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Detection and Classification of Acoustic

Scenes and Events
Dan Stowell*, Dimitrios Giannoulis, Emmanouil Benetos, Mathieu Lagrange and Mark D. Plumbley

Abstract

For intelligent systems to make best use of the audio modality, it is important that they can recognise not just

speech and music, which have been researched as specific tasks, but also general sounds in everyday environments.

To stimulate research in this field we conducted a public research challenge: the IEEE Audio and Acoustic Signal

Processing Technical Committee challenge on Detection and Classification of Acoustic Scenes and Events (DCASE).

In this paper we report on the state of the art in automatically classifying audio scenes, and automatically detecting

and classifying audio events. We survey prior work as well as the state of the art represented by the submissions to

the challenge from various research groups. We also provide detail on the organisation of the challenge, so that our

experience as challenge hosts may be useful to those organising challenges in similar domains. We created new audio

datasets and baseline systems for the challenge: these, as well as some submitted systems, are publicly available

under open licences, to serve as benchmark for further research in general-purpose machine listening.
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I. INTRODUCTION

Ever since advances in automatic speech recognition (ASR) were consolidated into working industrial systems

[1], the prospect of algorithms that can describe, catalogue and interpret all manner of sounds has seemed close

at hand. Within ASR, researchers continue to advance recognition quality, in challenging audio conditions such

as distant speech against noisy backgrounds [2]. Elsewhere, advances in Music Information Retrieval (MIR) have

brought us systems that can transcribe the notes and chords in music [3], or identify the track title and artist from

a low-quality sound snippet [4]. However, speech and music are just two of the many types of sound that can be

heard in a typical indoor or outdoor environment. Increasingly, machines deployed in diverse environments can

hear—whether they be mobile phones, hearing aids or autonomous robots—but can they make sense of what they

hear?

Sound is often a useful complement to modalities such as video, carrying information not otherwise present such

as information from speech and birdsong. Sound can also be more convenient to collect, e.g. on a mobile phone.

Information gathered from a semantic audio analysis can be useful for further processing such as robot navigation,

user alerts, or analysing and predicting patterns of events [5]. Beyond listening devices, the same technologies

have applications in cataloguing and searching audio archives, whose digital collections have grown enormously in

recent decades [6]. Audio archives often contain a rich diversity of speech, music, animal sound, urban soundscapes,

ethnographic recordings and more, yet their accessibility currently lags behind that of text archives.

In order to stimulate research in machine listening for general audio environments, in 2012–2013 we organised a

research challenge under the auspices of the IEEE Audio and Acoustic Signal Processing Technical Committee: the

challenge on Detection and Classification of Acoustic Scenes and Events (DCASE). This challenge focused on two

concrete but relatively general types of task that a general machine listening system would carry out: recognising

the general environment type (the acoustic “scene”), and detecting and classifying events occurring within a scene.

These tasks which we describe as “machine listening” tasks can also be considered to come under the umbrella of

computational auditory scene analysis (CASA) [7]. This nomenclature refers back to Bregman’s influential work on

human “auditory scene analysis” capabilities [8], and thus CASA is often taken to imply an approach which aims

either to parallel the stages of processing in human audition, and/or to mimic the observed phenomena of human

audition (which may include illusions such as the “missing fundamental”) [7, Chapter 1]. These human-centric aims

do not directly reflect our goal here, which is to develop systems that can extract semantic information about the

environment around them from audio data.

The purpose of this paper is to give a complete description of the challenge, for two purposes: firstly to acquaint

the reader with the state of the art in machine listening, and secondly to provide guidance and lessons learnt for the

benefit of people running research challenges in future. In the following, we first give some research background

in the topic, and previous challenges that have been conducted in neighbouring areas. Then we give detail on the

experimental design of the tasks we designed, the approach to evaluation, and the data which we collected for

the tasks. We also consider some practicalities in the conduct of the challenge. In Section V we give the results
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of each task in the challenge, results which were first presented at the IEEE WASPAA 2013 conference [9]. We

discuss issues emerging from the results such as the level of task difficulty, and in particular we compare the “live”

and “synthetic” variants of our event detection challenge. Finally we consider the outlook for machine listening

in light of the challenge: the state of the art, future directions indicated, and the contribution that this challenge

has made. We also reflect on the organisational structure of this and other challenges, in relation to issues such as

reproducibility and sustainability.

II. BACKGROUND

In this section we will briefly overview the tasks of acoustic scene classification and detection of sound events

within a scene, both of which have been studied in recent literature. We discuss their relation to other machine

listening tasks, and outline standard approaches taken. We will then discuss recent evaluation campaigns in machine

listening, which set the context for our own campaign.

Acoustic scene classification aims to characterize the acoustic environment of an audio stream by selecting a

semantic label for it [10]. It can be considered as a machine-learning task within the widespread single-label

classification paradigm, in which a set of class labels is provided and the system must select exactly one for

any given input [11, Chapter 1]. It therefore has parallels with audio classification tasks such as music genre

recognition [12] or speaker recognition [13], and with classification tasks in other time-based media such as video.

When classifying time-based media, a key issue is how to analyse temporally-structured data to produce a single

label representing the media object overall. There are two main strategies found in the literature. One is to use

a set of low-level features under a “bag-of-frames” approach, which treats the scene as a single object and aims

at representing it as the long-term statistical distribution of some set of local spectral features. Prevailing among

different features for the approach is the Mel-frequency Cepstral Coefficients (MFCCs) that have been found to

perform quite well [10]. Foote [14] is an early example, comparing MFCC distributions via vector quantisation.

Since then, the standard approach to compare distributions is by constructing a Gaussian Mixture Model (GMM) for

each instance or for each class [10]. The other strategy is to use an intermediate representation prior to classification

that models the scene using a set of higher level features that are usually captured by a vocabulary or dictionary

of “acoustic atoms”. These atoms usually represent acoustic events or streams within the scene which are not

necessarily known a priori and therefore are learned in an unsupervised manner from the data. Sparsity or other

constraints can be adopted to lead to more discriminative representations that subsequently ease the classification

process. An example is the use of non-negative matrix factorization (NMF) to extract bases that are subsequently

converted into MFCCs for compactness and used to classify a dataset of train station scenes [15]. Building upon this

approach, the authors in [16] used shift-invariant probabilistic latent component analysis (SIPLCA) with temporal

constrains via hidden Markov models (HMMs) that led to improvement in performance. In [17] a system is proposed

that uses the matching pursuit algorithm to obtain an effective time-frequency feature selection that are afterwards

used as supplement to MFCCs to perform environmental sound classification.

The goal of acoustic event detection is to label temporal regions within an audio recording, resulting in a symbolic
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description such that each annotation gives the start time, end time and label for a single instance of a specific

event type. It is related in spirit to automatic music transcription [3], and also to speaker diarisation, which similarly

recovers a structured annotation of time segments but focusses on speech “turns” rather than individual events [18].

The majority of work in event detection treats the sound signal as monophonic, with only one event detectable at

a time [19], [20]. In general audio scenes, events may well co-occur, and so polyphonic event detection (allowing

for overlapping event regions) is desirable. However, salient events may occur relatively sparsely and there is value

even in monophonic detection. There has been some work on extending systems to polyphonic detection [21]. Event

detection is perhaps a more demanding task than scene classification, but at the same time heavily intertwined.

For example, information from scene classification can provide supplementary contextual information for event

detection [22]. Many proposed approaches can be found in the literature among which spectrogram factorization

techniques tend to be a regular choice. In [23] a probabilistic latent semantic analysis (PLSA) system, a closely

related approach to NMF, was proposed to detect overlapping sound events. In [20] a convolutive NMF algorithm

applied on a Mel-frequency spectrum was tested on detecting non-overlapping sound events. Finally, a number of

proposed systems focus on the detection and classification of specific sound events from environmental audio scenes

such as speech [24], birdsong [25], musical instrument and other harmonic sounds [26], pornographic sounds [27]

or hazardous events [28].

The issue of polyphony is pertinent to both of the above tasks, since audio scenes are polyphonic (multi-source)

in general. As with music, it is possible to perform some analysis on the audio signal as a whole without considering

polyphony, though it is likely that some benefit can be obtained from considering the component sources that make

up the signal. Such a component-wise analysis is analogous to the auditory streaming that occurs in Bregman’s

model of human audition [8]. In speech recognition applications it can often be assumed that there is one dominant

source that should be the focus for analysis [24], but this is not the case for general audio scenes. One strategy to

handle polyphonic signals is to perform audio source separation, and then to analyse the resulting signals individually

[29], [21]. However, note that the computational equivalent of auditory streaming does not necessarily require a

reconstruction of the individual audio signals—Bregman does not claim that human listeners do this—but could

work with some mid-level representation such as a multisource probabilistic model [30]. Source-separation for

general-purpose audio is still a long way from being a solved problem [31]. For example, the evaluation used in

recent challenges for “speech recognition in multisource environments” did not require submitted algorithms to

perform audio source-separation: evaluation was performed on speech transcription output. Submitted algorithms

generally did not involve a source-separation step, many used spatial or spectral noise suppression in order to focus

on one source rather than separating all sources [32].

In machine listening, public evaluation and benchmarking of systems serves a valuable role. It enables objective

comparison among various proposed systems, and can also be used for studying performance improvements

throughout the years. Many such challenges have been centred on speech. For example, the DARPA EARS Rich

Transcription evaluations (2002–2009) focussed on speaker-diarisation tasks, applied to broadcast news as well as

recordings of meetings [18]. The MIREX challenges (2005–present) evaluated MIR systems for their performance
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on specific musical tasks such as melody transcription or rhythm tracking [33]. The SiSEC challenges (2007–

present) focussed on audio source separation algorithms, both for speech mixtures and for music [31]. The CHiME

challenges (2011, 2013) focussed on speech recognition in noisy multi-source sound environments [2]. None of the

aforementioned challenges directly relates to the general-purpose machine listening tasks we consider here. Some

of them use broadly similar task outlines (e.g. classification, diarisation), but often use domain-specific evaluation

measures (e.g. speech transcription accuracy, audio separation quality). They also attract contributions specialised

to the particular audio domain.

For the present purposes, the most closely-related challenge took place in 2006 and 2007, as part of the CLEAR

evaluations conducted during the CHIL project [34]. Several tasks on audio-only, video-only or multimodal tracking

and event detection were proposed, among them an evaluation on “Acoustic Event Detection and Classification”.

The datasets were recorded during several interactive seminars and contain events related to seminars (speech,

applause, chair moving, etc). From the datasets created for the evaluations, the “FBK-Irst database of isolated

meeting-room acoustic events” has widely been used in the event detection literature; however, the aforementioned

dataset contains only non-overlapping events. The CLEAR evaluations, although promising and innovative at the

time, were discontinued with the end of the CHIL project.

One further related challenge in audiovisual research is TRECVID Multimedia Event Detection, where the focus

is on audiovisual, multi-modal event detection in video recordings [35]. Some researchers have used the audio

extracted from the audiovisual TRECVID data in order to evaluate their systems; however a dataset explicitly

developed for audio challenges would offer a much better evaluation framework since it would be much more

varied with respect to audio.

III. THE CHALLENGE

In the present section we describe the evaluation design for our challenge tasks. Before this, we describe the

requirements gathering process that we conducted, and the considerations that fed into our final designs.

A. Requirements gathering

As described above, the tasks considered in this challenge relate to those explored in previous experimental

studies, and to some degree to those explored in previous evaluation campaigns. There is therefore a body of

literature from which to draw potential task designs. Importantly, however, the task designs were developed through

a period of community discussion, primarily via a public email list. This was crucial to ensure that the designs had

broad relevance to current research, and did not unfairly penalise potential participants. An example of the latter

is in the choice of evaluation measures for event detection: there was a debate about which evaluation measures

were most appropriate, as well as issues such as the appropriate level of granularity in framewise evaluation. It was

this discussion that led to the decision to report three different evaluation measures for event detection (see Section

III-C3). Other issues discussed included annotation data formats, the nature of the synthetic sequences, and the use

of other existing datasets.
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Our motivation was to design challenge tasks which reflected useful general-purpose inferences that could be

made in an everyday audio environment, pertinent to a broad range of machine listening applications. Our focus

was on everyday sounds beyond speech and music, since the latter are already well-studied. We also wished to

design tasks for which performance could be improved without necessarily being overly reliant on other processing

components such as high-quality source separation or ASR. We decided to design challenge tasks separately for

scene classification and for event detection and classification, using data relating to urban and office environments.

Many applications of machine listening relate to processing embodied in a fixed hardware setup, such as a mobile

phone or a robot. This differs from applications such as audio archive analysis, for which a system must be robust to

signal modifications induced by variation of microphones and preprocessing across the dataset [36]. For embodied

machine listening, aspects such as the microphone frequency response will be constant factors rather than random

factors. We chose to design our tasks each with a fixed configuration of recording equipment.

One pertinent question was whether existing data could be used for our evaluation, or whether it would be

important to create new datasets. Previous studies have used relatively small datasets; further, some of these are not

publicly available. Alternatively, online archives such as Freesound hold a large amount of soundscape data.1

However, these vary widely in recording conditions, recording quality and file format [6], [37], and so were

unsuitable for our experimental aim to evaluate systems run with consistent audio front-end. Thus it was important

to make new recordings. This gave us various advantages: as well as allowing us to control conditions such as the

balance of sound types, it also meant that we were able to create private testing data unseen by all participants, to

ensure that there was no inadvertent overfitting to the particulars of the task data. Conversely, it meant we could

release the public data under a liberal open-content licence, as a resource for the research community even beyond

our immediate focus.

Given that everyday sound environments are polyphonic—multiple sound events can occur at the same time—

with varying degrees of density, and given that general audio source separation is still a difficult problem, it was

important to design event detection task(s) so that we could explore the effect of polyphony on event detection

systems. Such systems might be designed with a simplifying monophonic assumption; with source separation used

to feed multiple monophonic analyses; or with full polyphonic inference. There is little data available to suggest how

these different strategies perform as the event density varies. In order to have experimental control over the event

density, we chose two parallel approaches to creating event detection audio data. In one, we made live recordings of

scripted monophonic event sequences in controlled environments. In the other, we made live recordings of individual

events, and synthetically combined these (along with ambient background recordings) into synthetic mixtures with

parametrically controlled polyphony. We describe these approaches further in Section III-C.

In December 2012 we conducted a survey of potential participants to characterise their preferred software plat-

forms. This indicated that most participants wished to use Matlab, Python, R or C/C++ to create their submissions.

However, all of these frameworks come in multiple versions across multiple operating systems, and it can be difficult

1http://freesound.org/
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to ensure that code running on one system will run correctly on another. To minimise the risk of such issues, we

created and published a Linux virtual machine which participants could use during development, and which would

also be the environment used to run the submission evaluations. For this we used VirtualBox software which runs

on all common operating systems, together with a disk image based on Xubuntu 12.10 Linux.2 The disk image

was augmented by adding the public datasets into the home folder, and also by installing Python, R and C/C++,

as well as some common audio-processing toolboxes for each environment. The resulting disk image is available

online from our research repository.3 Due to software licensing constraints we could not include Matlab in the disk

image, and so we handled Matlab-based submissions separately from the virtual machine.

We next describe the finalised design and data collection for the scene classification task, and for the event

detection tasks.

B. Scene classification task (SC)

Acoustic scene classification can be considered as a single-label classification task (see Section II). Alternative

designs are possible, such as classification with hierarchical labels [38], unsupervised clustering of audio scenes,

or multi-label “auto-tagging” [39]. However, single-label classification is the design most commonly seen in prior

literature in acoustic scene recognition [14], [10], [15], [16], [17], and also lends itself to clear evaluation measures.

We therefore designed the SC task as a train/test classification task, of similar design to previous audio classification

evaluations [33].

We created datasets across a pre-selected list of scene types, representing an equal balance of indoor/outdoor

scenes in the London area: bus, busystreet, office, openairmarket, park, quietstreet, restaurant, supermarket, tube,

tubestation. The limitation to the London area was a pragmatic choice, known to participants. We made sure to

sample across a wide range of central and outer London locations, in order to maximise generalisability given

practical constraints. To enable participants to further explore whether machine recognition could benefit from the

stereo field information available to human listeners [7, Chapter 5], we recorded in binaural stereo format using

Soundman OKM II in-ear microphones.

For each scene type, three different recordists (DG, DS, EB) visited a wide variety of locations in Greater

London over a period of months (Summer and Autumn 2012), and in each scene recorded a few minutes of audio.

We ensured that no systematic variations in the recordings covaried with scene type: all recordings were made in

moderate weather conditions, and varying times of day, week and year, and each recordist recorded each scene

type.

We then reviewed the recordings to select 30-second segments that were free of issues such as mobile phone

interference or microphone handling noise (totalling around 50% of the recorded duration), and collated these

segments into two separate datasets: one for public release, and one private set for evaluating submissions. The

2http://virtualbox.org/, http://xubuntu.org/
3http://c4dm.eecs.qmul.ac.uk/rdr/handle/123456789/32
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duration of 30 seconds is comparable with that of other datasets in this topic, and was judged to be long enough

to contain sufficient information in principle to distinguish the classes. The segments are stored as 30-second WAV

files (16 bit, stereo, 44.1 kHz), with scene labels given in the filenames. Each dataset contains 10 examples each

from 10 scene types, totalling 50 minutes of audio per dataset. The public dataset is published online under a

Creative Commons CC-BY licence.4

For the SC task, systems were evaluated with 5-fold stratified cross validation. Our datasets were constructed to

contain a balance of class labels, and so classification accuracy was an appropriate evaluation measure [40]. The

raw classification (identification) accuracy and standard deviation were computed for each algorithm, as well as a

confusion matrix so that algorithm performance could be inspected in more detail.

1) Baseline system for scene classification: The “bag-of-frames” MFCC+GMM approach to audio classification

(see Section II) is relatively simple, and has been criticised for the assumptions it incurs [41]. However, it is quite

widely applicable in a variety of audio classification tasks. Aucouturier and Pachet [10] specifically claim that the

MFCC+GMM approach is sufficient for recognising urban soundscapes but not for polyphonic music (due to the

importance of temporal structure in music). It has been widely used for scene classification among other recognition

tasks, and has served as a basis for further modifications [17]. The model is therefore an ideal baseline for the

Scene Classification task.

Code for the bag-of-frames model has previously been made available for Matlab.5 However, for maximum

reproducibility we wished to provide simple and readable code in a widely-used programming language. The

Python language is very widely used, freely available on all common platforms, and is notable for its emphasis

on producing code that is readable by others. Hence we created a Python script embodying the MFCC+GMM

classification workflow, publicly available under an open-source licence,6 and designed for simplicity and ease of

adaptation [42].

C. Event detection tasks (OL, OS)

For the Event Detection tasks, we addressed the problem of detecting acoustic scenes in an office environment,

making use of existing office infrastructure within Queen Mary University of London, and also providing a contin-

uation of the CLEAR evaluations [43], which also addressed the task of event detection in an office environment. In

order to encourage wide participation, and also to explore the challenge of polyphonic audio scenes, we designed

two subtasks: event detection of non-overlapping sounds (Event Detection - Office Live) and event detection of

overlapping sounds (Event Detection - Office Synthetic). In both cases, systems are required to detect predominant

events in the presence of background noise.

4http://c4dm.eecs.qmul.ac.uk/rdr/handle/123456789/29
5http://www.jj-aucouturier.info/projects/mir/boflib.zip
6http://code.soundsoftware.ac.uk/projects/smacpy
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1) Recorded Dataset (OL): After a consultation period with members of the acoustic signal processing com-

munity, for the Event Detection - Office Live (OL) task we created recordings of office scenes, consisting of the

following 16 classes: door knock, door slam, speech, laughter, clearing throat, coughing, drawer, printer, keyboard

click, mouse click, object (pen, pencil, marker) on table surface, switch, keys (put on table), phone ringing, short

alert (beep) sound, page turning.

Recordings were made in a number of office environments at Queen Mary University of London, using rooms of

different size and with varying noise level or number of people in the room. We created three datasets: a training, a

development, and a test dataset. Training recordings consisted of instantiations of individual events for every class.

The development (validation) and test datasets consist of roughly 1min long recordings of scripted every-day audio

events. Scripts were created by random ordering of event types; we recruited a variety of participants to perform

the scripts. For each script, multiple takes were used, and we selected the best take as the one having the least

amount of unscripted background interference. Overall, the OL training dataset includes 24 recordings of individual

sounds per class; the development dataset includes 3 recordings of scripted sequences; and the test set consists of

11 scripted recordings (the recording environments in the development and test datasets are non- overlapping).

Regarding equipment, recordings were made using a Soundfield microphone system, model SPS422B, able

to capture 4-channel sound in B-format. The 4-channel recordings were converted to stereo (using the common

“Blumlein pair” configuration). B-format recordings were stored along with the stereo recordings, with scope for

future challenges to be extended to full B-format and take into account spatial information.

Given the inherent ambiguity in the annotation process (especially for annotating offsets), we created two sets

of annotations. Annotators were trained to use Sonic Visualiser7 to use a combination of listening and inspecting

waveforms/spectrograms to refine the onsets and offsets of each sound event. We then examined the two annotations

per recording for consistency, and performed evaluations using an average of both annotations. The OL training

dataset8 and the development dataset9, both consisting of B-format recordings, stereo recordings, and annotations,

were released under a Creative Commons license.

2) Synthetic Dataset (OS): We also decided that this challenge presented a good opportunity to study the relevance

of considering artificial scenes built from a set of isolated events different from those of the training corpus. Though

we admit that it is important to evaluate machine listening systems using real audio recordings, the potential gains

from using artificial scenes as part of evaluation are numerous: ease of annotation, ability to generate many scenes

with similar properties in order to gain better statistical significance, control of the complexity in terms of events

overlap, strength of the background, etc. This will potentially help the designers of machine listening systems to

better understand the behavior of those systems.

As in other domains, using synthetic data may lead to biased conclusions. It is for example well known that

7http://sonicvisualiser.org/
8http://c4dm.eecs.qmul.ac.uk/rdr/handle/123456789/28
9http://c4dm.eecs.qmul.ac.uk/rdr/handle/123456789/30
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Independent Component Analysis (ICA) approaches in microphone arrays perform really well in separating the

different sources within an additive non-convolutive mixtures because the input signal follows directly the mixture

model assumed by those approaches. Special care was therefore taken in order to minimize the amount of artificial

regularity induced by the generating system that could provide unrealistic benefits to some evaluated machine

listening systems.

The scene synthesizer we considered here is able to create a large set of acoustic scenes from many recorded

instances of individual events. The synthetic scenes are generated by randomly selecting, for each occurrence of

each event we wish to include, one representative excerpt from the natural scenes, then mixing all those samples

over a natural texture-like background with no distinctive sound events. The distribution of events in the scene is

also random, following high-level directives that specify the desired density of events. The average Signal to Noise

Ratio (SNR) of events over the background texture is also specified and is the same for all event types, unlike in

the OL scenes. This is a deliberate decision taken to avoid issues with the annotation of potentially non perceptible

events drowned in the background. In order to avoid issues with artificial spatialization, the recordings of individual

events were mixed down to mono as an initial step.

The resulting development and testing datasets consist of 12 synthetic mono sequences with varying durations,

with accompanying ground-truth annotations. Three subsets were generated with increasing levels of complexity in

terms of event density: 4 recordings have a ‘low’ event density10 of 1.11, 4 recordings have a ‘medium’ event density

of 1.27, and 4 recordings have a ‘high’ event density of 1.81. Three SNR levels of events over the background

texture were used: -6dB, 0dB, and 6dB.

3) Metrics: Following consultation with acoustic signal processing researchers, three types of evaluations were

used for the OL and OS event detection tasks, namely frame-based, event-based, and class-wise event-based

evaluations. Frame-based evaluation was performed using a 10ms step and metrics were averaged over the duration

of the recording. The main metric used for the frame-based evaluation was the acoustic event error rate (AEER)

used in the CLEAR evaluations [43]:

AEER =
D + I + S

N
(1)

where N is the number of events to detect for that specific frame, D is the number of deletions (missing events), I

is the number of insertions (extra events), and S is the number of event substitutions, defined as S = min{D, I}.

Additional metrics include the Precision, Recall, and F-measure (P-R-F). By denoting as r, e, and c the number of

ground truth, estimated and correct events for a given 10ms frame, the aforementioned metrics are defined as:

P =
c

e
, R =

c

r
, F =

2PR

P + R
. (2)

For the event-based metrics, two types of evaluations took place, an onset-only and an onset-offset-based

evaluation. For the onset-only evaluation, each event was considered to be correctly detected if the onset was

10The average event density is calculated using 10ms steps, using only time frames where events are present. For the OL set, the event density

for each recording is by definition 1, because by design events did not overlap.
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within a 100ms tolerance. This tolerance value was agreed during the community discussion via the challenge

mailing list. It was argued that having a tolerance smaller than 100ms would lead to poor results particularly in

the case of ill-defined onsets and offsets for non-percussive events For the onset-offset evaluation, each event was

correctly detected if its onset was within a 100ms tolerance and its offset was within 50% range of the ground

truth event’s offset w.r.t. the duration of the event. Duplicate events were counted as false alarms. The AEER and

P-R-F metrics for both the onset-only and the onset-offset cases were utilised.

Finally, in order to ensure that repetitive events did not dominate the evaluation of an algorithm, class-wise

event-based evaluations were also performed. Compared with the event-based evaluation, the AEER and P-R-F

metrics are computed for each class separately within a recording and then averaged across classes. For example,

the class-wise F-measure is defined as:

F ′ =
1

K

∑
k

Fk (3)

where Fk is the F-measure for events of class k. Matlab code for the metrics can be found online.11

4) Baseline System: We created a baseline system for both event detection tasks based on the non-negative

matrix factorization (NMF) framework. NMF has been shown to be useful for modelling the underlying spectral

characteristics of sources hidden in an acoustic scene [23], and can also support overlapping events, making it

suitable for both the OL and OS tasks. We chose to design a supervised method for event detection, using a

pre-trained dictionary of acoustic events [42].

The baseline method is based on NMF using the Kullback-Leibler divergence as a cost function [44]. As a

time-frequency representation, we used the constant-Q transform with a log-frequency resolution of 60 bins per

octave [45]. The training data is normalized to unity variance and NMF is used to learn a set of N bases for each

class. The numbers of bases tested is 5, 8, 10, 12, 15, 20 and 20i, the latter corresponding to learning individually

one basis per training sample, for all 20 samples. Putting together the sets for all classes we built a fixed dictionary

of bases used subsequently to factorize the normalized input test data

Formally, if we denote as V̂ ∈ RΩ×T the constant-Q spectrogram of a test recording (Ω: number of log-

frequency bins; T : number of time frames), W ∈ RΩ×N the pre-extracted dictionary and H ∈ RN×T , the NMF

model attempts to approximate V as a product of W and H . In the supervised case (when W is known and kept

fixed), this involves simply estimating H iteratively until convergence using the following multiplicative update,

ensuring a non-increasing divergence between V̂ and WH [44]:

H ← H ⊗ WT ((WH)−1 ⊗ V̂ )

WT
(4)

In order to detect sound events, we sum together the (non-binary) activations per class obtained from H . Finally,

a threshold θ is chosen to be applied in order to produce the final class activations. The optimal N and θ values

were chosen empirically by maximizing the F -measure for the two annotations on the development set. Smoothing

11https://code.soundsoftware.ac.uk/projects/aasp-d-case-metrics
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TABLE I

TIMELINE OF DCASE CHALLENGE ORGANISATION. THE TIMELINE IS DIVIDED INTO MAIN PHASES, AND MILESTONES ARE HIGHLIGHTED.

April 2012: Challenge proposed to IEEE AASP

May 2012: Challenge accepted by IEEE AASP

Jun 2012: Initial recordings made, to test equipment and to produce examples for discussion

Jun 2012: Organisers of IEEE WASPAA 2013 agree to host a challenge results special session

Jun–Dec 2012: Roaming recordings for SC task

Jul 2012: ⇒ Call for participation published to various mailing lists; website established

Aug 2012: Challenge publicised in IEEE SPS Newletter

Aug–Sep 2012: Community discussion on dedicated challenge mailing list.

Sep 2012: ⇒ Task design completed

Sep–Oct 2012: Office recordings for OL and OS tasks

Oct–Nov 2012: Ground-truth annotation of OL recordings (external annotators: 2 x 35 hours)

Nov–Dec 2012: Listening sessions to all recordings, to ensure data quality; error-checking and correction of manual annotations

Dec 2012: ⇒ Public release of training/development datasets (audio and annotations)

Dec 2012: Online survey of potential participants (preferred tasks, programming languages, operating systems)

Jan 2013: Create the Linux virtual machine disk image

Jan–Feb 2013: Write paper (EUSIPCO 2013) introducing the tasks and baseline systems

Jan–Feb 2013: Generating synthetic testing dataset for OS task

Jan 2013: ⇒ Publication of finalised task specifications (output formats, eval metrics etc.) as well as virtual machine

Feb 2013: Publication of the scripts used to calculate the evaluation metrics

Feb 2013: Publication of synthetic development dataset for OS task

Feb–Mar 2013: Further community discussion; official confirmation that for OL/OS three separate evaluation metrics will be applied

Mar 2013: Request for participants to email to confirm participation

Apr 2013: ⇒ Deadline for participants to submit code

Apr–May 2013: Running all code submissions – team liaises with authors about software issues etc, compiles result statistics

May 2013: Deadline for participants to submit extended abstracts for WASPAA 2013

May 2013: Results released privately to each participating team

Jun 2013: Write paper (WASPAA 2013) giving results of the challenge

Oct 2013: ⇒ Results released publicly at WASPAA 2013

on the activations was also tested with no clear improvements. The baseline event detection system was made

available to challenge participants under an open-source license.12

D. Challenge organisation

The full timeline for the challenge organisation is given in Table I. Some of the items included of the timeline

will be obvious to an outside observer. However there are some aspects of the timeline and the workload which

we believe merit emphasis:

• There were two periods which required the most time commitment from the organising team: creating the

datasets, and running the code submissions. In particular, as has been remarked by organisers of related

12http://code.soundsoftware.ac.uk/projects/d-case-event
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challenges [33], no matter how many precautions are taken to ensure people submit code that will run on the

organisers’ hardware (formal specifications, published virtual machine), it often requires many person-hours of

attention before submitted code will run properly. This will be discussed further below. Recording the datasets

also took significant time: this was not just the audio recording itself, but also the supervision of annotators,

and the listening sessions and manual inspection to ensure data quality.

• We found it extremely useful to ask people to let us know of their intentions, in order to help us plan. In

December 2012 we surveyed the community for indicative data about the level of interest in task participation,

as well as the preferences for programming languages and operating systems. This information fed directly into

our design of a Linux virtual machine for people to test their code. Then in March 2013 we asked participants

to email us announcing their intentions to take part (with no commitment implied). This enabled us to plan

resources, and to follow up on expected submissions that went astray.

• One aspect of the timeline that could have been improved was the long wait between collating the results and

releasing them publicly. It meant that participants could not compare and contrast results while their systems

were “fresh in their minds”. However, this was due to our decision to co-ordinate with WASPAA 2013, which

was an ideal forum for discussion of the challenge outcomes.

Regarding the execution of code submissions, our publication of a virtual machine as a standard platform certainly

reduced the number of compatibility issues we had to deal with. However, there remained various software issues

we encountered when running the code submissions:

• A frequent issue in Matlab submissions was opening the training annotation text files (for reading) using mode

‘r+’ (which is for reading and writing). This fails when files are read-only. We had set the test data as read-only,

and in the specification we had stated that submissions must not write data in the test folder.

• One submission had been developed using Matlab on Windows; when we ran it using the same version of

Matlab, but on Linux, it got rather poor results, which we initially attributed to overfitting. It later emerged

that the poor performance was because a Matlab toolbox exhibited a bug only when running on Linux.

• On the virtual machine, there were occasional problems with version mismatch between Dynamic Link Libraries

(DLLs). Such issues were reduced but not completely eliminated with the use of the virtual machine, often

because participants did not fully test using the virtual machine, or occasionally added late modifications after

testing.

• One submission output space-separated results rather than tab-separated. This was contrary to the published

specifications but easy to miss in manual checking.

• Some submissions contained subtle bugs in data parsing. One submission accidentally ignored the last line of

every text file it read, meaning that it output 19 decisions for each testing fold rather than 20. This wasn’t

detected early on (because the output was correctly-formatted and could be scored), but only at the point

where an overall confusion matrix was compiled. A different submission involved a script which parsed the

text output from an executable. When the script failed to parse the text, it always decided on the last class in
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TABLE II

SUMMARY OF SUBMITTED SCENE CLASSIFICATION SYSTEMS.

Participants Code Method Lang

Chum et al. [46] CHR Various features at 2 frame sizes, classified either: (a) per-frame SVM + majority

voting; (b) HMM

Matlab

Elizalde [47] ELF Concatenation of 4 different mono mixdowns; “i-vector” analysis of MFCCs, classi-

fied by pLDA

Matlab

Geiger et al. [48] GSR Diverse features, classified within 4-second windows using SVM, then majority voting Weka/

HTK

Krijnders

and ten Holt [49]

KH “Cochleogram” representation, analysed for tonelikeness in each t-f bin, classified by

SVM

Python

Li et al. [50] LTT Wavelets, MFCCs and others, classified in 5-second windows by treebagger, majority

voting

Matlab

Nam et al. [51] NHL Feature learning by sparse RBM, then event detection and max-pooling, classified

by SVM

Matlab

Nogueira et al.

[52]

NR1 MFCCs + MFCC temporal modulations + event density estimation + binaural

modelling features, feature selection, classified by SVM

Matlab

Olivetti [53] OE Normalised compression distance (Vorbis), Euclidean embedding, classified by Ran-

dom Forest

Python

Patil and

Elhilali [54]

PE Auditory representation analysed for spectrotemporal modulations, classified within

one-second windows using SVM, then weighted combination of decision probabilities

Matlab

Rakotomamonjy

and Gasso [55]

RG Computer vision features (histogram of oriented gradient) applied to constant-Q

spectrogram, classified by SVM

Matlab

Roma et al. [56] RNH Recurrence Quantification Analysis applied to MFCC time-series, classified by SVM Matlab

Baseline MFCCs, classified with a bag-of-frames approach Python

Majority Vote MV Majority voting of all submissions Python

the list – failure was only detected in the large number of “tubestation” outputs.

Some of these issues (e.g. the data format issues) could have been prevented by providing unit tests which participants

must pass before submitting.

Earlier in the process, we also encountered a data issue: after we published the development datasets, a community

member on the mailing list alerted us to a formatting error in some of the annotations (the text label doorknock was

used in some places rather than the official label knock). Such issues occur despite the multiple steps of checking

we performed before release. We updated the dataset to correct the issue, re-released it and confirmed this to the

participants.

We required each submitted system to be accompanied by an extended abstract describing the system. We

experienced no issues in publishing these abstracts; however in future evaluations we would consider explicit open-

access licensing of the abstracts for greater clarity.
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TABLE III

SUMMARY OF SUBMITTED EVENT DETECTION SYSTEMS.

Participants Code Method Lang

Chauhan et al.

[57]

CPS Feature extraction - Segmentation - Likelihood ratio test classification Matlab

Diment et al. [58] DHV MFCCs (features) - HMMs (detection) Matlab

Gemmeke et al.

[59]

GVV NMF (detection) - HMMs (postprocessing) Matlab

Niessen et al.

[60]

NVM Hierarchical HMMs + Random Forests (classification) - Meta-classification Matlab

Nogueira et al.

[61]

NR2 MFCCs (features) - SVMs (classification) Matlab

Schröder et al.

[62]

SCS Gabor filterbank features - HMMs (classification) Matlab

Vuegen et al. [63] VVK MFCCs (features) - GMMs (detection) Matlab

Baseline NMF with pre-extracted bases (detection) Matlab

Fig. 1. Schematic of event detection systems (nodes with a * are not systematically used). Below, state-of-the-art design choices are given as

examples.

Pre-processing* Features Classification Post-processing*

denoising MFCCs HMM smoothing

IV. SUBMITTED SYSTEMS

Overall, 11 systems were submitted to the scene classification (SC) task, 7 systems were submitted to the office

live (OL) event detection task, and 3 systems to the office synthetic (OS) event detection task. Variants for each

system were allowed, which increased the total number of systems somewhat.

The systems submitted for the scene classification task are listed in Table II, along with a short description of

each system. Citations are to the extended abstracts giving further technical details about each submission. The

methods for scene classification are discussed further in a tutorial article [65], while in Section V-A we will expand

on some aspects of scene classification methods when considering which approaches led to strong performance.

The systems submitted for the event detection tasks are listed in Table III, along with a short description of each

system. Citations are to the extended abstracts giving further technical details about each submission. Figure 1 shows

the processing chain adopted by the submitted algorithms. The main processing nodes are the feature computation

and the classification for which a variety of implementations are considered. Optionally, the audio data can be

pre-processed for example to reduce the influence of background noise, and the decisions given by the classifiers

can be smoothed to reduce unrealistic transitions between events.

The system designs for each submission are now described:

• CPS: The CPS submission follows a scheme that combines segmentation, feature extraction, and classification.
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Firstly, various frequency-based and time-based features are extracted. The audio stream is subsequently

segmented using a speech segmenter that uses energy-based features. Each segment is then assigned to a

class using a generalised likelihood ratio test classifier.

• DHV: The DHV submission was created for both the OL and OS tasks. It follows a generative classification

scheme using HMMs with multiple Viterbi passes. Firstly, MFCCs are extracted as features, and used as

input to continuous-density HMMs (each state corresponds to an event class, including background noise).

Polyphonic detection is achieved by performing consecutive passes of the Viterbi algorithm.

• GVV: The GVV submission uses a dictionary-based model using NMF. Firstly, a dictionary is created using

samples from training set (called exemplars), using mel-magnitude spectrograms as time-frequency representa-

tions. The input spectrogram is projected onto the dictionary using NMF using the Kullback-Leibler divergence.

The resulting event probability estimates are post-processed using an HMM containing a single state per event.

• NVM: The NVM submission follows a two-step classification scheme. At the first step, a large variety of audio

features that capture temporal, spectral or auto-correlation properties of the signal are fed to two classifiers: a

two-layer HMM and a random forest classifier. Another HMM is then used to combine the predictions.

• NR2: The NR2 submission follows a discriminative classification scheme implemented with support vector

machines (SVMs). The classifier is fed with MFCCs that are computed using either the original signal or

a noise-reduced one. The decisions coming from the classified versions are then combined and smoothed to

reduce short transitions.

• SCS: The SCS submission follows a generative classification scheme with a 2-layer HMM decoding. The

classifier is fed with 2 dimensional Gabor features (Time / Frequency) that allows percussive events to be

nicely modelled. Before feature computation, the audio signal is enhanced using a noise suppression scheme

that estimate the noise power spectral density and remove it in the spectral domain.

• VVK: The VVK submission follows a generative classification scheme with a GMM decoding. GMM models

for each class of events and the background are first trained with MFCCs. The event models are next re-

estimated in order to reduce the impact of background frames on the model likelihoods. At decoding the

likelihoods are smoothed using a moving average filter and thresholded to produce the prediction.

• Baseline: A detailed description of the Baseline system is given in Section III-C.

V. RESULTS

A. SC results

Figure 2 shows the overall performance of submitted systems for the scene classification task. The baseline

system achieved an accuracy of 55%; most systems were able to improve on this, although our significance tests

were able to demonstrate a significant improvement over baseline only for the strongest four systems. The results

indicate that level of difficulty for the task was appropriate: the leading systems were able to improve significantly

upon the baseline, yet the task was far from trivial for any of the submitted systems. Also, the sizes of the error bars

indicate that performance across the five folds was broadly consistent, indicating that the dataset was not overly

November 21, 2014 DRAFT



IEEE TRANS MULTIMEDIA 17

OE ELF KH baseline PE NR NHL CHR GSR RG LTT RNH MV
0

10

20

30

40

50

60

70

80

90

100

Chance level

A
c
c
u

ra
c
y
 (

%
)

H[31]

Fig. 2. Mean values and confidence intervals of the accuracy of methods for SC evaluated on the DCASE private dataset using stratified 5-fold

cross-validation. The boxes enclose methods that cannot be judged to perform differently with a significance level of 95% using a sign test

[64]. For example, GSR > baseline, but we cannot confirm that CHR > baseline. Figure is adapted from [65].

heterogeneous. However, the statistical tests did not demonstrate significant differences between various systems

(depicted by the large overlap of boxes in Figure 2), which implies that a larger dataset may have enabled a more

fine-grained ranking of systems. The results for this SC task are further analysed in a tutorial article [65]. For that

reason, here we discuss briefly the state of the art reflected in the SC task outcomes, allowing us to expand further

on the OL/OS task outcomes in the next section.

The majority of the submitted systems used discriminative training, with many of the strong performers using an

SVM as the final classifier. Further, most of the leading results were obtained by those who captured medium-range

temporal information in the features used for classification. Four of the five highest-scoring systems did this: Roma

et al. [56] captured temporal repetition and similarity using “recurrence quantification analysis”; Rakotomamonjy

and Gasso [55] used gradient features from image-processing; Geiger et al. [48] extracted features from linear

regression over time; Chum et al. [46] trained a HMM. Each of these is a generic statistical model for temporal

evolution, whose fitted parameters can then be used as features for classification.

From the perspective of CASA, it is notable that none of the submitted systems used any kind of decomposition

of each audio scene into auditory streams. We suggest that this is not due to any inherent difficulty in decomposing

audio scenes, since automatic classification does not require “listening-quality” outputs from such preprocessing.

Instead it seems likely that it is more difficult to design a classification workflow that makes use of structured

scene analysis outputs, whose data may for example be sets of labelled intervals rather than time-series statistics.

Two submissions made use of event detection as part of preprocessing, which does yield a structured parse of the

audio scene [51], [52]. Those authors then used summary statistics from the density/strength of event detections
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TABLE IV

AGGREGATE CONFUSION MATRIX FOR SCENE CLASSIFICATION ACROSS ALL SUBMISSIONS. ROWS ARE GROUND TRUTH, COLUMNS THE

INFERRED LABELS. VALUES ARE EXPRESSED AS PERCENTAGES ROUNDED TO THE NEAREST INTEGER.

Label bu
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et
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e
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en

ai
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qu
ie
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ee
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su
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tu
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tu
be
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bus 81 3 0 4 1 0 0 4 6 2

busystreet 1 69 14 2 1 2 1 3 3 5

office 1 0 55 13 9 12 4 3 1 3

openairmarket 1 2 0 59 13 0 9 12 3 2

park 1 1 8 3 51 29 3 2 1 1

quietstreet 0 5 4 3 29 43 9 5 0 1

restaurant 1 1 0 16 5 0 53 21 2 3

supermarket 6 5 6 6 4 7 10 42 7 7

tube 7 7 1 1 2 2 5 3 44 28

tubestation 5 16 1 4 1 2 3 8 19 41

as features. We propose that further refinement and development of this strategy may be a fruitful area for future

work, perhaps via more sophisticated temporal summary statistics such as those noted above.

Also notable is that the submissions with the more perceptually-motivated features—auditory spectrogram [54]

and cochleogram [49]—did not lead to the strongest results. Nor did the unsupervised feature learning of [51]. The

various ways to approach audio feature design—perceptual, acoustic, statistical—each have their merits. Based on

the present evaluation, we note only that the more sophisticated audio features did not yield a decisive advantage

over simpler features.

We tested a simple majority-vote classifier from the pool of SC submissions, constructed by assigning to an audio

recording the label that was most commonly returned by other methods. This attained a strong result, indicated as

“MV” in the figure: 77% accuracy, slightly better than the leading individual submission. The strong performance

of this meta-classifier is particularly notable given its simplicity—all systems are combined with equal weights. It

suggests that for around 77% of soundscapes some algorithms make a correct decision, and the algorithms that make

an incorrect classification do not all agree on one particular incorrect label. This allows to combine the decisions

into a relatively robust meta-classifier. (Note that we did not test for significance of the comparison between MV

and the other results, because the MV output is not independent of the output of the individual submissions.) More

sophisticated meta-classifiers could perhaps extend this performance further [11, Chapter 8].

Table IV shows a confusion matrix for the scene labels as round percentages of the sum of all confusion matrices

for all submissions. Confusions were mostly concentrated over classes that share some acoustical properties such

as park/quietstreet and tube/tubestation. Our labels contained five indoor and five outdoor locations, and both types

showed a similar level of difficulty for the algorithms.
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B. OL/OS results

Results for the event detection OL and OS tasks are summarized in Tables V and VI, respectively. The baseline

was outperformed by most systems for both tasks. Results for the OL task indicate the high level of difficulty in

recognising sound events (from many possible classes, with great variability) from noisy acoustic scenes. The best

performance for the OL task using most types of metrics is achieved by the SCS submission, which used a Gabor

filterbank feature extraction step with by 2-layer hidden Markov models (HMMs) for classifying events, followed

by the NVM submission, which used a meta-classifier combining hierarchical HMMs and random forests. Results

for each event class separately are visualised in Figure 3, where it can be seen that most systems had solid detection

rates for clearing throat, coughing, door knocks and speech, but had weak results for drawers, printers, keyboards

and switches.

Many of the OL/OS methods employed a decomposition step, either expliticly (e.g. GVV) or implicitly (e.g.

DHV), which is of interest from the perspective of CASA (see Section ??). It should be noted that MFCCs were

not proven as useful for the event detection tasks as with the scene classification tasks, with more rich and auditory

model-based representations proving to be more useful (such as Gabor filterbanks and Mel-magnitude spectrograms).

Again, contrary to the SVM-dominated scene classification task, variants of HMMs were proven to be both the

most popular as well as reliable tools for event detection, due to their ability to model timeseries data. Of particular

interest are submissions that were also submitted to the polyphonic OS task, where two systems experimented with

multiple Viterbi passes (DHV, GVV) in order to handle overlapping events.

Regarding statistical significance tests in event detection systems, to the authors’ knowledge no such tests have

been attempted so far in the literature. As has been argued in [16] for the multi-pitch detection problem (which is

structurally similar to sound event detection), indicators of statistical significance are not highly pertinent for multi-

class detection problems: in practice, even a small performance difference can often yield statistical significance.

Detailed system descriptions and detailed results per system can be found on the challenge website.13 However, for

the OL task there was a large enough number of participants that we were able to examine statistically whether

the different metrics tended to rank systems in the same order. A Krusal-Wallis test found a significant agreement

among the OL rankings judged across all evaluation measures (H = 88.4, p = 3.3× 10−14). The only systematic

deviation from consensus among the evaluation metrics was for submission GVV, which was ranked low (9th or

10th) on all F-measures but 3rd or better on all AEER measures.

For the OS task, the best performance in terms of F-measure is achieved by the DHV system, which used an

iterative scheme with HMMs. Overall rates are much lower compared to the OL task, indicating that supporting

overlapping sounds is an open challenge for event detection systems. It should also be noted that submitted

systems performed better for signals with lower polyphony, with the exception of the DHV system, which had

better performance with higher polyphony levels (3.49% frame-based F for low polyphony and 21.18% for high

polyphony). As expected, the onset-offset evaluation produced worse results compared to onset-only evaluation for

13http://c4dm.eecs.qmul.ac.uk/sceneseventschallenge/
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TABLE V

RESULTS FOR THE PARTICIPATING SYSTEMS FOR THE OFFICE LIVE EVENT DETECTION TASK. THE STRONGEST PERFORMANCE

ACCORDING TO EACH METRIC IS HIGHLIGHTED IN BOLD.

Evaluation Method

Event-Based Class-Wise Event-Based Frame-Based

System F (%) Foffset (%) AEER AEERoffset F (%) Foffset (%) AEER AEERoffset F (%) AEER

CPS 2.23 1.65 2.285 2.301 0.65 0.49 1.872 1.891 3.82 2.116

DHV 26.67 22.43 2.519 2.676 30.72 25.29 2.182 2.370 26.0 3.128

GVV 15.52 13.46 1.779 1.831 13.21 12.03 1.556 1.606 31.94 1.084

NVM 1 32.57 24.95 1.864 2.095 29.37 21.80 1.639 1.899 40.85 1.115

NVM 2 34.16 26.28 1.852 2.095 33.05 24.88 1.602 1.877 42.76 1.102

NVM 3 34.51 27.01 1.827 2.052 33.52 24.65 1.575 1.846 45.50 1.212

NVM 4 30.47 24.68 1.906 2.083 28.17 21.62 1.650 1.849 42.86 1.360

NR2 19.21 15.26 3.076 3.244 21.54 17.64 2.857 3.010 34.66 1.885

SCS 1 39.47 36.74 1.669 1.749 36.33 34.20 1.579 1.677 53.02 1.167

SCS 2 45.17 41.06 1.601 1.727 41.51 38.32 1.511 1.646 61.52 1.016

VVK 30.77 25.40 2.054 2.224 24.55 20.36 1.762 1.949 43.42 1.001

Baseline 7.38 1.58 5.900 6.318 9.00 1.86 5.960 6.462 10.72 2.590

TABLE VI

RESULTS FOR THE PARTICIPATING SYSTEMS FOR THE OFFICE SYNTHETIC EVENT DETECTION TASK. THE STRONGEST PERFORMANCE

ACCORDING TO EACH METRIC IS HIGHLIGHTED IN BOLD.

Event-Based Class-Wise Event-Based Frame-Based

System F (%) Foffset (%) AEER AEERoffset F (%) Foffset (%) AEER AEERoffset F (%) AEER

DHV 8.45 6.18 4.741 4.860 9.73 7.58 4.028 4.147 13.08 8.426

GVV 7.69 7.33 1.913 1.920 6.69 6.51 1.584 1.591 10.30 1.553

VVK 5.80 5.28 1.885 1.895 5.10 4.77 1.436 1.445 5.77 2.106

Baseline 4.98 0.24 6.507 6.895 6.69 0.18 5.389 5.782 6.88 3.047

both tasks, although the performance difference is rather small (this may be explained by the percussive nature of

most events).

It is also instructive to look at the correlation between the ranking of systems that were both submitted to the

Office Live and Office Synthetic challenges. It allows us to study the consistency of performance of the evaluated

systems using natural and artificial data. The OL and OS tests are not independent, since they partly use the same

audio source material, but comparing their outcomes gives us an indication of whether the synthesis procedure for

OS had a strong impact on the eventual rankings. Let us consider results achieved using the Class-Wise Event-Based

metrics as they are more resilient to discrepancies between datasets in terms of density of events within the scene.

Apart from a quasi systematic permutation of GVV and VVK systems, the good level of correlation (average of

67% over the 4 metrics in terms of the Spearman’s rank correlation coefficient) indicates that considering artificially

synthesised sound scenes may have some meaning for this kind of task.
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Fig. 3. Event detection (OL) results in class-wise F (%) for each event class separately.

VI. REFLECTIONS AND RECOMMENDATIONS

Before concluding, we wish to draw some reflections out from the above results and from our experience of

managing the DCASE challenge, and to offer some recommendations for future evaluation challenges. Our challenge

comes in the context of a series of challenges coordinated by the IEEE AASP, such as challenges relating to distant

and reverberant speech.14

Our design of the challenge involved participants submitting code, for the organisers to execute against private

datasets. This design, in common with MIREX music audio challenges [33], incurs resource costs as the hosts must

dedicate time to running the submissions. It also requires holding back some private data, which cannot immediately

benefit the community as open data. However it has advantages such as ensuring participants do not overfit to the

14http://www.signalprocessingsociety.org/technical-committees/list/audio-tc/aasp-challenges/
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test data, and ensuring that results are reproducible in the sense of empirically verifying that the submitted software

can be run by a third party.

An interesting point of comparison is provided by the SABIOD machine listening challenges run in 2013 via

the Kaggle website.15 These challenges centered around automatic classification of animal sounds. The mode of

interaction in that case was not to submit code, but to submit system output. Further, participants could iteratively

modify their code and submit updated output, getting feedback in the form of results on a validation dataset. This

does carry some risk of overfitting to the specifics of the challenge, and less direct reproducibility, although the

winning submission was required to be made open-source and confirmed by the hosts. Relative to DCASE, the

SABIOD challenges appeared to encourage a greater amount of ad-hoc participation from independent machine-

learning professionals, perhaps due to the immediate feedback loop made possible by the online system. The

workflows represented by the DCASE and the SABIOD challenges each have their own strengths and weaknesses,

and we look forward to further refinements in public evaluation methodology.

We have enumerated the steps involved in running the DCASE challenge, in particular to highlight the resource

implications for hosting such challenges. Dataset collection and annotation was the main requirement on staff

time. This challenge was not funded explicitly by any project, and so would not have been possible without the

resources made available by a large research group (see Acknowledgments). This includes staff and PhD students

as core organisers, data annotators, programmers assisting with issues such as code and the virtual machine, and

infrastructure such as code- and data-hosting facilities.

In Section III-D we described various steps we took to ensure that the challenge would run smoothly, such as

publishing formal task specifications, baseline code and a virtual machine. This reduced but by no means eliminated

the time required to run and troubleshoot the code submissions received. A clear recommendation that emerges

from this experience is that a formal test for the submitted code to be run at submission time would help greatly.

This could be applied in the form of automated unit testing, or more simply by the challenge organisers running

the submissions using public data and confirming that the results obtained match the results that the submitters

obtained on their own system.

Community involvement was crucial to the successful conduct of this challenge, in particular for discussing the

task specifications, but also for negotiating logistics of submission and discussing the final results. The support of

the IEEE AASP Technical Committee and the IEEE WASPAA 2013 Conference Committee helped us to form this

community.

VII. CONCLUSIONS

With the DCASE challenge we aimed to frame a set of general-purpose machine listening tasks for everyday

audio, in order to benchmark the state of the art, stimulate further work, and grow the research community in

machine listening beyond the domains of speech and music. The challenge results illustrate tasks we designed for

15http://sabiod.univ-tln.fr/
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this had the right level of difficulty for this: none of the tasks was trivial for any submitted system, and a range

of scores was achieved enabling comparison of the advantages and disadvantages of systems. The strong level of

participation from a diverse set of researchers indicates that the tasks were pertinent to current research.

For the scene classification (SC) task, the leading systems attained results significantly above baseline and

comparable to average results from human listeners. A strategy used by many of the strongest systems was to use

feature representations which capture medium-scale temporal information about the sound scene. However there is

still room for improvement beyond the highest-scoring system; we demonstrated this was possible with a simple

majority-vote metaclassifier aggregating the submitted systems, illustrating that there is information yet present in

the audio that can drive stronger performance in future. The best way to improve the SC task in future rounds

would be through larger dataset sizes in order to draw stronger conclusions about the significance of differences

between system performances.

For the event detection (OL/OS) tasks, the leading systems achieved relatively strong performance, although

with substantial scope for improvement. This was particularly evident in the polyphonic OS task, indicating that

polyphony in audio scenes remains a key difficulty for machine learning systems and more development is needed

in this area. However, the class-wise analysis of results also indicates that some event types proved harder to detect

than others, even in the monophonic OL task, indicating that the ability for one system to detect a wide range of

sound types is also a key challenge. Future event detection challenges could be improved with further community

attention to evaluation metrics and their relation to practical requirements. It may also be of value to evaluate

systems explicitly regarding the correlation between their performance and the level of polyphony in a scene.

Regarding the community formed around this research topic, we were very encouraged by the strong level of

participation, and by the decisions of various groups to publish their submitted systems as open-source code. These,

alongside the resources which we published (open-source baseline systems; open datasets; virtual machine disk

image) provide a rich resource for others who may wish to work in this area. The community has set a benchmark,

establishing that leading techinques are able to extract substantial levels of semantic detail from everyday sound

scenes, but with clear room for improvement in future.
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