disk Model (PDM)
The primary measures of performance in PDM are

(1) the number of I/O operations performed,
(2) the amount of disk space used, and
(3) the internal (sequential or parallel) computation time.

For reasons of brevity in this manuscript we focus on only the first
two measures. Most of the algorithms we mention run in optimal CPU
time, at least for the single-processor case. There are interesting issues
associated with optimizing internal computation time in the presence
of multiple disks, in which communication takes place over a particular
interconnection network, but they are not the focus of this manuscript.
Ideally algorithms and data structures should use linear space, which
means O(N/B) = O(n) disk blocks of storage.

2.2 Practical Modeling Considerations

Track size is a fixed parameter of the disk hardware; for most disks it
is in the range 50 KB-2 MB. In reality, the track size for any given disk
depends upon the radius of the track (cf. Figure 2.1). Sets of adjacent
tracks are usually formatted to have the same track size, so there are
typically only a small number of different track sizes for a given disk.
A single disk can have a 3:2 variation in track size (and therefore
bandwidth) between its outer tracks and the inner tracks.

The minimum block transfer size imposed by hardware is often 512
bytes, but operating systems generally use a larger block size, such
as 8KB, as in Figure 1.1. It is possible (and preferable in batched
applications) to use logical blocks of larger size (sometimes called clus-
ters) and further reduce the relative significance of seek and rotational
latency, but the wall clock time per I/O will increase accordingly. For
example, if we set PDM parameter B to be five times larger than
the track size, so that each logical block corresponds to five contigu-
ous tracks, the time per I/O will correspond to five revolutions of the
disk plus the (now relatively less significant) seek time and rotational
latency. If the disk is smart enough, rotational latency can even be
avoided altogether, since the block spans entire tracks and reading can
begin as soon as the read head reaches the desired track. Once the

2.2 Practical Modeling Considerations 15

block transfer size becomes larger than the track size, the wall clock
time per I/O grows linearly with the block size.

For best results in batched applications, especially when the data
are streamed sequentially through internal memory, the block transfer
size B in PDM should be considered to be a fixed hardware parameter
a little larger than the track size (say, on the order of 100 KB for most
disks), and the time per I/O should be adjusted accordingly. For online
applications that use pointer-based indexes, a smaller B value such
as 8 KB is appropriate, as in Figure 1.1. The particular block size
that optimizes performance may vary somewhat from application to
application.

PDM is a good generic programming model that facilitates elegant
design of I/O-efficient algorithms, especially when used in conjunction
with the programming tools discussed in Chapter 17. More complex and
precise disk models, such as the ones by Ruemmler and Wilkes [295],
Ganger [171], Shriver et al. [314], Barve et al. [70], Farach-Colton
et al. [154], and Khandekar and Pandit [214], consider the effects of
features such as disk buffer caches and shared buses, which can reduce
the time per I/O by eliminating or hiding the seek time. For example,
algorithms for spatial join that access preexisting index structures (and
thus do random I/O) can often be slower in practice than algorithms
that access substantially more data but in a sequential order (as in
streaming) [46]. It is thus helpful not only to consider the number of
block transfers, but also to distinguish between the I/Os that are ran-
dom versus those that are sequential. In some applications, automated
dynamic block placement can improve disk locality and help reduce
I/O time [310].

Another simplification of PDM is that the D block transfers in
each I/O are synchronous; they are assumed to take the same amount
of time. This assumption makes it easier to design and analyze algo-
rithms for multiple disks. In practice, however, if the disks are used
independently, some block transfers will complete more quickly than
others. We can often improve overall elapsed time if the I/O is done
asynchronously, so that disks get utilized as soon as they become avail-
able. Buffer space in internal memory can be used to queue the I/0O
requests for each disk [136].

16 Parallel Disk Model (PDM)

2.3 Related Models, Hierarchical Memory,
and Cache-Oblivious Algorithms

The study of problem complexity and algorithm analysis for EM devices
began more than a half century ago with Demuth’s PhD dissertation
on sorting [138, 220]. In the early 1970s, Knuth [220] did an extensive
study of sorting using magnetic tapes and (to a lesser extent) magnetic
disks. At about the same time, Floyd [165, 220] considered a disk model
akin to PDM for D=1, P=1, B=M/2=0(N¢), where c is a
constant in the range 0 < ¢ < 1. For those particular parameters, he
developed optimal upper and lower I/O bounds for sorting and matrix
transposition. Hong and Kung [199] developed a pebbling model of I/O
for straightline computations, and Savage and Vitter [306] extended the
model to deal with block transfer.

Aggarwal and Vitter [23] generalized Floyd’s I/O model to allow
D simultaneous block transfers, but the model was unrealistic in that
the D simultaneous transfers were allowed to take place on a single
disk. They developed matching upper and lower I/O bounds for all
parameter values for a host of problems. Since the PDM model can be
thought of as a more restrictive (and more realistic) version of Aggarwal
and Vitter’s model, their lower bounds apply as well to PDM. In Sec-
tion 5.4, we discuss a simulation technique due to Sanders et al. [304];
the Aggarwal—Vitter model can be simulated probabilistically by PDM
with only a constant factor more I/Os, thus making the two models
theoretically equivalent in the randomized sense. Deterministic simu-
lations on the other hand require a factor of log(N/D)/loglog(N/D)
more I/Os [60].

Surveys of I/O models, algorithms, and challenges appear in |3,
31, 175, 257, 315]. Several versions of PDM have been developed for
parallel computation [131, 132, 234, 319]. Models of “active disks” aug-
mented with processing capabilities to reduce data traffic to the host,
especially during streaming applications, are given in [4, 292]. Models
of microelectromechanical systems (MEMS) for mass storage appear
in [184].

Some authors have studied problems that can be solved efficiently
by making only one pass (or a small number of passes) over the

2.3 Related Models, Hierarchical Memory,and Cache-Oblivious Algorithms 17

data [24, 155, 195, 265]. In such data streaming applications, one useful
approach to reduce the internal memory requirements is to require only
an approximate answer to the problem; the more memory available, the
better the approximation. A related approach to reducing I/O costs
for a given problem is to use random sampling or data compression
in order to construct a smaller version of the problem whose solution
approximates the original. These approaches are problem-dependent
and orthogonal to our focus in this manuscript; we refer the reader to
the surveys in [24, 265].

The same type of bottleneck that occurs between internal memory
(DRAM) and external disk storage can also occur at other levels of the
memory hierarchy, such as between registers and level 1 cache, between
level 1 cache and level 2 cache, between level 2 cache and DRAM, and
between disk storage and tertiary devices. The PDM model can be gen-
eralized to model the hierarchy of memories ranging from registers at
the small end to tertiary storage at the large end. Optimal algorithms
for PDM often generalize in a recursive fashion to yield optimal algo-
rithms in the hierarchical memory models [20, 21, 344, 346]. Conversely,
the algorithms for hierarchical models can be run in the PDM setting.

Frigo et al. [168] introduce the important notion of cache-oblivious
algorithms, which require no knowledge of the storage parameters, like
M and B, nor special programming environments for implementa-
tion. It follows that, up to a constant factor, time-optimal and space-
optimal algorithms in the cache-oblivious model are similarly opti-
mal in the external memory model. Frigo et al. [168] develop optimal
cache-oblivious algorithms for merge sort and distribution sort. Bender
et al. [79] and Bender et al. [80] develop cache-oblivious versions of
B-trees that offer speed advantages in practice. In recent years, there
has been considerable research in the development of efficient cache-
oblivious algorithms and data structures for a variety of problems. We
refer the reader to [33] for a survey.

The match between theory and practice is harder to establish
for hierarchical models and caches than for disks. Generally, the
most significant speedups come from optimizing the 1/O communi-
cation between internal memory and the disks. The simpler hierar-
chical models are less accurate, and the more practical models are

18 Parallel Disk Model (PDM)

architecture-specific. The relative memory sizes and block sizes of the
levels vary from computer to computer. Another issue is how blocks
from one memory level are stored in the caches at a lower level. When
a disk block is input into internal memory, it can be stored in any
specified DRAM location. However, in level 1 and level 2 caches, each
item can only be stored in certain cache locations, often determined
by a hardware modulus computation on the item’s memory address.
The number of possible storage locations in the cache for a given item
is called the level of associativity. Some caches are direct-mapped (i.e.,
with associativity 1), and most caches have fairly low associativity (typ-
ically at most 4).

Another reason why the hierarchical models tend to be more
architecture-specific is that the relative difference in speed between
level 1 cache and level 2 cache or between level 2 cache and DRAM
is orders of magnitude smaller than the relative difference in laten-
cies between DRAM and the disks. Yet, it is apparent that good EM
design principles are useful in developing cache-efficient algorithms. For
example, sequential internal memory access is much faster than random
access, by about a factor of 10, and the more we can build locality into
an algorithm, the faster it will run in practice. By properly engineering
the “inner loops,” a programmer can often significantly speed up the
overall running time. Tools such as simulation environments and sys-
tem monitoring utilities [221, 294, 322] can provide sophisticated help
in the optimization process.

For reasons of focus, we do not consider hierarchical and cache mod-
els in this manuscript. We refer the reader to the previous references
on cache-oblivious algorithms, as well to as the following references:
Aggarwal et al. [20] define an elegant hierarchical memory model, and
Aggarwal et al. [21] augment it with block transfer capability. Alpern
et al. [29] model levels of memory in which the memory size, block
size, and bandwidth grow at uniform rates. Vitter and Shriver [346]
and Vitter and Nodine [344] discuss parallel versions and variants
of the hierarchical models. The parallel model of Li et al. [234] also
applies to hierarchical memory. Savage [305] gives a hierarchical peb-
bling version of [306]. Carter and Gatlin [96] define pebbling models of
nonassociative direct-mapped caches. Rahman and Raman [287] and

2.3 Related Models, Hierarchical Memory,and Cache-Oblivious Algorithms 19

Sen et al. [311] apply EM techniques to models of caches and transla-
tion lookaside buffers. Arge et al. [40] consider a combination of PDM
and the Aggarwal-Vitter model (which allows simultaneous accesses to
the same external memory module) to model multicore architectures,
in which each core has a separate cache but the cores share the larger
next-level memory. Ajwani et al. [26] look at the performance charac-
teristics of flash memory storage devices.

3

Fundamental 1/0 Operations and Bounds

The I/O performance of many algorithms and data structures can be
expressed in terms of the bounds for these fundamental operations:

(1) Scanning (a.k.a. streaming or touching) a file of N data
items, which involves the sequential reading or writing of
the items in the file.

(2) Sorting a file of N data items, which puts the items into
sorted order.

(3) Searching online through N sorted data items.

(4) Outputting the Z items of an answer to a query in a blocked
“output-sensitive” fashion.

We give the I/O bounds for these four operations in Table 3.1. We
single out the special case of a single disk (D = 1), since the formulas
are simpler and many of the discussions in this manuscript will be
restricted to the single-disk case.

We discuss the algorithms and lower bounds for Sort(N) and
Search(N) in Chapters 5, 6, 10, and 11. The lower bounds for searching
assume the comparison model of computation; searching via hashing
can be done in ©(1) I/Os on the average.

21

22 Fundamental 1/O Operations and Bounds

Table 3.1 I/O bounds for the four fundamental operations. The PDM parameters are
defined in Section 2.1.

Operation 1/O bound, D =1 1/0 bound, general D > 1
N N n
N)= =0 (l
Secan(N) @(B) o(n) @(DB) @(D)
N N N N
e(—=Io — © (710gM/B *)
= O(nlog,, n) =0 (5 log,,, n)
Search(N) O(logg N) O(logpp N)
Z
@(max{l g}) ®<max{1,—}>
Output(Z) "B DB
z
= ©(max{1, z}) :®(max{1, 5})

The first two of these I/O bounds — Scan(N) and Sort(N) —
apply to batched problems. The last two I/O bounds — Search(N)
and Qutput(Z) — apply to online problems and are typically com-
bined together into the form Search(N) + Output(Z). As mentioned in
Section 2.1, some batched problems also involve queries, in which case
the I/O bound Output(Z) may be relevant to them as well. In some
pipelined contexts, the Z items in an answer to a query do not need to
be output to the disks but rather can be “piped” to another process, in
which case there is no I/O cost for output. Relational database queries
are often processed in such a pipeline fashion. For simplicity, in this
manuscript we explicitly consider the output cost for queries.

The I/O bound Scan(N) = O(n/D), which is clearly required to
read or write a file of IV items, represents a linear number of 1/Os in the
PDM model. An interesting feature of the PDM model is that almost
all nontrivial batched problems require a nonlinear number of 1/Os,
even those that can be solved easily in linear CPU time in the (internal
memory) RAM model. Examples we discuss later include permuting,
transposing a matrix, list ranking, and several combinatorial graph
problems. Many of these problems are equivalent in I/O complexity to
permuting or sorting.

23

As Table 3.1 indicates, the multiple-disk I/O bounds for Scan(N),
Sort(N), and Output(Z) are D times smaller than the corresponding
single-disk I/O bounds; such a speedup is clearly the best improvement
possible with D disks. For Search(N), the speedup is less signif-
icant: The I/O bound O(logg N) for D=1 becomes O(logpp N)
for D >1; the resulting speedup is only ©((loggN)/logppN) =
@((logDB)/logB) = @(1 + (logD)/logB), which is typically less
than 2.

In practice, the logarithmic terms log,,n in the Sort(N) bound and
logpp N in the Search(N) bound are small constants. For example,
in units of items, we could have N =109, M =107, B =10% and
thus we get n =105, m =103, and log,,n = 2, in which case sorting
can be done in a linear number of I/Os. If memory is shared with other
processes, the log,,, n term will be somewhat larger, but still bounded by
a constant. In online applications, a smaller B value, such as B = 102,
is more appropriate, as explained in Section 2.2. The corresponding
value of logg N for the example is 5, so even with a single disk, online
search can be done in a relatively small constant number of I/Os.

It still makes sense to explicitly identify terms such as log,,n and
logp N in the I/O bounds and not hide them within the big-oh or big-
theta factors, since the terms can have a significant effect in practice.
(Of course, it is equally important to consider any other constants
hidden in big-oh and big-theta notations!) The nonlinear I/O bound
O(nlog,, n) usually indicates that multiple or extra passes over the data
are required. In truly massive problems, the problem data will reside on
tertiary storage. As we suggested in Section 2.3, PDM algorithms can
often be generalized in a recursive framework to handle multiple levels
of memory. A multilevel algorithm developed from a PDM algorithm
that does n 1/Os will likely run at least an order of magnitude faster in
hierarchical memory than would a multilevel algorithm generated from
a PDM algorithm that does nlog,, n I/Os [346].

4

Exploiting Locality and Load Balancing

In order to achieve good I/O performance, an EM algorithm should
exhibit locality of reference. Since each input I/O operation transfers
a block of B items, we make optimal use of that input operation when
all B items are needed by the application. A similar remark applies
to output I/O operations. An orthogonal form of locality more akin to
load balancing arises when we use multiple disks, since we can transfer
D blocks in a single I/O only if the D blocks reside on distinct disks.

An algorithm that does not exploit locality can be reasonably effi-
cient when it is run on data sets that fit in internal memory, but it will
perform miserably when deployed naively in an EM setting and virtual
memory is used to handle page management. Examining such perfor-
mance degradation is a good way to put the I/O bounds of Table 3.1
into perspective. In Section 4.1, we examine this phenomenon for the
single-disk case, when D = 1.

In Section 4.2, we look at the multiple-disk case and discuss the
important paradigm of disk striping [216, 296], for automatically con-
verting a single-disk algorithm into an algorithm for multiple disks.
Disk striping can be used to get optimal multiple-disk I/O algorithms
for three of the four fundamental operations in Table 3.1. The only

25

26 Exploiting Locality and Load Balancing

exception is sorting. The optimal multiple-disk algorithms for sorting
require more sophisticated load balancing techniques, which we cover
in Chapter 5.

4.1 Locality Issues with a Single Disk

A good way to appreciate the fundamental 1/O bounds in Table 3.1 is
to consider what happens when an algorithm does not exploit locality.
For simplicity, we restrict ourselves in this section to the single-disk case
D = 1. For many of the batched problems we look at in this manuscript,
such as sorting, FFT, triangulation, and computing convex hulls, it is
well-known how to write programs to solve the corresponding internal
memory versions of the problems in O(Nlog N) CPU time. But if we
execute such a program on a data set that does not fit in internal
memory, relying upon virtual memory to handle page management,
the resulting number of I/Os may be (N logn), which represents a
severe bottleneck. Similarly, in the online setting, many types of search
queries, such as range search queries and stabbing queries, can be done
using binary trees in O(log N + Z) query CPU time when the tree
fits into internal memory, but the same data structure in an external
memory setting may require Q(log N + Z) I/Os per query.

We would like instead to incorporate locality directly into the algo-
rithm design and achieve the desired I/O bounds of O(nlog,,n) for
the batched problems and O(logg N + z) for online search, in line with
the fundamental bounds listed in Table 3.1. At the risk of oversimpli-
fying, we can paraphrase the goal of EM algorithm design for batched
problems in the following syntactic way: to derive efficient algorithms
so that the N and Z terms in the I/O bounds of the naive algorithms
are replaced by n and z, and so that the base of the logarithm terms
is not 2 but instead m. For online problems, we want the base of
the logarithm to be B and to replace Z by z. The resulting speedup
in I/O performance can be very significant, both theoretically and
in practice. For example, for batched problems, the I/O performance
improvement can be a factor of (Nlogn)/(nlog,,n) = Blogm, which
is extremely large. For online problems, the performance improvement
can be a factor of (logN + Z)/(logg N + z); this value is always at

4.2 Disk Striping and Parallelism with Multiple Disks 27

least (log N)/logp N = log B, which is significant in practice, and can
be as much as Z/z = B for large Z.

4.2 Disk Striping and Parallelism with Multiple Disks

It is conceptually much simpler to program for the single-disk case
(D =1) than for the multiple-disk case (D >1). Disk striping [216,
296] is a practical paradigm that can ease the programming task with
multiple disks: When disk striping is used, I/Os are permitted only on
entire stripes, one stripe at a time. The ith stripe, for ¢ > 0, consists
of block 7 from each of the D disks. For example, in the data layout
in Figure 2.3, the DB data items 0-9 comprise stripe 0 and can be
accessed in a single I/O step. The net effect of striping is that the D
disks behave as a single logical disk, but with a larger logical block
size DB corresponding to the size of a stripe.

We can thus apply the paradigm of disk striping automatically to
convert an algorithm designed to use a single disk with block size DB
into an algorithm for use on D disks each with block size B: In the
single-disk algorithm, each I/O step transmits one block of size DB;
in the D-disk algorithm, each I/O step transmits one stripe, which
consists of D simultaneous block transfers each of size B. The number
of I/0O steps in both algorithms is the same; in each 1/O step, the DB
items transferred by the two algorithms are identical. Of course, in
terms of wall clock time, the I/O step in the multiple-disk algorithm
will be faster.

Disk striping can be used to get optimal multiple-disk algorithms
for three of the four fundamental operations of Chapter 3 — streaming,
online search, and answer reporting — but it is nonoptimal for sorting.
To see why, consider what happens if we use the technique of disk
striping in conjunction with an optimal sorting algorithm for one disk,
such as merge sort [220]. As given in Table 3.1, the optimal number
of I/Os to sort using one disk with block size B is

O (nlog, n) = © <n11§gg:;> _0 (g%) RN

With disk striping, the number of I/O steps is the same as if we use

a block size of DB in the single-disk algorithm, which corresponds to

28 Exploiting Locality and Load Balancing

replacing each B in (4.1) by DB, which gives the I/O bound

o N log(N/DB)\ n log(n/D) (4.2)
DBlog(M/DB)) ~\Dlog(m/D))" ‘
On the other hand, the optimal bound for sorting is
n n logn
—1 = —) 4.
G(D ogmn) © (Dlogm) (43)

The striping I/O bound (4.2) is larger than the optimal sorting
bound (4.3) by a multiplicative factor of
log(n/D) logm logm
logn log(m/D) "~ log(m/D)
When D is on the order of m, the log(m/D) term in the denominator
is small, and the resulting value of (4.4) is on the order of logm, which

(4.4)

can be significant in practice.

It follows that the only way theoretically to attain the optimal sort-
ing bound (4.3) is to forsake disk striping and to allow the disks to be
controlled independently, so that each disk can access a different stripe
in the same I/O step. Actually, the only requirement for attaining the
optimal bound is that either input or output is done independently. It
suffices, for example, to do only input operations independently and to
use disk striping for output operations. An advantage of using striping
for output operations is that it facilitates the maintenance of parity
information for error correction and recovery, which is a big concern
in RAID systems. (We refer the reader to [101, 194] for a discussion of
RAID and error correction issues.)

In practice, sorting via disk striping can be more efficient than com-
plicated techniques that utilize independent disks, especially when D is
small, since the extra factor (logm)/log(m/D) of 1/Os due to disk strip-
ing may be less than the algorithmic and system overhead of using the
disks independently [337]. In the next chapter, we discuss algorithms
for sorting with multiple independent disks. The techniques that arise
can be applied to many of the batched problems addressed later in this
manuscript. Three such sorting algorithms we introduce in the next
chapter — distribution sort and merge sort with randomized cycling
(RCD and RCM) and simple randomized merge sort (SRM) — have
low overhead and outperform algorithms that use disk striping.

5

External Sorting and Related Problems

The problem of ezternal sorting (or sorting in external memory) is a
central problem in the field of EM algorithms, partly because sorting
and sorting-like operations account for a significant percentage of com-
puter use [220], and also because sorting is an important paradigm in
the design of efficient EM algorithms, as we show in Section 9.3. With
some technical qualifications, many problems that can be solved easily
in linear time in the (internal memory) RAM model, such as permuting,
list ranking, expression tree evaluation, and finding connected compo-
nents in a sparse graph, require the same number of I/Os in PDM as
does sorting.

In this chapter, we discuss optimal EM algorithms for sorting. The
following bound is the most fundamental one that arises in the study
of EM algorithms:

Theorem 5.1 ([23, 274]). The average-case and worst-case number
of I/Os required for sorting N = nB data items using D disks is

Sort(N) =0 (%logm n) . (5.1)

29

30 External Sorting and Related Problems

The constant of proportionality in the lower bound for sorting is 2,
as we shall see in Chapter 6, and we can come very close to that constant
factor by some of the recently developed algorithms we discuss in this
chapter.

We saw in Section 4.2 how to construct efficient sorting algorithms
for multiple disks by applying the disk striping paradigm to an effi-
cient single-disk algorithm. But in the case of sorting, the resulting
multiple-disk algorithm does not meet the optimal Sort(N) bound (5.1)
of Theorem 5.1.

In Sections 5.1-5.3, we discuss some recently developed exter-
nal sorting algorithms that use disks independently and achieve
bound (5.1). The algorithms are based upon the important distribu-
tion and merge paradigms, which are two generic approaches to sort-
ing. They use online load balancing strategies so that the data items
accessed in an I/O operation are evenly distributed on the D disks.
The same techniques can be applied to many of the batched problems
we discuss later in this manuscript.

The distribution sort and merge sort methods using randomized
cycling (RCD and RCM) [136, 202] from Sections 5.1 and 5.3 and
the simple randomized merge sort (SRM) [68, 72] of Section 5.2
are the methods of choice for external sorting. For reasonable val-
ues of M and D, they outperform disk striping in practice and
achieve the I/O lower bound (5.1) with the lowest known constant of
proportionality.

All the methods we cover for parallel disks, with the exception of
Greed Sort in Section 5.2, provide efficient support for writing redun-
dant parity information onto the disks for purposes of error correction
and recovery. For example, some of the methods access the D disks
independently during parallel input operations, but in a striped man-
ner during parallel output operations. As a result, if we output D — 1
blocks at a time in an I/O, the exclusive-or of the D — 1 blocks can be
output onto the Dth disk during the same I/O operation.

In Section 5.3, we develop a powerful notion of duality that leads
to improved new algorithms for prefetching, caching, and sorting. In
Section 5.4, we show that if we allow independent inputs and output
operations, we can probabilistically simulate any algorithm written for

5.1 Sorting by Distribution 31

the Aggarwal-Vitter model discussed in Section 2.3 by use of PDM
with the same number of I/Os; up to a constant factor.

In Section 5.5, we consider the situation in which the items in the
input file do not have unique keys. In Sections 5.6 and 5.7, we consider
problems related to sorting, such as permuting, permutation networks,
transposition, and fast Fourier transform. In Chapter 6, we give lower
bounds for sorting and related problems.

5.1 Sorting by Distribution

Distribution sort [220] is a recursive process in which we use a set of
S — 1 partitioning elements ej, eo, ..., eg_1 to partition the current
set of items into S disjoint subfiles (or buckets), as shown in Figure 5.1
for the case D = 1. The ith bucket, for 1 <17 < S, consists of all items
with key value in the interval [e;_1,e;), where by convention we let
eg = —o0, eg = +00. The important property of the partitioning is that
all the items in one bucket precede all the items in the next bucket.
Therefore, we can complete the sort by recursively sorting the indi-
vidual buckets and concatenating them together to form a single fully
sorted list.

Y Y
N N A

l:l:l Input buffer ——
File []] outputbuffer 1 —_— S buckets
. ——
on disk : . on disk
l:l:l Output buffer S ——

/\ Internal Memory /\

Fig. 5.1 Schematic illustration of a level of recursion of distribution sort for a single disk
(D =1). (For simplicity, the input and output operations use separate disks.) The file on
the left represents the original unsorted file (in the case of the top level of recursion) or
one of the buckets formed during the previous level of recursion. The algorithm streams the
items from the file through internal memory and partitions them in an online fashion into
S buckets based upon the key values of the S — 1 partitioning elements. Each bucket has
double buffers of total size at least 2B to allow the input from the disk on the left to be
overlapped with the output of the buckets to the disk on the right.

32 External Sorting and Related Problems

5.1.1 Finding the Partitioning Elements

One requirement is that we choose the S — 1 partitioning elements
so that the buckets are of roughly equal size. When that is the case,
the bucket sizes decrease from one level of recursion to the next by a
relative factor of ©(S), and thus there are O(loggn) levels of recursion.
During each level of recursion, we scan the data. As the items stream
through internal memory, they are partitioned into S buckets in an
online manner. When a buffer of size B fills for one of the buckets, its
block can be output to disk, and another buffer is used to store the
next set of incoming items for the bucket. Therefore, the maximum
number S of buckets (and partitioning elements) is ©(M/B) = ©(m),
and the resulting number of levels of recursion is ©(log,,n). In the last
level of recursion, there is no point in having buckets of fewer than
O(M) items, so we can limit S to be O(N/M) = O(n/m). These two
constraints suggest that the desired number S of partitioning elements
is © (min{m, n/m}).

It seems difficult to find S = ©(min{m,n/m}) partitioning ele-
ments deterministically using ©(n/D) I/Os and guarantee that the
bucket sizes are within a constant factor of one another. Efficient deter-
ministic methods exist for choosing S = © (min{y/m, n/m}) partition-
ing elements [23, 273, 345], which has the effect of doubling the number
of levels of recursion. A deterministic algorithm for the related problem
of (exact) selection (i.e., given k, find the kth item in the file in sorted
order) appears in [318].

Probabilistic methods for choosing partitioning elements based
upon random sampling [156] are simpler and allow us to choose
S = O(min{m, n/m}) partitioning elements in o(n/D) 1/Os: Let d =
O(log S). We take a random sample of dS items, sort the sampled items,
and then choose every dth item in the sorted sample to be a partitioning
element. Each of the resulting buckets has the desired size of O(N/S)
items. The resulting number of 1/Os needed to choose the partition-
ing elements is thus O (dS + Sort(dS)). Since S = O(min{m, n/m}) =
O(y/n), the I/O bound is O(y/nlog?n)=o(n) and therefore
negligible.

5.1 Sorting by Distribution 33

5.1.2 Load Balancing Across the Disks

In order to meet the sorting I/O bound (5.1), we must form the buckets
at each level of recursion using O(n/D) I/Os, which is easy to do for
the single-disk case. The challenge is in the more general multiple-disk
case: Each input I/0 step and each output I/O step during the bucket
formation must involve on the average O(D) blocks. The file of items
being partitioned is itself one of the buckets formed in the previous
level of recursion. In order to read that file efficiently, its blocks must be
spread uniformly among the disks, so that no one disk is a bottleneck.
In summary, the challenge in distribution sort is to output the blocks
of the buckets to the disks in an online manner and achieve a global
load balance by the end of the partitioning, so that the bucket can be
input efficiently during the next level of the recursion.

Partial striping is an effective technique for reducing the amount
of information that must be stored in internal memory in order to
manage the disks. The disks are grouped into clusters of size C and data
are output in “logical blocks” of size C'B, one per cluster. Choosing
C = /D will not change the sorting time by more than a constant
factor, but as pointed out in Section 4.2, full striping (in which C' = D)
can be nonoptimal.

Vitter and Shriver [345] develop two randomized online techniques
for the partitioning so that with high probability each bucket will be
well balanced across the D disks. In addition, they use partial striping in
order to fit in internal memory the pointers needed to keep track of the
layouts of the buckets on the disks. Their first partitioning technique
applies when the size N of the file to partition is sufficiently large
or when M /DB = Q(log D), so that the number ©(n/S) of blocks in
each bucket is Q(Dlog D). Each parallel output operation sends its D
blocks in independent random order to a disk stripe, with all D! orders
equally likely. At the end of the partitioning, with high probability
each bucket is evenly distributed among the disks. This situation is
intuitively analogous to the classical occupancy problem, in which b balls
are inserted independently and uniformly at random into d bins. It is
well-known that if the load factor b/d grows asymptotically faster than
logd, the most densely populated bin contains b/d balls asymptotically

34 External Sorting and Related Problems

on the average, which corresponds to an even distribution. However,
if the load factor b/d is 1, the largest bin contains (Ind)/Inlnd balls
on the average, whereas any individual bin contains an average of only
one ball [341].! Intuitively, the blocks in a bucket act as balls and
the disks act as bins. In our case, the parameters correspond to b =
Q(dlogd), which suggests that the blocks in the bucket should be evenly
distributed among the disks.

By further analogy to the occupancy problem, if the number of
blocks per bucket is not Q(Dlog D), then the technique breaks down
and the distribution of each bucket among the disks tends to be uneven,
causing a bottleneck for I/O operations. For these smaller values of N,
Vitter and Shriver use their second partitioning technique: The file is
streamed through internal memory in one pass, one memoryload at a
time. Each memoryload is independently and randomly permuted and
output back to the disks in the new order. In a second pass, the file
is input one memoryload at a time in a “diagonally striped” manner.
Vitter and Shriver show that with very high probability each individual
“diagonal stripe” contributes about the same number of items to each
bucket, so the blocks of the buckets in each memoryload can be assigned
to the disks in a balanced round robin manner using an optimal number
of I/Os.

DeWitt et al. [140] present a randomized distribution sort algorithm
in a similar model to handle the case when sorting can be done in
two passes. They use a sampling technique to find the partitioning
elements and route the items in each bucket to a particular processor.
The buckets are sorted individually in the second pass.

An even better way to do distribution sort, and deterministically
at that, is the BalanceSort method developed by Nodine and Vit-
ter [273]. During the partitioning process, the algorithm keeps track
of how evenly each bucket has been distributed so far among the disks.
It maintains an invariant that guarantees good distribution across the
disks for each bucket. For each bucket 1 < b < S and disk 1 <d < D,
let numy be the total number of items in bucket b processed so far
during the partitioning and let numy(d) be the number of those items

1'We use the notation Ind to denote the natural (base €) logarithm log, d.

5.1 Sorting by Distribution 35

output to disk d; that is, numy =), ., p nump(d). By application of
matching techniques from graph theO;y: the BalanceSort algorithm is
guaranteed to output at least half of any given memoryload to the disks
in a blocked manner and still maintain the invariant for each bucket b
that the | D/2] largest values among numy(1), numy(2), ..., numy(D)
differ by at most 1. As a result, each num;(d) is at most about twice
the ideal value numy,/D, which implies that the number of I/Os needed
to bring a bucket into memory during the next level of recursion will
be within a small constant factor of the optimum.

5.1.3 Randomized Cycling Distribution Sort

The distribution sort methods that we mentioned above for parallel
disks perform output operations in complete stripes, which make it
easy to write parity information for use in error correction and recov-
ery. But since the blocks that belong to a given stripe typically belong
to multiple buckets, the buckets themselves will not be striped on the
disks, and we must use the disks independently during the input oper-
ations in the next level of recursion. In the output phase, each bucket
must therefore keep track of the last block output to each disk so that
the blocks for the bucket can be linked together.

An orthogonal approach is to stripe the contents of each bucket
across the disks so that input operations can be done in a striped
manner. As a result, the output I/O operations must use disks inde-
pendently, since during each output step, multiple buckets will be trans-
mitting to multiple stripes. Error correction and recovery can still be
handled efficiently by devoting to each bucket one block-sized buffer
in internal memory. The buffer is continuously updated to contain the
exclusive-or (parity) of the blocks output to the current stripe, and
after D — 1 blocks have been output, the parity information in the
buffer can be output to the final (Dth) block in the stripe.

Under this new scenario, the basic loop of the distribution sort algo-
rithm is, as before, to stream the data items through internal memory
and partition them into .S buckets. However, unlike before, the blocks
for each individual bucket will reside on the disks in stripes. Each block
therefore has a predefined disk where it must be output. If we choose

36 External Sorting and Related Problems

the normal round-robin ordering of the disks for the stripes (namely, 1,
2,3,...,D,1,2,3,..., D, ...), then blocks of different buckets may
“collide,” meaning that they want to be output to the same disk at the
same time, and since the buckets use the same round-robin ordering,
subsequent blocks in those same buckets will also tend to collide.

Vitter and Hutchinson [342] solve this problem by the technique
of randomized cycling. For each of the S buckets, they determine the
ordering of the disks in the stripe for that bucket via a random permu-
tation of {1,2,...,D}. The S random permutations are chosen indepen-
dently. That is, each bucket has its own random permutation ordering,
chosen independently from those of the other S — 1 buckets, and the
blocks of each bucket are output to the disks in a round-robin manner
using its permutation ordering. If two blocks (from different buckets)
happen to collide during an output to the same disk, one block is out-
put to the disk and the other is kept in an output buffer in internal
memory. With high probability, subsequent blocks in those two buckets
will be output to different disks and thus will not collide.

As long as there is a small pool of D/e block-sized output buffers to
temporarily cache the blocks, Vitter and Hutchinson [342] show ana-
lytically that with high probability the output proceeds optimally in
(1 4+ €)n I/Os. We also need 3D blocks to buffer blocks waiting to enter
the distribution process [220, problem 5.4.9-26]. There may be some
blocks left in internal memory at the end of a distribution pass. In the
pathological case, they may all belong to the same bucket. This situa-
tion can be used as an advantage by choosing the bucket to recursively
process next to be the one with the most blocks in memory.

The resulting sorting algorithm, called randomized cycling distribu-
tion sort (RCD), provably achieves the optimal sorting I/O bound (5.1)
on the average with extremely small constant factors. In particular, for
any parameters ¢, d > 0, assuming that m > D(In2 + §)/e + 3D, the
average number of 1/Os performed by RCD is

(24+e+ O(ef‘sD))% ’VIOgm_3D_D(1n2+5)/€ %1 + 2% +o (%) . (5.2)

When D = o(m), for any desired constant 0 < a < 1, we can choose
e and ¢ appropriately to bound (5.2) as follows with a constant of

5.1 Sorting by Distribution 37

proportionality of 2:
n
~ 25 [log 1] (5.3)

The only differences between (5.3) and the leading term of the lower
bound we derive in Chapter 6 are the presence of the ceiling around the
logarithm term and the fact that the base of the logarithm is arbitrarily
close to m but not exactly m.

RCD operates very fast in practice. Figure 5.2 shows a typical simu-
lation [342] that indicates that RCD operates with small buffer memory
requirements; the layout discipline associated with the SRM method
discussed in Section 5.2.1 performs similarly.

Randomized cycling distribution sort and the related merge sort
algorithms discussed in Sections 5.2.1 and 5.3.4 are the methods of

Buckets issue Blocks in Random Order
N=2000000 D=10 S=50 epsilon=0.1

18000
RCD ——
m SRD ---%---
‘ RSD -
16000 J ;?(RSD
x Y
PX
14000 fro
'/ % xX
"
12000 i :
/’f i
& 10000 : ¢
3 * S,
5] 5
2 8000 : *eonid T
* 5
3 &*D DD
6000 : i i
>/* E* BD
4000 : e T
M SR i
o N i
2000 5 o ! ;

’;] X qu:tt
:ﬁfrdpd]
0 = g
0 10 20 30 40 50 60 70 80 90 100 110
Memory Used (blocks)

Fig. 5.2 Simulated distribution of memory usage during a distribution pass with n =
2 x 105, D=10, S=50, e=0.1 for four methods: RCD (randomized cycling distri-
bution), SRD (simple randomized distribution — striping with a random starting disk),
RSD (randomized striping distribution — striping with a random starting disk for each
stripe), and FRD (fully randomized distribution — each bucket is independently and ran-
domly assigned to a disk). For these parameters, the performance of RCD and SRD are
virtually identical.

38 External Sorting and Related Problems

choice for sorting with parallel disks. Distribution sort algorithms may
have an advantage over the merge approaches presented in Section 5.2
in that they typically make better use of lower levels of cache in the
memory hierarchy of real systems, based upon analysis of distribution
sort and merge sort algorithms on models of hierarchical memory, such
as the RUMH model of Vitter and Nodine [344]. On the other hand,
the merge approaches can take advantage of replacement selection to
start off with larger run sizes.

5.2 Sorting by Merging

The merge paradigm is somewhat orthogonal to the distribution
paradigm of the previous section. A typical merge sort algorithm works
as follows [220]: In the “run formation” phase, we scan the n blocks of
data, one memoryload at a time; we sort each memoryload into a single
“run,” which we then output onto a series of stripes on the disks. At the
end of the run formation phase, there are N/M = n/m (sorted) runs,
each striped across the disks. In actual implementations, we can use
the “replacement selection” technique to get runs of 2M data items,
on the average, when M > B [136, 220].

After the initial runs are formed, the merging phase begins, as shown
in Figure 5.3 for the case D = 1. In each pass of the merging phase,
we merge groups of R runs. For each merge, we scan the R runs and

N N
N N

l:l:l Output buffer I —
Merged run Input buffer 1 e — R runs

on disk :
: : on disk
l:l:l Input buffer R B —

/\ Internal Memory /\

Fig. 5.3 Schematic illustration of a merge during the course of a single-disk (D = 1) merge
sort. (For simplicity, the input and output use separate disks.) Each of R sorted runs on the
disk on the right are streamed through internal memory and merged into a single sorted run
that is output to the disk on the left. Each run has double buffers of total size at least 2B
to allow the input from the runs to be overlapped with the output of the merged run.

5.2 Sorting by Merging 39

merge the items in an online manner as they stream through internal
memory. Double buffering is used to overlap I/O and computation.
At most R = ©(m) runs can be merged at a time, and the resulting
number of passes is O(log,, n).

To achieve the optimal sorting bound (5.1), we must perform each
merging pass in O(n/D) 1/Os, which is easy to do for the single-disk
case. In the more general multiple-disk case, each parallel input oper-
ation during the merging must on the average bring in the next ©(D)
blocks needed. The challenge is to ensure that those blocks reside on
different disks so that they can be input in a single parallel I/O (or a
small constant number of I/Os). The difficulty lies in the fact that the
runs being merged were themselves formed during the previous merge
pass. Their blocks were output to the disks in the previous pass without
knowledge of how they would interact with other runs in later merges.

For the binary merging case R = 2, we can devise a perfect solution,
in which the next D blocks needed for the merge are guaranteed to be
on distinct disks, based upon the Gilbreath principle [172, 220]: We
stripe the first run into ascending order by disk number, and we stripe
the other run into descending order. Regardless of how the items in
the two runs interleave during the merge, it is always the case that we
can access the next D blocks needed for the output via a single I/0O
operation, and thus the amount of internal memory buffer space needed
for binary merging is minimized. Unfortunately there is no analogue to
the Gilbreath principle for R > 2, and as we have seen above, we need
the value of R to be large in order to get an optimal sorting algorithm.

The Greed Sort method of Nodine and Vitter [274] was the first
optimal deterministic EM algorithm for sorting with multiple disks.
It handles the case R > 2 by relaxing the condition on the merging
process. In each step, two blocks from each disk are brought into inter-
nal memory: the block b; with the smallest data item value and the
block by whose largest item value is smallest. If b1 = by, only one block
is input into memory, and it is added to the next output stripe. Oth-
erwise, the two blocks b; and by are merged in memory; the smaller
B items are added to the output stripe, and the remaining B items
are output back to the disks. The resulting run that is produced is
only an “approximately” merged run, but its saving grace is that no

40 External Sorting and Related Problems

two inverted items are very far apart. A final application of Column-
sort [232] suffices to restore total order; partial striping is employed to
meet the memory constraints. One disadvantage of Greed Sort is that
the input and output 1/O operations involve independent disks and are
not done in a striped manner, thus making it difficult to write parity
information for error correction and recovery.

Chaudhry and Cormen [97] show experimentally that oblivious algo-
rithms such as Columnsort work well in the context of cluster-based
sorting.

Aggarwal and Plaxton [22] developed an optimal deterministic
merge sort based upon the Sharesort hypercube parallel sorting algo-
rithm [126]. To guarantee even distribution during the merging, it
employs two high-level merging schemes in which the scheduling is
almost oblivious. Like Greed Sort, the Sharesort algorithm is theo-
retically optimal (i.e., within a constant factor of the optimum), but
the constant factor is larger than for the distribution sort methods.

5.2.1 Simple Randomized Merge Sort

One approach to merge sort is to stripe each run across the disks and
use the disk striping technique of Section 4.2. However, disk striping
devotes too much internal memory (namely, 2RD blocks) to cache
blocks not yet merged, and thus the effective order of the merge is
reduced to R =©(m/D) (cf. (4.2)), which gives a nonoptimal result.

A better approach is the simple randomized merge sort (SRM) algo-
rithm of Barve et al. [68, 72|, referred to as “randomized striping” by
Knuth [220]. It uses much less space in internal memory for caching
blocks and thus allows R to be much larger. Each run is striped across
the disks, but with a random starting point (the only place in the algo-
rithm where randomness is utilized). During the merging process, the
next block needed from each disk is input into memory, and if there is
not enough room, the least needed blocks are “flushed” back to disk
(without any I/Os required) to free up space.

Barve et al. [68] derive an asymptotic upper bound on the expected
I/0O performance, with no assumptions about the original distribution
of items in the file. A more precise analysis, which is related to the

5.2 Sorting by Merging 41

so-called cyclic occupancy problem, is an interesting open problem. The
cyclic occupancy problem is similar to the classical occupancy problem
we discussed in Section 5.1 in that there are b balls distributed into
d bins. However, in the cyclical occupancy problem, the b balls are
grouped into ¢ chains of length by, by, ..., be, where >, .. .b; = b. Only
the head of each chain is randomly inserted into a bin; the remaining
balls of the chain are inserted into the successive bins in a cyclic manner
(hence the name “cyclic occupancy”). We conjecture that the expected
maximum bin size in the cyclic occupancy problem is at most that of
the classical occupancy problem [68, 220, problem 5.4.9-28]. The bound
has been established so far only in an asymptotic sense [68].

The expected performance of SRM is not optimal for some param-
eter values, but it significantly outperforms the use of disk striping for
reasonable values of the parameters. Barve and Vitter [72] give experi-
mental confirmation of the speedup with six fast disk drives and a 500
megahertz CPU, as shown in Table 5.1.

When the internal memory is large enough to provide ©(DlogD)
blocks of cache space and 3D blocks for output buffers, SRM provably
achieves the optimal I/O bound (5.1). For any parameter ¢ — 0, assum-
ing that m > D(log D) /? + 3D, the average number of I/Os performed
by SRM is

(2 + z—:)% {logm_?)D_D(logD)/ez %W + 2% +o0 (%)) (5.4)
When D = o(m/logm), for any desired constant 0 < a <1, we can
choose € to bound (5.4) as follows with a constant of proportionality
of 2:

n
~ 25 [log o] (5.5)

Table 5.1 The ratio of the number of I/Os used by simple randomized merge sort (SRM)
to the number of I/Os used by merge sort with disk striping, during a merge of kD runs,
where kD ~ M/2B. The figures were obtained by simulation.

D=5 D=10 D=50
k=5 0.56 0.47 0.37
k=10 0.61 0.52 0.40
k =50 0.71 0.63 0.51

42 External Sorting and Related Problems

In the next section, we show how to get further improvements in
merge sort by a more careful prefetch schedule for the runs, combined
with the randomized cycling strategy discussed in Section 5.1.

5.3 Prefetching, Caching, and Applications to Sorting

In this section, we consider the problem of prefetch scheduling for par-
allel disks: We are given a sequence of blocks

S = (b1, bs,...,bn).

The initial location of the blocks on the D disks is prespecified by an
arbitrary function

disk : ¥ — {1,2,...,D}.

That is, block b; is located on disk disk(b;). The object of prefetching
is to schedule the fewest possible number of input I/O operations from
the D disks so that the blocks can be read by an application program
in the order given by . When a block is given to the application, we
say that it is “read” and can be removed from internal memory. (Note
that “read” refers to the handover of the block from the scheduling
algorithm to the application, whereas “input” refers to the prior I/O
operation that brought the block into internal memory.) We use the m
blocks of internal memory as prefetch buffers to store blocks that will
soon be read.

If the blocks in ¥ are distinct, we call the prefetching problem read-
once scheduling. If some blocks are repeated in ¥ (i.e., they must be
read at more than one time by the application in internal memory),
then it may be desirable to cache blocks in the prefetch buffers in order
to avoid re-inputting them later, and we call the problem read-many
scheduling.

One way to make more informed prefetching decisions is to use
knowledge or prediction of future read requests, which we can infor-
mally call lookahead. Cao et al. [95], Kimbrel and Karlin [217], Barve
et al. [69], Vitter and Krishnan [343], Curewitz et al. [125], Krishnan
and Vitter [226], Kallahalla and Varman [204, 205], Hutchinson
et al. [202], Albers and Biittner [28], Shah et al. [312, 313], and

5.3 Prefetching, Caching, and Applications to Sorting 43

Hon et al. [198] have developed competitive and optimal methods for
prefetching blocks in parallel I/O systems.

We focus in the remainder of this section on prefetching with
knowledge of future read requests. We use the general framework of
Hutchinson et al. [202], who demonstrate a powerful duality between
prefetch scheduling and the following problem “in the reverse direc-
tion,” which we call output scheduling: We are given a sequence

¥ = (b}, b,...,by)

of blocks that an application program produces (or “writes”) in internal
memory. A mapping

disk : ¥ — {1,2,...,D}

specifies the desired final disk location for each block; that is, the target
location for block b} is disk disk(b]). The goal of output scheduling is to
construct the shortest schedule of parallel I/O output operations so that
each block b/ is output to its proper target location disk disk(b]). (Note
that “write” refers to the handover of the block from the application
to the scheduling algorithm, whereas “output” refers to the subsequent
I/O operation that moves the block onto disk.) We use the m blocks of
internal memory as output buffers to queue the blocks that have been
written but not yet output to the disks.

If the blocks in ¥ are distinct, we call the output scheduling problem
write-once scheduling. If some blocks are repeated in ¥/, we call the
problem write-many scheduling. If we are able to keep a block in an
output buffer long enough until it is written again by the application
program, then we need to output the block at most once rather than
twice.

The output scheduling problem is generally easy to solve optimally.
In Sections 5.3.2-5.3.4, we exploit a duality [202] of the output schedul-
ing problems of write-once scheduling, write-many scheduling, and dis-
tribution in order to derive optimal algorithms for the dual prefetch
problems of read-once scheduling, read-many scheduling, and merging.
Figure 5.4 illustrates the duality and information flow for prefetch and
output scheduling.

44 External Sorting and Related Problems

Stream of blocks are
read in X order

o0 0
Stream of blocks are
written in =R order
L | Uptom
Prefetch buffers / prefetched or
Output buffers queued blocks

D=6

KIOWSTA [euIIU]

1 2 3 4 5 6 Disk numbers

Correspondence between
output step in greedy write-once schedule
and prefetching step in lazy read-once schedule

D = 6 Disks

Fig. 5.4 Duality between prefetch scheduling and output scheduling. The prefetch schedul-
ing problem for sequence X proceeds from bottom to top. Blocks are input from the disks,
stored in the prefetch buffers, and ultimately read by the application program in the order
specified by the sequence . The output scheduling problem for the reverse sequence LR
proceeds from top to bottom. Blocks are written by the application program in the order
specified by 3%, queued in the output buffers, and ultimately output to the disks. The
hatched blocks illustrate how the blocks of disk 2 might be distributed.

5.3.1 Greedy Read-Once Scheduling

Before we discuss an optimum prefetching algorithm for read-once
scheduling, we shall first look at the following natural approach adopted
by SRM [68, 72] in Section 5.2.1, which unfortunately does not achieve
the optimum schedule length. It uses a greedy approach: Suppose that
blocks b1, b, ..., b; of the sequence ¥ have already been read in prior
steps and are thus removed from the prefetch buffers. The current step
consists of reading the next blocks of 3 that are already in the prefetch
buffers. That is, suppose blocks b;y1, bit2, ..., bj are in the prefetch
buffers, but b;y; is still on a disk. Then blocks b;y1, bit2, ..., b; are
read and removed from the prefetch buffers.

The second part of the current step involves input from the disks.
For each of the D disks, consider its highest priority block not yet input,

5.3 Prefetching, Caching, and Applications to Sorting 45
inputstepl 23456789
FE ekl (=

=)

abcdijkm -

[ood 191Jnq

Fig. 5.5 Greedy prefetch schedule for sequence ¥ = (a,b,c,...,r) of n =18 blocks, read
using D = 3 disks and m = 6 prefetch buffers. The shading of each block indicates the disk
it belongs on. The schedule uses T'=9 1/O steps, which is one step more than optimum.

according to the order specified by Y. We use P to denote the set of
such blocks. (It necessarily follows that b; 1 must be in P.) Let Res be
the blocks already resident in the prefetch buffer, and let Res’ be the
m highest priority blocks in P U Res. We input the blocks of Res’ N P
(i.e., the blocks of Res’ that are not already in the prefetch buffer). At
the end of the 1/0 step, the prefetch buffer contains the blocks of Res’.
If a block b in Res does not remain in Res’, then the algorithm has
effectively “kicked out” b from the prefetch buffers, and it will have to
be re-input in a later I/O step.

An alternative greedy policy is to not evict records from the prefetch
buffers; instead we input the m — |Res’| highest priority blocks of P.

Figure 5.5 shows an example of the greedy read schedule for the
case of m = 6 prefetch buffers and D = 3 disks. (Both greedy versions
described above give the same result in the example.) An optimum I/O
schedule has T'= 8 1/O steps, but the greedy schedule uses a nonopti-
mum 7" =9 I/O steps. Records g and h are input in I/O steps 2 and 3
even though they are not read until much later, and as a result they
take up space in the prefetch buffers that prevents block 1 (and thus
blocks o, p, q, and r) from being input earlier.

5.3.2 Prefetching via Duality: Read-Once Scheduling

Hutchinson et al. [202] noticed a natural correspondence between a
prefetch schedule for a read-once sequence X and an output schedule
for the write-once sequence LR, where LR denotes the sequence of

46 External Sorting and Related Problems

blocks of ¥ in reverse order. In the case of the write-once problem, the
following natural greedy output algorithm is optimum: As the blocks
of ¥R are written, we put each block into an output buffer for its
designated disk. There are m output buffers, each capable of storing
one block, so the writing can proceed only as quickly as space is freed
up in the write buffers. In each parallel I/O step, we free up space by
outputting a queued block to each disk that has at least one block in
an output buffer. The schedule of I/O output steps is called the output
schedule, and it is easy to see that it is optimum in terms of the number
of parallel I/O steps required. Figure 5.6, when read right to left, shows
the output schedule for the reverse sequence LR,

When we run any output schedule for £ in reverse, we get a valid
prefetch schedule for the original sequence 3, and vice versa. Therefore,
an optimum output schedule for ©®, which is easy to compute in a
greedy fashion, can be reversed to get an optimum prefetch schedule
for 3. Figure 5.6, when considered from right to left, shows an optimum
output schedule for sequence . When looked at left to right, it shows
an optimum prefetch schedule for sequence X.

The prefetch schedule of Figure 5.6 is “lazy” in the sense that the
input I/Os seem to be artificially delayed. For example, cannot block e
be input earlier than in step 47 Hutchinson et al. [202] give a pru-
dent prefetching algorithm that guarantees the same optimum prefetch
schedule length, but performs I/Os earlier when possible. It works by
redefining the priority of a block to be the order it appears in the input
step order of the lazy schedule (i.e., a, b, f, ¢, i, ... in Figure 5.6).
Prefetch buffers are “reserved” for blocks in the same order of priority.
In the current I/O step, using the language of Section 5.3.1, we input
every block in P that has a reserved prefetch buffer. Figure 5.7 shows
the prudent version of the lazy schedule of Figure 5.6. In fact, if we
iterate the prudent algorithm, using as the block priorities the input
step order of the prudent schedule of Figure 5.7, we get an even more
prudent schedule, in which the e and n blocks move up one more I/O
step than in Figure 5.7. Further iteration in this particular example
will not yield additional improvement.

5.3 Prefetching, Caching, and Applications to Sorting 47

a b c d BEHEIEE 5 « B ~ EEEIEE

ZR
inputstep1 2345678

FTsslelE—]

£

@

55 M-

Q

o

[—
87654321 output step

Fig. 5.6 Optimum dual schedules: read-once schedule for ¥ via lazy prefetching and
write-once schedule for R via greedy output. The read sequence X = (a,b,c,...,r) of
n = 18 blocks and its reverse sequence L are read/written using D = 3 disks and m =6
prefetch/output buffers. The shading of each block indicates the disk it belongs on. The
input steps are pictured left to right, and the output steps are pictured right to left. The
schedule uses T'= 8 1/O steps, which is optimum.

priority order from optimal lazy schedule:
= o cH CEBER ; B -F B

r2 3 4 5 6 7 8

inputstepl 2345678

HER |o|p|q|r|@

= EE 5 &
oo il —

Fig. 5.7 Prudent prefetch schedule for the example in Figure 5.6. The blocks are prioritized
using the input step order from the lazy prefetch schedule in Figure 5.6. The prefetch
schedule remains optimum with 7'= 8 I/O steps, but some of the blocks are input earlier

than in the lazy schedule.

[ood 1a53nq

48 External Sorting and Related Problems

To get an idea of how good optimum is, suppose that X is com-
posed of S subsequences interlaced arbitrarily and that each of the S
subsequences is striped in some manner on the disks.

Theorem 5.2 ([202]). If each of the S subsequences forming ¥ is
stored on the disks in a randomized cycling layout [342] (discussed in
Section 5.1), the expected number of 1/O steps for our optimum (lazy
or prudent) prefetching method is

D n . n m
<1+O<m>>D + mm{S—i—B, O<Elogm)}. (5.6)
If the internal memory size is large (i.e., m > S(D — 1)) to guarantee

outputting D blocks per I/O at each output step, then for both striped
layouts and randomized cycling layouts, the number of 1/Os is

L%J + 8. (5.7)

The second term in (5.7) can be reduced further for a randomized
cycling layout.

In each of the expressions (5.6) and (5.7), the second of its two
terms corresponds to the I/Os needed for initial loading of the prefetch
buffers in the case of the lazy prefetch schedule (or equivalently, the
I/Os needed to flush the output buffers in the case of the greedy output
schedule).

5.3.3 Prefetching with Caching via Duality: Read-Many
Scheduling

When any given block can appear multiple times in 3, as in read-
many scheduling, it can help to cache blocks in the prefetch buffers in
order to avoid re-inputting them for later reads. For the corresponding
write-once problem, we can construct an optimum output schedule via
a modified greedy approach. In particular, at each output step and for
each disk, we choose as the block to output to the disk the one whose
next appearance in LR is furthest into the future — a criteria akin
to the least-recently-used heuristic developed by Belady [78] for cache

5.3 Prefetching, Caching, and Applications to Sorting 49

replacement. Intuitively, the “furthest” block will be of least use to
keep in memory for a later write. Hutchinson et al. [202] show that the
output schedule is provably optimum, and hence by duality, if we solve
the write-many problem for ©F, then when we run the output schedule
in reverse, we get an optimum read-many prefetch schedule for X.

5.3.4 Duality between Merge Sort and Distribution Sort

In the case of merging R runs together, if the number R of runs is
small enough so that we have RD block-sized prefetch buffers in internal
memory, then it is easy to see that the merge can proceed in an optimum
manner. However, this constraint limits the size of R, as in disk striping,
which can be suboptimal for sorting. The challenge is to make use of
substantially fewer prefetch buffers so that we can increase R to be as
large as possible. The larger R is, the faster we can do merge sort, or
equivalently, the larger the files that we can sort in a given number of
passes. We saw in Section 5.2.1 that ©(Dlog D) prefetch buffers suffice
for SRM to achieve optimal merge sort performance.

A tempting approach is duality: We know from Section 5.1.3 that we
need only ©(D) output buffers to do a distribution pass if we lay out the
buckets on the disks in a randomized cycling (RCD) pattern. If we can
establish duality, then we can merge runs using ©(D) prefetch buffers,
assuming the runs are stored on the disks using randomized cycling.
Figure 5.8 illustrates the duality between merging and distribution.

However, one issue must first be resolved before we can legitimately
apply duality. In each merge pass of merge sort, we merge R runs at
a time into a single run. In order to apply duality, which deals with
read and write sequences, we need to predetermine the read order X
for the merge. That is, if we can specify the proper read order ¥ of
the blocks, then we can legitimately apply Theorem 5.2 to the write
problem on ¥R,

The solution to determining Y is to partition internal memory so
that not only does it consist of several prefetch buffers but it also
includes R merging buffers, where R is the number of runs. Each merg-
ing buffer stores a (partially filled) block from a run that is participat-
ing in the merge. We say that a block is read when it is moved from

50 External Sorting and Related Problems

D = 6 Disks
Up to 3-D
Output buffers / l ‘ l l 1/O-buffered
Input buffers [[[[blocks
1 2 3 4 5 6 Disk numbers
R=8runs / S =28 buckets

Merging buffers / Blocks disassembled

sGoni (I |] [T viamerge
Partitioning buffers 1 > 3 2

Blocks assembled \L
UT] Llé_] :7D Lgu via distribution

Stream of blocks are
read in X order

KIOWQIA [RUIIU]

Stream of blocks are
written in =R order

Prefetch buffers /
Uptom’
Output buffers prefetched or
queued blocks
D=6

1 2 3 4 5 6 Disk numbers

Correspondence between
output step in greedy write-once schedule
and prefetching step in lazy read-once schedule

D = 6 Disks

Fig. 5.8 Duality between merging with R =8 runs and distribution with S = 8 buckets,
using D = 6 disks. The merge of the R runs proceeds from bottom to top. Blocks are input
from the disks, stored in the prefetch buffers, and ultimately read into the merging buffers.
The blocks of the merged run are moved to the output buffers and then output to the disks.
The order in which blocks enter the merging buffers determines the sequence X, which
can be predetermined by ordering the blocks based upon their smallest key values. The
distribution into S buckets proceeds from top to bottom. Blocks are input from the disks
into input buffers and moved to the partitioning buffers. The blocks of the resulting buckets
are written in the order ©® to the output buffers and then output to the appropriate disks.

5.3 Prefetching, Caching, and Applications to Sorting 51

a prefetch buffer to a merging buffer, where it stays until its items are
exhausted by the merging process. When a block expires, it is replaced
by the next block in the read sequence ¥ (unless ¥ has expired) before
the merging is allowed to resume. The first moment that a block abso-
lutely must be read and moved to the merging buffer is when its smallest
key value enters into the merging process. We therefore define the read
priority of a block b to be its smallest key value. We can sort the small-
est key values (one per block) to form the read order . Computing
the read sequence ¥ is fast to do because sorting N/B key values is a
considerably smaller problem than sorting the entire file of N records.

A subtle point is to show that this > ordering actually “works,”
namely, that at each step of the merging process, the item r with the
smallest key value not yet in the merged run will be added next to
the merged run. It may be, for example, that the R merging buffers
contain multiple blocks from one run but none from another. However,
at the time when item r should be added to the merged run, there
can be at most one other nonempty run in a merging buffer from each
of the other R — 1 runs. Therefore, since there are R merging buffers
and since the merging proceeds only when all R merging buffers are
nonempty (unless ¥ is expired), it will always be the case that the block
containing r will be resident in one of the merging buffers before the
merging proceeds.

We need to use a third partition of internal memory to serve as
output buffers so that we can output the merged run in a striped fashion
to the D disks. Knuth [220, problem 5.4.9-26] has shown that we may
need as many output buffers as prefetch buffers, but about 3D output
buffers typically suffice. So the remaining m’ =m — R — 3D blocks of
internal memory are used as prefetch buffers.

We get an optimum merge schedule for read sequence ¥ by comput-
ing the greedy output schedule for the reverse sequence L. Figure 5.8
shows the flow through the various components in internal memory.

When the runs are stored on the disks using randomized cycling, the
length of the greedy output schedule corresponds to the performance
of a distribution pass in RCD, which is optimal. We call the resulting
merge sort randomized cycling merge sort (RCM). It has the identical
I/O performance bound (5.2) as does RCD, except that each level of

52 External Sorting and Related Problems

merging requires some extra overhead to fill the prefetch buffers to
start the merge, corresponding to the additive terms in Theorem 5.2.
For any parameters €, ¢ > 0, assuming that m > D(In2 + §)/e + 3D,
the average number of I/Os for RCM is

(2+¢e+0(eP)) % ’VlogmeDfD(anJré)/ n"

“m
n . [n logm n
+2D—|—m1n{D,O< -)}—l—o(D). (5.8)

When D = o(m) = o(n/logn), for any desired constant a > 0, we can
choose ¢ and ¢ appropriately to bound (5.8) as follows with a constant

of proportionality of 2:
n
~ 25 [log 1] (5.9)

Dementiev and Sanders [136] show how to overlap computation
effectively with I/O in the RCM method. We can apply the duality
approach to other methods as well. For example, we could get a sim-
ple randomized distribution sort that is dual to the SRM method of
Section 5.2.1.

5.4 A General Simulation for Parallel Disks

Sanders et al. [304] and Sanders [303] give an elegant randomized tech-
nique to simulate the Aggarwal-Vitter model of Section 2.3, in which
D simultaneous block transfers are allowed regardless of where the
blocks are located on the disks. On the average, the simulation realizes
each I/O in the Aggarwal-Vitter model by only a constant number
of I/Os in PDM. One property of the technique is that the input and
output I/O steps use the disks independently. Armen [60] had ear-
lier shown that deterministic simulations resulted in an increase in the
number of I/Os by a multiplicative factor of log(N/D)/loglog(N/D).

The technique of Sanders et al. consists of duplicating each disk
block and storing the two copies on two independently and uniformly
chosen disks (chosen by a hash function). In terms of the occupancy
model, each ball (block) is duplicated and stored in two random bins
(disks). Let us consider the problem of retrieving a specific set of k =

5.5 Handling Duplicates: Bundle Sorting 53

O(D) blocks from the disks. For each block, there is a choice of two disks
from which it can be input. Regardless of which k blocks are requested,
Sanders et al. show that with high probability [k/D] or [k/D] + 11/0s
suffice to retrieve all k£ blocks. They also give a simple linear-time greedy
algorithm that achieves optimal input schedules with high probability.
A natural application of this technique is to the layout of data on
multimedia servers in order to support multiple stream requests, as in
video on demand.

When outputting blocks of data to the disks, each block must be
output to both the disks where a copy is stored. Sanders et al. prove
that with high probability D blocks can be output in O(1) I/O steps,
assuming that there are O(D) blocks of internal buffer space to serve as
output buffers. The I/O bounds can be improved with a corresponding
tradeoff in redundancy and internal memory space.

5.5 Handling Duplicates: Bundle Sorting

Arge et al. [42] describe a single-disk merge sort algorithm for the
problem of duplicate remowal, in which there are a total of K distinct
items among the N items. When duplicates get grouped together during
a merge, they are replaced by a single copy of the item and a count
of the occurrences. The algorithm runs in O(nmax{l,logm(K / B)})
I/Os, which is optimal in the comparison model. The algorithm can
be used to sort the file, assuming that a group of equal items can be
represented by a single item and a count.

A harder instance of sorting called bundle sorting arises when
we have K distinct key values among the N items, but all the items
have different secondary information that must be maintained, and
therefore items cannot be aggregated with a count. Abello et al. [2]
and Matias et al. [249] develop optimal distribution sort algorithms
for bundle sorting using

BundleSort(N,K) = O(n - max{1, log,, min{K,n}}) (5.10)

I/Os, and Matias et al. [249] prove a matching lower bound. Matias
et al. [249] also show how to do bundle sorting (and sorting in general)
in place (i.e., without extra disk space). In distribution sort, for

54 External Sorting and Related Problems

example, the blocks for the subfiles can be allocated from the blocks
freed up from the file being partitioned; the disadvantage is that the
blocks in the individual subfiles are no longer consecutive on the disk.
The algorithms can be adapted to run on D disks with a speedup
of O(D) using the techniques described in Sections 5.1 and 5.2.

5.6 Permuting

Permuting is the special case of sorting in which the key values of the
N data items form a permutation of {1,2,...,N}.

Theorem 5.3 ([345]). The average-case and worst-case number
of I/Os required for permuting N data items using D disks is

e (min{]l\;, Sort(zv)}> . (5.11)

The I/O bound (5.11) for permuting can be realized by one of

the optimal external sorting algorithms except in the extreme case for
which Blogm = o(logn), when it is faster to move the data items one
by one in a nonblocked way. The one-by-one method is trivial if D =1,
but with multiple disks there may be bottlenecks on individual disks;
one solution for doing the permuting in O(N/D) I/Os is to apply the
randomized balancing strategies of [345].

An interesting theoretical question is to determine the I/O cost for
each individual permutation, as a function of some simple characteri-
zation of the permutation, such as number of inversions. We examine
special classes of permutations having to do with matrices, such as
matrix transposition, in Chapter 7.

5.7 Fast Fourier Transform and Permutation Networks

Computing the Fast Fourier Transform (FFT) in external memory con-
sists of a series of 1/Os that permit each computation implied by the
FFET directed graph (or butterfly) to be done while its arguments are
in internal memory. A permutation network computation consists of an
oblivious (fixed) pattern of I/Os that can realize any of the N! possible

5.7 Fast Fourier Transform and Permutation Networks 55

permutations; data items can only be reordered when they are in inter-
nal memory. A permutation network can be constructed by a series of
three FFTs [358].

Theorem 5.4 ([23]). With D disks, the number of I/Os required
for computing the N-input FFT digraph or an N-input permutation
network is Sort(N).

Cormen and Nicol [119] give some practical implementations for
one-dimensional FFTs based upon the optimal PDM algorithm of Vit-
ter and Shriver [345]. The algorithms for FFT are faster and simpler
than for sorting because the computation is nonadaptive in nature, and
thus the communication pattern is fixed in advance.

6

Lower Bounds on 1/0

In this chapter, we prove the lower bounds from Theorems 5.1-5.4,
including a careful derivation of the constants of proportionality in the
permuting and sorting lower bounds. We also mention some related
I/0 lower bounds for the batched problems in computational geometry
and graphs that we cover later in Chapters 8 and 9.

6.1 Permuting

The most trivial batched problem is that of scanning (a.k.a. streaming
or touching) a file of N data items, which can be done in a linear num-
ber O(N/DB) = O(n/D) of 1/Os. Permuting is one of several simple
problems that can be done in linear CPU time in the (internal mem-
ory) RAM model. But if we assume that the N items are indivisible
and must be transferred as individual entities, permuting requires a
nonlinear number of I/Os in PDM because of the locality constraints
imposed by the block parameter B.

Our main result for parallel disk sorting is that we close the gap
between the upper and lower bounds up to lower order terms. The
lower bound from [23] left open the nature of the constant factor of

57

58 Lower Bounds on I/O

proportionality of the leading term; in particular, it was not clear what
happens if the number of output steps and input steps differ.

Theorem 6.1 ([202]). Assuming that m = M/B is an increasing
function, the number of I/Os required to sort or permute n indivis-
ible items, up to lower-order terms, is at least

2n .
oN logn Blogmn if Blogm = w(log N);

D Blogm +2logN)| N
5 & D if Blogm = o(logN).

(6.1)

The main case in Theorem 6.1 is the first one, and this theorem
shows that the constant of proportionality in the Sort(/N) bound (5.1)
of Theorem 5.1 is at least 2.

The second case in the theorem is the pathological case in which
the block size B and internal memory size M are so small that the
optimum way to permute the items is to move them one at a time in
the naive manner, not making use of blocking.

We devote the rest of this section to a proof of Theorem 6.1. For
the lower bound calculation, we can assume without loss of generality
that there is only one disk, namely, D = 1. The I/O lower bound for
general D follows by dividing the lower bound for one disk by D.

We call an input operation simple if each item that is transferred
from the disk gets removed from the disk and deposited into an empty
location in internal memory. Similarly, an output is simple if the trans-
ferred items are removed from internal memory and deposited into
empty locations on disk.

Lemma 6.2 ([23]). For each computation that implements a permu-
tation of the IV items, there is a corresponding computation strategy
involving only simple 1/Os such that the total number of I/Os is no
greater.

The lemma can be demonstrated easily by starting with a valid
permutation computation and working backwards. At each I/O step,

6.1 Permuting 59

in backwards order, we cancel the transfer of an item if its transfer is
not needed for the final result; if it is needed, we make the transfer
simple. The resulting I/O strategy has only simple I1/Os.

For the lower bound, we use the basic approach of Aggarwal and
Vitter [23] and bound the maximum number of permutations that can
be produced by at most ¢ I/Os. If we take the value of ¢ for which the
bound first reaches N!, we get a lower bound on the worst-case number
of I/Os. In a similar way, we can get a lower bound on the average case
by computing the value of ¢ for which the bound first reaches N!/2.

In particular, we say that a permutation (pi,ps,...,pn) of the
N items can be produced after t; input operations and to output oper-
ations if there is some intermixed sequence of ¢; input operations and
to output operations so that the items end up in the permuted order
(p1,p2,...,pN) in extended memory. (By extended memory we mean the
memory locations of internal memory followed by the memory locations
on disk, in sequential order.) The items do not have to be in contiguous
positions in internal memory or on disk; there can be arbitrarily many
empty locations between adjacent items.

As mentioned above, we can assume that I/Os are simple. Each I/O
causes the transfer of exactly B items, although some of the items may
be nil. In the PDM model, the I/Os obey block boundaries, in that all
the non-nil items in a given I/O come from or go to the same block
on disk.

Initially, before any I1/Os are performed and the items reside on disk,
the number of producible permutations is 1. Let us consider the effect of
an output. There can be at most N/B + o — 1 nonempty blocks before
the oth output operation, and thus the items in the oth output can
go into one of N/B + o places relative to the other blocks. Hence, the
oth output boosts the number of producible permutations by a factor
of at most N/B + o, which can be bounded trivially by

N(1+1logN). (6.2)

For the case of an input operation, we first consider an input I/0
from a specific block on disk. If the b items involved in the input I/O
were together in internal memory at some previous time (e.g., if the
block was created by an earlier output operation), then the items could

60 Lower Bounds on I/O

have been arranged in an arbitrary order by the algorithm while they
were in internal memory. Thus, the b! possible orderings of the b input
items relative to themselves could already have been produced before
the input operation. This implies in a subtle way that rearranging the
newly input items among the other M — b items in internal memory can
boost the number of producible permutations by a factor of at most
(Ag), which is the number of ways to intersperse b indistinguishable
items within a group of size M.

The above analysis applies to input from a specific block. If the
input was preceded by a total of o output operations, there are at
most N/B + o < N(1 + log N) blocks to choose from for the I/0, so
the number of producible permutations is boosted further by at most
N(1 4+ log N). Therefore, assuming that at some prior time the b input
items were together in internal memory, an input operation can boost
the number of producible permutations by at most

N(1 + log V) (J‘f) (6.3)

Now let us consider an input operation in which some of the input
items were not together previously in internal memory (e.g., the first
time a block is input). By rearranging the relative order of the items in
internal memory, we can increase the number of producible permuta-
tions by a factor of B!. Given that there are N/B full blocks initially,
we get the maximum increase when all N/B blocks are input in full,
which boosts the number of producible permutations by a factor of

(BHYN/B. (6.4)

Let I be the total number of input I/O operations. In the ith input
operation, let b; be the number of items brought into internal mem-
ory. By the simplicity property, some of the items in the block being
accessed may not be brought into internal memory, but rather may
be left on disk. In this case, b; counts only the number of items that
are removed from disk and put into internal memory. In particular, we
have 0 < b; < B.

By the simplicity property, we need to make room in internal mem-
ory for the new items that arrive, and in the end all items are stored

6.2 Lower Bounds for Sorting and Other Problems 61

back on disk. Therefore, we get the following lower bound on the num-
ber O of output operations:

0>;< > b) (6.5)

Combining (6.2), (6.3), and (6.4), we find that

(N(1+ logN))I+O H (]g) > (B!];[]if/B’ (6.6)

1<i<]

where O satisfies (6.5).

Let B < B be the average number of items input during the I input
operations. By a convexity argument, the left-hand side of (6.6) is maxi-
mized when each b; has the same value, namely, B. We can rewrite (6.5)
as O > IB/B, and thus we get I < (I 4+ O)/(1 + B/B). Combining
these facts with (6.6), we get

I
(va+10e0) () = s ©)
(I+0)/(1+B/B)
(N(1+logN))1+o<J\g> > (B!N)Jif/B, (6.8)

By assumption that M /B is an increasing function, the left-hand side
of (6.8) is maximized when B = B, so we get

(I4+0)/2]
(N(1+1ogN))”O<M> bk

> .
B = (BB (6.9)
The lower bound on I + O for D =1 follows by taking logarithms of
both sides of (6.9) and solving for I + O using Stirling’s formula. We
get the general lower bound of Theorem 6.1 for D disks by dividing the
result by D.

6.2 Lower Bounds for Sorting and Other Problems

Permuting is a special case of sorting, and hence, the permuting lower
bound of Theorem 6.1 applies also to sorting. In the unlikely case that
Blogm = o(logn), the permuting bound is only Q(N/D), and we must

62 Lower Bounds on I/O

resort to the comparison model to get the full lower bound (5.1) of
Theorem 5.1 [23].

In the typical case in which Blogm = Q(logn), the comparison
model is not needed to prove the sorting lower bound; the difficulty of
sorting in that case arises not from determining the order of the data
but from permuting (or routing) the data. The constant of proportion-
ality of 2 in the lower bound (6.1) of Theorem 6.1 is nearly realized
by randomized cycling distribution sort (RCD) in Section 5.1.3, simple
randomized merge sort (SRM) in Section 5.2.1, and the dual methods
of Section 5.3.4.

The derivation of the permuting lower bound in Section 6.1 also
works for permutation networks, in which the communication pattern
is oblivious (fixed). Since the choice of disk block is fixed for each I/O
step, there is no N (1 + log N) term as there is in (6.6), and correspond-
ingly there is no additive 2log N term as there is in the denominator of
the left-hand side of Theorem 6.1. Hence, when we solve for I + O, we
get the lower bound (5.1) rather than (5.11). The lower bound follows
directly from the counting argument; unlike the sorting derivation, it
does not require the comparison model for the case Blogm = o(logn).
The lower bound also applies directly to FFT, since permutation net-
works can be formed from three FFTs in sequence.

Arge et al. [42] show for the comparison model that any problem
with an Q(Nlog N) lower bound in the (internal memory) RAM model
requires Q(nlog,,n) I/Os in PDM for a single disk. Their argument
leads to a matching lower bound of Q(nmax{1,log,,(K/B)}) 1/Os
in the comparison model for duplicate removal with one disk. Erick-
son [150] extends the sorting and element distinctness lower bound to
the more general algebraic decision tree model.

For the problem of bundle sorting, in which the N items have
a total of K distinct key values (but the secondary information
of each item is different), Matias et al. [249] derive the match-
ing lower bound BundleSort(N,K) = Q(nmax{1,log,, min{K,n}}).
The proof consists of the following parts. The first part is a simple
proof of the same lower bound as for duplicate removal, but without
resorting to the comparison model (except for the pathological case
Blogm = o(logn)). It suffices to replace the right-hand side of (6.9)

6.2 Lower Bounds for Sorting and Other Problems 63

by N!/((N/K)!)K, which is the maximum number of permutations
of N numbers having K distinct values. Solving for I + O gives the
lower bound Q(nmax{1,log,,(K/B)}), which is equal to the desired
lower bound for BundleSort(N, K) when K = B or M = B+,
Matias et al. [249] derive the remaining case of the lower bound for
BundleSort(N, K) by a potential argument based upon the derivation
of the transposition lower bound (Theorem 7.2). Dividing by D gives
the lower bound for D disks.

Chiang et al. [105], Arge [30], Arge and Miltersen [45], Munagala
and Ranade [264], and Erickson [150] give models and lower bound
reductions for several computational geometry and graph problems.
The geometry problems discussed in Chapter 8 are equivalent to sort-
ing in both the internal memory and PDM models. Problems such
as list ranking and expression tree evaluation have the same nonlin-
ear I/O lower bound as permuting. Other problems such as connected
components, biconnected components, and minimum spanning forest
of sparse graphs with E edges and V' vertices require as many 1/Os as
E/V instances of permuting V' items. This situation is in contrast with
the (internal memory) RAM model, in which the same problems can
all be done in linear CPU time. In some cases there is a gap between
the best known upper and lower bounds, which we examine further in
Chapter 9.

The lower bounds mentioned above assume that the data items are
in some sense “indivisible,” in that they are not split up and reassem-
bled in some magic way to get the desired output. It is conjectured
that the sorting lower bound (5.1) remains valid even if the indivisibil-
ity assumption is lifted. However, for an artificial problem related to
transposition, Adler [5] showed that removing the indivisibility assump-
tion can lead to faster algorithms. A similar result is shown by Arge
and Miltersen [45] for the decision problem of determining if N data
item values are distinct. Whether the conjecture is true is a challenging
theoretical open problem.

7

Matrix and Grid Computations

7.1 Matrix Operations

Dense matrices are generally represented in memory in row-major or
column-major order. For certain operations such as matrix addition,
both representations work well. However, for standard matrix multipli-
cation (using only semiring operations) and LU decomposition, a better
representation is to block the matrix into square v/ B x v/B submatri-
ces, which gives the upper bound of the following theorem:

Theorem 7.1 ([199, 306, 345, 357]). The number of I/Os required
for standard matrix multiplication of two K x K matrices or to com-
pute the LU factorization of a K x K matrix is

© <min{K,If/3M}DB> '

The lower bound follows from the related pebbling lower bound by
Savage and Vitter [306] for the case D = 1 and then dividing by D.

Hong and Kung [199] and Nodine et al. [272] give optimal EM algo-
rithms for iterative grid computations, and Leiserson et al. [233] reduce

65

66 Matrix and Grid Computations

the number of I/Os of naive multigrid implementations by a ©(M/%)
factor. Gupta et al. [188] show how to derive efficient EM algorithms
automatically for computations expressed in tensor form.

If a K x K matrix A is sparse, that is, if the number IV, of nonzero
elements in A is much smaller than K2, then it may be more efficient
to store only the nonzero elements. Each nonzero element A; ; is rep-
resented by the triple (7,j,A; ;). Vengroff and Vitter [337] report on
algorithms and benchmarks for dense and sparse matrix operations.

For further discussion of numerical EM algorithms we refer the
reader to the surveys by Toledo [328] and Kowarschik and Weif3 [225].
Some issues regarding programming environments are covered in [115]
and Chapter 17.

7.2 Matrix Transposition

Matrix transposition is the special case of permuting that involves con-
version of a matrix from row-major order to column-major order.

Theorem 7.2 ([23]). With D disks, the number of I/Os required
to transpose a p X ¢ matrix from row-major order to column-major
order is

n .
6 (75108, min{M,p,q.n}), (7.1)

where N = pq and n = N/B.

When B is relatively large (say, %M) and N is O(M?), matrix trans-
position can be as hard as general sorting, but for smaller B, the special
structure of the transposition permutation makes transposition easier.
In particular, the matrix can be broken up into square submatrices of
B? elements such that each submatrix contains B blocks of the matrix
in row-major order and also B blocks of the matrix in column-major
order. Thus, if B? < M, the transpositions can be done in a single pass
by transposing the submatrices one at a time in internal memory.

The transposition lower bound involves a potential argument based
upon a togetherness relation [23], an elaboration of an approach first
developed by Floyd [165, 220] for a special case of transposition.

7.2 Matrix Transposition 67

When the matrices are stored using a sparse representation, trans-
position is always as hard as sorting, unlike the B% < M case for dense
matrix transposition (cf. Theorem 7.2).

Theorem 7.3 ([23]). For a matrix stored in sparse format and con-
taining NV, nonzero elements, the number of I/Os required to transpose
the matrix from row-major order to column-major order, and vice-

versa, is O (Sort(N)).

Sorting suffices to perform the transposition. The lower bound
follows by reduction from sorting: If the ith item to sort has key
value = # 0, there is a nonzero element in matrix position (z,x).

Matrix transposition is a special case of a more general class of per-
mutations called bit-permute/complement (BPC) permutations, which
in turn is a subset of the class of bit-matriz-multiply/complement
(BMMC) permutations. BMMC permutations are defined by a log N x
log N nonsingular 0-1 matrix A and a (log N)-length 0-1 vector ¢. An
item with binary address z is mapped by the permutation to the binary
address given by Az @ ¢, where @ denotes bitwise exclusive-or. BPC
permutations are the special case of BMMC permutations in which A is
a permutation matrix, that is, each row and each column of A contain
a single 1. BPC permutations include matrix transposition, bit-reversal
permutations (which arise in the FFT), vector-reversal permutations,
hypercube permutations, and matrix reblocking. Cormen et al. [120]
characterize the optimal number of 1/Os needed to perform any given
BMMC permutation solely as a function of the associated matrix A,
and they give an optimal algorithm for implementing it.

Theorem 7.4 ([120]). With D disks, the number of I/Os required to
perform the BMMC permutation defined by matrix A and vector c¢ is

(50-).

where «y is the lower-left logn x log B submatrix of A.

8

Batched Problems in Computational Geometry

For brevity, in the remainder of this manuscript we deal only with
the single-disk case D = 1. The single-disk I/O bounds for the batched
problems can often be cut by a factor of ©(D) for the case D >1
by using the load balancing techniques of Chapter 5. In practice, disk
striping (cf. Section 4.2) may be sufficient. For online problems, disk
striping will convert optimal bounds for the case D =1 into optimal
bounds for D > 1.

Problems involving massive amounts of geometric data are ubiqui-
tous in spatial databases [230, 299, 300], geographic information sys-
tems (GIS) [16, 230, 299, 334], constraint logic programming [209, 210],
object-oriented databases [361], statistics, virtual reality systems, and
computer graphics [169].

For systems of massive size to be efficient, we need fast EM algo-
rithms and data structures for some of the basic problems in compu-
tational geometry. Luckily, many problems on geometric objects can
be reduced to a small set of core problems, such as computing inter-
sections, convex hulls, or nearest neighbors. Useful paradigms have

69

70 Batched Problems in Computational Geometry

been developed for solving these problems in external memory, as we
illustrate in the following theorem:

Theorem 8.1. Certain batched problems involving N =nB items,
() = ¢B queries, and total answer size Z = zB can be solved using

O((n + q)log,,n + 2) (8.1)

I/0Os with a single disk:

(1) Computing the pairwise intersections of N segments in the
plane and their trapezoidal decomposition;

(2) Finding all intersections between N non-intersecting red
line segments and N non-intersecting blue line segments in
the plane;

(3) Answering @ orthogonal 2-D range queries on N points in
the plane (i.e., finding all the points within the @ query
rectangles);

(4) Constructing the 2-D and 3-D convex hull of N points;

(5) Constructing the Voronoi diagram of N points in the plane;

(6) Constructing a triangulation of N points in the plane;

(7) Performing @ point location queries in a planar subdivision

of size N;

(8) Finding all nearest neighbors for a set of N points in the
plane;

(9) Finding the pairwise intersections of N orthogonal rectan-
gles in the plane;

(10) Computing the measure of the union of N orthogonal rect-

angles in the plane;

(11) Computing the visibility of N segments in the plane from

a point; and
(12) Performing @ ray-shooting queries in 2-D Constructive
Solid Geometry (CSG) models of size V.

The parameters) and Z are set to 0 if they are not relevant for the
particular problem.

8.1 Distribution Sweep 71

Goodrich et al. [179], Zhu [364], Arge et al. [57], Arge et al. [48],
and Crauser et al. [122, 123] develop EM algorithms for those batched
problems using the following EM paradigms:

Distribution sweeping, a generalization of the distribution paradigm of
Section 5.1 for “externalizing” plane sweep algorithms.
Persistent B-trees, an offline method for constructing an optimal-
space persistent version of the B-tree data structure (see Sec-
tion 11.1), yielding a factor of B improvement over the generic

persistence techniques of Driscoll et al. [142].

Batched filtering, a general method for performing simultaneous EM
searches in data structures that can be modeled as planar lay-
ered directed acyclic graphs; it is useful for 3-D convex hulls
and batched point location. Multisearch on parallel computers
is considered in [141].

External fractional cascading, an EM analogue to fractional cascading
on a segment tree, in which the degree of the segment tree is
O(m*®) for some constant 0 < o < 1. Batched queries can be
performed efficiently using batched filtering; online queries can
be supported efficiently by adapting the parallel algorithms of
Tamassia and Vitter [324] to the I/O setting.

External marriage-before-conquest, an EM analogue to the technique
of Kirkpatrick and Seidel [218] for performing output-sensitive
convex hull constructions.

Batched incremental construction, a localized version of the ran-
domized incremental construction paradigm of Clarkson and
Shor [111], in which the updates to a simple dynamic data
structure are done in a random order, with the goal of fast
overall performance on the average. The data structure itself
may have bad worst-case performance, but the randomization
of the update order makes worst-case behavior unlikely. The key
for the EM version so as to gain the factor of B I/O speedup is
to batch together the incremental modifications.

8.1 Distribution Sweep

We focus in the remainder of this section primarily on the distribu-
tion sweep paradigm [179], which is a combination of the distribution

72 Batched Problems in Computational Geometry

paradigm of Section 5.1 and the well-known sweeping paradigm from
computational geometry [129, 284]. As an example, let us consider
computing the pairwise intersections of N orthogonal segments in the
plane by the following recursive distribution sweep: At each level of
recursion, the region under consideration is partitioned into ©(m) ver-
tical slabs, each containing ©(N/m) of the segments’ endpoints.

We sweep a horizontal line from top to bottom to process the N
segments. When the sweep line encounters a vertical segment, we insert
the segment into the appropriate slab. When the sweep line encounters
a horizontal segment h, as pictured in Figure 8.1, we report h’s inter-
sections with all the “active” vertical segments in the slabs that are
spanned completely by h. (A vertical segment is “active” if it intersects

| |
| |
| |
| |
| |
| |
$3
1
r——
| s |) 2 | | — F ﬁ
|t | | | | |
I T T A T T)
[[[. I s [[
| | | | I | |
Sweep ‘ Il | I | ‘ ‘
Line | | | I | | |
	horizontal			
segment
‘ I being processed | I I I
I I I I I I
slab 1 slab 2 slab 3 slab 4 slab 5

Fig. 8.1 Distribution sweep used for finding intersections among N orthogonal segments.
The vertical segments currently stored in the slabs are indicated in bold (namely, s1, s2,

.., 89). Segments s5 and sg are not active, but have not yet been deleted from the slabs.
The sweep line has just advanced to a new horizontal segment that completely spans slabs
2 and 3, so slabs 2 and 3 are scanned and all the active vertical segments in slabs 2 and 3
(namely, s2, s3, s4, s6, S7) are reported as intersecting the horizontal segment. In the process
of scanning slab 3, segment s5 is discovered to be no longer active and can be deleted from
slab 3. The end portions of the horizontal segment that “stick out” into slabs 1 and 4
are handled by the lower levels of recursion, where the intersection with sg is eventually
discovered.

8.1 Distribution Sweep 73

the current sweep line; vertical segments that are found to be no longer
active are deleted from the slabs.) The remaining two end portions of h
(which “stick out” past a slab boundary) are passed recursively to the
next level of recursion, along with the vertical segments. The down-
ward sweep then continues. After an initial one-time sorting (to order
the segments with respect to the y-dimension), the sweep at each of the
O(log,,, n) levels of recursion requires O(n) I/0s, yielding the desired
bound (8.1). Some timing experiments on distribution sweeping appear
in [104]. Arge et al. [48] develop a unified approach to distribution sweep
in higher dimensions.

A central operation in spatial databases is spatial join. A common
preprocessing step is to find the pairwise intersections of the bound-
ing boxes of the objects involved in the spatial join. The problem of
intersecting orthogonal rectangles can be solved by combining the pre-
vious sweep line algorithm for orthogonal segments with one for range
searching. Arge et al. [48] take a more unified approach using distri-
bution sweep, which is extendible to higher dimensions: The active
objects that are stored in the data structure in this case are rectangles,
not vertical segments. The authors choose the branching factor to be
O(y/m). Each rectangle is associated with the largest contiguous range
of vertical slabs that it spans. Each of the possible @((\/f)) =0(m)
contiguous ranges of slabs is called a multislab. The reason why the
authors choose the branching factor to be O(y/m) rather than ©(m)
is so that the number of multislabs is ©(m), and thus there is room in
internal memory for a buffer for each multislab. The height of the tree
remains O(log,, n).

The algorithm proceeds by sweeping a horizontal line from top to
bottom to process the N rectangles. When the sweep line first encoun-
ters a rectangle R, we consider the multislab lists for all the multislabs
that R intersects. We report all the active rectangles in those multislab
lists, since they are guaranteed to intersect R. (Rectangles no longer
active are discarded from the lists.) We then extract the left and right
end portions of R that partially “stick out” past slab boundaries, and
we pass them down to process in the next lower level of recursion. We
insert the remaining portion of R, which spans complete slabs, into the
list for the appropriate multislab. The downward sweep then continues.

74 Batched Problems in Computational Geometry

After the initial sort preprocessing, each of the O(log,,n) sweeps (one
per level of recursion) takes O(n) I/Os, yielding the desired bound (8.1).

The resulting algorithm, called scalable sweeping-based spatial join
(SSSJ) [47, 48], outperforms other techniques for rectangle intersection.
It was tested against two other sweep line algorithms: the partition-
based spatial merge (QPBSM) used in Paradise [282] and a faster ver-
sion called MPBSM that uses an improved dynamic data structure for
intervals [47]. The TPIE system described in Chapter 17 served as the
common implementation platform. The algorithms were tested on sev-
eral data sets. The timing results for the two data sets in Figures 8.2(a)
and 8.2(b) are given in Figures 8.3(a) and 8.3(b), respectively. The first
data set is the worst case for sweep line algorithms; a large fraction of
the line segments in the file are active (i.e., they intersect the current
sweep line). The second data set is the best case for sweep line algo-
rithms, but the two PBSM algorithms have the disadvantage of mak-
ing extra copies of the rectangles. In both cases, SSSJ shows consider-
able improvement over the PBSM-based methods. In other experiments
done on more typical data, such as TIGER/line road data sets [327],
SSSJ and MPBSM perform about 30% faster than does QPBSM. The
conclusion we draw is that SSSJ is as fast as other known methods on
typical data, but unlike other methods, it scales well even for worst-case

(a) ONl== ST

N1

0 0

Fig. 8.2 Comparison of Scalable Sweeping-Based Spatial Join (SSSJ) with the original
PBSM (QPBSM) and a new variant (MPBSM): (a) Data set 1 consists of tall and skinny
(vertically aligned) rectangles; (b) Data set 2 consists of short and wide (horizontally
aligned) rectangles.

8.1 Distribution Sweep 75

7000 T T T T T T T T T
"QPBSM" <— Vi
"MPBSM" —— /
6000 | "SSSJ" & 4
5000 & p
8 4000 - 4
f = ’
3 ¥
Q ’
Z 7
g /! R:
[} H .
£ 3000 | / b
= J
:’ "E
2000 |- / - .
/ .|
,/I .a’
1000 s R
.
e
e g
(a) N
0 " V‘ 1 1 1 1 1 1 1
0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06
Number of rectangles
T T T
1000 | B
"MPBSM" -o—
"QPBSM" —+—
"SSSJ" & J
%)
el
[= -
o
o
Q
<o
(0]
£
=
______ h
BT
(b)
0 200000 400000 600000 800000 1e+06

Number of rectangles

Fig. 8.3 Comparison of Scalable Sweeping-Based Spatial Join (SSSJ) with the original
PBSM (QPBSM) and a new variant (MPBSM): (a) Running times on data set 1; (b) Run-
ning times on data set 2.

76 Batched Problems in Computational Geometry

data. If the rectangles are already stored in an index structure, such as
the R-tree index structure we consider in Section 12.2, hybrid methods
that combine distribution sweep with inorder traversal often perform
best [46].

For the problem of finding all intersections among N line segments,
Arge et al. [57] give an efficient algorithm based upon distribution sort,
but the answer component of the I/O bound is slightly nonoptimal:
zlog,,n rather than z. Crauser et al. [122, 123] attain the optimal
I/O bound (8.1) by constructing the trapezoidal decomposition for
the intersecting segments using an incremental randomized construc-
tion. For 1/0 efficiency, they do the incremental updates in a series of
batches, in which the batch size is geometrically increasing by a factor
of m.

8.2 Other Batched Geometric Problems

Other batched geometric problems studied in the PDM model include
range counting queries [240], constrained Delauney triangulation [14],
and a host of problems on terrains and grid-based GIS models [7, 10,
16, 35, 36, 54, 192]. Breimann and Vahrenhold [89] survey several EM
problems in computational geometry.

9

Batched Problems on Graphs

The problem instance for graph problems includes an encoding of the
graph in question. We adopt the convention that the edges of the graph,
each of the form (u,v) for some vertices u and v, are given in list form in
arbitrary order. We denote the number of vertices by V' and the number
of edges by E. For simplicity of notation, we assume that £ >V in
those cases where there are fewer edges than vertices, we set E/ to be V.
We also adopt the lower case notation v = V/B and e = E/B to denote
the number of blocks of vertices and edges. We can convert the graph
to adjacency list format via a sort operation in Sort(E) I/Os.

Tables 9.1 and 9.2 give the best known I/O bounds (with appro-
priate corrections made for errors in the literature) for several graph
problems. The problems in Table 9.1 have sorting-like bounds, whereas
the problems in Table 9.2 seem to be inherently sequential in that they
do not take advantage of block I/O. As mentioned in Chapter 6, the
best known I/O lower bound for these problems is Q((E/V)Sort(V) =
elogmv).

The first work on EM graph algorithms was by Ullman and Yan-
nakakis [331] for the problem of transitive closure. Chiang et al. [105]
consider a variety of graph problems, several of which have upper

T

78 Batched Problems on Graphs

Table 9.1 Best known I/O bounds for batched graph problems with sorting-like bounds.
‘We show only the single-disk case D = 1. The number of vertices is denoted by V' = vB and
the number of edges by E = eB; for simplicity, we assume that £ > V. The term Sort(N) is
the I/O bound for sorting defined in Chapter 3. Lower bounds are discussed in Chapter 6.

Graph Problem 1/O Bound, D =1

List ranking,
Euler tour of a tree,

Centroid decomposition, O (Sort(V)) [105]
Expression tree evaluation
Connected components, O (min {Sort(VQ),

Biconnected components,
Minimum spanning
forest (MSF),
Bottleneck MSF, v
Ear decomposition max {17 loglog - } Sort(E),

E
max{l,logK — Sort(V),
M}V

(loglog B)%Sort(v)})

(deterministic)
[2, 34, 105, 149, 227, 264]

© (%Sort(V)) (randomized) [105, 149]

Maximal independent sets,

Triangle enumeration o (SO”(E)) [362]

Maximal matching O(Sort(E)) (deterministic) [362]

) (gSort(V)) (randomized) [105]

and lower I/O bounds related to sorting and permuting. Abello
et al. [2] formalize a functional approach to EM graph problems,
in which computation proceeds in a series of scan operations over
the data; the scanning avoids side effects and thus permits check-
pointing to increase reliability. Kumar and Schwabe [227], followed
by Buchsbaum et al. [93], develop EM graph algorithms based upon
amortized data structures for binary heaps and tournament trees.
Munagala and Ranade [264] give improved graph algorithms for con-
nectivity and undirected breadth-first search (BFS). Their approach is
extended by Arge et al. [34] to compute the minimum spanning forest

79

Table 9.2 Best known I/O bounds for batched graph problems that appear to be substan-
tially harder than sorting, for the single-disk case D = 1. The number of vertices is denoted
by V = vB and the number of edges by E = eB; for simplicity, we assume that £ > V. The
term Sort(N) is the I/O bound for sorting defined in Chapter 3. The terms SF(V,E) and
MSF (V,E) represent the I/O bounds for finding a spanning forest and minimum spanning
forest, respectively. We use w and W to denote the minimum and maximum weights in a
weighted graph. Lower bounds are discussed in Chapter 6.

Graph Problem 1/0 Bound, D =1
Undirected breadth-first search O(VVe+ Sort(E) + SF(V,E)) (252]

Undirected single-source

shortest paths o (mln {V + elogV,

VVelogV + MSF(V,E),

Velog (1 + %) + MSF(V,E)})

[227, 258, 259]

Directed and undirected
depth-first search,

Topological sorting, . ve
Directed breadth-first search, o (mm {V + Sort(E) + m’ (Vte) lOgV})

Directed single-source
shortest paths

Transitive closure (0] (Vv, / £) [105]
m

Undirected all-pairs

[93, 105, 227]

shortest paths O(VVVe + Veloge) [108]
Diameter,
Undirected unweighted o (VSort(E)) [43, 108]

all-pairs shortest paths

(MSF) and by Mehlhorn and Meyer [252] for BFS. Ajwani et al. [27]
give improved practical implementations of EM algorithms for BFS.
Meyer [255] gives an alternate EM algorithm for undirected BFS for
sparse graphs, including the dynamic case. Meyer [256] provides new
results on approximating the diameter of a graph. Dementiev et al. [137]
implement practical EM algorithms for MSF, and Dementiev [133] gives
practical EM implementations for approximate graph coloring, maxi-
mal independent set, and triangle enumeration. Khuller et al. [215]
present approximation algorithms for data migration, a problem related
to coloring that involves converting one layout of blocks to another.

80 Batched Problems on Graphs

Arge [30] gives efficient algorithms for constructing ordered binary deci-
sion diagrams.

Techniques for storing graphs on disks for efficient traversal and
shortest path queries are discussed in [10, 53, 177, 201, 271]. Comput-
ing wavelet decompositions and histograms [347, 348, 350] is an EM
graph problem related to transposition that arises in online analytical
processing (OLAP). Wang et al. [349] give an I/O-efficient algorithm
for constructing classification trees for data mining. Further surveys of
EM graph algorithms appear in [213, 243].

9.1 Sparsification

We can often apply sparsification [149] to convert I/O bounds of
the form O(Sort(E)) to the improved form O((E/V)Sort(V)). For
example, the I/O bound for minimum spanning forest (MSF) actu-
ally derived by Arge et al. [34] is O(max{1,loglog(V/e)}Sort(E)).
For the MSF problem, we can partition the edges of the graph into
E/V sparse subgraphs, each with V' edges on the V vertices, and
then apply the algorithm of [34] to each subproblem to create E/V
spanning forests in a total of O (max {1, loglog(V/v) }(E/V)Sort(V)) =
O((loglog B)(E/V)Sort(V)) 1/Os. We then merge the E/V spanning
forests, two at a time, in a balanced binary merging procedure by
repeatedly applying the algorithm of [34]. After the first level of binary
merging, the spanning forests collectively have at most E/2 edges; after
two levels, they have at most E/4 edges, and so on in a geometrically
decreasing manner. The total I/O cost for the final spanning forest is
thus O(max{1, loglog B}(E/V)Sort(V)) I1/Os.

The reason why sparsification works is that the spanning forest
created by each binary merge is only ©(V) in size, yet it preserves the
necessary information needed for the next merge step. That is, the MSF
of the merge of two graphs G and G’ is the MSF of the merge of the
MSF's of G and G'.

The same sparsification approach can be applied to connectivity,
biconnectivity, and maximal matching. For example, to apply spar-
sification to finding biconnected components, we modify the merg-
ing process by first replacing each biconnected component by a cycle

9.2 Special Cases 81

that contains the vertices in the biconnected component. The result-
ing graph has O(V) size and contains the necessary information for
computing the biconnected components of the merged graph.

9.2 Special Cases

In the case of semi-external graph problems [2], in which the vertices fit
into internal memory but the edges do not (i.e., V< M < E), several of
the problems in Table 9.1 can be solved optimally in external memory.
For example, finding connected components, biconnected components,
and minimum spanning forests can be done in O(e) I/Os when V' < M.

The I/O complexities of several problems in the general case remain
open, including connected components, biconnected components, and
minimum spanning forests in the deterministic case, as well as breadth-
first search, topological sorting, shortest paths, depth-first search, and
transitive closure. It may be that the I/O complexity for several of
these latter problems is © ((E/V)Sort(V) + V). For special cases, such
as trees, planar graphs, outerplanar graphs, and graphs of bounded tree
width, several of these problems can be solved substantially faster in
O(Sort(E)) 1/Os [55, 105, 241, 242, 244, 329]. Other EM algorithms
for planar, near-planar, and bounded-degree graphs appear in [10, 44,
51, 52, 59, 191, 254].

9.3 Sequential Simulation of Parallel Algorithms

Chiang et al. [105] exploit the key idea that efficient EM algorithms can
often be developed by a sequential simulation of a parallel algorithm for
the same problem. The intuition is that each step of a parallel algorithm
specifies several operations and the data upon which they act. If we
bring together the data arguments for each operation, which we can do
by two applications of sorting, then the operations can be performed
by a single linear scan through the data. After each simulation step, we
sort again in order to reblock the data into the linear order required
for the next simulation step.

In list ranking, which is used as a subroutine in the solution of
several other graph problems, the number of working processors in

82 Batched Problems on Graphs

the parallel algorithm decreases geometrically with time, so the num-
ber of I/Os for the entire simulation is proportional to the number
of I/Os used in the first phase of the simulation, which is Sort(N) =
©(nlog,,n). The optimality of the EM algorithm given in [105] for
list ranking assumes that /mlogm = Q(logn), which is usually true
in practice. That assumption can be removed by use of the buffer tree
data structure [32] discussed in Section 11.4. A practical randomized
implementation of list ranking appears in [317].

Dehne et al. [131, 132] and Sibeyn and Kaufmann [319] use a related
approach and get efficient I/O bounds by simulating coarse-grained
parallel algorithms in the BSP parallel model. Coarse-grained parallel
algorithms may exhibit more locality than the fine-grained algorithms
considered in [105], and as a result the simulation may require fewer
sorting steps. Dehne et al. make certain assumptions, most notably that
log,,n < ¢ for some small constant ¢ (or equivalently that M¢ < NB),
so that the periodic sortings can each be done in a linear number
of I/Os. Since the BSP literature is well developed, their simulation
technique provides efficient single-processor and multiprocessor EM
algorithms for a wide variety of problems.

In order for the simulation techniques to be reasonably efficient, the
parallel algorithm being simulated must run in O((Iog N)C) time using
N processors. Unfortunately, the best known polylog-time algorithms
for problems such as depth-first search and shortest paths use a poly-
nomial number of processors, not a linear number. P-complete prob-
lems such as lexicographically-first depth-first search are unlikely to
have polylogarithmic time algorithms even with a polynomial number
of processors. The interesting connection between the parallel domain
and the EM domain suggests that there may be relationships between
computational complexity classes related to parallel computing (such
as P-complete problems) and those related to I/O efficiency. It may
thus be possible to show by reduction that certain groups of problems
are “equally hard” to solve efficiently in terms of I/O and are thus
unlikely to have solutions as fast as sorting.

10

External Hashing for Online Dictionary Search

We now turn our attention to online data structures for supporting the
dictionary operations of insert, delete, and lookup. Given a value =z,
the lookup operation returns the item(s), if any, in the structure with
key value . The two main types of EM dictionaries are hashing, which
we discuss in this chapter, and tree-based approaches, which we defer
until Chapter 11 and succeeding chapters.

The advantage of hashing is that the expected number of probes
per operation is a constant, regardless of the number N of items. The
common element of all EM hashing algorithms is a pre-defined hash
function

hash : {all possible keys} — {0,1,2,..., K — 1}

that assigns the N items to K address locations in a uniform manner.
Hashing algorithms differ from each another in how they resolve the
collision that results when there is no room to store an item at its
assigned location.

The goals in EM hashing are to achieve an average of
O(Output(Z)) = O([z]) 1/Os per lookup (where Z = zB is the num-
ber of items in the answer), O(1) I/Os per insert and delete, and linear

83

84 External Hashing for Online Dictionary Search

disk space. Most traditional hashing methods use a statically allocated
table and are thus designed to handle only a fixed range of N. The chal-
lenge is to develop dynamic EM structures that can adapt smoothly to
widely varying values of N.

10.1 Extendible Hashing

EM dynamic hashing methods fall into one of two categories: directory
methods and directoryless methods. Fagin et al. [153] proposed a direc-
tory scheme called extendible hashing: Let us assume that the size K of
the range of the hash function hash is sufficiently large. The directory,
for a given d > 0, consists of a table (array) of 2¢ pointers. Each item
is assigned to the table location corresponding to the d least significant
bits of its hash address. The value of d, called the global depth, is set to
the smallest value for which each table location has at most B items
assigned to it. Each table location contains a pointer to a block where
its items are stored. Thus, a lookup takes two I/Os: one to access the
directory and one to access the block storing the item. If the directory
fits in internal memory, only one I1/0O is needed.

Several table locations may have many fewer than B assigned items,
and for purposes of minimizing storage utilization, they can share the
same disk block for storing their items. A table location shares a disk
block with all the other table locations having the same k least signifi-
cant bits in their address, where the local depth k is chosen to be as small
as possible so that the pooled items fit into a single disk block. Each
disk block has its own local depth. An example is given in Figure 10.1.

When a new item is inserted, and its disk block overflows, the global
depth d and the block’s local depth k are recalculated so that the
invariants on d and k once again hold. This process corresponds to
“splitting” the block that overflows and redistributing its items. Each
time the global depth d is incremented by 1, the directory doubles
in size, which is how extendible hashing adapts to a growing IN. The
pointers in the new directory are initialized to point to the appropriate
disk blocks. The important point is that the disk blocks themselves do
not need to be disturbed during doubling, except for the one block that
overflows.

10.1 Extendible Hashing 85

1001
(@ (b) 1010

1011

vﬁlocaldepth
00T N\ 001 N\ OOOIA
18 18 18

010| 010 /><- 0010 N -
011 — 1] 239 o11| —1+—= . 23 9 0011 . 23 9
100 — 100 — 0100 \‘j

]] 444 76 — =~ 4 20
101 — 01| — oto1] —H -
w0] = e
] 7 i ottt| —

global depth d = 3 global depth d = 3 1000{]

a7 |

1100

NN TN

1101

1110

L/

global depth d = 4

1111

(©)

Fig. 10.1 Extendible hashing with block size B = 3. The keys are indicated in italics; the
hash address of a key consists of its binary representation. For example, the hash address
of key 4 is “...000100” and the hash address of key 44 is “...0101100”. (a) The hash table
after insertion of the keys 4, 23, 18, 10, 44, 32, 9; (b) Insertion of the key 76 into table
location 100 causes the block with local depth 2 to split into two blocks with local depth 3;
(c) Insertion of the key 20 into table location 100 causes a block with local depth 3 to split
into two blocks with local depth 4. The directory doubles in size and the global depth d is
incremented from 3 to 4.

More specifically, let hashg be the hash function corresponding to
the d least significant bits of hash; that is, hashg(z) = hash(z) mod 2.
Initially a single disk block is created to store the data items, and all
the slots in the directory are initialized to point to the block. The local
depth k of the block is set to 0.

When an item with key value z is inserted, it is stored in the disk
block pointed to by directory slot hashq(x). If as a result the block
(call it b) overflows, then block b splits into two blocks — the original
block b and a new block b — and its items are redistributed based

86 External Hashing for Online Dictionary Search

upon the (b.k + 1)st least significant bit of hash(x). (Here b.k refers
to b’s local depth k.) We increment b.k by 1 and store that value also
in b'.k. In the unlikely event that b or ¢’ is still overfull, we continue
the splitting procedure and increment the local depths appropriately.
At this point, some of the data items originally stored in block b have
been moved to other blocks, based upon their hash addresses. If b.k < d,
we simply update those directory pointers originally pointing to b that
need changing, as shown in Figure 10.1(b). Otherwise, the directory is
not large enough to accommodate hash addresses with b.k bits, so we
repeatedly double the directory size and increment the global depth d
by 1 until d becomes equal to b.k, as shown in Figure 10.1(c). The
pointers in the new directory are initialized to point to the appropriate
disk blocks. As noted before, the disk blocks do not need to be modified
during doubling, except for the block that overflows.

Extendible hashing can handle deletions in a similar way: When two
blocks with the same local depth & contain items whose hash addresses
share the same k — 1 least significant bits and can fit together into a
single block, then their items are merged into a single block with a
decremented value of k. The combined size of the blocks being merged
must be sufficiently less than B to prevent immediate splitting after
a subsequent insertion. The directory shrinks by half (and the global
depth d is decremented by 1) when all the local depths are less than
the current value of d.

The expected number of disk blocks required to store the data
items is asymptotically n/In2 ~ n/0.69; that is, the blocks tend to be
about 69% full [253]. At least Q(n/B) blocks are needed to store the
directory. Flajolet [164] showed on the average that the directory uses
O(N'/Bn/B) = ©(N'1/B/B?) blocks, which can be superlinear in N
asymptotically! However, for practical values of N and B, the NV/B
term is a small constant, typically less than 2, and the directory size is
within a constant factor of the optimum.

The resulting directory is equivalent to the leaves of a perfectly
balanced trie [220], in which the search path for each item is determined
by its hash address, except that hashing allows the leaves of the trie to
be accessed directly in a single I/O. Any item can thus be retrieved in

10.2 Directoryless Methods 87

a total of two I/Os. If the directory fits in internal memory, only one
I/0 is needed.

10.2 Directoryless Methods

A disadvantage of directory schemes is that two I/Os rather than one
I/O are required when the directory is stored in external memory.
Litwin [235] and Larson [229] developed a directoryless method called
linear hashing that expands the number of data blocks in a controlled
regular fashion. For example, suppose that the disk blocks currently
allocated are blocks 0, 1, 2, ..., 2% + p — 1, for some 0 < p < 2¢. When
N grows sufficiently larger (say, by 0.8B items), block p is split by
allocating a new block 2% + p. Some of the data items from block p
are redistributed to block 2¢ + p, based upon the value of hashg1,
and p is incremented by 1. When p reaches 2%, it is reset to 0 and the
global depth d is incremented by 1. To search for an item with key
value z, the hash address hashg(z) is used if it is p or larger; otherwise
if the address is less than p, then the corresponding block has already
been split, so hashgy1(x) is used instead as the hash address. Further
analysis appears in [67].

In contrast to directory schemes, the blocks in directoryless meth-
ods are chosen for splitting in a predefined order. Thus the block that
splits is usually not the block that has overflowed, so some of the blocks
may require auxiliary overflow lists to store items assigned to them. On
the other hand, directoryless methods have the advantage that there
is no need for access to a directory structure, and thus searches often
require only one I/O. A related technique called spiral storage (or spiral
hashing) [248, 263] combines constrained bucket splitting and overflow-
ing buckets. A more detailed survey of EM dynamic hashing methods
appears in [147].

10.3 Additional Perspectives

The above hashing schemes and their many variants work very well for
dictionary applications in the average case, but have poor worst-case
performance. They also do not support range search (retrieving all the

88 External Hashing for Online Dictionary Search

items with key value in a specified range). Some clever work in support
of range search has been done on order-preserving hash functions, in
which items with consecutive key values are stored in the same block
or in adjacent blocks. However, the search performance is less robust
and tends to deteriorate because of unwanted collisions. See [170] for
a survey of multidimensional hashing methods and in addition more
recent work in [85, 203]. In the next two chapters, we explore a more
natural approach for range search with good worst-case performance
using multiway trees.

11

Multiway Tree Data Structures

In this chapter, we explore some important search-tree data structures
in external memory. An advantage of search trees over hashing methods
is that the data items in a tree are sorted, and thus the tree can be
used readily for one-dimensional range search. The items in a range
[,y] can be found by searching for x in the tree, and then performing
an inorder traversal in the tree from x to y.

11.1 B-trees and Variants

Tree-based data structures arise naturally in the online setting, in which
the data can be updated and queries must be processed immediately.
Binary trees have a host of applications in the (internal memory) RAM
model. One primary application is search. Some binary search trees, for
example, support lookup queries for a dictionary of N items in O(log V)
time, which is optimal in the comparison model of computation. The
generalization to external memory, in which data are transferred in
blocks of B items and B comparisons can be done per I/O, provides
an Q(logg N) I/O lower bound. These lower bounds depend heavily

89

90 Multiway Tree Data Structures

upon the model; we saw in the last chapter that hashing can support
dictionary lookup in a constant number of I/Os.

In order to exploit block transfer, trees in external memory gener-
ally represent each node by a block that can store ©(B) pointers and
data values and can thus achieve ©(B)-way branching. The well-known
balanced multiway B-tree due to Bayer and McCreight [74, 114, 220],
is the most widely used nontrivial EM data structure. The degree of
each node in the B-tree (with the exception of the root) is required
to be ©(B), which guarantees that the height of a B-tree storing N
items is roughly logp N. B-trees support dynamic dictionary opera-
tions and one-dimensional range search optimally in linear space using
O(logg N) 1/Os per insert or delete and O(logz N + z) 1/Os per query,
where Z = zB is the number of items output. When a node overflows
during an insertion, it splits into two half-full nodes, and if the split-
ting causes the parent node to have too many children and overflow,
the parent node splits, and so on. Splittings can thus propagate up to
the root, which is how the tree grows in height. Deletions are handled
in a symmetric way by merging nodes. Franceschini et al. [167] show
how to achieve the same I/O bounds without space for pointers.

In the BT -tree variant, pictured in Figure 11.1, all the items are
stored in the leaves, and the leaves are linked together in symmetric
order to facilitate range queries and sequential access. The internal
nodes store only key values and pointers and thus can have a higher
branching factor. In the most popular variant of B*-trees, called B*-
trees, splitting can usually be postponed when a node overflows, by

Level 2
Level 1
Leaves

Fig. 11.1 BT-tree multiway search tree. Each internal and leaf node corresponds to a disk
block. All the items are stored in the leaves; the darker portion of each leaf block indicates
its relative fullness. The internal nodes store only key values and pointers, ©(B) of them
per node. Although not indicated here, the leaf blocks are linked together sequentially.

11.1 B-trees and Variants 91

“sharing” the node’s data with one of its adjacent siblings. The node
needs to be split only if the sibling is also full; when that happens, the
node splits into two, and its data and those of its full sibling are evenly
redistributed, making each of the three nodes about 2/3 full. This local
optimization reduces the number of times new nodes must be created
and thus increases the storage utilization. And since there are fewer
nodes in the tree, search I/O costs are lower. When no sharing is done
(as in Bf-trees), Yao [360] shows that nodes are roughly In2 = 69%
full on the average, assuming random insertions. With sharing (as in
B*-trees), the average storage utilization increases to about 2In(3/2) ~
81% [63, 228]. Storage utilization can be increased further by sharing
among several siblings, at the cost of more complicated insertions and
deletions. Some helpful space-saving techniques borrowed from hashing
are partial expansions [65] and use of overflow nodes [321].

A cross between B-trees and hashing, where each subtree rooted at
a certain level of the B-tree is instead organized as an external hash
table, was developed by Litwin and Lomet [236] and further studied
in [64, 237]. O’Neil [275] proposed a B-tree variant called the SB-tree
that clusters together on the disk symmetrically ordered nodes from the
same level so as to optimize range queries and sequential access. Rao
and Ross [290, 291] use similar ideas to exploit locality and optimize
search tree performance in the RAM model. Reducing the number of
pointers allows a higher branching factor and thus faster search.

Partially persistent versions of B-trees have been developed by
Becker et al. [76], Varman and Verma [335], and Arge et al. [37]. By
persistent data structure, we mean that searches can be done with
respect to any time stamp y [142, 143]. In a partially persistent data
structure, only the most recent version of the data structure can be
updated. In a fully persistent data structure, any update done with
time stamp y affects all future queries for any time after y. Batched
versions of partially persistent B-trees provide an elegant solution to
problems of point location and visibility discussed in Chapter 8.

An interesting open problem is whether B-trees can be made fully
persistent. Salzberg and Tsotras [298] survey work done on persistent
access methods and other techniques for time-evolving data. Lehman
and Yao [231], Mohan [260], Lomet and Salzberg [239], and Bender

92 Multiway Tree Data Structures

et al. [81] explore mechanisms to add concurrency and recovery to
B-trees.

11.2 Weight-Balanced B-trees

Arge and Vitter [58] introduce a powerful variant of B-trees called
weight-balanced B-trees, with the property that the weight of any sub-
tree at level h (i.e., the number of nodes in the subtree rooted at a
node of height h) is ©(a”), for some fixed parameter a of order B. By
contrast, the sizes of subtrees at level A in a regular B-tree can differ
by a multiplicative factor that is exponential in h. When a node on
level h of a weight-balanced B-tree gets rebalanced, no further rebal-
ancing is needed until its subtree is updated Q(a") times. Weight-
balanced B-trees support a wide array of applications in which the
I/O cost to rebalance a node of weight w is O(w); the rebalancings
can be scheduled in an amortized (and often worst-case) way with only
O(1) I/Os. Such applications are very common when the the nodes
have secondary structures, as in multidimensional search trees, or when
rebuilding is expensive. Agarwal et al. [11] apply weight-balanced B-
trees to convert partition trees such as kd-trees, BBD trees, and BAR
trees, which were designed for internal memory, into efficient EM data
structures.

Weight-balanced trees called BB[a]-trees [87, 269] have been
designed for internal memory; they maintain balance via rotations,
which is appropriate for binary trees, but not for the multiway trees
needed for external memory. In contrast, weight-balanced B-trees main-
tain balance via splits and merges.

Weight-balanced B-trees were originally conceived as part of an
optimal dynamic EM interval tree structure for stabbing queries and a
related EM segment tree structure. We discuss their use for stabbing
queries and other types of range queries in Sections 12.3-12.5. They
also have applications in the (internal memory) RAM model [58, 187],
where they offer a simpler alternative to BB[a]-trees. For example,
by setting a to a constant in the EM interval tree based upon weight-
balanced B-trees, we get a simple worst-case implementation of interval
trees [144, 145] in the RAM model. Weight-balanced B-trees are also

11.3 Parent Pointers and Level-Balanced B-trees 93

preferable to BB[aJ-trees for purposes of augmenting one-dimensional
data structures with range restriction capabilities [354].

11.3 Parent Pointers and Level-Balanced B-trees

It is sometimes useful to augment B-trees with parent pointers. For
example, if we represent a total order via the leaves in a B-tree, we can
answer order queries such as “Is z < y in the total order?” by walking
upwards in the B-tree from the leaves for x and y until we reach their
common ancestor. Order queries arise in online algorithms for planar
point location and for determining reachability in monotone subdivi-
sions [6]. If we augment a conventional B-tree with parent pointers,
then each split operation costs ©(B) I/Os to update parent pointers,
although the I/O cost is only O(1) when amortized over the updates
to the node. However, this amortized bound does not apply if the
B-tree needs to support cut and concatenate operations, in which case
the B-tree is cut into contiguous pieces and the pieces are rearranged
arbitrarily. For example, reachability queries in a monotone subdivision
are processed by maintaining two total orders, called the leftist and
rightist orders, each of which is represented by a B-tree. When an edge
is inserted or deleted, the tree representing each order is cut into four
consecutive pieces, and the four pieces are rearranged via concatenate
operations into a new total order. Doing cuts and concatenation via
conventional B-trees augmented with parent pointers will require ©(B)
I/Os per level in the worst case. Node splits can occur with each oper-
ation (unlike the case where there are only inserts and deletes), and
thus there is no convenient amortization argument that can be applied.

Agarwal et al. [6] describe an interesting variant of B-trees called
level-balanced B-trees for handling parent pointers and operations such
as cut and concatenate. The balancing condition is “global”: The data
structure represents a forest of B-trees in which the number of nodes on
level A in the forest is allowed to be at most Nj, = 2N/(b/3)", where b is
some fixed parameter in the range 4 < b < B/2. It immediately follows
that the total height of the forest is roughly log, N.

Unlike previous variants of B-trees, the degrees of individual nodes
of level-balanced B-trees can be arbitrarily small, and for storage

94 Multiway Tree Data Structures

purposes, nodes are packed together into disk blocks. Each node in
the forest is stored as a node record (which points to the parent’s
node record) and a doubly linked list of child records (which point
to the node records of the children). There are also pointers between
the node record and the list of child records. Every disk block stores
only node records or only child records, but all the child records for
a given node must be stored in the same block (possibly with child
records for other nodes). The advantage of this extra level of indirec-
tion is that cuts and concatenates can usually be done in only O(1) I/Os
per level of the forest. For example, during a cut, a node record gets
split into two, and its list of child nodes is chopped into two separate
lists. The parent node must therefore get a new child record to point
to the new node. These updates require O(1) I/Os except when there
is not enough space in the disk block of the parent’s child records, in
which case the block must be split into two, and extra I/Os are needed
to update the pointers to the moved child records. The amortized 1/0O
cost, however, is only O(1) per level, since each update creates at most
one node record and child record at each level. The other dynamic
update operations can be handled similarly.

All that remains is to reestablish the global level invariant when a
level gets too many nodes as a result of an update. If level h is the
lowest such level out of balance, then level h and all the levels above it
are reconstructed via a postorder traversal in O(Np,) I/Os so that the
new nodes get degree ©(b) and the invariant is restored. The final trick
is to construct the new parent pointers that point from the ©(Ny_1) =
©(bN}) node records on level h — 1 to the O(Ny) level-h nodes. The
parent pointers can be accessed in a blocked manner with respect to
the new ordering of the nodes on level h. By sorting, the pointers can
be rearranged to correspond to the ordering of the nodes on level h — 1,
after which the parent pointer values can be written via a linear scan.
The resulting I/O cost is O(Ny, + Sort(bNy,) + Scan(bNy,)), which can
be amortized against the ©(N}) updates that have occurred since
the last time the level-hA invariant was violated, yielding an amortized
update cost of O(1 + (b/B)log,,n) 1/Os per level.

Order queries such as “Does leaf = precede leaf y in the total
order represented by the tree?” can be answered using O(logg N)

11.4 Buffer Trees 95

I/Os by following parent pointers starting at x and y. The update
operations insert, delete, cut, and concatenate can be done in
O((1 + (b/B)log,,n)log, N) 1/Os amortized, for any 2<b< B/2,
which is never worse than O((log g N)2) by appropriate choice of b.

Using the multislab decomposition we discuss in Section 12.3,
Agarwal et al. [6] apply level-balanced B-trees in a data structure for
point location in monotone subdivisions, which supports queries and
(amortized) updates in O((logg N)?) I/Os. They also use it to dynam-
ically maintain planar st-graphs using O(1 + (b/B)(log,, n)log, N)
I/Os (amortized) per update, so that reachability queries can be
answered in O(logg N) I/Os (worst-case). (Planar st-graphs are planar
directed acyclic graphs with a single source and a single sink.) An inter-
esting open question is whether level-balanced B-trees can be imple-
mented in O(logz N) I/Os per update. Such an improvement would
immediately give an optimal dynamic structure for reachability queries
in planar st-graphs.

11.4 Buffer Trees

An important paradigm for constructing algorithms for batched prob-
lems in an internal memory setting is to use a dynamic data structure
to process a sequence of updates. For example, we can sort N items by
inserting them one by one into a priority queue, followed by a sequence
of N delete_min operations. Similarly, many batched problems in com-
putational geometry can be solved by dynamic plane sweep techniques.
In Section 8.1, we showed how to compute orthogonal segment inter-
sections by dynamically keeping track of the active vertical segments
(i.e., those hit by the horizontal sweep line); we mentioned a similar
algorithm for orthogonal rectangle intersections.

However, if we use this paradigm naively in an EM setting, with a
B-tree as the dynamic data structure, the resulting I/O performance
will be highly nonoptimal. For example, if we use a B-tree as the pri-
ority queue in sorting or to store the active vertical segments hit by
the sweep line, each update and query operation will take O(logp V)
I/Os, resulting in a total of O(Nlogz N) I/Os, which is larger than
the optimal Sort(N) bound (5.1) by a substantial factor of roughly B.

96 Multiway Tree Data Structures

One solution suggested in [339] is to use a binary tree data structure
in which items are pushed lazily down the tree in blocks of B items
at a time. The binary nature of the tree results in a data structure of
height O(logn), yielding a total I/O bound of O(nlogn), which is still
nonoptimal by a significant logm factor.

Arge [32] developed the elegant buffer tree data structure to sup-
port batched dynamic operations, as in the sweep line example, where
the queries do not have to be answered right away or in any par-
ticular order. The buffer tree is a balanced multiway tree, but with
degree ©(m) rather than degree ©(B), except possibly for the root.
Its key distinguishing feature is that each node has a buffer that can
store O(M) items (i.e., ©(m) blocks of items). Items in a node are
pushed down to the children when the buffer fills. Emptying a full
buffer requires ©(m) I/Os, which amortizes the cost of distributing the
M items to the ©(m) children. Each item thus incurs an amortized
cost of O(m/M)=0(1/B) 1/Os per level, and the resulting cost for
queries and updates is O((1/B)log,, n) I/Os amortized.

Buffer trees have an ever-expanding list of applications. They can
be used as a subroutine in the standard sweep line algorithm in order to
get an optimal EM algorithm for orthogonal segment intersection. Arge
showed how to extend buffer trees to implement segment trees [82] in
external memory in a batched dynamic setting by reducing the node
degrees to ©(y/m) and by introducing multislabs in each node, which
were explained in Section 8.1 for the related batched problem of inter-
secting rectangles.

Buffer trees provide a natural amortized implementation of priority
queues for time-forward processing applications such as discrete event
simulation, sweeping, and list ranking [105]. Govindarajan et al. [182]
use time-forward processing to construct a well-separated pair decom-
position of N points in d dimensions in O(Sort(N)) I/Os, and they
apply it to the problems of finding the K nearest neighbors for each
point and the K closest pairs. Brodal and Katajainen [92] provide a
worst-case optimal priority queue, in the sense that every sequence of B
insert and delete_min operations requires only O(log,,n) I/Os. Prac-
tical implementations of priority queues based upon these ideas are
examined in [90, 302]. Brodal and Fagerberg [91] examine I/O tradeoffs

11.4 Buffer Trees 97

between update and search for comparison-based EM dictionaries.
Matching upper bounds for several cases can be achieved with a trun-
cated version of the buffer tree.

In Section 12.2, we report on some timing experiments involving
buffer trees for use in bulk loading of R-trees. Further experiments on
buffer trees appear in [200].

12

Spatial Data Structures and Range Search

In this chapter, we consider online tree-based EM data structures for
storing and querying spatial data. A fundamental database primitive
in spatial databases and geographic information systems (GIS) is range
search, which includes dictionary lookup as a special case. An orthog-
onal range query, for a given d-dimensional rectangle, returns all the
points in the interior of the rectangle. We shall use range searching
(especially for the orthogonal 2-D case when d = 2) as the canonical
query operation on spatial data. Other types of spatial queries include
point location, ray shooting, nearest neighbor, and intersection queries,
which we discuss briefly in Section 12.6.

There are two types of spatial data structures: data-driven and
space-driven. R-trees and kd-trees are data-driven since they are based
upon a partitioning of the data items themselves, whereas space-driven
methods such as quad trees and grid files are organized by a partition-
ing of the embedding space, akin to order-preserving hash functions.
In this chapter, we focus primarily on data-driven data structures.

Multidimensional range search is a fundamental primitive in several
online geometric applications, and it provides indexing support for con-
straint and object-oriented data models (see [210] for background). We
have already discussed multidimensional range searching in a batched

99

100 Spatial Data Structures and Range Search

setting in Chapter 8. In this chapter, we concentrate on data structures
for the online case.

For many types of range searching problems, it is very difficult to
develop theoretically optimal algorithms and data structures. Many
open problems remain. The primary design criteria are to achieve
the same performance we get using B-trees for one-dimensional range
search:

(1) to get a combined search and answer cost for queries of
O(logg N + z) 1/Os,

(2) to use only a linear amount (namely, O(n) blocks) of disk
storage space, and

(3) to support dynamic updates in O(logz N) I/Os (in the case
of dynamic data structures).

Criterion 1 combines the I/O cost Search(N) = O(logg N) of the
search component of queries with the I/O cost Output(Z) = O([z])
for reporting the Z items in the answer to the query. Combining the
costs has the advantage that when one cost is much larger than the
other, the query algorithm has the extra freedom to follow a filtering
paradigm [98], in which both the search component and the answer
reporting are allowed to use the larger number of 1/Os. For exam-
ple, to do queries optimally when Output(Z) is large with respect
to Search(N), the search component can afford to be somewhat sloppy
as long as it does not use more than O(z) I/Os, and when Output(Z) is
relatively small, the Z items in the answer do not need to reside com-
pactly in only O(fz}) blocks. Filtering is an important design paradigm
for many of the algorithms we discuss in this chapter.

We find in Section 12.7 that under a fairly general computational
model for general 2-D orthogonal queries, as pictured in Figure 12.1(d),
it is impossible to satisfy Criteria 1 and 2 simultaneously. At least
Q(n(logn)/log(logg N + 1)) blocks of disk space must be used to
achieve a query bound of O((logB N)¢ + z) I/Os per query, for any
constant ¢ [323]. Three natural questions arise:

e What sort of performance can be achieved when using only
a linear amount of disk space? In Sections 12.1 and 12.2,

101

(a) (®) (© (@

Fig. 12.1 Different types of 2-D orthogonal range queries: (a) Diagonal corner two-sided
2-D query (equivalent to a stabbing query, cf. Section 12.3); (b) Two-sided 2-D query;
(¢) Three-sided 2-D query; (d) General four-sided 2-D query.

we discuss some of the linear-space data structures used
extensively in practice. None of them come close to satis-
fying Criteria 1 and 3 for range search in the worst case, but
in typical-case scenarios they often perform well. We devote
Section 12.2 to R-trees and their variants, which are the
most popular general-purpose spatial structures developed
to date.

® Since the lower bound applies only to general 2-D rectangular
queries, are there any data structures that meet Criteria 1-3
for the important special cases of 2-D range searching pic-
tured in Figures 12.1(a), 12.1(b), and 12.1(c)? Fortunately
the answer is yes. We show in Sections 12.3 and 12.4 how to
use a “bootstrapping” paradigm to achieve optimal search
and update performance.

e Can we meet Criteria 1 and 2 for general four-sided
range searching if the disk space allowance is increased
to O(n(logn)/log(logg N + 1)) blocks? Yes again! In Sec-
tion 12.5, we show how to adapt the optimal structure for
three-sided searching in order to handle general four-sided
searching in optimal search cost. The update cost, however,
is not known to be optimal.

In Section 12.6, we discuss other scenarios of range search dealing
with three dimensions and nonorthogonal queries. We discuss the lower
bounds for 2-D range searching in Section 12.7.

102 Spatial Data Structures and Range Search

12.1 Linear-Space Spatial Structures

Grossi and Italiano [186] construct an elegant multidimensional version
of the B-tree called the cross tree. Using linear space, it combines the
data-driven partitioning of weight-balanced B-trees (cf. Section 11.2)
at the upper levels of the tree with the space-driven partitioning of
methods such as quad trees at the lower levels of the tree. Cross
trees can be used to construct dynamic EM algorithms for MSF and
2-D priority queues (in which the delete_min operation is replaced
by delete_min, and delete_min,). For d > 1, d-dimensional orthogo-
nal range queries can be done in O(n'~"¢ + 2) 1/Os, and inserts and
deletes take O(logg N) I/Os. The O-tree of Kanth and Singh [211] pro-
vides similar bounds. Cross trees also support the dynamic operations
of cut and concatenate in O(n'~1/4) 1/Os. In some restricted models for
linear-space data structures, the 2-D range search query performance
of cross trees and O-trees can be considered to be optimal, although it
is much larger than the logarithmic bound of Criterion 1.

One way to get multidimensional EM data structures is to aug-
ment known internal memory structures, such as quad trees and kd-
trees, with block-access capabilities. Examples include kd-B-trees [293],
buddy trees [309], hB-trees [151, 238], and Bkd-trees [285]. Grid
files [196, 268, 353] are a flattened data structure for storing the cells
of a two-dimensional grid in disk blocks. Another technique is to “lin-
earize” the multidimensional space by imposing a total ordering on it
(a so-called space-filling curve), and then the total order is used to
organize the points into a B-tree [173, 207, 277|. Linearization can also
be used to represent nonpoint data, in which the data items are parti-
tioned into one or more multidimensional rectangular regions [1, 276].
All the methods described in this paragraph use linear space, and
they work well in certain situations; however, their worst-case range
query performance is no better than that of cross trees, and for some
methods, such as grid files, queries can require ©(n) I/Os, even if
there are no points satisfying the query. We refer the reader to [18,
170, 270] for a broad survey of these and other interesting methods.
Space-filling curves arise again in connection with R-trees, which we
describe next.

12.2 R-trees 103

12.2 R-trees

The R-tree of Guttman [190] and its many variants are a practical
multidimensional generalization of the B-tree for storing a variety of
geometric objects, such as points, segments, polygons, and polyhedra,
using linear disk space. Internal nodes have degree ©(B) (except pos-
sibly the root), and leaves store ©(B) items. Each node in the tree
has associated with it a bounding box (or bounding polygon) of all
the items in its subtree. A big difference between R-trees and B-trees
is that in R-trees the bounding boxes of sibling nodes are allowed to
overlap. If an R-tree is being used for point location, for example, a
point may lie within the bounding box of several children of the cur-
rent node in the search. In that case the search must proceed to all such
children.

In the dynamic setting, there are several popular heuristics for
where to insert new items into an R-tree and how to rebalance it; see
[18, 170, 183] for a survey. The R*-tree variant of Beckmann et al. [77]
seems to give best overall query performance. To insert an item, we
start at the root and recursively insert the item into the subtree whose
bounding box would expand the least in order to accommodate the
item. In case of a tie (e.g., if the item already fits inside the bounding
boxes of two or more subtrees), we choose the subtree with the smallest
resulting bounding box. In the normal R-tree algorithm, if a leaf node
gets too many items or if an internal node gets too many children, we
split it, as in B-trees. Instead, in the R*-tree algorithm, we remove a
certain percentage of the items from the overflowing node and rein-
sert them into the tree. The items we choose to reinsert are the ones
whose centroids are furthest from the center of the node’s bounding
box. This forced reinsertion tends to improve global organization and
reduce query time. If the node still overflows after the forced reinser-
tion, we split it. The splitting heuristics try to partition the items into
nodes so as to minimize intuitive measures such as coverage, overlap,
or perimeter. During deletion, in both the normal R-tree and R*-tree
algorithms, if a leaf node has too few items or if an internal node has
too few children, we delete the node and reinsert all its items back into
the tree by forced reinsertion.

104 Spatial Data Structures and Range Search

The rebalancing heuristics perform well in many practical scenar-
ios, especially in low dimensions, but they result in poor worst-case
query bounds. An interesting open problem is whether nontrivial query
bounds can be proven for the “typical-case” behavior of R-trees for
problems such as range searching and point location. Similar questions
apply to the methods discussed in Section 12.1. New R-tree partitioning
methods by de Berg et al. [128], Agarwal et al. [17], and Arge et al. [3§]
provide some provable bounds on overlap and query performance.

In the static setting, in which there are no updates, constructing the
R*-tree by repeated insertions, one by one, is extremely slow. A faster
alternative to the dynamic R-tree construction algorithms mentioned
above is to bulk-load the R-tree in a bottom-up fashion [1, 206, 276].
Such methods use some heuristic for grouping the items into leaf nodes
of the R-tree, and then recursively build the nonleaf nodes from bot-
tom to top. As an example, in the so-called Hilbert R-tree of Kamel
and Faloutsos [206], each item is labeled with the position of its cen-
troid on the Peano-Hilbert space-filling curve, and a B*-tree is built
upon the totally ordered labels in a bottom-up manner. Bulk load-
ing a Hilbert R-tree is therefore easy to do once the centroid points
are presorted. These static construction methods algorithms are very
different in spirit from the dynamic insertion methods: The dynamic
methods explicitly try to reduce the coverage, overlap, or perimeter of
the bounding boxes of the R-tree nodes, and as a result, they usually
achieve good query performance. The static construction methods do
not consider the bounding box information at all. Instead, the hope
is that the improved storage utilization (up to 100%) of these packing
methods compensates for a higher degree of node overlap. A dynamic
insertion method related to [206] was presented in [207]. The qual-
ity of the Hilbert R-tree in terms of query performance is generally
not as good as that of an R*-tree, especially for higher-dimensional
data [84, 208].

In order to get the best of both worlds — the query performance
of R*-trees and the bulk construction efficiency of Hilbert R-trees —
Arge et al. [41] and van den Bercken et al. [333] independently devised
fast bulk loading methods based upon buffer trees that do top-down
construction in O(nlog,,n) I/Os, which matches the performance of

12.2 R-trees 105

Bl (naive) [buffer size: 600
E= buffer size: 1,250 EHFE buffer size: 5,000

7000+
6000+
5000+
4000 1
3000
2000~
10004

0

RI CT NJ NY
(a)

250

inEEEEEnil

200

150
100
50

ST, CT NJ

(b)

Fig. 12.2 Costs for R-tree processing (in units of 1000 I/Os) using the naive repeated
insertion method and the buffer R-tree for various buffer sizes: (a) Cost for bulk-loading
the R-tree; (b) Query cost.

the bottom-up methods within a constant factor. The former method is
especially efficient and supports dynamic batched updates and queries.
In Figure 12.2 and Table 12.1, we report on some experiments that
test the construction, update, and query performance of various R-tree
methods. The experimental data came from TIGER/line data sets from
four US states [327]; the implementations were done using the TPIE
system, described in Chapter 17.

Figure 12.2 compares the construction cost for building R-trees and
the resulting query performance in terms of I/Os for the naive sequen-
tial method for constructing R*-trees (labeled “naive”) and the newly
developed buffer R*-tree method [41] (labeled “buffer”). An R-tree was
constructed on the TIGER road data for each state and for each of four
possible buffer sizes. The four buffer sizes were capable of storing 0,

106 Spatial Data Structures and Range Search

Table 12.1 Summary of the costs (in number of I/Os) for R-tree updates and queries.
Packing refers to the percentage storage utilization.

Update with 50% of the data

Data set Update method Building Querying Packing (%)

Naive 259,263 6,670 64
RI Hilbert 15,865 7,262 92
Buffer 13,484 5,485 90
Naive 805,749 40,910 66
CcT Hilbert 51,086 40,593 92
Buffer 42,774 37,798 90
Naive 1,777,570 70,830 66
NJ Hilbert 120,034 69,798 92
Buffer 101,017 65,898 91
Naive 3,736,601 224,039 66
NY Hilbert 246,466 230,990 92
Buffer 206,921 227,559 90

600, 1,250, and 5,000 rectangles, respectively; buffer size 0 corresponds
to the naive method and the larger buffers correspond to the buffer
method. The query performance of each resulting R-tree was mea-
sured by posing rectangle intersection queries using rectangles taken
from TIGER hydrographic data. The results, depicted in Figure 12.2,
show that buffer R*-trees, even with relatively small buffers, achieve a
tremendous speedup in number of I/Os for construction without any
worsening in query performance, compared with the naive method. The
CPU costs of the two methods are comparable. The storage utilization
of buffer R*-trees tends to be in the 90% range, as opposed to roughly
70% for the naive method.

Bottom-up methods can build R-trees even more quickly and more
compactly, but they generally do not support bulk dynamic opera-
tions, which is a big advantage of the buffer tree approach. Kamel
et al. [208] develop a way to do bulk updates with Hilbert R-trees, but
at a cost in terms of query performance. Table 12.1 compares dynamic
update methods for the naive method, for buffer R-trees, and for Hilbert
R-trees [208] (labeled “Hilbert”). A single R-tree was built for each of
the four US states, containing 50% of the road data objects for that
state. Using each of the three algorithms, the remaining 50% of the
objects were inserted into the R-tree, and the construction time was

12.3 Bootstrapping for 2-D Diagonal Cornerand Stabbing Queries 107

measured. Query performance was then tested as before. The results
in Table 12.1 indicate that the buffer R*-tree and the Hilbert R-tree
achieve a similar degree of packing, but the buffer R*-tree provides
better update and query performance.

12.3 Bootstrapping for 2-D Diagonal Corner
and Stabbing Queries

An obvious paradigm for developing an efficient dynamic EM data
structure, given an existing data structure that works well when the
problem fits into internal memory, is to “externalize” the internal mem-
ory data structure. If the internal memory data structure uses a binary
tree, then a multiway tree such as a B-tree must be used instead. How-
ever, when searching a B-tree, it can be difficult to report all the items
in the answer to the query in an output-sensitive manner. For example,
in certain searching applications, each of the ©(B) subtrees of a given
node in a B-tree may contribute one item to the query answer, and as
a result each subtree may need to be explored (costing several 1/Os)
just to report a single item of the answer.

Fortunately, we can sometimes achieve output-sensitive reporting
by augmenting the data structure with a set of filtering substructures,
each of which is a data structure for a smaller version of the same prob-
lem. We refer to this approach, which we explain shortly in more detail,
as the bootstrapping paradigm. Each substructure typically needs to
store only O(B?) items and to answer queries in O(logg B + Z'/B) =
O([Z'/B]) 1/Os, where Z' is the number of items reported. A substruc-
ture can even be static if it can be constructed in O(B) I/Os, since we
can keep updates in a separate buffer and do a global rebuilding in
O(B) 1/0s whenever there are O(B) updates. Such a rebuilding costs
O(1) 1/Os (amortized) per update. We can often remove the amor-
tization and make it worst-case using the weight-balanced B-trees of
Section 11.2 as the underlying B-tree structure.

Arge and Vitter [58] first uncovered the bootstrapping paradigm
while designing an optimal dynamic EM data structure for diago-
nal corner two-sided 2-D queries (see Figure 12.1(a)) that meets all
three design criteria listed in Chapter 12. Diagonal corner two-sided

108 Spatial Data Structures and Range Search

queries are equivalent to stabbing queries, which have the following
form: “Given a set of one-dimensional intervals, report all the intervals
‘stabbed’ by the query value z.” (That is, report all intervals that con-
tain z.) A diagonal corner query x on a set of 2-D points {(al,bg),
(ag,b2), ... } is equivalent to a stabbing query x on the set of closed
intervals {[a1,bo], [ag,ba], ... }.

The EM data structure for stabbing queries is a multiway version
of the well-known interval tree data structure [144, 145] for internal
memory, which supports stabbing queries in O(log N + Z) CPU time
and updates in O(logN) CPU time and uses O(N) space. We can
externalize it by using a weight-balanced B-tree as the underlying base
tree, where the nodes have degree ©(v/B). Each node in the base
tree corresponds in a natural way to a one-dimensional range of x-
values; its ©(v/B) children correspond to subranges called slabs, and
the ©(v/B?) = O(B) contiguous sets of slabs are called multislabs, as in
Section 8.1 for a similar batched problem. Each interval in the problem
instance is stored in the lowest node v in the base tree whose range
completely contains the interval. The interval is decomposed by v’s
O(v/B) slabs into at most three pieces: the middle piece that com-
pletely spans one or more slabs of v, the left end piece that partially
protrudes into a slab of v, and the right end piece that partially pro-
trudes into another slab of v, as shown in Figure 12.3. The three pieces

slab 1 slab 2 slab 3 slab 4 slab 5 slab 6 slab 7 slab 8

ﬂf&ﬂﬂﬁ”}@gﬂ

one-dimensional list of one-dimensional list of

left end pieces ending in slab 2 right end pieces ending in slab 6

Fig. 12.3 Internal node v of the EM priority search tree, for B = 64 with v/B = 8 slabs.
Node v is the lowest node in the tree completely containing the indicated interval. The
middle piece of the interval is stored in the multislab list corresponding to slabs 3-5. (The
multislab lists are not pictured.) The left and right end pieces of the interval are stored in
the left-ordered list of slab 2 and the right-ordered list of slab 6, respectively.

12.3 Bootstrapping for 2-D Diagonal Cornerand Stabbing Queries 109

are stored in substructures of v. In the example in Figure 12.3, the
middle piece is stored in a list associated with the multislab it spans
(corresponding to the contiguous range of slabs 3-5), the left end piece
is stored in a one-dimensional list for slab 2 ordered by left endpoint,
and the right end piece is stored in a one-dimensional list for slab 6
ordered by right endpoint.

Given a query value z, the intervals stabbed by x reside in the
substructures of the nodes of the base tree along the search path from
the root to the leaf for x. For each such node v, we consider each of v’s
multislabs that contains x and report all the intervals in the multislab
list. We also walk sequentially through the right-ordered list and left-
ordered list for the slab of v that contains x, reporting intervals in an
output-sensitive way.

The big problem with this approach is that we have to spend at least
one I/O per multislab containing x, regardless of how many intervals
are in the multislab lists. For example, there may be ©(B) such mul-
tislab lists, with each list containing only a few stabbed intervals (or
worse yet, none at all). The resulting query performance will be highly
nonoptimal. The solution, according to the bootstrapping paradigm, is
to use a substructure in each node consisting of an optimal static data
structure for a smaller version of the same problem; a good choice is
the corner data structure developed by Kanellakis et al. [210]. The cor-
ner substructure in this case is used to store all the intervals from the
“sparse” multislab lists, namely, those that contain fewer than B inter-
vals, and thus the substructure contains only O(B?) intervals. When
visiting node v, we access only v’s nonsparse multislab lists, each of
which contributes Z’ > B intervals to the answer, at an output-sensitive
cost of O(Z'/B) 1/0s, for some Z'. The remaining Z” stabbed intervals
stored in v can be found by a single query to v’s corner substructure,
at a cost of O(logg B*> + Z"/B)=0([Z"/B]) 1/Os. Since there are
O(logg N) nodes along the search path in the base tree, the total col-
lection of Z stabbed intervals is reported in O(logg N + z) I/Os, which
is optimal. Using a weight-balanced B-tree as the underlying base tree
allows the static substructures to be rebuilt in worst-case optimal I/0
bounds.

110 Spatial Data Structures and Range Search

The above bootstrapping approach also yields dynamic EM segment
trees with optimal query and update bound and O(nlogpz N)-block
space usage.

Stabbing queries are important because, when combined with one-
dimensional range queries, they provide a solution to dynamic inter-
val management, in which one-dimensional intervals can be inserted
and deleted, and intersection queries can be performed. These oper-
ations support indexing of one-dimensional constraints in constraint
databases. Other applications of stabbing queries arise in graphics and
GIS. For example, Chiang and Silva [106] apply the EM interval tree
structure to extract at query time the boundary components of the iso-
surface (or contour) of a surface. A data structure for a related prob-
lem, which in addition has optimal output complexity, appears in [10].
Range-max and stabbing-max queries are studied in [13, 15].

12.4 Bootstrapping for Three-Sided Orthogonal
2-D Range Search

Arge et al. [50] provide another example of the bootstrapping paradigm
by developing an optimal dynamic EM data structure for three-sided
orthogonal 2-D range searching (see Figure 12.1(c)) that meets all
three design criteria. In internal memory, the optimal structure is the
priority search tree [251], which answers three-sided range queries in
O(log N + Z) CPU time, does updates in O(logN) CPU time, and
uses O(N) space. The EM structure of Arge et al. [50] is an external-
ization of the priority search tree, using a weight-balanced B-tree as
the underlying base tree. Each node in the base tree corresponds to a
one-dimensional range of x-values, and its ©(B) children correspond
to subranges consisting of vertical slabs. Each node v contains a small
substructure called a child cache that supports three-sided queries. Its
child cache stores the “Y-set” Y (w) for each of the ©(B) children w
of v. The Y-set Y (w) for child w consists of the highest ©(B) points in
w’s slab that are not already stored in the child cache of some ancestor
of v. There are thus a total of ©(B?) points stored in v’s child cache.
We can answer a three-sided query of the form [z, x2] X [y1,+00) by
visiting a set of nodes in the base tree, starting with the root. For each

12.4 Bootstrapping for Three-Sided Orthogonal 2-D Range Search 111

visited node v, we pose the query [z1,x2] X [y1,400) to v’s child cache
and output the results. The following rules are used to determine which
of v’s children to visit: We visit v’s child w if either

(1) w is along the leftmost search path for 1 or the rightmost
search path for x5 in the base tree, or

(2) the entire Y-set Y (w) is reported when v’s child cache is
queried.

(See Figure 12.4.) There are O(logz N) nodes w that are visited because
of rule 1. When rule 1 is not satisfied, rule 2 provides an effective
filtering mechanism to guarantee output-sensitive reporting: The I/0O
cost for initially accessing a child node w can be “charged” to the
O(B) points of Y (w) reported from v’s child cache; conversely, if not
all of Y (w) is reported, then the points stored in w’s subtree will be
too low to satisfy the query, and there is no need to visit w (see Fig-
ure 12.4(b)). Provided that each child cache can be queried in O(1)
I/Os plus the output-sensitive cost to output the points satisfying the
query, the resulting overall query time is O(logg N + z), as desired.
All that remains is to show how to query a child cache in a con-
stant number of I/Os, plus the output-sensitive cost. Arge et al. [50]

L) L)
o o . A o o .« ® ol '
. oo | . oo |
o o I . o .
* . . s . .
o * . . °
wy Wy W3 Wy W5 wy Wy w3 Wy W5

(a) (b)

Fig. 12.4 Internal node v of the EM priority search tree, with slabs (children) w1, wo,

.., ws. The Y-sets of each child, which are stored collectively in v’s child cache, are
indicated by the bold points. (a) The three-sided query is completely contained in the a-
range of wy. The relevant (bold) points are reported from v’s child cache, and the query
is recursively answered in wa. (b) The three-sided query spans several slabs. The relevant
(bold) points are reported from v’s child cache, and the query is recursively answered in w2,
ws, and ws. The query is not extended to w4 in this case because not all of its Y-set Y (w4)
(stored in v’s child cache) satisfies the query, and as a result none of the points stored in
wyq’s subtree can satisfy the query.

112 Spatial Data Structures and Range Search

provide an elegant and optimal static data structure for three-sided
range search, which can be used in the EM priority search tree described
above to implement the child caches of size O(B?). The static structure
is a persistent B-tree optimized for batched construction. When used
for O(B?) points, it occupies O(B) blocks, can be built in O(B) 1/Os,
and supports three-sided queries in O([Z’/B]) 1/Os per query, where
Z' is the number of points reported. The static structure is so simple
that it may be useful in practice on its own.

Both the three-sided structure developed by Arge et al. [50] and
the structure for two-sided diagonal queries discussed in Section 12.3
satisfy Criteria 1-3 of Chapter 12. So in a sense, the three-sided
query structure subsumes the diagonal two-sided structure, since
three-sided queries are more general. However, diagonal two-sided
structure may prove to be faster in practice, because in each of its
corner substructures, the data accessed during a query are always in
contiguous blocks, whereas the static substructures used in three-sided
search do not guarantee block contiguity.

On a historical note, earlier work on two-sided and three-sided
queries was done by Ramaswamy and Subramanian [289] using the
notion of path caching; their structure met Criterion 1 but had higher
storage overheads and amortized and/or nonoptimal update bounds.
Subramanian and Ramaswamy [323] subsequently developed the p-
range tree data structure for three-sided queries, with optimal linear
disk space and nearly optimal query and amortized update bounds.

12.5 General Orthogonal 2-D Range Search

The dynamic data structure for three-sided range searching can be gen-
eralized using the filtering technique of Chazelle [98] to handle general
four-sided queries with optimal I/O query bound O(logg N + z) and
optimal disk space usage O (n(logn)/log(logg N + 1)) [50]. The update
bound becomes O ((logg N)(logn)/log(logg N + 1)), which may not be
optimal.

The outer level of the structure is a balanced (logg N + 1)-way 1-D
search tree with ©(n) leaves, oriented, say, along the xz-dimension. It
therefore has about (logn)/log(logg N + 1) levels. At each level of the

12.5 General Orthogonal 2-D Range Search 113

tree, each point of the problem instance is stored in four substructures
(described below) that are associated with the particular tree node at
that level that spans the z-value of the point. The space and update
bounds quoted above follow from the fact that the substructures use
linear space and can be updated in O(logz N) 1/Os.

To search for the points in a four-sided query rectangle [z1,z2] X
[y1,92], we decompose the four-sided query in the following natural
way into two three-sided queries, a stabbing query, and logg N — 1 list
traversals: We find the lowest node v in the tree whose x-range contains
[x1,x2]. If v is a leaf, we can answer the query in a single I/O. Otherwise
we query the substructures stored in those children of v whose xz-ranges
intersect [z1,22]. Let 2 <k <logg N + 1 be the number of such chil-
dren. The range query when restricted to the leftmost such child of v is
a three-sided query of the form [z, +00] X [y1,y2], and when restricted
to the rightmost such child of v, the range query is a three-sided query
of the form [—o0,z2] X [y1,92]. Two of the substructures at each node
are devoted for three-sided queries of these types; using the linear-sized
data structures of Arge et al. [50] in Section 12.4, each such query can
be done in O(logg N + z) I/Os.

For the k£ — 2 intermediate children of wv, their z-ranges are
completely contained inside the x-range of the query rectangle, and
thus we need only do k — 2 list traversals in y-order and retrieve
the points whose y-values are in the range [y1,y2]. If we store the
points in each node in y-order (in the third type of substructure),
the Z' output points from a node can be found in O([Z’/B]) 1/Os,
once a starting point in the linear list is found. We can find all k£ — 2
starting points via a single query to a stabbing query substructure S
associated with v. (This structure is the fourth type of substructure.)
For each two y-consecutive points (a;,b;) and (a;4+1,b;11) associated
with a child of v, we store the y-interval [b;,b;11] in S. Note that S
contains intervals contributed by each of the loggz N + 1 children of v.
By a single stabbing query with query value y;, we can thus identify
the k — 2 starting points in only O(logg N) I/Os [58], as described in
Section 12.3. (We actually get starting points for all the children of v,
not just the k — 2 ones of interest, but we can discard the starting

114 Spatial Data Structures and Range Search

points that we do not need.) The total number of I/Os to answer the
range query is thus O(logg N + z), which is optimal.

Atallah and Prabhakar [62] and Bhatia et al. [86] consider the prob-
lem of how to tile a multidimensional array of blocks onto parallel
disks so that range queries on a range queries can be answered in near-
optimal time.

12.6 Other Types of Range Search

Govindarajan et al. [181] develop data structures for 2-D range-count
and range-sum queries. For other types of range searching, such as
in higher dimensions and for nonorthogonal queries, different filtering
techniques are needed. So far, relatively little work has been done, and
many open problems remain.

Vengroff and Vitter [336] develop the first theoretically near-
optimal EM data structure for static three-dimensional orthogonal
range searching. They create a hierarchical partitioning in which all
the points that dominate a query point are densely contained in a set
of blocks. Compression techniques are needed to minimize disk storage.
By using (Blogn)-approximate boundaries rather than B-approximate
boundaries [340], queries can be done in O(logg N + z) I/Os, which
is optimal, and the space usage is O(n(logn)"™ /(log(logg N + 1))*)
disk blocks to support (3 + k)-sided 3-D range queries, in which & of
the dimensions (0 < k < 3) have finite ranges. The result also provides
optimal O(log N + Z)-time query performance for three-sided 3-D
queries in the (internal memory) RAM model, but using O(N log N)
space.

By the reduction in [100], a data structure for three-sided 3-D
queries also applies to 2-D homothetic range search, in which the queries
correspond to scaled and translated (but not rotated) transformations
of an arbitrary fixed polygon. An interesting special case is “fat” orthog-
onal 2-D range search, where the query rectangles are required to have
bounded aspect ratio (i.e., when the ratio of the longest side length to
the shortest side length of the query rectangle is bounded). For exam-
ple, every rectangle with bounded aspect ratio can be covered by a
constant number of overlapping squares. An interesting open problem

12.6 Other Types of Range Search 115

is to develop linear-sized optimal data structures for fat orthogonal
2-D range search. By the reduction, one possible approach would be to
develop optimal linear-sized data structures for three-sided 3-D range
search.

Agarwal et al. [9] consider halfspace range searching, in which a
query is specified by a hyperplane and a bit indicating one of its two
sides, and the answer to the query consists of all the points on that side
of the hyperplane. They give various data structures for halfspace range
searching in two, three, and higher dimensions, including one that works
for simplex (polygon) queries in two dimensions, but with a higher
query I/O cost. They have subsequently improved the storage bounds
for halfspace range queries in two dimensions to obtain an optimal
static data structure satisfying Criteria 1 and 2 of Chapter 12.

The number of I/Os needed to build the data structures for 3-D
orthogonal range search and halfspace range search is rather large
(more than Q(NV)). Still, the structures shed useful light on the com-
plexity of range searching and may open the way to improved solutions.
An open problem is to design efficient construction and update algo-
rithms and to improve upon the constant factors.

Cheng et al. [102, 103] develop efficient indexes for range queries
and join queries over data with uncertainty, in which each data point
has an estimated distribution of possible locations. Chien et al. [107]
derive a duality relation that links the number of I/O steps and the
space bound for range searching to the corresponding measures for text
indexing.

Callahan et al. [94] develop dynamic EM data structures for sev-
eral online problems in d dimensions. For any fixed ¢ > 0, they can
find an approximately nearest neighbor of a query point (within a
1 4 ¢ factor of optimum) in O(logg N) I/Os; insertions and deletions
can also be done in O(logg N) I/Os. They use a related approach to
maintain the closest pair of points; each update costs O(logg N) I/Os.
Govindarajan et al. [182] achieve the same bounds for closest pair by
maintaining a well-separated pair decomposition. For finding nearest
neighbors and approximate nearest neighbors, two other approaches
are partition trees [8, 9] and locality-sensitive hashing [176]. Planar
point location is studied in [37, 332], and the dual problem of planar

116 Spatial Data Structures and Range Search

point enclosure is studied in [51]. Numerous other data structures have
been developed for range queries and related problems on spatial data.
We refer to [18, 31, 170, 270] for a broad survey.

12.7 Lower Bounds for Orthogonal Range Search

We mentioned in the introduction to the chapter that Subramanian
and Ramaswamy [323] prove that no EM data structure for 2-D
range searching can achieve design Criterion 1 using less than
O(n(logn)/log(logz N + 1)) disk blocks, even if we relax the criterion
to allow O((logB N)¢ + z) I/Os per query, for any constant c. The
result holds for an EM version of the pointer machine model, based
upon the approach of Chazelle [99] for the (internal memory) RAM
model.

Hellerstein et al. [193] consider a generalization of the layout-based
lower bound argument of Kanellakis et al. [210] for studying the trade-
off between disk space usage and query performance. They develop a
model for indezability, in which an “efficient” data structure is expected
to contain the Z points in the answer to a query compactly within
O([Z/B]) = O([z]) blocks. One shortcoming of the model is that it
considers only data layout and ignores the search component of queries,
and thus it rules out the important filtering paradigm discussed earlier
in Chapter 12. For example, it is reasonable for any query algorithm to
perform at least logg N 1/Os, so if the answer size Z is at most B, an
algorithm may still be able to satisfy Criterion 1 even if the items in the
answer are contained within O(logz N) blocks rather than O(z) = O(1)
blocks. Arge et al. [50] modify the model to rederive the same nonlinear-
space lower bound O(n(logn)/log(logz N + 1)) of Subramanian and
Ramaswamy [323] for 2-D range searching by considering only answer
sizes Z larger than (logg N)¢B, for which the number of blocks allowed
to hold the items in the answer is Z/B = O((logg N)®+ z). This
approach ignores the complexity of how to find the relevant blocks,
but as mentioned in Section 12.5 the authors separately provide an
optimal 2-D range search data structure that uses the same amount
of disk space and does queries in the optimal O(logg N + z) I/Os.
Thus, despite its shortcomings, the indexability model is elegant and

12.7 Lower Bounds for Orthogonal Range Search 117

can provide much insight into the complexity of blocking data in exter-
nal memory. Further results in this model appear in [224, 301].

One intuition from the indexability model is that less disk space is
needed to efficiently answer 2-D queries when the queries have bounded
aspect ratio. An interesting question is whether R-trees and the linear-
space structures of Sections 12.1 and 12.2 can be shown to perform
provably well for such queries. Another interesting scenario is where
the queries correspond to snapshots of the continuous movement of a
sliding rectangle.

When the data structure is restricted to contain only a single copy
of each point, Kanth and Singh [211] show for a restricted class of
index-based trees that d-dimensional range queries in the worst case
require Q(n'~1/¢ 4 2) 1/0s, and they provide a data structure with
a matching bound. Another approach to achieve the same bound is
the cross tree data structure [186] mentioned in Section 12.1, which in
addition supports the operations of cut and concatenate.

13

Dynamic and Kinetic Data Structures

In this chapter, we consider two scenarios where data items change:
dynamic (in which items are inserted and deleted) and kinetic (in which
the data items move continuously along specified trajectories). In both
cases, queries can be done at any time. It is often useful for kinetic
data structures to allow insertions and deletions; for example, if the
trajectory of an item changes, we must delete the old trajectory and
insert the new one.

13.1 Dynamic Methods for Decomposable Search Problems

In Chapters 10-12, we have already encountered several dynamic data
structures for the problems of dictionary lookup and range search. In
Chapter 12, we saw how to develop optimal EM range search data
structures by externalizing some known internal memory data struc-
tures. The key idea was to use the bootstrapping paradigm, together
with weight-balanced B-trees as the underlying data structure, in order
to consolidate several static data structures for small instances of range
searching into one dynamic data structure for the full problem. The
bootstrapping technique is specific to the particular data structures

119

120 Dynamic and Kinetic Data Structures

involved. In this section, we look at a technique that is based upon
the properties of the problem itself rather than upon that of the data
structure.

We call a problem decomposable if we can answer a query by query-
ing individual subsets of the problem data and then computing the
final result from the solutions to each subset. Dictionary search and
range searching are obvious examples of decomposable problems. Bent-
ley developed the logarithmic method [83, 278] to convert efficient static
data structures for decomposable problems into general dynamic ones.
In the internal memory setting, the logarithmic method consists of
maintaining a series of static substructures, at most one each of sizes
1,2, 4,8, When a new item is inserted, it is initialized in a sub-
structure of size 1. If a substructure of size 1 already exists, the two
substructures are combined into a single substructure of size 2. If there
is already a substructure of size 2, they in turn are combined into a
single substructure of size 4, and so on. For the current value of IV, it is
easy to see that the kth substructure (i.e., of size 2¥) is present exactly
when the kth bit in the binary representation of N is 1. Since there are
at most log N substructures, the search time bound is log N times the
search time per substructure. As the number of items increases from 1
to N, the kth structure is built a total of N/2* times (assuming N is a
power of 2). If it can be built in O(2¥) time, the total time for all inser-
tions and all substructures is thus O(Nlog N), making the amortized
insertion time O(logN). If we use up to three substructures of size 2%
at a time, we can do the reconstructions in advance and convert the
amortized update bounds to worst-case [278].

In the EM setting, in order to eliminate the dependence upon the
binary logarithm in the I/O bounds, the number of substructures must
be reduced from log NV to logg IV, and thus the maximum size of the kth
substructure must be increased from 2¥ to B*. As the number of items
increases from 1 to N, the kth substructure has to be built NB/B*
times (when N is a power of B), each time taking O(B"(logz N)/B)
I/0Os. The key point is that the extra factor of B in the numerator of
the first term is cancelled by the factor of B in the denominator of
the second term, and thus the resulting total insertion time over all N
insertions and all logz N structures is O(N(logg N)?) 1/Os, which is

13.2 Continuously Moving Items 121

O((logp N)?) 1/Os amortized per insertion. By global rebuilding we can
do deletions in O(logg N) I/Os amortized. As in the internal memory
case, the amortized updates can typically be made worst-case.

Arge and Vahrenhold [56] obtain I/O bounds for dynamic point
location in general planar subdivisions similar to those of [6], but with-
out use of level-balanced trees. Their method uses a weight-balanced
base structure at the outer level and a multislab structure for stor-
ing segments similar to that of Arge and Vitter [58] described in Sec-
tion 12.3. They use the logarithmic method to construct a data struc-
ture to answer vertical rayshooting queries in the multislab structures.
The method relies upon a total ordering of the segments, but such an
ordering can be changed drastically by a single insertion. However, each
substructure in the logarithmic method is static (until it is combined
with another substructure), and thus a static total ordering can be used
for each substructure. The authors show by a type of fractional cascad-
ing that the queries in the logz N substructures do not have to be done
independently, which saves a factor of logg N in the I/O cost, but at
the cost of making the data structures amortized instead of worst-case.

Agarwal et al. [11] apply the logarithmic method (in both the binary
form and B-way variant) to get EM versions of kd-trees, BBD trees,
and BAR trees.

13.2 Continuously Moving Items

Early work on temporal data generally concentrated on time-series or
multiversion data [298]. A question of growing interest in this mobile
age is how to store and index continuously moving items, such as mobile
telephones, cars, and airplanes (e.g., see [283, 297, 356]). There are two
main approaches to storing moving items: The first technique is to use
the same sort of data structure as for nonmoving data, but to update
it whenever items move sufficiently far so as to trigger important com-
binatorial events that are relevant to the application at hand [73]. For
example, an event relevant for range search might be triggered when
two items move to the same horizontal displacement (which happens
when the z-ordering of the two items is about to switch). A different
approach is to store each item’s location and speed trajectory, so that

122 Dynamic and Kinetic Data Structures

no updating is needed as long as the item’s trajectory plan does not
change. Such an approach requires fewer updates, but the represen-
tation for each item generally has higher dimension, and the search
strategies are therefore less efficient.

Kollios et al. [223] developed a linear-space indexing scheme for
moving points along a (one-dimensional) line, based upon the notion of
partition trees. Their structure supports a variety of range search and
approximate nearest neighbor queries. For example, given a range and
time, the points in that range at the indicated time can be retrieved
in O(n'/?*¢ 4+ k) 1/Os, for arbitrarily small ¢ > 0. Updates require
O((logn)?) 1/Os. Agarwal et al. [8] extend the approach to handle
range searches in two dimensions, and they improve the update bound
to O((loggn)?) 1/Os. They also propose an event-driven data struc-
ture with the same query times as the range search data structure of
Arge and Vitter [50] discussed in Section 12.5, but with the potential
need to do many updates. A hybrid data structure combining the two
approaches permits a tradeoff between query performance and update
frequency.

R-trees offer a practical generic mechanism for storing multidimen-
sional points and are thus a natural alternative for storing mobile items.
One approach is to represent time as a separate dimension and to clus-
ter trajectories using the R-tree heuristics. However, the orthogonal
nature of the R-tree does not lend itself well to diagonal trajectories. For
the case of points moving along linear trajectories, Saltenis et al. [297]
build an R-tree (called the TPR-tree) upon only the spatial dimen-
sions, but parameterize the bounding box coordinates to account for the
movement of the items stored within. They maintain an outer approx-
imation of the true bounding box, which they periodically update to
refine the approximation. Agarwal and Har-Peled [19] show how to
maintain a provably good approximation of the minimum bounding
box with need for only a constant number of refinement events. Agarwal
et al. [12] develop persistent data structures where query time degrades
in proportion to how far the time frame of the query is from the current
time. Xia et al. [359] develop change-tolerant versions of R-trees with
fast update capabilities in practice.

14

String Processing

In this chapter, we survey methods used to process strings in external
memory, such as inverted files, search trees, suffix trees, suffix arrays,
and sorting, with particular attention to more recent developments.

For the case of strings we make the following modifications to our
standard notation:

K = number of strings;
N = total length of all strings (in units of characters);
M = internal memory size (in units of characters);

B = block transfer size (in units of characters).

where M < N, and 1 < B < M/2. The characters are assumed to come
from an alphabet ¥ of length |X|; that is, each character is represented
in log|X| bits.

14.1 Inverted Files

The simplest and most commonly used method to index text in large
documents or collections of documents is the inverted file, which is
analogous to the index at the back of a book. The words of interest

123

124 String Processing

in the text are sorted alphabetically, and each item in the sorted list
has a list of pointers to the occurrences of that word in the text. In
an EM setting, it makes sense to use a hybrid approach, in which the
text is divided into large chunks (consisting of one or more blocks) and
an inverted file is used to specify the chunks containing each word; the
search within a chunk can be carried out by using a fast sequential
method, such as the Knuth-Morris—Pratt [222] or Boyer-Moore [8§]
methods. This particular hybrid method was introduced as the basis of
the widely used GLIMPSE search tool [247]. Another way to index text
is to use hashing to get small signatures for portions of text. The reader
is referred to [66, 166] for more background on the above methods.

14.2 String B-Trees

In a conventional B-tree, ©(B) unit-sized keys are stored in each inter-
nal node to guide the searching, and thus the entire node fits into one
or two blocks. However, if the keys are variable-sized text strings, the
keys can be arbitrarily long, and there may not be enough space to
store O(B) strings per node. Pointers to ©(B) strings could be stored
instead in each node, but access to the strings during search would
require more than a constant number of I/Os per node. In order to
save space in each node, Bayer and Unterauer [75] investigated the use
of prefix representations of keys.

Ferragina and Grossi [157, 158] developed an elegant generaliza-
tion of the B-tree called the string B-tree or simply SB-tree (not to
be confused with the SB-tree [275] mentioned in Section 11.1). An SB-
tree differs from a conventional B-tree in the way that each ©(B)-way
branching node is represented. An individual node of the SB-tree is rep-
resented by a digital tree (or trie for short), as pictured in Figure 14.1.
The O(B) keys of the SB-tree node form the leaves of the trie. The
particular variant of trie is the compressed Patricia trie data struc-
ture [220, 261], in which all the internal nodes are non-unary branching
nodes, and as a result the entire Patricia trie has size O(B) and can fit
into a single disk block.

Each of its internal Patricia nodes stores an index (a number from 0
to L, where L is the maximum length of a leaf) and a one-character

14.2 String B-Trees 125

eqeerqe
orqe

=3 =3 =3 =3
(e} (e} (e} (e}
g =3 >3 =3
e £ & g
=3 =

T g § g

vqqeqqeeqe

Fig. 14.1 Patricia trie representation of a single node of an SB-tree, with branching factor
B = 8. The seven strings used for partitioning are pictured at the leaves; in the actual data
structure, pointers to the strings, not the strings themselves, are stored at the leaves. The
pointers to the B children of the SB-tree node are also stored at the leaves.

label for each of its outgoing edges. Navigation from root to leaf in
the Patricia trie is done using the bit representation of the strings. For
example, suppose we want to search for the leaf “abac.” We start at
the root, which has index 0; the index indicates that we should examine
character 0 of the search string “abac” (namely, “a”), which leads us to
follow the branch labeled “a” (left branch). The next node we encounter
has index 3, and so we examine character 3 (namely, “c”), follow the
branch labeled “c” (right branch), and arrive at the leaf “abac.”
Searching for a text string that does not match one of the leaves
is more complicated and exploits the full power of the data structure,
using an amortization technique of Ajtai et al. [25]. Suppose we want
to search for “bcbabcba.” Starting at the root, with index 0, we exam-
ine character 0 of “bcbabcba” (namely, “b”) and follow the branch
labeled “b” (right branch). We continue searching in this manner, which
leads along the rightmost path, examining indexes 4 and 6, and even-
tually we arrive at the far-right leaf “bcbcbbba.” However, the search
string “bcbabcba” does not match the leaf string “bcbebbba.” The
problem is that they differ at index 3, but only indexes 0, 4, and 6 were
examined in the traversal, and thus the difference was not detected.
In order to determine efficiently whether or not there is a match, we
go back and sequentially compare the characters of the search string

126 String Processing

with those of the leaf, and if they differ, we find the first index where
they differ. In the example, the search string “bcbabcba” differs from
“becbebbba” in index 3; that is, character 3 of the search string (“a”)
comes before character 3 of the leaf string (“c”). Index 3 corresponds to
a location in the Patricia trie between the root and its right child, and
therefore the search string is lexicographically smaller than the entire
right subtrie of the root. It thus fits in between the leaves “abac” and
“bcbcaba.”

Searching each Patricia trie requires one I/O to load it into memory,
plus additional I/Os to do the sequential scan of the string after the
leaf of the Patricia trie is reached. Each block of the search string that
is examined during the sequential scan does not have to be read again
for lower levels of the SB-tree, so the I/Os for the sequential scan can
be “charged” to the blocks of the search string. The resulting query
time to search in an SB-tree for a string of ¢ characters is therefore
O(logg N + ¢/B), which is optimal. Insertions and deletions can be
done in the same I/O bound. The SB-tree uses linear (optimal) space.

Bender et al. [80] show that cache-oblivious SB-tree data structures
are competitive with those developed with explicit knowledge of the
parameters in the PDM model.

Ciriani et al. [109] construct a randomized EM data structure that
exhibits static optimality, in a similar way as splay trees do in the
(internal memory) RAM model. In particular, they show that @ search

queries on a set of K strings si, s2, ..., sk of total length NV can be
done in
N
O(B + Y filogp ?) (14.1)
1<<K t

I/Os, where f; is the number of times s; is queried. Insertion or deletion
of a string can be done in the same bounds as given for SB-trees.
Ferragina and Grossi [157, 158] apply SB-trees to the problems of
string matching, prefix search, and substring search. Ferragina and
Luccio [161] apply SB-trees to get new results for dynamic dictio-
nary matching; their structure even provides a simpler approach for the
(internal memory) RAM model. Hon et al. [197] use SB-trees to exter-
nalize approximate string indexes. Eltabakh et al. [146] use SB-trees

14.3 Suffix Trees and Suffix Arrays 127

and three-sided structures to develop a dynamic data structure that
indexes strings compressed by run-length encoding, discussed further
in Section 15.2.

14.3 Suffix Trees and Suffix Arrays

Tries and Patricia tries are commonly used as internal memory data
structures for storing sets of strings. One particularly interesting appli-
cation of Patricia tries is to store the set of suffixes of a text string. The
resulting data structure, called a suffiz tree [250, 352], can be built in
linear time and supports search for an arbitrary substring of the text in
time linear in the size of the substring. Ghanem et al. [174] use buffer
techniques to index suffix trees and unbalanced search trees. Clark and
Munro [110] give a practical implementation of dynamic suffix trees
that use about five bytes per indexed suffix.

A more compact (but static) representation of a suffix tree, called a
suffix array [246], consisting of the leaves of the suffix tree in symmetric
traversal order, can also be used for fast searching (see [189] for general
background). Farach-Colton et al. [154] show how to construct SB-trees,
suffix trees, and suffix arrays on strings of total length N characters
using O(nlog,,n) I/Os, which is optimal. Crauser and Ferragina [121]
and Dementiev et al. [134] present an extensive set of experiments
on various text collections that compare the practical performance of
suffix array construction algorithms. Sinha et al. [320] give a practical
implementation of suffix arrays with fast query performance. Puglisi
et al. [286] study relative merits of suffix arrays and inverted files.

Ferragina et al. [160] give algorithms for two-dimensional indexing.
Karkkéinen and Rao [212] survey several aspects of EM text index-
ing. Chien et al. [107] demonstrate a duality between text indexing
and range searching and use it to derive improved EM algorithms and
stronger lower bounds for text indexing.

14.4 Sorting Strings

Arge et al. [39] consider several models for the problem of sorting K
strings of total length N in external memory. They develop efficient

128 String Processing

sorting algorithms in these models, making use of the SB-tree, buffer
tree techniques, and a simplified version of the SB-tree for merging
called the lazy trie. The problem can be solved in the (internal memory)
RAM model in O(Klog K + N) time. By analogy to the problem of
sorting integers, it would be natural to expect that the I/O complexity
would be O(klog,, k + n), where k = max{1, K/B}. Arge et al. show
somewhat counterintuitively that for sorting short strings (i.e., strings
of length at most B) the I/O complexity depends upon the total number
of characters, whereas for long strings the complexity depends upon the
total number of strings.

Theorem 14.1 ([39]). The number of I/Os needed to sort K strings
of total length N characters, where there are K7 short strings of total
length N7 and K long strings of total length No (i.e., N = Nj + No
and K = K; + K»), is

N N
@) (min{Bllogm (Bl + 1) , Kilogy (K + 1)}

N
+ Kylogy (Ky + 1) + B> . (14.2)

Further work appears in [152]. Lower bounds for various models of
how strings can be manipulated are given in [39]. There are gaps in
some cases between the upper and lower bounds for sorting.

15

Compressed Data Structures

The focus in the previous chapters has been to develop external memory
algorithms and data structures as a means of dealing with massive
amounts of data. In particular, the goal has been to exploit locality
and parallelism in order to reduce the I/O communication bottleneck.

Another approach to handle massive data is to compress the data.
Compressed data structures reduce the amount of space needed to store
the data, and therefore there is less to process. Moreover, if the reduced
footprint of the data allows the data to be located in a faster level of the
memory hierarchy, the latency to access the data is improved as well.

The challenge is to design clever mechanisms that allow the com-
pressed data to be processed directly and efficiently rather than require
costly decompress and recompress operations. The ultimate goal is
to develop data structures that require significantly less space than
uncompressed versions and perform operations just as fast.

The area of compressed data structures has largely been investigated
in the (internal memory) RAM model. However, if we consider the
always expanding sizes of datasets that we want to process, locality of
reference is very important. The study of compressed data structures
in external memory is thus likely to increase in importance.

129

130 Compressed Data Structures

15.1 Data Representations and Compression Models

Sometimes the standard data structures to solve a problem are asymp-
totically larger than the size of the problem instance. Examples include
the suffix tree and suffix array data structures for text indexing, which
require ©(N) pointers to process a text of N characters; pointer size
grows logarithmically with N, whereas characters may have constant
size. We can achieve substantial reduction in size by using an approach
that avoids so many pointers. Some authors refer to such data struc-
tures as “succinct.”

While succinct data structures are in a sense compressed, we can
often do much better and construct data structures that are sublinear
in the problem size. The minimum space required for a data structure
should relate in some sense to the entropy of the underlying data. If
the underlying data are totally random, then it is generally impossible
to discern a meaningful way to represent the data in compressed form.
Said differently, the level of compression in the data structure should
be dependent upon the statistics of the data in the problem instance.

In this chapter, we consider two generic data types:

® Set data, where the data consist of a subset S containing N
items from a universe U of size |U].

e Text data, consisting of an ordered sequence of N characters
of text from a finite alphabet ¥. Sometimes the N characters
are grouped into a set S of K variable-length subsequences,
which we call strings; the K strings form a set and are thus
unordered with respect to one another, but within each string
the characters of the string are ordered.

There does not seem to be one single unifying model that captures all
the desired compression properties, so we consider various approaches.

15.1.1 Compression Models for Set Data Representations

There are two standard representations for a set S = {s1,s2,...,5n5} of
N items from a universe U:

15.1 Data Representations and Compression Models 131

e (String representation) Represent each s; in binary format
by a string of [log|U|] bits.

® (Bitvector representation) Create a bitvector of length |U|
bits, indicating each s; by placing a 1 in the s;th position of
the bitvector, with all other positions set to 0.

One information-theoretic model for representing the set S is sim-
ply to count the space required to indicate which subset of the uni-
verse U is S. For N items, there are ('%') possible subsets, thus requir-
ing log (‘%') ~ Nlog(|U|/N) bits to represent S. When S is sparse (i.e.,
when N < |U]), this encoding is substantially shorter than the |U| bits
of the bitvector representation.

Another way to represent the set S is the gap model, often used in
inverted indexes to store an increasing sequence of document numbers
or positions within a file (see [355]). Let us suppose for convenience
that the items s1, so, ..., sy of the set S are in sorted order; that is,
i < j implies s; < sj. The ith gap g; = s; — s;—1 denotes the distance
between two consecutive items from S. We can represent the set S by
the value N and the stream G = (g1,...,9n), where g1 = s;. We then
have to encode these values in some fashion. We can store them naively
using roughly

N N
gap = log(gi + 1)~ loggi, (15.1)
i=1 i=1

bits, not counting the encoding of N and some extra overhead. If the
gaps are all roughly |U|/N in size, then after summing up we require
about Nlog(|U|/N) bits. We can achieve the same space with the
information-theoretic model as well. However, if the gap values are
at all skewed, the space will be even less than that of the information-
theoretic bound. No matter what the distribution of gaps, this model
requires at least N bits. The naive gap method is not very useful as
an actual encoding method, since it takes O(i) addition operations to
reconstruct s; from the gaps, but it gives an idea of the possible space
savings.

Another popular compression model for S, in the general class of
front-coding schemes [355], is the prefiz omission method (POM) [219].

132 Compressed Data Structures

We consider each of the N items in S as a string of up to log|U]| bits.
Let us assume that the items s1, so, ..., sy are in sorted order lexico-
graphically. We represent each item with respect to its preceding item.
We encode each item by two components: the first part indicates the
number of bits at the trailing end of s; that are different from s;_1, and
the second part is the trailing end r. For instance, if s;_1 = 00101001
and s; = 00110010, then s; is represented as (5,10010). Alternatively,
we can represent S as the leaves of a trie (digital tree), and we can
encode it by the cardinal tree encoding of the trie along with the labels
on the arcs. Further improvement is possible by collapsing nodes of
outdegree 1 to obtain a Patricia trie of N — 1 internal nodes and N
leaves.

15.1.2 Compression Models for Text Data Representations

We represent a text as an ordered sequence of N characters from an
alphabet 3, which in uncompressed format requires N log|%| bits. The
alphabet size for ascii format is |X| = 256, so each character requires
log256 = 8 bits in uncompressed form. For DNA sequences, we have
|X| =4, and hence log4 =2 bits per character suffice. In practice,
English text is often compressible by a factor of 3 or 4. A text T is
compressible if each of the N characters in the text can be represented,
on average, in fewer than log|%| bits.

We can measure the randomness (or the entropy) of a text T' by the
Oth-order empirical entropy Hy(T), given by

Ho(T) = Y Probly] - log Prolb[y], (15.2)
YyeD

where the sum ranges over the characters of the alphabet ¥. In other
words, an efficient coding would encode each character of the text based
upon its frequency, rather than simply using log|3| bits.

Consider the example of standard English text. The letter “e”
appears roughly 13% of the time, as opposed to the letter “q,” which
is over 100 times less frequent. The Oth-order entropy measure would
encode each “e” in about log(1/13%) ~ 3 bits, far fewer than log|X|

bits. The letter “q” would be encoded in more than the log|X| bits

15.2 External Memory Compressed Data Structures 133

from the naive representation, but this over-costing is more than made
up for by the savings from the encodings of the many instances of “e.”

Higher-order empirical entropy captures the dependence of charac-
ters upon their context, made up of the h previous characters in the
text. For a given text 7" and h > 0, we define the hth-order empirical
entropy Hp(T) as

1

H,(T) = Prob -log ————
h() Z Z ro [y7x] Og Pl“Ob[y | ./L']’
reXhyes

(15.3)
where Probly,z] represents the empirical joint probability that a
random sequence of h + 1 characters from the text consists of the
h-character sequence z followed by the character y, and Probly | x]
represents the empirical conditional probability that the character y
occurs next, given that the preceding h characters are x.

The expression (15.3) is similar to expression (15.2) for the Oth-
order entropy, except that we partition the probability space in (15.3)
according to context, to capture statistically significant patterns from
the text. We always have Hj,(T') < Hy(T'). To continue the English text
example, with context length h = 1, the letter “h” would be encoded in
very few bits for context “t,” since “h” often follows “t.” On the other
hand, “h” would be encoded in a large number of bits in context “b,”
since “h” rarely follows a “b.”

15.2 External Memory Compressed Data Structures

Some of the basic primitives we might want to perform on a set S of
N items from universe U are the following dictionary operations:

e Member(P): determine whether P occurs in S,
® Rank(P): count the number of items s in S such that s < P;
o Select(i): return item s;, the ith smallest item in S.

Raman et al. [288] have shown for the (internal) RAM model how to
represent S in log ('%') + O(|U|(loglog|U|) /1og|U]|) bits so that each
of the three primitive operations can be performed in constant time.

134 Compressed Data Structures

When storing a set S of K variable-length text strings containing
a total of IV characters, we use the lexicographic ordering to compare
strings. We may want to support an additional primitive:

e Prefiz_Range(P): return all strings in S that have P as a
prefix.

To handle this scenario, Ferragina et al. [159] discuss some edge lin-
earizations of the classic trie dictionary data structure that are simul-
taneously cache-friendly and compressed. The front-coding scheme is
one example of linearization; it is at the core of prefix B-trees [75] and
many other disk-conscious compressed indexes for string collections.
However, it is largely thought of as a space-effective heuristic without
efficient search support. Ferragina et al. introduce new insights on front-
coding and other novel linearizations, and they study how close their
space occupancy is to the information-theoretic minimum L, which is
given by the minimum encoding needed for a labeled binary cardinal
tree. They adapt these linearizations along with an EM version of cen-
troid decomposition to design a novel cache-oblivious (and therefore
EM) dictionary that offers competitive I/O search time and achieves
nearly optimal space in the information-theoretic sense. In particular,
the data structures in [159] have the following properties:

® Space usage of (1 + 0(1))L + 4K bits in blocked format;
Query bounds of O(|P|/B+1logK) 1/Os for primi-
tives Member(P) and Rank(P), O(|si|/B +logK) 1/Os
for Select(i), and O(|P|/B +logK + Z/B) 1/Os for
Prefiz_Range(P);

® Space usage of (1 + ¢)L + O(K) bits in blocked format;
Query bounds of O((|P| + |succ(P)|)/eB + logg K) 1/Os
for Member(P) and Rank(P), O(|s;|/eB + logg K) 1/Os
for ~ Select(i), and O((|P| + |succ(P)|)/eB + logg K +
Z/B) 1/O0s for Prefiz_Range(P),

where Z is the number of occurrences, succ(P) denotes the successor
of Pin S, and 0 < e < 1 is a user-defined parameter. The data struc-
tures can also be tuned optimally to handle any particular distribution
of queries.

15.2 External Memory Compressed Data Structures 135

Eltabakh et al. [146] consider sets of variable-length strings encoded
using run-length coding in order to exploit space savings when there
are repeated characters. They adapt string B-trees [157, 158] (see Sec-
tion 14.2) with the EM priority search data structure for three-sided
range searching [50] (see Section 12.4) to develop a dynamic compressed
data structure for the run-length encoded data. The data structure sup-
ports substring matching, prefix matching, and range search queries.
The data structure uses O(N/B) blocks of space, where N is the total
length of the compressed strings. Insertions and deletions of ¢ run-
length encoded suffixes take O(tlogp (N + t)) I/Os. Queries for a pat-
tern P can be performed in O(logBN + (|P\ + Z)/B) 1/0s, where |P|
is the size of the search pattern in run-length encoded format.

One of the major advances in text indexing in the last decade has
been the development of entropy-compressed data structures. Until
fairly recently, the best general-purpose data structures for pattern
matching queries were the suffix tree and its more space-efficient ver-
sion, the suffix array, which we studied in Section 14.3. However, the
suffix array requires several times more space than the text being
indexed. The basic reason is that suffix arrays store an array of point-
ers, each requiring at least log NV bits, whereas the original text being
indexed consists of N characters, each of size log || bits. For a ter-
abyte of ascii text (i.e., N = 240), each text character occupies 8 bits.
The suffix array, on the other hand, consists of N pointers to the text,
each pointer requiring log N = 40 bits, which is five times larger.!

For reasonable values of h, the compressed suffix array of Grossi et
al. [185] requires an amount of space in bits per character only as large
as the hth-order entropy Hp(T') of the original text, plus lower-order
terms. In addition, the compressed suffix array is self-indezing, in that
it encodes the original text and provides random access to the charac-
ters of the original text. Therefore, the original text does not need to be
stored, and we can delete it. The net result is a big improvement over
conventional suffix arrays: Rather than having to store both the original

I Tmagine going to a library and finding that the card catalog is stored in an annex that is
five times larger than the main library! Suffix arrays support general pattern matching,
which card catalogs do not, but it is still counterintuitive for an index to require so much
more space than the text it is indexing.

136 Compressed Data Structures

text and a suffix array that is several times larger, we can instead get
fast lookup using only a compressed suffix array, whose size is just a
fraction of the original text size. Similar results are obtained by Fer-
ragina and Manzini [162] and Ferragina et al. [163] using the Burrows—
Wheeler transform. In fact, the two transforms of [185] and [162] are in
a sense inverses of one another. A more detailed survey of compressed
text indexes in the internal memory setting appears in [267].

In the external memory setting, however, the approaches of [162,
185] have the disadvantage that the algorithms exhibit little locality
and thus do not achieve the desired I/O bounds. Chien et al. [107]
introduce a new variant of the Burrows—Wheeler transform called the
Geometric Burrows—Wheeler Transform (GBWT). Unlike BWT, which
merely permutes the text, GBWT converts the text into a set of points
in two-dimensional geometry. There is a corresponding equivalence
between text pattern matching and geometric range searching. Using
this transform, we can answer several open questions about compressed
text indexing:

(1) Can compressed data structures be designed in external
memory with similar I/O performance as their uncompressed
counterparts?

(2) Can compressed data structures be designed for position-
restricted pattern matching, in which the answers to a query
must be located in a specified range in the text?

The data structure of Chien et al. [107] has size O(Nlog|X]|) bits and
can be stored in fully blocked format; pattern matching queries for a
pattern P can be done in O(|P|/B + (logjs; N)(logg N) + Zlogp N)
I/Os, where Z is the number of occurrences.

The size of the Chien et al. data structure [107] is on the order
of the size of the problem instance. An important open problem is to
design a pattern matching data structure whose size corresponds to a
higher-order compression of the original text, as exists for the (internal
memory) RAM model. Another open problem is to reduce the second-
order terms in the I/O bound.

Arroyuelo and Navarro [61] propose an EM version of a self-index
based upon the Lempel-Ziv compression method [266, 365]. It uses

15.2 External Memory Compressed Data Structures 137

8N Hy(T) 4 o(Nlog|%|) bits of space in blocked format, but does not
provide provably good I/O bounds. In practice, it uses about double
the space occupied by the original text and has reasonable I/O per-
formance. Mikinen et al. [245] achieve space bounds of O(N(Hg + 1))
bits and O (N (Hp,(log|Z| + loglog N) + 1)) bits in blocked format and
a pattern matching query bound of O(|P|logg N 4+ Z) I/Os. The index
of Gonzdlez and Navarro [178] uses O(R(log N)log(1 + N/R)) bits in
blocked format, where R < min{N, NH;, + |E]h}, and does pattern
matching queries in O(|P| + Z/B) 1/Os.

Compressed data structures have also been explored for graphs, but
in a less formal sense. The object is to represent the graph succinctly
and still provide fast support for the basic primitives, such as access-
ing the vertices and edges of the graph. For example, consider a large
graph that represents a subset of the World Wide Web, in which each
web page corresponds to a vertex and each link from one web page to
another corresponds to an edge. Such graphs can often be compressed
by a factor of 3-5 by exploiting certain characteristics. For example,
the indegrees and outdegrees of the vertices tend to be distributed
according to a power law; the probability that a web page has ¢ links
is proportional to 1/ i, where 0 ~ 2.1 for incoming links and 0 ~ 2.72
for outgoing links. Most of the links from a web page tend to point
to another page on the same site with a nearby address, and thus gap
methods can give a compressed representation. Adjacent web pages
often share the same outgoing links, and thus the adjacency lists can
be compressed relative to one another. We refer the reader to [112] for
a survey of graph models and initial work in the EM setting.

16

Dynamic Memory Allocation

The amount of internal memory allocated to a program may fluctuate
during the course of execution because of demands placed on the system
by other users and processes. EM algorithms must be able to adapt
dynamically to whatever resources are available so as to preserve good
performance [279]. The algorithms in the previous chapters assume a
fixed memory allocation; they must resort to virtual memory if the
memory allocation is reduced, often causing a severe degradation in
performance.

Barve and Vitter [71] discuss the design and analysis of EM algo-
rithms that adapt gracefully to changing memory allocations. In their
model, without loss of generality, an algorithm (or program) P is allo-
cated internal memory in phases: During the ith phase, P is allocated
m; blocks of internal memory, and this memory remains allocated to P
until P completes 2m; 1/O operations, at which point the next phase
begins. The process continues until P finishes execution. The model
makes the reasonable assumption that the duration for each memory
allocation phase is long enough to allow all the memory in that phase
to be used by the algorithm.

139

140 Dynamic Memory Allocation

For sorting, the lower bound approach of Theorem 6.1 implies that

Z2m,~logmi = Q(nlogn). (16.1)

We say that P is dynamically optimal for sorting if

Z 2m;logm; = O(nlogn) (16.2)

for all possible sequences mq, ms, ... of memory allocation. Intuitively,
if P is dynamically optimal, no other algorithm can perform more than
a constant number of sorts in the worst-case for the same sequence of
memory allocations.

Barve and Vitter [71] define the model in generality and give dynam-
ically optimal strategies for sorting, matrix multiplication, and buffer
tree operations. Their work represents the first theoretical model of
dynamic allocation and the first algorithms that can be considered
dynamically optimal. Previous work was done on memory-adaptive
algorithms for merge sort [279, 363] and hash join [280], but the algo-
rithms handle only special cases and can be made to perform nonopti-
mally for certain patterns of memory allocation.

17

External Memory Programming Environments

There are three basic approaches to supporting development of
I/O-efficient code, which we call access-oriented, array-oriented, and
framework-oriented.

Access-oriented systems preserve the programmer abstraction of
explicitly requesting data transfer. They often extend the I/O interface
to include data type specifications and collective specification of multi-
ple transfers, sometimes involving the memories of multiple processing
nodes. Examples of access-oriented systems include the UNIX file sys-
tem at the lowest level, higher-level parallel file systems such as Whip-
tail [316], Vesta [116], PIOUS [262], and the High Performance Storage
System [351], and I/O libraries MPI-IO [115] and LEDA-SM [124].

Array-oriented systems access data stored in external memory pri-
marily by means of compiler-recognized data types (typically arrays)
and operations on those data types. The external computation is
directly specified via iterative loops or explicitly data-parallel oper-
ations, and the system manages the explicit I/O transfers. Array-
oriented systems are effective for scientific computations that make
regular strides through arrays of data and can deliver high-performance
parallel I/O in applications such as computational fluid dynam-
ics, molecular dynamics, and weapon system design and simulation.

141

142 External Memory Programming Environments

Array-oriented systems are generally ill-suited to irregular or com-
binatorial computations. Examples of array-oriented systems include
PASSION [326], Panda [308] (which also has aspects of access orienta-
tion), PI/OT [281], and ViC* [113].

Instead of viewing batched computation as an enterprise in which
code reads data, operates on it, and writes results, a framework-
oriented system views computation as a continuous process during
which a program is fed streams of data from an outside source and
leaves trails of results behind. TPIE (Transparent Parallel I/O Envi-
ronment) [41, 49, 330, 337] provides a framework-oriented interface for
batched computation, as well as an access-oriented interface for online
computation. For batched computations, TPIE programmers do not
need to worry about making explicit calls to I/O routines. Instead,
they merely specify the functional details of the desired computation,
and TPIE automatically choreographs a sequence of data movements
to feed the computation.!

TPIE [41, 49, 330, 337], which serves as the implementation plat-
form for the experiments described in Sections 8.1 and 12.2, as well as
in several of the references, is a comprehensive set of C++ templated
classes and functions for EM paradigms and a run-time library. Its goal
is to help programmers develop high-level, portable, and efficient imple-
mentations of EM algorithms. It consists of three main components: a
block transfer engine (BTE), a memory manager (MM), and an access
method interface (AMI). The BTE is responsible for moving blocks of
data to and from the disk. It is also responsible for scheduling asyn-
chronous “read-ahead” and “write-behind” when necessary to allow
computation and I/O to overlap. The MM is responsible for managing
internal memory in coordination with the AMI and BTE. The AMI
provides the high-level uniform interface for application programs. The
AMI is the only component that programmers normally need to inter-
act with directly. Applications that use the AMI are portable across
hardware platforms, since they do not have to deal with the underlying
details of how I/0O is performed on a particular machine.

I The TPIE software distribution is available free of charge on the World Wide Web at
http://www.cs.duke.edu/TPIE/.

143

We have seen in the previous chapter that many batched problems
in spatial databases, GIS, scientific computing, graphs, and string pro-
cessing can be solved optimally using a relatively small number of basic
paradigms such as scanning (or streaming), multiway distribution, and
merging, which TPIE supports as access mechanisms. Batched pro-
grams in TPIE thus consist primarily of a call to one or more of these
standard access mechanisms. For example, a distribution sort can be
programmed by using the access mechanism for multiway distribution.
The programmer has to specify the details as to how the partitioning
elements are formed and how the buckets are defined. Then the mul-
tiway distribution is invoked, during which TPIE automatically forms
the buckets and outputs them to disk using double buffering.

For online data structures such as hashing, B-trees, and R-trees,
TPIE supports more traditional block access like the access-oriented
systems.

STXXL (Standard Template Library for XXL Data Sets) [135] sup-
ports all three basic approaches: access-oriented via a block manage-
ment layer, array-oriented via the vector class, and framework-oriented
via pipelining and iteration. STXXL’s support for pipelined scanning
and sorting, in which the output of one computation is fed directly into
the input of a subsequent computation, can save a factor of about 2 in
the number of I/Os for some batched problems. STXXL also supports
a library of standard data structures, such as stacks, queues, search
trees, and priority queues.

The FG programming environment [117, 127] combines elements of
both access-oriented and framework-oriented systems. The programmer
creates software pipelines to mitigate data accesses that exhibit high
latency, such as disk accesses or interprocessor communication. Buffers
traverse each pipeline; each pipeline stage repeatedly accepts a buffer
from its predecessor stage, performs some action on the buffer, and
conveys the buffer to its successor stage. FG maps each stage to its
own thread, and thus multiple stages can overlap. Programmers can
implement many batched EM algorithms efficiently — in terms of both
I/0O complexity and programmer effort — by structuring each pipeline
to implement a single pass of a PDM algorithm, matching the buffer

144 External Memory Programming Environments

size to the block size, and running a copy of the pipeline on each node
of a cluster.

Google’s MapReduce [130] is a framework-oriented system that sup-
ports a simple functional style of batched programming. The input data
are assumed to be in the form of a list of key-value pairs. The pro-
grammer specifies a Map function and a Reduce function. The system
applies Map to each key-value pair, which produces a set of interme-
diate key-value pairs. For each k, the system groups together all the
intermediate key-value pairs that have the same key k and passes them
to the Reduce function; Reduce merges together those key-value pairs
and forms a possibly smaller set of values for key k. The system handles
the details of data routing, parallel scheduling, and buffer management.
This framework is useful for a variety of massive data applications on
computer clusters, such as pattern matching, counting access frequen-
cies of web pages, constructing inverted indexes, and distribution sort.

Conclusions

In this manuscript, we have described several useful paradigms for the
design and implementation of efficient external memory (EM) algo-
rithms and data structures. The problem domains we have considered
include sorting, permuting, FFT, scientific computing, computational
geometry, graphs, databases, geographic information systems, and text
and string processing.

Interesting challenges remain in virtually all these problem domains,
as well as for related models such as data streaming and cache-oblivious
algorithms. One difficult problem is to prove lower bounds for permut-
ing and sorting without the indivisibility assumption. Another promis-
ing area is the design and analysis of EM algorithms for efficient use of
multiple disks. Optimal I/O bounds have not yet been determined for
several basic EM graph problems such as topological sorting, shortest
paths, breadth-first search, depth-first search, and connected compo-
nents. Several problems remain open in the dynamic and kinetic set-
tings, such as range searching, ray shooting, point location, and finding
nearest neighbors.

With the growing power of multicore processors, consideration of
parallel CPU time will become increasingly more important. There is an

145

146 Conclusions

intriguing connection between problems that have good I/O speedups
and problems that have fast and work-efficient parallel algorithms.

A continuing goal is to develop optimal EM algorithms and to trans-
late theoretical gains into observable improvements in practice. For
some of the problems that can be solved optimally up to a constant
factor, the constant overhead is too large for the algorithm to be of
practical use, and simpler approaches are needed. In practice, algo-
rithms cannot assume a static internal memory allocation; they must
adapt in a robust way when the memory allocation changes.

Many interesting algorithmic challenges arise from newly developed
architectures. The EM concepts and techniques discussed in the book
may well apply. Examples of new architectures include computer clus-
ters, multicore processors, hierarchical storage devices, wearable com-
puters, small mobile devices and sensors, disk drives with processing
capabilities, and storage devices based upon microelectromechanical
systems (MEMS). For example, active (or intelligent) disks, in which
disk drives have some processing capability and can filter information
sent to the host, have been proposed to further reduce the I/O bottle-
neck, especially in large database applications [4, 292]. MEMS-based
nonvolatile storage has the potential to serve as an intermediate level
in the memory hierarchy between DRAM and disks. It could ultimately
provide better latency and bandwidth than disks, at less cost per bit
than DRAM [307, 338].

Notations and Acronyms

Several of the external memory (EM) paradigms discussed in this
manuscript are listed in Table 1.1 at the end of Chapter 1.

The parameters of the parallel disk model (PDM) are defined in
Section 2.1:

= problem size (in units of data items);

= internal memory size (in units of data items);
= block transfer size (in units of data items);

= number of independent disk drives;

= number of CPUs;

= number of queries (for a batched problem);

NO WD W =

= answer size (in units of data items).

The parameter values satisfy M < N and 1 < DB < M/2. The data
items are assumed to be of fixed length. In a single I/0, each of the D
disks can simultaneously transfer a block of B contiguous data items.

For simplicity, we often refer to some of the above PDM parameters
in units of disk blocks rather than in units of data items; the following

147

148 Notations and Acronyms

lowercase notations
N M Q Z
" "Tp 17 7B
represent the problem size, internal memory size, query specification
size, and answer size, respectively, in units of disk blocks.
In Chapter 9, we use some modified notation to describe the problem
sizes of graph problems:
V = number of vertices; v =

)

STICHSTRS

E = number of edges; e=

For simplicity, we assume that E > V; in those cases where there are
fewer edges than vertices, we set £ to be V.

In the notations below, k and ¢ denote nonnegative integers and x
and y denote real-valued expressions:

Scan(N) number of I/Os to scan a file of N items
(Chapter 3).
Sort(N) number of I/Os to sort a file of N items
(Chapter 3).
Search(N) number of I/Os to do a dictionary lookup in a
data structure of N items (Chapter 3).
Output(Z) number of I/Os to output the Z items of the
answer (Chapter 3).
BundleSort(N,K) number of I/Os to sort a file of NV items (each
with distinct secondary information) having a
total of K < N unique key values (Section 5.5).

Stripe the D blocks, one on each of the D disks,
located at the same relative position on each disk
(Chapter 3).
RAM random access memory, used for internal
memory.
DRAM dynamic random access memory, frequently used
for internal memory.

min{z,y}
max{z,y}
Prob{R}

log, =

Inz

Notations and Acronyms 149

parallel disk model (Chapter 2).

simple randomized merge sort (Section 5.2.1).

randomized cycling distribution sort
(Section 5.1.3).
Transparent Parallel I/O Environment

(Chapter 17).
f(k) is approximately equal to g(k).
f(k) is asymptotically equal to g(k), as k — oo:

fk) _
el g(k) L

f(k) is big-oh of g(k), as k — oco: there exist
constants ¢ >0 and K >0 such that |f(k)| <
c}g(k‘)}, for all k > K.

f(k) is big-omega of g(k), as k— oo: g(k) =
O(f(k)).

f(k) is big-theta of g(k), as k— oo: f(k)=
O(g(k)) and (k) = 2(g(k).

f(k) is little-oh of g(k), as k — oc:

fk)
Qe

)
f(k) is little-omega of g(k), as k — oo: g(k) =
o(f(k))
ceiling of x: the smallest integer k satisfying
k> x.

floor of x: the largest integer k satisfying k < x.
minimum of z and .

maximum of x and y.

probability that relation R is true.

base-b logarithm of x; if b is not specified, we use
b=2.

natural logarithm of z: log, x.

150 Notations and Acronyms

(i) binomial coefficient: if £ =0, it is 1; else, it is

k(k —1)...(k— €+1)
(—1)..1

References

1]

2]

[4]

[5]

7]

8]

(10]

D. J. Abel, “A Bt-tree structure for large quadtrees,” Computer Vision,
Graphics, and Image Processing, vol. 27, pp. 19-31, July 1984.

J. Abello, A. L. Buchsbaum, and J. Westbrook, “A functional approach to
external graph algorithms,” Algorithmica, vol. 32, no. 3, pp. 437-458, 2002.
J. Abello, P. M. Pardalos, and M. G. Resende, eds., Handbook of Massive Data
Sets. Norwell, Mass.: Kluwer Academic Publishers, 2002.

A. Acharya, M. Uysal, and J. Saltz, “Active disks: Programming model, algo-
rithms and evaluation,” ACM SIGPLAN Notices, vol. 33, pp. 81-91, November
1998.

M. Adler, “New coding techniques for improved bandwidth utilization,” in
Proceedings of the IEEE Symposium on Foundations of Computer Science,
(Burlington, VT), pp. 173-182, October 1996.

P. K. Agarwal, L. Arge, G. S. Brodal, and J. S. Vitter, “I/O-efficient dynamic
point location in monotone planar subdivisions,” in Proceedings of the ACM-
SIAM Symposium on Discrete Algorithms, pp. 11-20, ACM Press, 1999.

P. K. Agarwal, L. Arge, and A. Danner, “From LIDAR to GRID DEM: A
scalable approach,” in Proceedings of the International Symposium on Spatial
Data Handling, 2006.

P. K. Agarwal, L. Arge, and J. Erickson, “Indexing moving points,” Journal
of Computer and System Sciences, vol. 66, no. 1, pp. 207-243, 2003.

P. K. Agarwal, L. Arge, J. Erickson, P. G. Franciosa, and J. S. Vitter, “Efficient
searching with linear constraints,” Journal of Computer and System Sciences,
vol. 61, pp. 194-216, October 2000.

P. K. Agarwal, L. Arge, T. M. Murali, K. Varadarajan, and J. S. Vitter, “I/O-
efficient algorithms for contour line extraction and planar graph blocking,” in

151

152

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

20]

(21]

(22]

23]

[24]
(25]

References

Proceedings of the ACM-SIAM Symposium on Discrete Algorithms, pp. 117—
126, ACM Press, 1998.

P. K. Agarwal, L. Arge, O. Procopiuc, and J. S. Vitter, “A framework for
index bulk loading and dynamization,” in Proceedings of the International
Colloquium on Automata, Languages, and Programming, pp. 115-127, Crete,
Greece: Springer-Verlag, 2001.

P. K. Agarwal, L. Arge, and J. Vahrenhold, “Time responsive external data
structures for moving points,” in Proceedings of the Workshop on Algorithms
and Data Structures, pp. 50-61, 2001.

P. K. Agarwal, L. Arge, J. Yang, and K. Yi, “I/O-efficient structures for
orthogonal range-max and stabbing-max queries,” in Proceedings of the Euro-
pean Symposium on Algorithms, pp. 7-18, Springer-Verlag, 2003.

P. K. Agarwal, L. Arge, and K. Yi, “I/O-efficient construction of constrained
delaunay triangulations,” in Proceedings of the European Symposium on Algo-
rithms, pp. 355—-366, Springer-Verlag, 2005.

P. K. Agarwal, L. Arge, and K. Yi, “An optimal dynamic interval stabbing-
max data structure?,” in Proceedings of the ACM-SIAM Symposium on Dis-
crete Algorithms, pp. 803—812, ACM Press, 2005.

P. K. Agarwal, L. Arge, and K. Yi, “I/O-efficient batched union-find and its
applications to terrain analysis,” in Proceedings of the ACM Symposium on
Computational Geometry, ACM Press, 2006.

P. K. Agarwal, M. de Berg, J. Gudmundsson, M. Hammar, and H. J.
Haverkort, “Box-trees and R-trees with near-optimal query time,” Discrete
and Computational Geometry, vol. 28, no. 3, pp. 291-312, 2002.

P. K. Agarwal and J. Erickson, “Geometric range searching and its relatives,”
in Advances in Discrete and Computational Geometry, (B. Chazelle, J. E.
Goodman, and R. Pollack, eds.), pp. 1-56, Providence, Rhode Island: Ameri-
can Mathematical Society Press, 1999.

P. K. Agarwal and S. Har-Peled, “Maintaining the approximate extent mea-
sures of moving points,” in Proceedings of the ACM-SIAM Symposium on Dis-
crete Algorithms, pp. 148-157, Washington, DC: ACM Press, January 2001.
A. Aggarwal, B. Alpern, A. K. Chandra, and M. Snir, “A model for hierarchi-
cal memory,” in Proceedings of the ACM Symposium on Theory of Computing,
pp- 305-314, New York: ACM Press, 1987.

A. Aggarwal, A. Chandra, and M. Snir, “Hierarchical memory with block
transfer,” in Proceedings of the IEEE Symposium on Foundations of Computer
Science, pp. 204-216, Los Angeles, 1987.

A. Aggarwal and C. G. Plaxton, “Optimal parallel sorting in multi-level stor-
age,” in Proceedings of the ACM-SIAM Symposium on Discrete Algorithms,
pp. 659-668, ACM Press, 1994.

A. Aggarwal and J. S. Vitter, “The Input/Output complexity of sorting and
related problems,” Communications of the ACM, vol. 31, no. 9, pp. 1116-1127,
1988.

C. Aggarwal, Data Streams: Models and Algorithms. Springer-Verlag, 2007.
M. Ajtai, M. Fredman, and J. Komlés, “Hash functions for priority queues,”
Information and Control, vol. 63, no. 3, pp. 217-225, 1984.

(26]

27]

28]

29]

30]

(31]

32]

(33]

(34]

(35]

(36]

37]

(38]

(39]

(40]

References 153

D. Ajwani, I. Malinger, U. Meyer, and S. Toledo, “Characterizing the perfor-
mance of flash memory storage devices and its impact on algorithm design,”
in Proceedings of the International Workshop on Experimental Algorithmics,
(Provincetown, Mass.), pp. 208-219, Springer-Verlag, 2008.

D. Ajwani, U. Meyer, and V. Osipov, “Improved external memory BFS imple-
mentation,” in Proceedings of the Workshop on Algorithm Engineering and
Ezxperiments, (New Orleans), pp. 3-12, January 2007.

S. Albers and M. Biittner, “Integrated prefetching and caching in single and
parallel disk systems,” Information and Computation, vol. 198, no. 1, pp. 24—
39, 2005.

B. Alpern, L. Carter, E. Feig, and T. Selker, “The uniform memory hierarchy
model of computation,” Algorithmica, vol. 12, no. 2-3, pp. 72-109, 1994.

L. Arge, “The I/O-complexity of ordered binary-decision diagram manipu-
lation,” in Proceedings of the International Symposium on Algorithms and
Computation, pp. 82-91, Springer-Verlag, 1995.

L. Arge, “External memory data structures,” in Handbook of Massive Data
Sets, (J. Abello, P. M. Pardalos, and M. G. Resende, eds.), ch. 9, pp. 313-358,
Norwell, Mass.: Kluwer Academic Publishers, 2002.

L. Arge, “The buffer tree: A technique for designing batched external data
structures,” Algorithmica, vol. 37, no. 1, pp. 1-24, 2003.

L. Arge, G. Brodal, and R. Fagerberg, “Cache-oblivious data structures,” in
Handbook on Data Structures and Applications, (D. Mehta and S. Sahni, eds.),
CRC Press, 2005.

L. Arge, G. S. Brodal, and L. Toma, “On external-memory MST, SSSP, and
multi-way planar graph separation,” Journal of Algorithms, vol. 53, no. 2,
pp. 186-206, 2004.

L. Arge, J. S. Chase, P. Halpin, L. Toma, J. S. Vitter, D. Urban, and R. Wick-
remesinghe, “Efficient flow computation on massive grid datasets,” Geolnfor-
matica, vol. 7, pp. 283-313, December 2003.

L. Arge, A. Danner, H. J. Haverkort, and N. Zeh, “I/O-efficient hierarchi-
cal watershed decomposition of grid terrains models,” in Proceedings of the
International Symposium on Spatial Data Handling, 2006.

L. Arge, A. Danner, and S.-H. Teh, “I/O-efficient point location using persis-
tent B-trees,” in Workshop on Algorithm Engineering and Experimentation,
2003.

L. Arge, M. de Berg, H. J. Haverkort, and K. Yi, “The priority R-tree: A
practically efficient and worst-case optimal R-tree,” in Proceedings of the ACM
SIGMOD International Conference on Management of Data, pp. 347-358,
ACM Press, 2004.

L. Arge, P. Ferragina, R. Grossi, and J. S. Vitter, “On sorting strings in exter-
nal memory,” in Proceedings of the ACM Symposium on Theory of Computing,
pp. 540-548, ACM Press, 1997.

L. Arge, M. T. Goodrich, M. Nelson, and N. Sitchinava, “Fundamental parallel
algorithms for private-cache chip multiprocessors,” in Proceedings of the ACM
Symposium on Parallel Algorithms and Architectures, Munich: ACM Press,
June 2008.

154
(41]

42]

(43]

(44]

(45]

(46]

(47]

(48]

(49]

[50]

[51]

[52]

(53]

[54]

References

L. Arge, K. H. Hinrichs, J. Vahrenhold, and J. S. Vitter, “Efficient bulk oper-
ations on dynamic R-trees,” Algorithmica, vol. 33, pp. 104-128, January 2002.
L. Arge, M. Knudsen, and K. Larsen, “A general lower bound on the I/O-
complexity of comparison-based algorithms,” in Proceedings of the Workshop
on Algorithms and Data Structures, pp. 83-94, Springer-Verlag, 1993.

L. Arge, U. Meyer, and L. Toma, “External memory algorithms for diameter
and all-pairs shortest-paths on sparse graphs,” in Proceedings of the Interna-
tional Colloguium on Automata, Languages, and Programming, pp. 146-157,
Springer-Verlag, 2004.

L. Arge, U. Meyer, L. Toma, and N. Zeh, “On external-memory planar depth
first search,” Journal of Graph Algorithms and Applications, vol. 7, no. 2,
pp. 105-129, 2003.

L. Arge and P. Miltersen, “On showing lower bounds for external-memory
computational geometry problems,” in Ezternal Memory Algorithms and
Visualization, (J. Abello and J. S. Vitter, eds.), pp. 139-159, Providence,
Rhode Island: American Mathematical Society Press, 1999.

L. Arge, O. Procopiuc, S. Ramaswamy, T. Suel, J. Vahrenhold, and J. S. Vit-
ter, “A unified approach for indexed and non-indexed spatial joins,” in Pro-
ceedings of the International Conference on Extending Database Technology,
Konstanz, Germany: ACM Press, March 2000.

L. Arge, O. Procopiuc, S. Ramaswamy, T. Suel, and J. S. Vitter, “Scalable
sweeping-based spatial join,” in Proceedings of the International Conference
on Very Large Databases, pp. 570-581, New York: Morgan Kaufmann, August
1998.

L. Arge, O. Procopiuc, S. Ramaswamy, T. Suel, and J. S. Vitter, “Theory and
practice of I/O-efficient algorithms for multidimensional batched searching
problems,” in Proceedings of the ACM-SIAM Symposium on Discrete Algo-
rithms, pp. 685-694, ACM Press, January 1998.

L. Arge, O. Procopiuc, and J. S. Vitter, “Implementing I/O-efficient data
structures using TPIE,” in Proceedings of the FEuropean Symposium on Algo-
rithms, pp. 88-100, Springer-Verlag, 2002.

L. Arge, V. Samoladas, and J. S. Vitter, “T'wo-dimensional indexability and
optimal range search indexing,” in Proceedings of the ACM Conference on
Principles of Database Systems, pp. 346-357, Philadelphia: ACM Press, May—
June 1999.

L. Arge, V. Samoladas, and K. Yi, “Optimal external memory planar point
enclosure,” in Proceedings of the European Symposium on Algorithms, pp. 40—
52, Springer-Verlag, 2004.

L. Arge and L. Toma, “Simplified external memory algorithms for planar
DAGS,” in Proceedings of the Scandinavian Workshop on Algorithmic Theory,
pp. 493-503, 2004.

L. Arge and L. Toma, “External data structures for shortest path queries
on planar digraphs,” in Proceedings of the International Symposium on Algo-
rithms and Computation, pp. 328-338, Springer-Verlag, 2005.

L. Arge, L. Toma, and J. S. Vitter, “I/O-efficient algorithms for problems on
grid-based terrains,” in Workshop on Algorithm Engineering and Experimen-
tation, San Francisco: Springer-Verlag, January 2000.

[55]

[56]

[57]

[58]

[59]

(60]

(61]

(62]
(63]
(64]

(65]

(66]
(67]
(68]

(69]

[70]

(71]

References 155

L. Arge, L. Toma, and N. Zeh, “I/O-efficient topological sorting of planar
DAGs,” in Proceedings of the ACM Symposium on Parallel Algorithms and
Architectures, pp. 85-93, ACM Press, 2003.

L. Arge and J. Vahrenhold, “I/O-efficient dynamic planar point location,”
Computational Geometry, vol. 29, no. 2, pp. 147-162, 2004.

L. Arge, D. E. Vengroff, and J. S. Vitter, “External-memory algorithms for
processing line segments in geographic information systems,” Algorithmica,
vol. 47, pp. 1-25, January 2007.

L. Arge and J. S. Vitter, “Optimal external memory interval man-
agement,” SIAM Journal on Computing, vol. 32, no. 6, pp. 1488—
1508, 2003.

L. Arge and N. Zeh, “I/O-efficient strong connectivity and depth-first search
for directed planar graphs,” in Proceedings of the IEEE Symposium on Foun-
dations of Computer Science, pp. 261-270, 2003.

C. Armen, “Bounds on the separation of two parallel disk models,” in Proceed-
ings of the Workshop on Input/Output in Parallel and Distributed Systems,
pp- 122-127, May 1996.

D. Arroyuelo and G. Navarro, “A Lempel-Ziv text index on secondary stor-
age,” in Proceedings of the Symposium on Combinatorial Pattern Matching,
pp- 83-94, Springer-Verlag, 2007.

M. J. Atallah and S. Prabhakar, “(Almost) optimal parallel block access for
range queries,” Information Sciences, vol. 157, pp. 21-31, 2003.

R. A. Baeza-Yates, “Expected behaviour of BT-trees under random inser-
tions,” Acta Informatica, vol. 26, no. 5, pp. 439-472, 1989.

R. A. Baeza-Yates, “Bounded disorder: The effect of the index,” Theoretical
Computer Science, vol. 168, pp. 21-38, 1996.

R. A. Baeza-Yates and P.-A. Larson, “Performance of BT-trees with partial
expansions,” IFEFE Transactions on Knowledge and Data Engineering, vol. 1,
pp- 248-257, June 1989.

R. A. Baeza-Yates and B. Ribeiro-Neto, eds., Modern Information Retrieval.
Addison Wesley Longman, 1999.

R. A. Baeza-Yates and H. Soza-Pollman, “Analysis of linear hashing revis-
ited,” Nordic Journal of Computing, vol. 5, pp. 70-85, 1998.

R. D. Barve, E. F. Grove, and J. S. Vitter, “Simple randomized mergesort on
parallel disks,” Parallel Computing, vol. 23, no. 4, pp. 601-631, 1997.

R. D. Barve, M. Kallahalla, P. J. Varman, and J. S. Vitter, “Competitive
analysis of buffer management algorithms,” Journal of Algorithms, vol. 36,
pp- 152-181, August 2000.

R. D. Barve, E. A. M. Shriver, P. B. Gibbons, B. K. Hillyer, Y. Matias, and
J. S. Vitter, “Modeling and optimizing 1/O throughput of multiple disks on a
bus,” in Procedings of ACM SIGMETRICS Joint International Conference on
Measurement and Modeling of Computer Systems, pp. 83-92, Atlanta: ACM
Press, May 1999.

R. D. Barve and J. S. Vitter, “A theoretical framework for memory-adaptive
algorithms,” in Proceedings of the IEEE Symposium on Foundations of

”

156

[72]
(73]
(74]
[75]

[76]

[77]

(78]

(79]

(80]

(81]

(82]

(83]

(84]

(85]

(86]

(87]

References

Computer Science, pp. 273284, New York: IEEE Computer Society Press,
October 1999.

R. D. Barve and J. S. Vitter, “A simple and efficient parallel disk mergesort,”
ACM Trans. Computer Systems, vol. 35, pp. 189-215, March/April 2002.

J. Basch, L. J. Guibas, and J. Hershberger, “Data structures for mobile data,”
Journal of Algorithms, vol. 31, pp. 1-28, 1999.

R. Bayer and E. McCreight, “Organization of large ordered indexes,” Acta
Informatica, vol. 1, pp. 173-189, 1972.

R. Bayer and K. Unterauer, “Prefix B-trees,” ACM Transactions on Database
Systems, vol. 2, pp. 11-26, March 1977.

B. Becker, S. Gschwind, T. Ohler, B. Seeger, and P. Widmayer, “An asymp-
totically optimal multiversion B-tree,” VLDB Journal, vol. 5, pp. 264-275,
December 1996.

N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger, “The R*-tree: An
efficient and robust access method for points and rectangles,” in Proceedings
of the ACM SIGMOD International Conference on Management of Data,
pp- 322-331, ACM Press, 1990.

A. L. Belady, “A study of replacement algorithms for virtual storage comput-
ers,” IBM Systems Journal, vol. 5, pp. 78-101, 1966.

M. A. Bender, E. D. Demaine, and M. Farach-Colton, “Cache-oblivious B-
trees,” SIAM Journal on Computing, vol. 35, no. 2, pp. 341-358, 2005.

M. A. Bender, M. Farach-Colton, and B. Kuszmaul, “Cache-oblivious string
B-trees,” in Proceedings of the ACM Conference on Principles of Database
Systems, pp. 233-242, ACM Press, 2006.

M. A. Bender, J. T. Fineman, S. Gilbert, and B. C. Kuszmaul, “Concurrent
cache-oblivious B-trees,” in Proceedings of the ACM Symposium on Parallel
Algorithms and Architectures, pp. 228-237, ACM Press, 2005.

J. L. Bentley, “Multidimensional divide and conquer,” Communications of the
ACM, vol. 23, no. 6, pp. 214-229, 1980.

J. L. Bentley and J. B. Saxe, “Decomposable searching problems I: Static-to-
dynamic transformations,” Journal of Algorithms, vol. 1, pp. 301-358, Decem-
ber 1980.

S. Berchtold, C. Bohm, and H.-P. Kriegel, “Improving the query performance
of high-dimensional index structures by bulk load operations,” in Proceedings
of the International Conference on Extending Database Technology, pp. 216—
230, Springer-Verlag, 1998.

M. Berger, E. R. Hansen, R. Pagh, M. Patrascu, M. Ruzi¢, and P. Tiedemann,
“Deterministic load balancing and dictionaries in the parallel disk model,” in
Proceedings of the ACM Symposium on Parallel Algorithms and Architectures,
ACM Press, 2006.

R. Bhatia, R. K. Sinha, and C.-M. Chen, “A hierarchical technique for con-
structing efficient declustering schemes for range queries,” The Computer
Journal, vol. 46, no. 4, pp. 358-377, 2003.

N. Blum and K. Mehlhorn, “On the average number of rebalancing operations
in weight-balanced trees,” Theoretical Computer Science, vol. 11, pp. 303—-320,
July 1980.

(88]
(89]

(90]

(91]

(92]

(93]

(94]

(95]

[96]

[97]

(98]
[(99]

[100]

[101]

[102]

[103]

References 157

R. S. Boyer and J. S. Moore, “A fast string searching algorithm,” Communi-
cations of the ACM, vol. 20, pp. 762-772, October 1977.

C. Breimann and J. Vahrenhold, “External memory computational geometry
revisited,” in Algorithms for Memory Hierarchies, pp. 110-148, 2002.

K. Brengel, A. Crauser, P. Ferragina, and U. Meyer, “An experimental study
of priority queues in external memory,” ACM Journal of Experimental Algo-
rithmics, vol. 5, p. 17, 2000.

G. S. Brodal and R. Fagerberg, “Lower bounds for external memory dictio-
naries,” in Proceedings of the ACM-SIAM Symposium on Discrete Algorithms,
pp. 546-554, ACM Press, 2003.

G. S. Brodal and J. Katajainen, “Worst-case efficient external-memory priority
queues,” in Proceedings of the Scandinavian Workshop on Algorithmic Theory,
pp. 107-118, Stockholm: Springer-Verlag, July 1998.

A. L. Buchsbaum, M. Goldwasser, S. Venkatasubramanian, and J. R.
Westbrook, “On external memory graph traversal,” in Proceedings of the
ACM-SIAM Symposium on Discrete Algorithms, pp. 859-860, ACM Press,
January 2000.

P. Callahan, M. T. Goodrich, and K. Ramaiyer, “Topology B-trees and their
applications,” in Proceedings of the Workshop on Algorithms and Data Struc-
tures, pp. 381-392, Springer-Verlag, 1995.

P. Cao, E. W. Felten, A. R. Karlin, and K. Li, “Implementation and perfor-
mance of integrated application-controlled file caching, prefetching and disk
scheduling,” ACM Transactions on Computer Systems, vol. 14, pp. 311-343,
November 1996.

L. Carter and K. S. Gatlin, “Towards an optimal bit-reversal permutation pro-
gram,” in Proceedings of the IEEE Symposium on Foundations of Computer
Science, pp. 544-553, November 1998.

G. Chaudhry and T. H. Cormen, “Oblivious vs. distribution-based sorting:
An experimental evaluation,” in Proceedings of the European Symposium on
Algorithms, pp. 317-328, Springer-Verlag, 2005.

B. Chazelle, “Filtering search: A new approach to query-answering,” SIAM
Journal on Computing, vol. 15, pp. 703-724, 1986.

B. Chazelle, “Lower bounds for orthogonal range searching: I. The reporting
case,” Journal of the ACM, vol. 37, pp. 200-212, April 1990.

B. Chazelle and H. Edelsbrunner, “Linear space data structures for two types
of range search,” Discrete and Computational Geometry, vol. 2, pp. 113—-126,
1987.

P. M. Chen, E. K. Lee, G. A. Gibson, R. H. Katz, and D. A. Patterson,
“RAID: High-performance, reliable secondary storage,” ACM Computing Sur-
veys, vol. 26, pp. 145-185, June 1994.

R. Cheng, Y. Xia, S. Prabhakar, R. Shah, and J. S. Vitter, “Efficient index-
ing methods for probabilistic threshold queries over uncertain data,” in Pro-
ceedings of the International Conference on Very Large Databases, Toronto:
Morgan Kaufmann, August 2004.

R. Cheng, Y. Xia, S. Prabhakar, R. Shah, and J. S. Vitter, “Efficient join pro-
cessing over uncertain-valued attributes,” in Proceedings of the International

158

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

References

ACM Conference on Information and Knowledge Management, Arlington,
Va.: ACM Press, November 2006.

Y.-J. Chiang, “Experiments on the practical I/O efficiency of geometric algo-
rithms: Distribution sweep vs. plane sweep,” Computational Geometry: Theory
and Applications, vol. 8, no. 4, pp. 211-236, 1998.

Y.-J. Chiang, M. T. Goodrich, E. F. Grove, R. Tamassia, D. E. Vengroff,
and J. S. Vitter, “External-memory graph algorithms,” in Proceedings of the
ACM-SIAM Symposium on Discrete Algorithms, pp. 139-149, ACM Press,
January 1995.

Y.-J. Chiang and C. T. Silva, “External memory techniques for isosurface
extraction in scientific visualization,” in FExternal Memory Algorithms and
Visualization, (J. Abello and J. S. Vitter, eds.), pp. 247277, Providence,
Rhode Island: American Mathematical Society Press, 1999.

Y.-F. Chien, W.-K. Hon, R. Shah, and J. S. Vitter, “Geometric Burrows—
Wheeler transform: Linking range searching and text indexing,” in Proceed-
ings of the Data Compression Conference, Snowbird, Utah: IEEE Computer
Society Press, March 2008.

R. A. Chowdhury and V. Ramachandran, “External-memory exact and
approximate all-pairs shortest-paths in undirected graphs,” in Proceedings of
the ACM-SIAM Symposium on Discrete Algorithms, pp. 735-744, ACM Press,
2005.

V. Ciriani, P. Ferragina, F. Luccio, and S. Muthukrishnan, “Static optimal-
ity theorem for external memory string access,” in Proceedings of the IEEE
Symposium on Foundations of Computer Science, pp. 219-227, 2002.

D. R. Clark and J. I. Munro, “Efficient suffix trees on secondary storage,” in
Proceedings of the ACM-SIAM Symposium on Discrete Algorithms, pp. 383—
391, Atlanta: ACM Press, June 1996.

K. L. Clarkson and P. W. Shor, “Applications of random sampling in compu-
tational geometry, I1,” Discrete and Computational Geometry, vol. 4, pp. 387—
421, 1989.

F. Claude and G. Navarro, “A fast and compact Web graph representation,”
in Proceedings of the International Symposium on String Processing and Infor-
mation Retrieval, pp. 105116, Springer-Verlag, 2007.

A. Colvin and T. H. Cormen, “ViC*: A compiler for virtual-memory C*” in
Proceedings of the International Workshop on High-Level Programming Models
and Supportive Environments, pp. 23-33, 1998.

D. Comer, “The ubiquitous B-Tree,” ACM Computing Surveys, vol. 11, no. 2,
pp- 121-137, 1979.

P. Corbett, D. Feitelson, S. Fineberg, Y. Hsu, B. Nitzberg, J.-P. Prost, M. Snir,
B. Traversat, and P. Wong, “Overview of the MPI-1O parallel 1/O interface,”
in Input/Output in Parallel and Distributed Computer Systems, (R. Jain,
J. Werth, and J. C. Browne, eds.), ch. 5, pp. 127-146, Kluwer Academic Pub-
lishers, 1996.

P. F. Corbett and D. G. Feitelson, “The Vesta parallel file system,” ACM
Transactions on Computer Systems, vol. 14, pp. 225-264, August 1996.

[117]

[118]
[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]

References 159

T. H. Cormen and E. R. Davidson, “FG: A framework generator for hid-
ing latency in parallel programs running on clusters,” in Proceedings of the
17th International Conference on Parallel and Distributed Computing Sys-
tems, pp. 137144, Sep. 2004.

T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to
Algorithms. Cambridge, Mass.: MIT Press, 2nd ed., September 2001.

T. H. Cormen and D. M. Nicol, “Performing out-of-core FFTs on parallel disk
systems,” Parallel Computing, vol. 24, pp. 5-20, January 1998.

T. H. Cormen, T. Sundquist, and L. F. Wisniewski, “Asymptotically tight
bounds for performing BMMC permutations on parallel disk systems,” STAM
Journal on Computing, vol. 28, no. 1, pp. 105-136, 1999.

A. Crauser and P. Ferragina, “A theoretical and experimental study on the
construction of suffix arrays in external memory,” Algorithmica, vol. 32, no. 1,
pp- 1-35, 2002.

A. Crauser, P. Ferragina, K. Mehlhorn, U. Meyer, and E. A. Ramos, “I/O-
optimal computation of segment intersections,” in FEzxternal Memory Algo-
rithms and Visualization, (J. Abello and J. S. Vitter, eds.), pp. 131-138,
Providence, Rhode Island: American Mathematical Society Press, 1999.

A. Crauser, P. Ferragina, K. Mehlhorn, U. Meyer, and E. A. Ramos, “Ran-
domized external-memory algorithms for line segment intersection and other
geometric problems,” International Journal of Computational Geometry and
Applications, vol. 11, no. 3, pp. 305-337, 2001.

A. Crauser and K. Mehlhorn, “LEDA-SM: Extending LEDA to secondary
memory,” in Proceedings of the Workshop on Algorithm Engineering, (J. S.
Vitter and C. Zaroliagis, eds.), pp. 228-242, London: Springer-Verlag, July
1999.

K. Curewitz, P. Krishnan, and J. S. Vitter, “Practical Prefetching Via Data
Compression,” in Proceedings of the ACM SIGMOD International Conference
on Management of Data, pp. 257-266, Washington, DC: ACM Press, May
1993.

R. Cypher and G. Plaxton, “Deterministic sorting in nearly logarithmic time
on the hypercube and related computers,” Journal of Computer and System
Sciences, vol. 47, no. 3, pp. 501-548, 1993.

E. R. Davidson, FG: Improving Parallel Programs and Parallel Programming
Since 2003. PhD thesis, Dartmouth College Department of Computer Science,
Aug. 2006.

M. de Berg, J. Gudmundsson, M. Hammar, and M. H. Overmars, “On R-
trees with low query complexity,” Computational Geometry, vol. 24, no. 3,
pp. 179-195, 2003.

M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf, Computa-
tional Geometry Algorithms and Applications. Berlin: Springer-Verlag, 1997.
J. Dean and S. Ghemawat, “MapReduce: Simplified data processing on large
clusters,” in Proceedings of the Symposium on Operating Systems Design and
Implementation, pp. 137-150, USENIX, December 2004.

F. K. H. A. Dehne, W. Dittrich, and D. A. Hutchinson, “Efficient Exter-
nal Memory Algorithms by Simulating Coarse-Grained Parallel Algorithms,”
Algorithmica, vol. 36, no. 2, pp. 97-122, 2003.

160

[132]

[133]

[134]

[135]

[136]

[137]

[138]
[139]

[140]

[141]

[142]

[143]
[144]
[145]

[146]

[147]

[148]

References

F. K. H. A. Dehne, W. Dittrich, D. A. Hutchinson, and A. Maheshwari, “Bulk
synchronous parallel algorithms for the external memory model,” Theory of
Computing Systems, vol. 35, no. 6, pp. 567-597, 2002.

R. Dementiev, Algorithm Engineering for Large Data Sets. PhD thesis, Saar-
land University, 2006.

R. Dementiev, J. Karkkéainen, J. Mehnert, and P. Sanders, “Better external
memory suffix array construction,” ACM Journal of Experimental Algorith-
mics, in press.

R. Dementiev, L. Kettner, and P. Sanders, “STXXL: Standard Template
Library for XXL Data Sets,” Software — Practice and Ezxperience, vol. 38,
no. 6, pp. 589-637, 2008.

R. Dementiev and P. Sanders, “Asynchronous parallel disk sorting,” in Pro-
ceedings of the ACM Symposium on Parallel Algorithms and Architectures,
pp- 138-148, ACM Press, 2003.

R. Dementiev, P. Sanders, D. Schultes, and J. Sibeyn, “Engineering an exter-
nal memory minimum spanning tree algorithm,” in Proceedings of IFIP Inter-
national Conference on Theoretical Computer Science, Toulouse: Kluwer Aca-
demic Publishers, 2004.

H. B. Demuth, FElectronic data sorting. PhD thesis, Stanford University, 1956.
P. J. Denning, “Working sets past and present,” IEEE Transactions on Soft-
ware Engineering, vol. SE-6, pp. 64—84, 1980.

D. J. DeWitt, J. F. Naughton, and D. A. Schneider, “Parallel sorting on
a shared-nothing architecture using probabilistic splitting,” in Proceedings of
the International Conference on Parallel and Distributed Information Systems,
pp- 280291, December 1991.

W. Dittrich, D. A. Hutchinson, and A. Maheshwari, “Blocking in parallel
multisearch problems,” Theory of Computing Systems, vol. 34, no. 2, pp. 145—
189, 2001.

J. R. Driscoll, N. Sarnak, D. D. Sleator, and R. E. Tarjan, “Making data
structures persistent,” Journal of Computer and System Sciences, vol. 38,
pp- 86-124, 1989.

M. C. Easton, “Key-sequence data sets on indelible storage,” IBM Journal of
Research and Development, vol. 30, pp. 230-241, 1986.

H. Edelsbrunner, “A new approach to rectangle intersections, Part 1,” Inter-
national Journal of Computer Mathematics, vol. 13, pp. 209-219, 1983.

H. Edelsbrunner, “A New approach to rectangle intersections, Part I1,” Inter-
national Journal of Computer Mathematics, vol. 13, pp. 221-229, 1983.

M. Y. Eltabakh, W.-K. Hon, R. Shah, W. Aref, and J. S. Vitter, “The SBC-
tree: An index for run-length compressed sequences,” in Proceedings of the
International Conference on FExtending Database Technology, Nantes, France:
Springer-Verlag, March 2008.

R. J. Enbody and H. C. Du, “Dynamic hashing schemes,” ACM Computing
Surveys, vol. 20, pp. 85-113, June 1988.

“NASA’s Earth Observing System (EOS) web page, NASA Goddard Space
Flight Center,” http://eospso.gsfc.nasa.gov/.

[149]

[150]

[151]

[152]

153

[154]

[155]

[156]

[157]

[158]

159

[160]

[161]
[162]

163

[164]

References 161

D. Eppstein, Z. Galil, G. F. Italiano, and A. Nissenzweig, “Sparsification — a
technique for speeding up dynamic graph algorithms,” Journal of the ACM,
vol. 44, no. 5, pp. 669-696, 1997.

J. Erickson, “Lower bounds for external algebraic decision trees,” in Pro-
ceedings of the ACM-SIAM Symposium on Discrete Algorithms, pp. 7T55-761,
ACM Press, 2005.

G. Evangelidis, D. B. Lomet, and B. Salzberg, “The hB-tree: A multi-
attribute index supporting concurrency, recovery and node consolidation,”
VLDB Journal, vol. 6, pp. 1-25, 1997.

R. Fagerberg, A. Pagh, and R. Pagh, “External string sorting: Faster and
cache oblivious,” in Proceedings of the Symposium on Theoretical Aspects of
Computer Science, pp. 6879, Springer-Verlag, 2006.

R. Fagin, J. Nievergelt, N. Pippinger, and H. R. Strong, “Extendible hash-
ing — a fast access method for dynamic files,” ACM Transactions on Database
Systems, vol. 4, no. 3, pp. 315-344, 1979.

M. Farach-Colton, P. Ferragina, and S. Muthukrishnan, “On the sorting-
complexity of suffix tree construction,” Journal of the ACM, vol. 47, no. 6,
pp. 987-1011, 2000.

J. Feigenbaum, S. Kannan, M. Strauss, and M. Viswanathan, “An approx-
imate L1-difference algorithm for massive data streams,” SIAM Journal on
Computing, vol. 32, no. 1, pp. 131-151, 2002.

W. Feller, An Introduction to Probability Theory and its Applications. Vol. 1,
New York: John Wiley & Sons, 3rd ed., 1968.

P. Ferragina and R. Grossi, “Fast string searching in secondary storage: The-
oretical developments and experimental results,” in Proceedings of the ACM-
SIAM Symposium on Discrete Algorithms, pp. 373-382, Atlanta: ACM Press,
June 1996.

P. Ferragina and R. Grossi, “The String B-tree: A new data structure for
string search in external memory and its applications,” Journal of the ACM,
vol. 46, pp. 236—280, March 1999.

P. Ferragina, R. Grossi, A. Gupta, R. Shah, and J. S. Vitter, “On searching
compressed string collections cache-obliviously,” in Proceedings of the ACM
Conference on Principles of Database Systems, Vancouver: ACM Press, June
2008.

P. Ferragina, N. Koudas, S. Muthukrishnan, and D. Srivastava, “Two-
dimensional substring indexing,” Journal of Computer and System Sciences,
vol. 66, no. 4, pp. 763-774, 2003.

P. Ferragina and F. Luccio, “Dynamic dictionary matching in external mem-
ory,” Information and Computation, vol. 146, pp. 85-99, November 1998.

P. Ferragina and G. Manzini, “Indexing compressed texts,” Journal of the
ACM, vol. 52, no. 4, pp. 552-581, 2005.

P. Ferragina, G. Manzini, V. Mékinen, and G. Navarro, “Compressed represen-
tations of sequences and full-text indexes,” ACM Transaction on Algorithms,
vol. 3, p. 20, May 2007.

P. Flajolet, “On the performance evaluation of extendible hashing and trie
searching,” Acta Informatica, vol. 20, no. 4, pp. 345-369, 1983.

162

[165]

[166]

[167]

[168]

[169]

[170]

[171]

[172]

[173]

[174]

[175]

[176]

[177]

[178]

[179]

[180]

References

R. W. Floyd, “Permuting information in idealized two-level storage,” in Com-

plexity of Computer Computations, (R. Miller and J. Thatcher, eds.), pp. 105
109, Plenum, 1972.

W. Frakes and R. A. Baeza-Yates, eds., Information Retrieval: Data Structures
and Algorithms. Prentice-Hall, 1992.

G. Franceschini, R. Grossi, J. I. Munro, and L. Pagli, “Implicit B-Trees: A new
data structure for the dictionary problem,” Journal of Computer and System
Sciences, vol. 68, no. 4, pp. 788-807, 2004.

M. Frigo, C. E. Leiserson, H. Prokop, and S. Ramachandran, “Cache-oblivious
algorithms,” in Proceedings of the IEEE Symposium on Foundations of Com-
puter Science, pp. 285-298, 1999.

T. A. Funkhouser, C. H. Sequin, and S. J. Teller, “Management of large
amounts of data in interactive building walkthroughs,” in Proceedings of the
ACM Symposium on Interactive 3D Graphics, pp. 11-20, Boston: ACM Press,
March 1992.

V. Gaede and O. Giinther, “Multidimensional access methods,” ACM Com-
puting Surveys, vol. 30, pp. 170-231, June 1998.

G. R. Ganger, “Generating representative synthetic workloads: An unsolved
problem,” in Proceedings of the Computer Measurement Group Conference,
pp- 1263-1269, December 1995.

M. Gardner, ch. 7, Magic Show. New York: Knopf, 1977.

I. Gargantini, “An effective way to represent quadtrees,” Communications of
the ACM, vol. 25, pp. 905-910, December 1982.

T. M. Ghanem, R. Shah, M. F. Mokbel, W. G. Aref, and J. S. Vitter, “Bulk
operations for space-partitioning trees,” in Proceedings of IEEE International
Conference on Data Engineering, Boston: IEEE Computer Society Press, April
2004.

G. A. Gibson, J. S. Vitter, and J. Wilkes, “Report of the working group
on storage I/0 issues in large-scale computing,” ACM Computing Surveys,
vol. 28, pp. 779-793, December 1996.

A. Gionis, P. Indyk, and R. Motwani, “Similarity search in high dimensions
via hashing,” in Proceedings of the International Conference on Very Large
Databases, pp. 78-89, Edinburgh, Scotland: Morgan Kaufmann, 1999.

R. Goldman, N. Shivakumar, S. Venkatasubramanian, and H. Garcia-Molina,
“Proximity search in databases,” in Proceedings of the International Confer-
ence on Very Large Databases, pp. 26—-37, August 1998.

R. Gonzélez and G. Navarro, “A compressed text index on secondary mem-
ory,” in Proceedings of the International Workshop on Combinatorial Algo-
rithms, (Newcastle, Australia), pp. 80-91, College Publications, 2007.

M. T. Goodrich, J.-J. Tsay, D. E. Vengroff, and J. S. Vitter, “External-memory
computational geometry,” in Proceedings of the IEEE Symposium on Founda-
tions of Computer Science, pp. 714-723, Palo Alto: IEEE Computer Society
Press, November 1993.

“Google Earth online database of satellite images,” Available on the World-
Wide Web at http://earth.google.com/.

[181]

[182]

[183]

[184]

[185)]

[186]

[187]

[188]

[189)

[190]

[191]

[192]

(193]

[194]

References 163

S. Govindarajan, P. K. Agarwal, and L. Arge, “CRB-tree: An efficient index-
ing scheme for range-aggregate queries,” in Proceedings of the International
Conference on Database Theory, pp. 143—157, Springer-Verlag, 2003.

S. Govindarajan, T. Lukovszki, A. Maheshwari, and N. Zeh, “I/O-efficient
well-separated pair decomposition and its applications,” Algorithmica, vol. 45,
pp- 385—614, August 2006.

D. Greene, “An implementation and performance analysis of spatial data
access methods,” in Proceedings of IEEE International Conference on Data
Engineering, pp. 606615, 1989.

J. L. Griffin, S. W. Schlosser, G. R. Ganger, and D. F. Nagle, “Modeling
and performance of MEMS-based storage devices,” in Procedings of ACM
SIGMETRICS Joint International Conference on Measurement and Modeling
of Computer Systems, pp. 5665, Santa Clara, Cal.: ACM Press, June 2000.
R. Grossi, A. Gupta, and J. S. Vitter, “High-order entropy-compressed text
indexes,” in Proceedings of the ACM-SIAM Symposium on Discrete Algo-
rithms, ACM Press, January 2003.

R. Grossi and G. F. Italiano, “Efficient cross-trees for external memory,” in
External Memory Algorithms and Visualization, (J. Abello and J. S. Vitter,
eds.), pp. 87-106, Providence, Rhode Island: American Mathematical Society
Press, 1999.

R. Grossi and G. F. Italiano, “Efficient splitting and merging algorithms for
order decomposable problems,” Information and Computation, vol. 154, no. 1,
pp- 1-33, 1999.

S. K. S. Gupta, Z. Li, and J. H. Reif, “Generating efficient programs for two-
level memories from tensor-products,” in Proceedings of the IASTED/ISMM
International Conference on Parallel and Distributed Computing and Systems,
pp- 510-513, October 1995.

D. Gusfield, Algorithms on Strings, Trees, and Sequences. Cambridge, UK:
Cambridge University Press, 1997.

A. Guttman, “R-trees: A dynamic index structure for spatial searching,” in
Proceedings of the ACM SIGMOD International Conference on Management
of Data, pp. 47-57, ACM Press, 1984.

H. J. Haverkort and L. Toma, “I/O-efficient algorithms on near-planar
graphs,” in Proceedings of the Latin American Theoretical Informatics Sym-
posium, pp. 580-591, 2006.

T. Hazel, L. Toma, R. Wickremesinghe, and J. Vahrenhold, “Terracost: A ver-
satile and scalable approach to computing least-cost-path surfaces for massive
grid-based terrains,” in Proceedings of the ACM Symposium on Applied Com-
puting, pp. 5257, ACM Press, 2006.

J. M. Hellerstein, E. Koutsoupias, and C. H. Papadimitriou, “On the analysis
of indexing schemes,” in Proceedings of the ACM Symposium on Principles of
Database Systems, pp. 249-256, Tucson: ACM Press, May 1997.

L. Hellerstein, G. Gibson, R. M. Karp, R. H. Katz, and D. A. Patterson,
“Coding techniques for handling failures in large disk arrays,” Algorithmica,
vol. 12, no. 2-3, pp. 182208, 1994.

164

[195]

[196]

[197]

[198]

[199]

[200]

[201]

[202]

[203]

[204]

[205]

[206]

[207]

[208]

[209]

References

M. R. Henzinger, P. Raghavan, and S. Rajagopalan, “Computing on data
streams,” in External Memory Algorithms and Visualization, (J. Abello and
J. S. Vitter, eds.), pp. 107-118, Providence, Rhode Island: American Mathe-
matical Society Press, 1999.

K. Hinrichs, “Implementation of the grid file: Design concepts and experience,”
BIT, vol. 25, no. 4, pp. 569-592, 1985.

W.-K. Hon, T.-W. Lam, R. Shah, S.-L.. Tam, and J. S. Vitter, “Cache-oblivious
index for approximate string matching,” in Proceedings of the Symposium
on Combinatorial Pattern Matching, pp. 40-51, London, Ontario, Canada:
Springer-Verlag, July 2007.

W.-K. Hon, R. Shah, P. J. Varman, and J. S. Vitter, “Tight competitive
ratios for parallel disk prefetching and caching,” in Proceedings of the ACM
Symposium on Parallel Algorithms and Architectures, Munich: ACM Press,
June 2008.

J. W. Hong and H. T. Kung, “I/O complexity: The red-blue pebble game,”
in Proceedings of the ACM Symposium on Theory of Computing, pp. 326-333,
ACM Press, May 1981.

D. Hutchinson, A. Maheshwari, J.-R. Sack, and R. Velicescu, “Early expe-
riences in implementing the buffer tree,” in Proceedings of the Workshop on
Algorithm Engineering, Springer-Verlag, 1997.

D. A. Hutchinson, A. Maheshwari, and N. Zeh, “An external memory data
structure for shortest path queries,” Discrete Applied Mathematics, vol. 126,
no. 1, pp. 55-82, 2003.

D. A. Hutchinson, P. Sanders, and J. S. Vitter, “Duality between prefetching
and queued writing with parallel disks,” STAM Journal on Computing, vol. 34,
no. 6, pp. 1443-1463, 2005.

P. Indyk, R. Motwani, P. Raghavan, and S. Vempala, “Locality-preserving
hashing in multidimensional spaces,” in Proceedings of the ACM Symposium
on Theory of Computing, pp. 618-625, El Paso: ACM Press, May 1997.

M. Kallahalla and P. J. Varman, “Optimal prefetching and caching for parallel
I/0 systems,” in Proceedings of the ACM Symposium on Parallel Algorithms
and Architectures, Crete, Greece: ACM Press, July 2001.

M. Kallahalla and P. J. Varman, “Optimal read-once parallel disk scheduling,”
Algorithmica, vol. 43, no. 4, pp. 309-343, 2005.

I. Kamel and C. Faloutsos, “On packing R-trees,” in Proceedings of the
International ACM Conference on Information and Knowledge Management,
pp. 490-499, 1993.

I. Kamel and C. Faloutsos, “Hilbert R-tree: An improved R-tree using frac-
tals,” in Proceedings of the International Conference on Very Large Databases,
pp. 500-509, 1994.

I. Kamel, M. Khalil, and V. Kouramajian, “Bulk insertion in dynamic R-
trees,” in Proceedings of the International Symposium on Spatial Data Han-
dling, pp. 3B, 31-42, 1996.

P. C. Kanellakis, G. M. Kuper, and P. Z. Revesz, “Constraint query lan-
guages,” Journal of Computer and System Sciences, vol. 51, no. 1, pp. 26-52,
1995.

[210]

[211]

[212]

[213]

[214]

[215]
[216]
[217]
[218]

[219]

[220]

[221]

[222]

[223]

[224]

[225]

[226]

[227]

References 165

P. C. Kanellakis, S. Ramaswamy, D. E. Vengroff, and J. S. Vitter, “Indexing for
data models with constraints and classes,” Journal of Computer and System
Sciences, vol. 52, no. 3, pp. 589-612, 1996.

K. V. R. Kanth and A. K. Singh, “Optimal dynamic range searching in non-
replicating index structures,” in Proceedings of the International Conference
on Database Theory, pp. 257-276, Springer-Verlag, January 1999.

J. Kéarkkainen and S. S. Rao, “Full-text indexes in external memory,” in Algo-
rithms for Memory Hierarchies, (U. Meyer, P. Sanders, and J. Sibeyn, eds.),
ch. 7, pp. 149-170, Berlin: Springer-Verlag, 2003.

I. Katriel and U. Meyer, “Elementary graph algorithms in external memory,”
in Algorithms for Memory Hierarchies, (U. Meyer, P. Sanders, and J. Sibeyn,
eds.), ch. 4, pp. 62-84, Berlin: Springer-Verlag, 2003.

R. Khandekar and V. Pandit, “Offline Sorting Buffers On Line,” in Proceedings
of the International Symposium on Algorithms and Computation, pp. 81-89,
Springer-Verlag, December 2006.

S. Khuller, Y. A. Kim, and Y.-C. J. Wan, “Algorithms for data migration with
cloning,” SIAM Journal on Computing, vol. 33, no. 2, pp. 448-461, 2004.

M. Y. Kim, “Synchronized disk interleaving,” IEEE Transactions on Comput-
ers, vol. 35, pp. 978-988, November 1986.

T. Kimbrel and A. R. Karlin, “Near-optimal parallel prefetching and caching,”
SIAM Journal on Computing, vol. 29, no. 4, pp. 1051-1082, 2000.

D. G. Kirkpatrick and R. Seidel, “The ultimate planar convex hull algo-
rithm?,” STAM Journal on Computing, vol. 15, pp. 287-299, 1986.

S. T. Klein and D. Shapira, “Searching in compressed dictionaries,” in Proceed-
ings of the Data Compression Conference, Snowbird, Utah: IEEE Computer
Society Press, 2002.

D. E. Knuth, Sorting and Searching. Vol. 3 of The Art of Computer Program-
ming, Reading, MA: Addison-Wesley, 2nd ed., 1998.

D. E. Knuth, MMIXware. Berlin: Springer-Verlag, 1999.

D. E. Knuth, J. H. Morris, and V. R. Pratt, “Fast pattern matching in strings,”
SIAM Journal on Computing, vol. 6, pp. 323-350, 1977.

G. Kollios, D. Gunopulos, and V. J. Tsotras, “On indexing mobile objects,”
in Proceedings of the ACM Symposium on Principles of Database Systems,
pp- 261-272, ACM Press, 1999.

E. Koutsoupias and D. S. Taylor, “Tight bounds for 2-dimensional indexing
schemes,” in Proceedings of the ACM Symposium on Principles of Database
Systems, pp. 52-58, Seattle: ACM Press, June 1998.

M. Kowarschik and C. Weif}, “An overview of cache optimizaiton techniques
and cache-aware numerical algorithms,” in Algorithms for Memory Hierar-
chies, (U. Meyer, P. Sanders, and J. Sibeyn, eds.), ch. 10, pp. 213-232, Berlin:
Springer-Verlag, 2003.

P. Krishnan and J. S. Vitter, “Optimal prediction for prefetching in the worst
case,” SIAM Journal on Computing, vol. 27, pp. 1617-1636, December 1998.
V. Kumar and E. Schwabe, “Improved algorithms and data structures for
solving graph problems in external memory,” in Proceedings of the IEEE Sym-
posium on Parallel and Distributed Processing, pp. 169-176, October 1996.

166

[228]

[229]

[230]

[231]

[232]

[233]

[234]

[235]

236

237

23]

239

[240]

[241]

[242]

[243]

[244]

References

K. Kiispert, “Storage utilization in B*-trees with a generalized overflow tech-
nique,” Acta Informatica, vol. 19, pp. 35-55, 1983.

P.-A. Larson, “Performance analysis of linear hashing with partial expan-
sions,” ACM Transactions on Database Systems, vol. 7, pp. 566-587, Decem-
ber 1982.

R. Laurini and D. Thompson, Fundamentals of Spatial Information Systems,.
Academic Press, 1992.

P. L. Lehman and S. B. Yao, “Efficient locking for concurrent operations
on B-trees,” ACM Transactions on Database Systems, vol. 6, pp. 650-570,
December 1981.

F. T. Leighton, “Tight bounds on the complexity of parallel sorting,” IFEE
Transactions on Computers, vol. C-34, pp. 344-354, Special issue on sorting,
E. E. Lindstrom, C. K. Wong, and J. S. Vitter, eds., April 1985.

C. E. Leiserson, S. Rao, and S. Toledo, “Efficient out-of-core algorithms for
linear relaxation using blocking covers,” Journal of Computer and System
Sciences, vol. 54, no. 2, pp. 332-344, 1997.

Z. Li, P. H. Mills, and J. H. Reif, “Models and resource metrics for parallel
and distributed computation,” Parallel Algorithms and Applications, vol. 8,
pp. 35-59, 1996.

W. Litwin, “Linear hashing: A new tool for files and tables addressing,” in
Proceedings of the International Conference on Very Large Databases, pp. 212—
223, October 1980.

W. Litwin and D. Lomet, “A new method for fast data searches with keys,”
IEEE Software, vol. 4, pp. 16—24, March 1987.

D. Lomet, “A simple bounded disorder file organization with good perfor-
mance,” ACM Transactions on Database Systems, vol. 13, no. 4, pp. 525-551,
1988.

D. B. Lomet and B. Salzberg, “The hB-tree: A multiattribute indexing method
with good guaranteed performance,” ACM Transactions on Database Systems,
vol. 15, no. 4, pp. 625-658, 1990.

D. B. Lomet and B. Salzberg, “Concurrency and recovery for index trees,”
VLDB Journal, vol. 6, no. 3, pp. 224-240, 1997.

T. Lukovszki, A. Maheshwari, and N. Zeh, “I/O-efficient batched range count-
ing and its applications to proximity problems,” Foundations of Software Tech-
nology and Theoretical Computer Science, pp. 244-255, 2001.

A. Maheshwari and N. Zeh, “I/O-efficient algorithms for graphs of bounded
treewidth,” in Proceedings of the ACM-SIAM Symposium on Discrete Algo-
rithms, pp. 89-90, Washington, DC: ACM Press, January 2001.

A. Maheshwari and N. Zeh, “I/O-Optimal Algorithms for Planar Graphs
Using Separators,” in Proceedings of the ACM-SIAM Symposium on Discrete
Algorithms, pp. 372-381, ACM Press, 2002.

A. Maheshwari and N. Zeh, “A survey of techniques for designing I/O-efficient
algorithms,” in Algorithms for Memory Hierarchies, (U. Meyer, P. Sanders,
and J. Sibeyn, eds.), ch. 3, pp. 36-61, Berlin: Springer-Verlag, 2003.

A. Maheshwari and N. Zeh, “I/O-optimal algorithms for outerplanar graphs,”
Journal of Graph Algorithms and Applications, vol. 8, pp. 47-87, 2004.

[245]

[246]

[247]

[248]

[249]

[250]
[251]

[252]

[253]

[254]

[255]

[256]

[257]

[258]

[259]

260]

References 167

V. Mékinen, G. Navarro, and K. Sadakane, “Advantages of backward search-
ing — efficient secondary memory and distributed implementation of com-
pressed suffix arrays,” in Proceedings of the International Symposium on Algo-
rithms and Computation, pp. 681-692, Springer-Verlag, 2004.

U. Manber and G. Myers, “Suffix arrays: A new method for on-line string
searches,” SIAM Journal on Computing, vol. 22, pp. 935-948, October
1993.

U. Manber and S. Wu, “GLIMPSE: A tool to search through entire file sys-
tems,” in Proceedings of the Winter USENIX Conference, (USENIX Associa-
tion, ed.), pp. 23-32, San Francisco: USENIX, January 1994.

G. N. N. Martin, “Spiral storage: Incrementally augmentable hash addressed
storage,” Technical Report CS-RR-027, University of Warwick, March 1979.

Y. Matias, E. Segal, and J. S. Vitter, “Efficient bundle sorting,” in Proceed-
ings of the ACM-SIAM Symposium on Discrete Algorithms, pp. 839-848, San
Francisco: ACM Press, January 2000.

E. M. McCreight, “A space-economical suffix tree construction algorithm,”
Journal of the ACM, vol. 23, no. 2, pp. 262-272, 1976.

E. M. McCreight, “Priority Search Trees,” SIAM Journal on Computing,
vol. 14, pp. 257276, May 1985.

K. Mehlhorn and U. Meyer, “External-memory breadth-first search with
sublinear 1/0,” in Proceedings of the European Symposium on Algorithms,
pp. 723-735, Springer-Verlag, 2002.

H. Mendelson, “Analysis of extendible hashing,” IEEE Transactions on Soft-
ware Engineering, vol. SE-8, pp. 611-619, November 1982.

U. Meyer, “External memory BFS on undirected graphs with bounded
degree,” in Proceedings of the ACM-SIAM Symposium on Discrete Algorithms,
pp- 87-88, Washington, DC: ACM Press, January 2001.

U. Meyer, “On dynamic breadth-first search in external-memory,” in Pro-
ceedings of the Symposium on Theoretical Aspects of Computer Science,
(Schloss Dagstuhl, Germany), pp. 551-560, Internationales Begegnungs- und
Forschungszentrum fiir Informatik, 2008.

U. Meyer, “On trade-offs in external-memory diameter approximation,” in
Proceedings of the Scandinavian Workshop on Algorithm Theory, (Gothen-
burg, Sweden), Springer-Verlag, July 2008.

U. Meyer, P. Sanders, and J. Sibeyn, eds., Algorithms for Memory Hierarchies.
Berlin: Springer-Verlag, 2003.

U. Meyer and N. Zeh, “I/O-efficient undirected shortest paths,” in Proceed-
ings of the Furopean Symposium on Algorithms, pp. 435-445, Springer-Verlag,
2003.

U. Meyer and N. Zeh, “I/O-efficient undirected shortest paths with unbounded
weights,” in Proceedings of the Furopean Symposium on Algorithms, Springer-
Verlag, 2006.

C. Mohan, “ARIES/KVL: A key-value locking method for concurrency control
of multiaction transactions on B-tree indices,” in Proceedings of the Interna-
tional Conference on Very Large Databases, pp. 392-405, August 1990.

168

[261]

[262]

[263]

[264]

265

266
(267]

[268]

[269]

[270]

[271]

[272]

273

[274]

[275)

[276]

[277]

References

D. R. Morrison, “Patricia: Practical algorithm to retrieve information coded
in alphanumeric,” Journal of the ACM, vol. 15, pp. 514-534, 1968.

S. A. Moyer and V. Sunderam, “Characterizing concurrency control perfor-
mance for the PIOUS parallel file system,” Journal of Parallel and Distributed
Computing, vol. 38, pp. 81-91, October 1996.

J. K. Mullin, “Spiral storage: Efficient dynamic hashing with constant perfor-
mance,” The Computer Journal, vol. 28, pp. 330-334, July 1985.

K. Munagala and A. Ranade, “I/O-complexity of graph algorithms,” in Pro-
ceedings of the ACM-SIAM Symposium on Discrete Algorithms, pp. 687-694,
Baltimore: ACM Press, January 1999.

S. Muthukrishnan, Data Streams: Algorithms and Applications. Vol. 1, issue 2
of Foundations and Trends in Theoretical Computer Science, Hanover, Mass.:
now Publishers, 2005.

G. Navarro, “Indexing text using the Ziv-Lempel trie,” Journal of Discrete
Algorithms, vol. 2, no. 1, pp. 87-114, 2004.

G. Navarro and V. Mékinen, “Compressed full-text indexes,” ACM Computing
Surveys, vol. 39, no. 1, p. 2, 2007.

J. Nievergelt, H. Hinterberger, and K. C. Sevcik, “The grid file: An adaptable,
symmetric multi-key file structure,” ACM Transactions on Database Systems,
vol. 9, pp. 38-71, 1984.

J. Nievergelt and E. M. Reingold, “Binary search tree of bounded balance,”
SIAM Journal on Computing, vol. 2, pp. 33-43, March 1973.

J. Nievergelt and P. Widmayer, “Spatial data structures: Concepts and design
choices,” in Algorithmic Foundations of GIS, (M. van Kreveld, J. Nievergelt,
T. Roos, and P. Widmayer, eds.), pp. 153-197, Springer-Verlag, 1997.

M. H. Nodine, M. T. Goodrich, and J. S. Vitter, “Blocking for external graph
searching,” Algorithmica, vol. 16, pp. 181-214, August 1996.

M. H. Nodine, D. P. Lopresti, and J. S. Vitter, “I/O overhead and parallel
VLSI architectures for lattice computations,” IEEE Transactions on Commu-
nications, vol. 40, pp. 843-852, July 1991.

M. H. Nodine and J. S. Vitter, “Deterministic distribution sort in shared and
distributed memory multiprocessors,” in Proceedings of the ACM Symposium
on Parallel Algorithms and Architectures, pp. 120-129, Velen, Germany: ACM
Press, June—July 1993.

M. H. Nodine and J. S. Vitter, “Greed Sort: An optimal sorting algo-
rithm for multiple disks,” Journal of the ACM, vol. 42, pp. 919-933, July
1995.

P. E. O'Neil, “The SB-tree. An index-sequential structure for high-
performance sequential access,” Acta Informatica, vol. 29, pp. 241-265, June
1992.

J. A. Orenstein, “Redundancy in spatial databases,” in Proceedings of the
ACM SIGMOD International Conference on Management of Data, pp. 294—
305, Portland: ACM Press, June 1989.

J. A. Orenstein and T. H. Merrett, “A class of data structures for associative
searching,” in Proceedings of the ACM Conference on Principles of Database
Systems, pp. 181-190, ACM Press, 1984.

[278]

[279]

[280]

[281]

[282]

[283]

[284]

[285)]

286

[287]

[288]

289

290

[291]

[292]

References 169

M. H. Overmars, The design of dynamic data structures. 1983. Springer-
Verlag.

H. Pang, M. Carey, and M. Livny, “Memory-adaptive external sorts,” in Pro-
ceedings of the International Conference on Very Large Databases, pp. 618—
629, 1993.

H. Pang, M. J. Carey, and M. Livny, “Partially preemptive hash joins,” in
Proceedings of the ACM SIGMOD International Conference on Management
of Data, (P. Buneman and S. Jajodia, eds.), pp. 59-68, Washington, DC: ACM
Press, May 1993.

I. Parsons, R. Unrau, J. Schaeffer, and D. Szafron, “PI/OT: Parallel I/O
templates,” Parallel Computing, vol. 23, pp. 543-570, June 1997.

J. M. Patel and D. J. DeWitt, “Partition based spatial-merge join,” in Pro-
ceedings of the ACM SIGMOD International Conference on Management of
Data, pp. 259-270, ACM Press, June 1996.

D. Pfoser, C. S. Jensen, and Y. Theodoridis, “Novel approaches to the indexing
of moving object trajectories,” in Proceedings of the International Conference
on Very Large Databases, pp. 395-406, 2000.

F. P. Preparata and M. I. Shamos, Computational Geometry. Berlin: Springer-
Verlag, 1985.

O. Procopiuc, P. K. Agarwal, L. Arge, and J. S. Vitter, “Bkd-tree: A dynamic
scalable kd-tree,” in Proceedings of the International Symposium on Spatial
and Temporal Databases, Santorini, Greece: Springer-Verlag, July 2003.

S. J. Puglisi, W. F. Smyth, and A. Turpin, “Inverted files versus suffix arrays
for locating patterns in primary memory,” in Proceedings of the International
Symposium on String Processing Information Retrieval, pp. 122—-133, Springer-
Verlag, 2006.

N. Rahman and R. Raman, “Adapting radix sort to the memory hierarchy,”
in Workshop on Algorithm Engineering and Experimentation, Springer-Verlag,
January 2000.

R. Raman, V. Raman, and S. S. Rao, “Succinct indexable dictionaries with
applications to encoding k-ary trees and multisets,” in Proceedings of the
ACM-SIAM Symposium on Discrete Algorithms, pp. 233-242, ACM Press,
2002.

S. Ramaswamy and S. Subramanian, “Path caching: A technique for optimal
external searching,” in Proceedings of the ACM Conference on Principles of
Database Systems, pp. 25—35, Minneapolis: ACM Press, 1994.

J. Rao and K. Ross, “Cache conscious indexing for decision-support in
main memory,” in Proceedings of the International Conference on Very Large
Databases, (M. Atkinson et al., eds.), pp. 78-89, Los Altos, Cal.: Morgan
Kaufmann, 1999.

J. Rao and K. A. Ross, “Making BT-trees cache conscious in main memory,” in
Proceedings of the ACM SIGMOD International Conference on Management
of Data, (W. Chen, J. Naughton, and P. A. Bernstein, eds.), pp. 475-486,
Dallas: ACM Press, 2000.

E. Riedel, G. A. Gibson, and C. Faloutsos, “Active storage for large-scale
data mining and multimedia,” in Proceedings of the International Conference
on Very Large Databases, pp. 62-73, August 1998.

170

[203]

[294]

[295]
[296]

[297]

298]

[299]
[300]

301]

302]
303]
[304]

[305]

[306]

[307]

308]

[309]

References

J. T. Robinson, “The k-d-b-tree: A search structure for large multidimensional
dynamic indexes,” in Proceedings of the ACM Conference on Principles of
Database Systems, pp. 10-18, ACM Press, 1981.

M. Rosenblum, E. Bugnion, S. Devine, and S. A. Herrod, “Using the SimOS
machine simulator to study complex computer systems,” ACM Transactions
on Modeling and Computer Simulation, vol. 7, pp. 78103, January 1997.

C. Ruemmler and J. Wilkes, “An introduction to disk drive modeling,” IEEE
Computer, pp. 17-28, March 1994.

K. Salem and H. Garcia-Molina, “Disk striping,” in Proceedings of IEEE Inter-
national Conference on Data Engineering, pp. 336-242, Los Angeles, 1986.
S. Saltenis, C. S. Jensen, S. T. Leutenegger, and M. A. Lopez, “Index-
ing the positions of continuously moving objects,” in Proceedings of the
ACM SIGMOD International Conference on Management of Data, (W. Chen,
J. Naughton, and P. A. Bernstein, eds.), pp. 331-342, Dallas: ACM Press,
2000.

B. Salzberg and V. J. Tsotras, “Comparison of access methods for time-
evolving data,” ACM Computing Surveys, vol. 31, pp. 158-221, June
1999.

H. Samet, Applications of Spatial Data Structures: Computer Graphics, Image
Processing, and GIS. Addison-Wesley, 1989.

H. Samet, The Design and Analysis of Spatial Data Structures. Addison-
Wesley, 1989.

V. Samoladas and D. Miranker, “A lower bound theorem for indexing schemes
and its application to multidimensional range queries,” in Proceedings of the
ACM Symposium on Principles of Database Systems, pp. 44-51, Seattle: ACM
Press, June 1998.

P. Sanders, “Fast priority queues for cached memory,” ACM Journal of Exper-
imental Algorithmics, vol. 5, no. 7, pp. 1-25, 2000.

P. Sanders, “Reconciling simplicity and realism in parallel disk models,” Par-
allel Computing, vol. 28, no. 5, pp. 705-723, 2002.

P. Sanders, S. Egner, and J. Korst, “Fast concurrent access to parallel disks,”
Algorithmica, vol. 35, no. 1, pp. 21-55, 2002.

J. E. Savage, “Extending the Hong-Kung model to memory hierarchies,” in
Proceedings of the International Conference on Computing and Combinatorics,
pp- 270281, Springer-Verlag, August 1995.

J. E. Savage and J. S. Vitter, “Parallelism in space-time tradeoffs,” in Advances
in Computing Research, (F. P. Preparata, ed.), pp. 117-146, JAI Press, 1987.
S. W. Schlosser, J. L. Griffin, D. F. Nagle, and G. R. Ganger, “Designing
computer systems with MEMS-based storage,” in Proceedings of the Interna-
tional Conference on Architectural Support for Programming Languages and
Operating Systems, pp. 1-12, November 2000.

K. E. Seamons and M. Winslett, “Multidimensional array I/O in Panda 1.0,”
Journal of Supercomputing, vol. 10, no. 2, pp. 191-211, 1996.

B. Seeger and H.-P. Kriegel, “The buddy-tree: An efficient and robust access
method for spatial data base systems,” in Proceedings of the International
Conference on Very Large Databases, pp. 590-601, 1990.

310

[311]

[312]

313

[314]

[315]

316]

317]
318]

319]

320]

[321]

[322]

[323]

[324]

References 171

M. Seltzer, K. A. Smith, H. Balakrishnan, J. Chang, S. McMains, and
V. Padmanabhan, “File system logging versus clustering: A performance
comparison,” in Proceedings of the Annual USENIX Technical Conference,
pp. 249-264, New Orleans, 1995.

S. Sen, S. Chatterjee, and N. Dumir, “Towards a theory of cache-efficient
algorithms,” Journal of the ACM, vol. 49, no. 6, pp. 828-858, 2002.

R. Shah, P. J. Varman, and J. S. Vitter, “Online algorithms for prefetching
and caching on parallel disks,” in Proceedings of the ACM Symposium on
Parallel Algorithms and Architectures, pp. 255—264, ACM Press, 2004.

R. Shah, P. J. Varman, and J. S. Vitter, “On competitive online read-many
parallel disks scheduling,” in Proceedings of the ACM Symposium on Parallel
Algorithms and Architectures, p. 217, ACM Press, 2005.

E. A. M. Shriver, A. Merchant, and J. Wilkes, “An analytic behavior model
for disk drives with readahead caches and request reordering,” in Procedings
of ACM SIGMETRICS Joint International Conference on Measurement and
Modeling of Computer Systems, pp. 182-191, Madison, Wisc.: ACM Press,
June 1998.

E. A. M. Shriver and M. H. Nodine, “An introduction to parallel I/O models
and algorithms,” in Input/Output in Parallel and Distributed Computer Sys-
tems, (R. Jain, J. Werth, and J. C. Browne, eds.), ch. 2, pp. 31-68, Kluwer
Academic Publishers, 1996.

E. A. M. Shriver and L. F. Wisniewski, “An API for choreographing data
accesses,” Tech. Rep. PCS-TR95-267, Dept. of Computer Science, Dartmouth
College, November 1995.

J. F. Sibeyn, “From parallel to external list ranking,” Technical Report MPI-
1-97-1-021, Max-Planck-Institut, September 1997.

J. F. Sibeyn, “External selection,” Journal of Algorithms, vol. 58, no. 2,
pp. 104-117, 2006.

J. F. Sibeyn and M. Kaufmann, “BSP-like external-memory computation,” in
Proceedings of the Italian Conference on Algorithms and Complexity, pp. 229—
240, 1997.

R. Sinha, S. Puglisi, A. Moffat, and A. Turpin, “Improving suffix array local-
ity for fast pattern matching on disk,” in Proceedings of the ACM SIGMOD
International Conference on Management of Data, Vancouver: ACM Press,
June 2008.

B. Srinivasan, “An adaptive overflow technique to defer splitting in B-trees,”
The Computer Journal, vol. 34, no. 5, pp. 397-405, 1991.

A. Srivastava and A. Eustace, “ATOM: A system for building customized
program analysis tools,” ACM SIGPLAN Notices, vol. 29, pp. 196-205, June
1994.

S. Subramanian and S. Ramaswamy, “The P-range tree: A new data structure
for range searching in secondary memory,” in Proceedings of the ACM-SIAM
Symposium on Discrete Algorithms, pp. 378-387, ACM Press, 1995.

R. Tamassia and J. S. Vitter, “Optimal cooperative search in fractional cas-
caded data structures,” Algorithmica, vol. 15, pp. 154—171, February 1996.

172

325]

[326]

[327]

[328]

329

330]

[331]

[332]

[333]

[334]

[335]

[336]

337]

[338]

[339]

340]

References

“TerraServer-USA: Microsoft’s online database of satellite images,” Available
on the World-Wide Web at http://terraserver.microsoft.com/.

R. Thakur, A. Choudhary, R. Bordawekar, S. More, and S. Kuditipudi,
“Passion: Optimized I/O for parallel applications,” IEEE Computer, vol. 29,
pp. 70-78, June 1996.

“Topologically Integrated Geographic Encoding and Referencing system,
TIGER/Line 1992 datafiles,” Available on the World-Wide Web at
http://www.census.gov/geo/www /tiger/, 1992.

S. Toledo, “A survey of out-of-core algorithms in numerical linear algebra,” in
External Memory Algorithms and Visualization, (J. Abello and J. S. Vitter,
eds.), pp. 161-179, Providence, Rhode Island: American Mathematical Society
Press, 1999.

L. Toma and N. Zeh, “I/O-efficient algorithms for sparse graphs,” in Algo-
rithms for Memory Hierarchies, (U. Meyer, P. Sanders, and J. Sibeyn, eds.),
ch. 5, pp. 85-109, Berlin: Springer-Verlag, 2003.

TPIE User Manual and Reference, “The manual and software distribution,”
available on the web at http://www.cs.duke.edu/TPIE/, 1999.

J. D. Ullman and M. Yannakakis, “The input/output complexity of transitive
closure,” Annals of Mathematics and Artificial Intelligence, vol. 3, pp. 331—
360, 1991.

J. Vahrenhold and K. Hinrichs, “Planar point location for large data sets: To
seek or not to seek,” ACM Journal of Experimental Algorithmics, vol. 7, p. 8,
August 2002.

J. van den Bercken, B. Seeger, and P. Widmayer, “A generic approach to bulk
loading multidimensional index structures,” in Proceedings of the International
Conference on Very Large Databases, pp. 406415, 1997.

M. van Kreveld, J. Nievergelt, T. Roos, and P. Widmayer, eds., Algorithmic
foundations of GIS. Vol. 1340 of Lecture Notes in Computer Science, Springer-
Verlag, 1997.

P. J. Varman and R. M. Verma, “An efficient multiversion access structure,”
IEEFE Transactions on Knowledge and Data Engineering, vol. 9, pp. 391-409,
May—June 1997.

D. E. Vengroff and J. S. Vitter, “Efficient 3-D range searching in external
memory,” in Proceedings of the ACM Symposium on Theory of Computing,
pp- 192201, Philadelphia: ACM Press, May 1996.

D. E. Vengroff and J. S. Vitter, “I/O-efficient scientific computation using
TPIE,” in Proceedings of NASA Goddard Conference on Mass Storage Sys-
tems, pp. 11, 553-570, September 1996.

P. Vettiger, M. Despont, U. Drechsler, U. Diirig, W. Haberle, M. I. Lutwyche,
E. Rothuizen, R. Stutz, R. Widmer, and G. K. Binnig, “The ‘Millipede’ —
more than one thousand tips for future AFM data storage,” IBM Journal of
Research and Development, vol. 44, no. 3, pp. 323-340, 2000.

J. S. Vitter, “Efficient memory access in large-scale computation,” in Proceed-
ings of the Symposium on Theoretical Aspects of Computer Science, pp. 2641,
Springer-Verlag, 1991. Invited paper.

J. S. Vitter, Notes. 1999.

[341]

[342]
[343]

[344]

[345]

346

347]

[348]

349]

350]

351]

352]

353]

354]

[355]

References 173

J. S. Vitter and P. Flajolet, “Average-case analysis of algorithms and data
structures,” in Handbook of Theoretical Computer Science, Volume A: Algo-
rithms and Complezity, (J. van Leeuwen, ed.), ch. 9, pp. 431-524, Elsevier and
MIT Press, 1990.

J. S. Vitter and D. A. Hutchinson, “Distribution sort with randomized
cycling,” Journal of the ACM, vol. 53, pp. 6566—680, July 2006.

J. S. Vitter and P. Krishnan, “Optimal prefetching via data compression,”
Journal of the ACM, vol. 43, pp. 771-793, September 1996.

J. S. Vitter and M. H. Nodine, “Large-scale sorting in uniform memory hier-
archies,” Journal of Parallel and Distributed Computing, vol. 17, pp. 107-114,
1993.

J. S. Vitter and E. A. M. Shriver, “Algorithms for parallel memory I: Two-level
memories,” Algorithmica, vol. 12, no. 2-3, pp. 110-147, 1994.

J. S. Vitter and E. A. M. Shriver, “Algorithms for parallel memory II: Hier-
archical multilevel memories,” Algorithmica, vol. 12, no. 2-3, pp. 148-169,
1994.

J. S. Vitter and M. Wang, “Approximate computation of multidimensional
aggregates of sparse data using wavelets,” in Proceedings of the ACM SIGMOD
International Conference on Management of Data, pp. 193—204, Philadelphia:
ACM Press, June 1999.

J. S. Vitter, M. Wang, and B. Iyer, “Data cube approximation and his-
tograms via wavelets,” in Proceedings of the International ACM Conference
on Information and Knowledge Management, pp. 96-104, Washington, DC:
ACM Press, November 1998.

M. Wang, B. Iyer, and J. S. Vitter, “Scalable mining for classification rules in
relational databases,” in Herman Rubin Festschrift, Hayward, CA: Institute
of Mathematical Statistics, Fall 2004.

M. Wang, J. S. Vitter, L. Lim, and S. Padmanabhan, “Wavelet-based cost
estimation for spatial queries,” in Proceedings of the International Sympo-
sium on Spatial and Temporal Databases, pp. 175—196, Redondo Beach, Cal.:
Springer-Verlag, July 2001.

R. W. Watson and R. A. Coyne, “The parallel I/O architecture of the high-
performance storage system (HPSS),” in Proceedings of the IEEE Symposium
on Mass Storage Systems, pp. 2744, September 1995.

P. Weiner, “Linear pattern matching algorithm,” in Proceedings of the IEEE
Symposium on Switching and Automata Theory, pp. 1-11, 1973.

K.-Y. Whang and R. Krishnamurthy, “Multilevel grid files — a dynamic hier-
archical multidimensional file structure,” in Proceedings of the International
Symposium on Database Systems for Advanced Applications, pp. 449-459,
World Scientific Press, 1992.

D. E. Willard and G. S. Lueker, “Adding range restriction capability to
dynamic data structures,” Journal of the ACM, vol. 32, no. 3, pp. 597617,
1985.

I. H. Witten, A. Moffat, and T. C. Bell, Managing Gigabytes: Compressing
and Indexing Documents and Images. Los Altos, Cal.: Morgan Kaufmann,
2nd ed., 1999.

174

[356]

[357]

[358]

359]

360]
361]
362]

363]

364]

365]

References

O. Wolfson, P. Sistla, B. Xu, J. Zhou, and S. Chamberlain, “DOMINO:
Databases for moving objects tracking,” in Proceedings of the ACM SIGMOD
International Conference on Management of Data, pp. 547-549, Philadelphia:
ACM Press, June 1999.

D. Womble, D. Greenberg, S. Wheat, and R. Riesen, “Beyond core: Making
parallel computer I/O practical,” in Proceedings of the DAGS Symposium on
Parallel Computation, pp. 56—63, June 1993.

C. Wu and T. Feng, “The universality of the shuffle-exchange network,” IEEE
Transactions on Computers, vol. C-30, pp. 324-332, May 1981.

Y. Xia, S. Prabhakar, S. Lei, R. Cheng, and R. Shah, “Indexing continuously
changing data with mean-variance tree,” in Proceedings of the ACM Sympo-
sium on Applied Computing, pp. 52-57, ACM Press, March 2005.

A. C. Yao, “On random 2-3 trees,” Acta Informatica, vol. 9, pp. 159-170,
1978.

S. B. Zdonik and D. Maier, eds., Readings in object-oriented database systems.
Morgan Kauffman, 1990.

N. Zeh, I/O-Efficient Algorithms for Shortest Path Related Problems. PhD
thesis, School of Computer Science, Carleton University, 2002.

W. Zhang and P.-A. Larson, “Dynamic memory adjustment for external
mergesort,” in Proceedings of the International Conference on Very Large
Databases, pp. 376-385, 1997.

B. Zhu, “Further computational geometry in secondary memory,” in Proceed-
ings of the International Symposium on Algorithms and Computation, pp. 514—
522, Springer-Verlag, 1994.

J. Ziv and A. Lempel, “Compression of individual sequences via variable-rate
coding,” IEEE Transactions on Information Theory, vol. 24, pp. 530-536,
September 1978.

	Cover
	BookText

