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ABSTRACT 

There is a quiet revolution in the web application area. 

Instead of using hundreds of heavy web-servers in 

expansive server farms, only one powerful server is 

used for the black Friday super-business at companies 

like Walmart. The secret behind it is the base software 

that is being used: a JavaScript engine called NodeJS 

for server applications. In contrast to heavy weight 

multitasking procedures of the operating systems with a 

maximum of about 200 processes at one time, NodeJS 

uses its own light weight multitasking in combination 

with Google´s performance optimized JavaScript-V8 

engine  with up to 1 Million processes on the same 

machine. 

This paper analyses the options for using this 

multitasking power for discrete simulation. The 

additional benefit of using JavaScript on a webserver is 

the easy integration in web-oriented environments.   

 

Keywords: NodeJS, JavaScript (JS), light weight 

multitasking, web-based JavaScript environments  

 

1. INTRODUCTION 

The web community is seeing a dramatic change:  

nearly all web companies focus on the new JavaScript 

(JS) options on the server and develop new JS-

frameworks for all needs like visualization, data 

handling and 3D-design. The first time in web history 

there is no programming break between the browser 

client and the server. By using the JS-framework 

NodeJS JS-code is implemented both on the browser 

and the client. So there is just one code base for both 

sides. 

An additional benefit is the high performance of the 

whole system.  In contrast to heavy weight multitasking 

procedures of the operating systems with a maximum of 

about 200 processes at one time, NodeJS uses its own 

light weight multitasking in combination with Google´s 

performance optimized JS-V8 engine with up to 1 

Million processes on the same machine. It was reported 

that Walmart´s extreme black-Friday business was done 

by only one powerful server machine instead of a large 

computer farm (Pasqual 2015). Because this saves some 

millions of dollars, this technology will quickly emerge 

on all other web servers and big web solutions.  

The power behind the NodeJS is the new developed V8-

engine from Google. When this engine was put to work 

for the first time in 2010, it impressed the community 

with the speed of the JavaScript inside the bowser.  

 

Instead of drawing the menus of some big web 

application like TYPO3 step by step, all the menus and 

backend options were shown at the same time; it was a 

visible performance jump of about 1000%. 

The secret behind this performance jump is the 

optimized V8-JS-compiler from Google (see (Daniel 

Clifford, 2012)).  

 
Figure 1: The performance Jump of Googles V8-engine   

 

There is a long list of details, how to use the optimizing 

compiler in the correct way. In the best case with all 

optimizations active, the speed of the interpreted 

JavaScript program is nearly the same (only -17%) as a 

compiled C++-program. This was never achieved 

before and is the cause for the quiet revolution in 

computer science, especially in web-based apps.  

 

2. NODEJS  

The JavaScript based Node.js (here NodeJS) engine for 

server applications was built since 2010. NodeJS uses 

an event-driven, non-blocking I/O model that makes it 

lightweight and efficient (see (NodeJS 2016) for 

details). The further development of NodeJS has been 

managed since 2015 by the NodeJS Foundation which 

involves all big and important computer companies. So 

the future and full acknowledgement and support of 

NodeJS in the whole computer science community is 

nearly 100% guaranteed.  

 

2.1. Code efficiency of NodeJS  

 

NodeJS is not only powerful in the time dimension. The 

coding efficiency is also very high. The following code 

example form the Node.js homepage is all that is 

needed for a high-performance HTTP-webserver. 
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Figure 2: A simple HTPP-Server under Node.js  

 

In addition, there is a very powerful package manager 

for Node.js, called npm.  It helps to install additional 

Node.js modules from the global npm registry and 

manages their life-cycle with updates and solving 

dependencies from other packages.  

 

 

3. IMPLEMENTING THE NODE-SIMULATOR  

 

3.1. Basic architecture  

 

The main task of the Node.js-engine and framework is 

the implementation of the light-weight multitasking 

environment for a large number of concurrent processes 

– the same task that a discrete simulator has.  

In NodeJS the task is completed by a non-blocking 

layer below the main programming level. While an IO-

device-access will take some time, NodeJS switches 

automatically to the next pending process. As a result of 

this event-driven programming, which is very 

different from the well-known simulation procedural 

sequential programming, the structure of a JavaScript 

NodeJS-based software is very different. The main 

architecture of NodeJS is shown in fig. 1. (NodeJS  

2016) 
 

 
Figure 3: The NodeJS-Architecture (NodeJS 2016) 

 

NodeJS is a combination of a number of C++-

programmed basic modules, which could also be 

extended by new, user specific C++-modules and the 

JavaScript-application code above.  

3.2. Typical code structures in NodeJS 

 

As a result of the event-driven programming paradigm 

the structure of a simulation oriented program is 

different from the programming in procedural oriented 

environments like C++ or SLX.  

According to the new event based programming style 

the code must be divided in two groups; 

Blocking code will delay the further execution of the 

NodeJS-engine and should not be used in NodeJS.  

In PHP or C such code is used for IO-operations or 

longer OS-operations (e.g. waiting for user input).  

In a simulation language like SLX, the corresponding 

blocking code parts use the unconditional time delay  

advance( time) or the conditional time delay  

waituntil( condition). Like in NodeJS, these SLX-

code-parts switch the execution sequence of the 

simulation processes. This is not seen in the code and 

unexperienced SLX-programmers will not understand 

the main underlying function principle of SLX (this is 

often seen in  SLX-beginners courses)  

Both the typical PHP-web program and the code of a 

SLX-program must be converted by the following 

conversion rules (see details in (Howard 2013)): 

1. All non-blocking code can be written in the 

sequence shown before. If the source language 

is C-style compatible, this is done in a very 

similar manner in JavaScript.  

2. Blocking code must be converted to a 

combination of calling the desired blocking 

function with a link to a callback to a function, 

which is called after completion of the time 

consuming task. The call back function is often 

provided below the function call, but can be 

defined also at some other place before.  

By following these conversion rules a standard PHP 

program with some calls to blocking IO-function is 

converted to a chain of NodeJS callbacks (fig. 4). Please 

note that the NodeJS is not a sequential program, but 

the code exits the program after calling each  fs.writef-

function and comes back a long time  later (in processor 

time) to the callback function below the function call.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

    Figure 4:  A PHP to  NodeJS conversion example  

var http = require('http'); 
var static = require('node-static'); 
 
var file = new static.Server(); 
 
http.createServer(function (req, res) { 
file.serve(req, res); 
}).listen(1337, '127.0.0.1'); 
 
console.log('Server running … '); 

// PHP program writing 3 lines of text  
$fp = fopen('fp.txt', 'w'); 
fwrite($fp, 'line1'); 
fwrite($fp, 'line2'); 
fwrite($fp, 'line3'); 
 
// corresponding NodeJS-program  
fs.open('fp.txt', 'w', 0666, function(error, fp) 
{ fs.write(fp, 'line1', null, 'utf-8', function() { 
    fs.write(fp, 'line2', null, 'utf-8', function() { 
     fs.write(fp, 'line3',null,'utf-8',function(){}); 
     }); 
}); // as a sequence of nested callbacks 
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3.3. The simulation code structure  

 

According to the typical code structure of non-blocking 

NodeJS code the resulting code for a simulation with 

delays must be structured in the same way.  Every time 

a simulation process must advance in time – like the 

SLX and GPSS commands advance( time)  or the 

waiting construct in SLX  wait_until( condition),  a 

combination of a corresponding function call with a 

callback function, where the next process steps are 

defined, is necessary. The resulting program code for a 

simulation program for NodeJS is shown in fig. 5.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5:  A typical NodeJS simulation code  

 

The simdis.advance(..) is a function call to a simulation 

specific function from the new simdis-module (see also 

3.4). The second parameter of the function call is a 

nameless call back function, where the code for the 

simulation process after returning from the advance-

waiting time is located.  

The simdis.waituntil() –function is similar. The first 

parameter is also a function call to a predefined function 

(not shown in the code example), where a condition is 

calculated and a Boolean is returned. If the result is true, 

NodeJS will continue the execution to the callback 

function inside the second parameter.  

Actually, this building of a deep nested sequence of 

functions is not very easy and it is very difficult to find 

mistakes. It would therefore be a good idea to generate 

such deep nested code from graphical representations of 

simulation models.  

 

3.4. Implementation of the simulation core 

 

The main task of implementing a simulation scheduler 

under Node.js is to change the common event based 

switching layer to a simulation time controlled module - 

the already well-known discrete future event list 

scheduler (see (Schriber 2013) for details). Instead of 

returning the first finished process after a somewhat 

random timed IO-operation, the new switching module 

will precisely select the next process in simulation time 

from the event list and activates this process. 

All the simulation specific code is located in a new 

module “simdis”, which is loaded in the first program 

line in the example shown above. This module is using 

the same libev-C++-library for scheduling events in 

order to switch from a blocking scheme to a non-

blocking scheme defined by function call and a callback 

function inside. By using this basic library of NodeJS 

the main event loop can also be used for the simulation 

scheduling.   

Although first performance tests were very promising, 

the actual main task is the implementation of very 

efficient future event list modules under JavaScript.  

In the actual version a very simple future event list is 

used for first tests. In the future version a more 

sophisticated event list implementation will be used, in 

order to test the maximal possible runtime speed. This 

task will be done according to well-known scheduling 

strategies with callback-functions like in SLX for 

avoiding a slow polling of conditions in blocking 

conditions. 

It must be noted that that the described scheduling 

technology is based on the main single threaded 

NodeJS-loop which runs only on one core. If there are 

more cores on the hardware, there is a second option for 

distributing processes over different cores. 

 

3.5. Horizontal distribution of processes 

 

According to the web orientation of NodeJS and the 

main focus on high-parallel HTTP-server 

implementations, NodeJS is also able to distribute its 

processes over different processor cores. 

This technology is efficient if the processes do not 

communicate too much with each other, because the 

communication is relatively slow in result of the used 

web-interfaces with TCP/IP or also faster UDP packets. 

The program example is fig. 6 shows a multicore 

simulation, where the simproc() function contains code 

like in fig. 5.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6:  A horizontal process scheduler   

// Single simulation with 2 operation steps   
var simdis = require('./simdis');//sim modul 
console.log("Start SimPro " + simprocID); 
// advance to start time of process 
simdis.advance( simStartTime,  
   function()  // callback to next step 
   {  console.log(simprocID +”:Step1");  
       simdisim.trace(simprocID +”:Step1"); 
       // do the job             
        simdis.waituntil(  simCond2(),    
            function(err) //  next callback  
 { console.log(simprocID + ":Step3"); 
               // and so on … 
 } 
    });   });  // end of nested function calls 
 

// Multicore simulation  
var cluster = require('cluster'); 
var http = require('http'); 
var nCPUs = require('os').cpus().length; 
 
if(cluster.isMaster)  
 { console.log("Starting Master process" ); 
   console.log("Sim on CPUs = " + nCPUs);   
     for(var i = 0; i < numCPUs; i++) 
  {  cluster.fork();  } 
   } 
if(cluster.isWorker) 
{ console.log("Sim " + cluster.worker.id); 
     simproc(cluster.worker.id); 
} 
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One option for avoiding any communication by the 

distributed process is the so called Hyper computing 

simulation, where each single Node-process on every 

core executes a full version of a simulation task. Only 

the results of each simulation are transferred to a main 

controlling module on single core, which collects all 

results and generates the statistics and final report for all 

replications. 

 

3.6. General performance issues under JS  

 

JavaScript itself was long known as a slow interpreted 

language inside web browsers. In general this is still 

true, because JavaSript is still an interpreted language, 

which is not compiled before runtime. But the V8-

engine for Google changed the situation. The V8-

interpreter is a highly sophisticated system, which tries 

to start the execution of the JS-program very quickly, 

but during the execution checks the code more closely 

and generates native code for the existing processor. 

This native code generation depends heavily on some 

race conditions.  The most important is the constant 

usage of the same type definitions over the sub-function 

calls. Because JS is not strongly typed, it is possible to 

call a function with very different variable types. In 

such a case the generated native code will be 

invalidated and the performance falls back to an 

interpreted very slow level. Because the web 

community is also interested in a very high overall 

performance of a NodeJS based web server, there are a 

lot of monitoring and testing tools for analyzing the 

code and its behavior (see the book “Deploying 

Node.js” (Pasqual 2015)). 

 

 

3.7. Extending and running the simulation system   

 

The supporting functions for a simulation environment 

like graphical presentation of results, database import 

and export interfaces, connections to other TCP/IP 

based interfaces like web-services are already ready to 

use from a large number of libraries like JQuery, 

AngularJs and D3.js.  

NodeJS can run on nearly all OS without any special 

requirements. The Node.js-environment is free and 

perfectly prepared for a new style of web-based 

simulation. It could be expected that large cloud service 

providers like Amazon and Google will provide Node.js 

based cloud services in the near future. The new 

NodeSim will perfectly fit into this cloud environment 

and this will open new dimensions to the simulation 

community for joint development and usage of a very 

modern and open simulation framework. 

Like the actual quiet revolution in web oriented 

development, this could also lead to new horizons in 

discrete simulation.  

 

 

 

4. OUTLOOK TO THE FUTURE USAGE OF JS 

IN SIMULATION 

 

Until now, most universal cloud providers like 

Microsoft´s Azure, Google and Amazon offer only 

execution options for well understood code for their 

sites in result of security limitation. The reason is that it 

is very critical for the cloud provider to understand 

native machine code delivered from unknown cloud 

users. They therefore allow only .NET-based code with 

a well-defined set of .NET commands or very similar 

Java-bytecode. 

As a result of this security barrier no well-known 

complex simulation environments like SLX, Enterprise 

Dynamics can be executed on a common cloud system. 

(Of course it is possible to rent a full user-defined cloud 

server with full OS-access and to install this software, 

but this very expensive and not much better than a set of 

existing PC´s).  

JavaScript and NodeJS will change this situation. 

Because JS is a interpreted language, the user must 

deliver the source code and the cloud provider can 

check this against its security rules.  The V8-engine will 

then compile and optimize this code to native code for 

the available hardware, so there is no disadvantage 

against compiled code in the future. Future work will 

analyze the real parameters on cloud solutions and will 

try to use some big existing cloud systems.  
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