
USING NODEJS FOR DISCRETE SIMULATION

 IN A WEB-BASED ENVIRONMENT

Thomas Wiedemann
(a)

(a)

University of Applied Science Dresden, Germany

(a)

wiedem@informatik-htw-dresden.de,

ABSTRACT

There is a quiet revolution in the web application area.

Instead of using hundreds of heavy web-servers in

expansive server farms, only one powerful server is

used for the black Friday super-business at companies

like Walmart. The secret behind it is the base software

that is being used: a JavaScript engine called NodeJS

for server applications. In contrast to heavy weight

multitasking procedures of the operating systems with a

maximum of about 200 processes at one time, NodeJS

uses its own light weight multitasking in combination

with Google´s performance optimized JavaScript-V8

engine with up to 1 Million processes on the same

machine.

This paper analyses the options for using this

multitasking power for discrete simulation. The

additional benefit of using JavaScript on a webserver is

the easy integration in web-oriented environments.

Keywords: NodeJS, JavaScript (JS), light weight

multitasking, web-based JavaScript environments

1. INTRODUCTION

The web community is seeing a dramatic change:

nearly all web companies focus on the new JavaScript

(JS) options on the server and develop new JS-

frameworks for all needs like visualization, data

handling and 3D-design. The first time in web history

there is no programming break between the browser

client and the server. By using the JS-framework

NodeJS JS-code is implemented both on the browser

and the client. So there is just one code base for both

sides.

An additional benefit is the high performance of the

whole system. In contrast to heavy weight multitasking

procedures of the operating systems with a maximum of

about 200 processes at one time, NodeJS uses its own

light weight multitasking in combination with Google´s

performance optimized JS-V8 engine with up to 1

Million processes on the same machine. It was reported

that Walmart´s extreme black-Friday business was done

by only one powerful server machine instead of a large

computer farm (Pasqual 2015). Because this saves some

millions of dollars, this technology will quickly emerge

on all other web servers and big web solutions.

The power behind the NodeJS is the new developed V8-

engine from Google. When this engine was put to work

for the first time in 2010, it impressed the community

with the speed of the JavaScript inside the bowser.

Instead of drawing the menus of some big web

application like TYPO3 step by step, all the menus and

backend options were shown at the same time; it was a

visible performance jump of about 1000%.

The secret behind this performance jump is the

optimized V8-JS-compiler from Google (see (Daniel

Clifford, 2012)).

Figure 1: The performance Jump of Googles V8-engine

There is a long list of details, how to use the optimizing

compiler in the correct way. In the best case with all

optimizations active, the speed of the interpreted

JavaScript program is nearly the same (only -17%) as a

compiled C++-program. This was never achieved

before and is the cause for the quiet revolution in

computer science, especially in web-based apps.

2. NODEJS

The JavaScript based Node.js (here NodeJS) engine for

server applications was built since 2010. NodeJS uses

an event-driven, non-blocking I/O model that makes it

lightweight and efficient (see (NodeJS 2016) for

details). The further development of NodeJS has been

managed since 2015 by the NodeJS Foundation which

involves all big and important computer companies. So

the future and full acknowledgement and support of

NodeJS in the whole computer science community is

nearly 100% guaranteed.

2.1. Code efficiency of NodeJS

NodeJS is not only powerful in the time dimension. The

coding efficiency is also very high. The following code

example form the Node.js homepage is all that is

needed for a high-performance HTTP-webserver.

Proceedings of the European Modeling and Simulation Symposium, 2016
978-88-97999-76-8; Bruzzone, Jiménez, Longo, Louca and Zhang Eds.

334

mailto:wiedem@informatik-htw-dresden.de

Figure 2: A simple HTPP-Server under Node.js

In addition, there is a very powerful package manager

for Node.js, called npm. It helps to install additional

Node.js modules from the global npm registry and

manages their life-cycle with updates and solving

dependencies from other packages.

3. IMPLEMENTING THE NODE-SIMULATOR

3.1. Basic architecture

The main task of the Node.js-engine and framework is

the implementation of the light-weight multitasking

environment for a large number of concurrent processes

– the same task that a discrete simulator has.

In NodeJS the task is completed by a non-blocking

layer below the main programming level. While an IO-

device-access will take some time, NodeJS switches

automatically to the next pending process. As a result of

this event-driven programming, which is very

different from the well-known simulation procedural

sequential programming, the structure of a JavaScript

NodeJS-based software is very different. The main

architecture of NodeJS is shown in fig. 1. (NodeJS

2016)

Figure 3: The NodeJS-Architecture (NodeJS 2016)

NodeJS is a combination of a number of C++-

programmed basic modules, which could also be

extended by new, user specific C++-modules and the

JavaScript-application code above.

3.2. Typical code structures in NodeJS

As a result of the event-driven programming paradigm

the structure of a simulation oriented program is

different from the programming in procedural oriented

environments like C++ or SLX.

According to the new event based programming style

the code must be divided in two groups;

Blocking code will delay the further execution of the

NodeJS-engine and should not be used in NodeJS.

In PHP or C such code is used for IO-operations or

longer OS-operations (e.g. waiting for user input).

In a simulation language like SLX, the corresponding

blocking code parts use the unconditional time delay

advance(time) or the conditional time delay

waituntil(condition). Like in NodeJS, these SLX-

code-parts switch the execution sequence of the

simulation processes. This is not seen in the code and

unexperienced SLX-programmers will not understand

the main underlying function principle of SLX (this is

often seen in SLX-beginners courses)

Both the typical PHP-web program and the code of a

SLX-program must be converted by the following

conversion rules (see details in (Howard 2013)):

1. All non-blocking code can be written in the

sequence shown before. If the source language

is C-style compatible, this is done in a very

similar manner in JavaScript.

2. Blocking code must be converted to a

combination of calling the desired blocking

function with a link to a callback to a function,

which is called after completion of the time

consuming task. The call back function is often

provided below the function call, but can be

defined also at some other place before.

By following these conversion rules a standard PHP

program with some calls to blocking IO-function is

converted to a chain of NodeJS callbacks (fig. 4). Please

note that the NodeJS is not a sequential program, but

the code exits the program after calling each fs.writef-

function and comes back a long time later (in processor

time) to the callback function below the function call.

 Figure 4: A PHP to NodeJS conversion example

var http = require('http');
var static = require('node-static');

var file = new static.Server();

http.createServer(function (req, res) {
file.serve(req, res);
}).listen(1337, '127.0.0.1');

console.log('Server running … ');

// PHP program writing 3 lines of text
$fp = fopen('fp.txt', 'w');
fwrite($fp, 'line1');
fwrite($fp, 'line2');
fwrite($fp, 'line3');

// corresponding NodeJS-program
fs.open('fp.txt', 'w', 0666, function(error, fp)
{ fs.write(fp, 'line1', null, 'utf-8', function() {
 fs.write(fp, 'line2', null, 'utf-8', function() {
 fs.write(fp, 'line3',null,'utf-8',function(){});
 });
}); // as a sequence of nested callbacks

Proceedings of the European Modeling and Simulation Symposium, 2016
978-88-97999-76-8; Bruzzone, Jiménez, Longo, Louca and Zhang Eds.

335

3.3. The simulation code structure

According to the typical code structure of non-blocking

NodeJS code the resulting code for a simulation with

delays must be structured in the same way. Every time

a simulation process must advance in time – like the

SLX and GPSS commands advance(time) or the

waiting construct in SLX wait_until(condition), a

combination of a corresponding function call with a

callback function, where the next process steps are

defined, is necessary. The resulting program code for a

simulation program for NodeJS is shown in fig. 5.

Figure 5: A typical NodeJS simulation code

The simdis.advance(..) is a function call to a simulation

specific function from the new simdis-module (see also

3.4). The second parameter of the function call is a

nameless call back function, where the code for the

simulation process after returning from the advance-

waiting time is located.

The simdis.waituntil() –function is similar. The first

parameter is also a function call to a predefined function

(not shown in the code example), where a condition is

calculated and a Boolean is returned. If the result is true,

NodeJS will continue the execution to the callback

function inside the second parameter.

Actually, this building of a deep nested sequence of

functions is not very easy and it is very difficult to find

mistakes. It would therefore be a good idea to generate

such deep nested code from graphical representations of

simulation models.

3.4. Implementation of the simulation core

The main task of implementing a simulation scheduler

under Node.js is to change the common event based

switching layer to a simulation time controlled module -

the already well-known discrete future event list

scheduler (see (Schriber 2013) for details). Instead of

returning the first finished process after a somewhat

random timed IO-operation, the new switching module

will precisely select the next process in simulation time

from the event list and activates this process.

All the simulation specific code is located in a new

module “simdis”, which is loaded in the first program

line in the example shown above. This module is using

the same libev-C++-library for scheduling events in

order to switch from a blocking scheme to a non-

blocking scheme defined by function call and a callback

function inside. By using this basic library of NodeJS

the main event loop can also be used for the simulation

scheduling.

Although first performance tests were very promising,

the actual main task is the implementation of very

efficient future event list modules under JavaScript.

In the actual version a very simple future event list is

used for first tests. In the future version a more

sophisticated event list implementation will be used, in

order to test the maximal possible runtime speed. This

task will be done according to well-known scheduling

strategies with callback-functions like in SLX for

avoiding a slow polling of conditions in blocking

conditions.

It must be noted that that the described scheduling

technology is based on the main single threaded

NodeJS-loop which runs only on one core. If there are

more cores on the hardware, there is a second option for

distributing processes over different cores.

3.5. Horizontal distribution of processes

According to the web orientation of NodeJS and the

main focus on high-parallel HTTP-server

implementations, NodeJS is also able to distribute its

processes over different processor cores.

This technology is efficient if the processes do not

communicate too much with each other, because the

communication is relatively slow in result of the used

web-interfaces with TCP/IP or also faster UDP packets.

The program example is fig. 6 shows a multicore

simulation, where the simproc() function contains code

like in fig. 5.

Figure 6: A horizontal process scheduler

// Single simulation with 2 operation steps
var simdis = require('./simdis');//sim modul
console.log("Start SimPro " + simprocID);
// advance to start time of process
simdis.advance(simStartTime,
 function() // callback to next step
 { console.log(simprocID +”:Step1");
 simdisim.trace(simprocID +”:Step1");
 // do the job
 simdis.waituntil(simCond2(),
 function(err) // next callback
 { console.log(simprocID + ":Step3");
 // and so on …
 }
 }); }); // end of nested function calls

// Multicore simulation
var cluster = require('cluster');
var http = require('http');
var nCPUs = require('os').cpus().length;

if(cluster.isMaster)
 { console.log("Starting Master process");
 console.log("Sim on CPUs = " + nCPUs);
 for(var i = 0; i < numCPUs; i++)
 { cluster.fork(); }
 }
if(cluster.isWorker)
{ console.log("Sim " + cluster.worker.id);
 simproc(cluster.worker.id);
}

Proceedings of the European Modeling and Simulation Symposium, 2016
978-88-97999-76-8; Bruzzone, Jiménez, Longo, Louca and Zhang Eds.

336

One option for avoiding any communication by the

distributed process is the so called Hyper computing

simulation, where each single Node-process on every

core executes a full version of a simulation task. Only

the results of each simulation are transferred to a main

controlling module on single core, which collects all

results and generates the statistics and final report for all

replications.

3.6. General performance issues under JS

JavaScript itself was long known as a slow interpreted

language inside web browsers. In general this is still

true, because JavaSript is still an interpreted language,

which is not compiled before runtime. But the V8-

engine for Google changed the situation. The V8-

interpreter is a highly sophisticated system, which tries

to start the execution of the JS-program very quickly,

but during the execution checks the code more closely

and generates native code for the existing processor.

This native code generation depends heavily on some

race conditions. The most important is the constant

usage of the same type definitions over the sub-function

calls. Because JS is not strongly typed, it is possible to

call a function with very different variable types. In

such a case the generated native code will be

invalidated and the performance falls back to an

interpreted very slow level. Because the web

community is also interested in a very high overall

performance of a NodeJS based web server, there are a

lot of monitoring and testing tools for analyzing the

code and its behavior (see the book “Deploying

Node.js” (Pasqual 2015)).

3.7. Extending and running the simulation system

The supporting functions for a simulation environment

like graphical presentation of results, database import

and export interfaces, connections to other TCP/IP

based interfaces like web-services are already ready to

use from a large number of libraries like JQuery,

AngularJs and D3.js.

NodeJS can run on nearly all OS without any special

requirements. The Node.js-environment is free and

perfectly prepared for a new style of web-based

simulation. It could be expected that large cloud service

providers like Amazon and Google will provide Node.js

based cloud services in the near future. The new

NodeSim will perfectly fit into this cloud environment

and this will open new dimensions to the simulation

community for joint development and usage of a very

modern and open simulation framework.

Like the actual quiet revolution in web oriented

development, this could also lead to new horizons in

discrete simulation.

4. OUTLOOK TO THE FUTURE USAGE OF JS

IN SIMULATION

Until now, most universal cloud providers like

Microsoft´s Azure, Google and Amazon offer only

execution options for well understood code for their

sites in result of security limitation. The reason is that it

is very critical for the cloud provider to understand

native machine code delivered from unknown cloud

users. They therefore allow only .NET-based code with

a well-defined set of .NET commands or very similar

Java-bytecode.

As a result of this security barrier no well-known

complex simulation environments like SLX, Enterprise

Dynamics can be executed on a common cloud system.

(Of course it is possible to rent a full user-defined cloud

server with full OS-access and to install this software,

but this very expensive and not much better than a set of

existing PC´s).

JavaScript and NodeJS will change this situation.

Because JS is a interpreted language, the user must

deliver the source code and the cloud provider can

check this against its security rules. The V8-engine will

then compile and optimize this code to native code for

the available hardware, so there is no disadvantage

against compiled code in the future. Future work will

analyze the real parameters on cloud solutions and will

try to use some big existing cloud systems.

REFERENCES

Clifford, D., 2012. Breaking the JavaScript Speed limit

with V8 http://v8-io12.appspot.com/#2 2012

Howard, D.. Node.js for PHP Developers. O’Reilly

Media 2013

NodeJS 2016. https://nodejs.org/en/

Pasquali,S.. Deploying Node.js. Packt Publishing, 2015

Schriber T.,Brunner D., Smith J., 2013. Inside Discrete

Event Simulation Software: How It Works and

Why It Matters. Proceedings of the 2013 Winter

Simulation Conference, Pages 424-438

AUTHORS BIOGRAPHY

THOMAS WIEDEMANN is a professor at the

Department of Computer Science at the University of

Applied Science Dresden (HTWD). He has finished a

study at the Technical University Sofia and a Ph.D.

study at the Humboldt-University of Berlin. His

research interests include simulation methodology, tools

and environments in distributed simulation and

manufacturing processes, intranet solutions and

database applications.

Email: wiedem@informatik.htw-dresden.de

Proceedings of the European Modeling and Simulation Symposium, 2016
978-88-97999-76-8; Bruzzone, Jiménez, Longo, Louca and Zhang Eds.

337

http://v8-io12.appspot.com/#2
mailto:wiedem@informatik.htw-dresden.de

