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Abstract

Let J be the set of inner functions whose derivative lies in the Nevanlinna

class. It is natural to record the critical structure of F ∈ J by the inner

part of its derivative. In this paper, we discuss a natural topology on J

where Fn → F if the Fn converge uniformly on compact subsets to F and

the critical structures of Fn converge to that of F . We show that this occurs

precisely when the critical structures of the Fn are uniformly concentrated

on Korenblum stars. Building on the works of Korenblum and Roberts, we

show that this topology also governs the behaviour of invariant subspaces of a

weighted Bergman space which are generated by a single inner function.

1 Introduction

Let D = {z ∈ C : |z| < 1} be the unit disk and S1 = {z ∈ C : |z| = 1} be the unit

circle. An inner function is a holomorphic self-map of the unit disk such that for

almost every θ ∈ [0, 2π), the radial limit limr→1 F (reiθ) exists and has absolute value

1. Let Inn denote the space of all inner functions and J ⊂ Inn be the subspace

consisting of inner functions which satisfy

lim
r→1

1

2π

∫ 2π

0

log+ |F ′(reiθ)|dθ <∞, (1.1)

that is, with F ′ in the Nevanlinna class. The work of Ahern and Clark [1] implies

that if F ∈J , then F ′ admits an “inner-outer” decomposition

F ′ = InnF ′ ·OutF ′.
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Intuitively, InnF ′ = BS describes the “critical structure” of the map F – the

Blaschke factor records the locations of the critical points of F in the unit disk,

while the singular inner factor describes the “boundary critical structure.” In [9],

the author proved the following theorem, answering a question posed in [5]:

Theorem 1.1. Let J be the set of inner functions whose derivative lies in the

Nevanlinna class. The natural map

F → Inn(F ′) : J /Aut(D)→ Inn / S1

is injective. The image consists of all inner functions of the form BSµ where B is

a Blaschke product and Sµ is the singular factor associated to a measure µ whose

support is contained in a countable union of Beurling-Carleson sets.

The above theorem says that an inner function F ∈ J is uniquely determined

up to a post-composition with a holomorphic automorphism of the disk by its critical

structure and describes all possible critical structures of inner functions. We need

to quotient Inn by the group of rotations since the inner part is determined up to

a unimodular constant. To help remember this, note that Frostman shifts or post-

compositions with elements of Aut(D) do not change the critical set of a function

while rotations do not change the zero set.

By definition, a Beurling-Carleson set E ⊂ S1 is a closed subset of the unit circle

of zero Lebesgue measure whose complement is a union of arcs
⋃
k Ik with

‖E‖BC =
∑
|Ik| log

1

|Ik|
<∞.

We say that E ∈ BC(N) if ‖E‖BC ≤ N . We denote the collection of all Beurling-

Carleson sets by BC.
We will also need the notion of a Korenblum star which is the union of Stolz

angles emanating from a Beurling-Carleson set E ⊂ S1:

KE = B(0, 1/
√

2) ∪
{
z ∈ D : 1− |z| ≤ dist(ẑ, E)

}
.

Here, ẑ = z/|z| while dist denotes the Euclidean distance. With the above definition,

KE ⊂ D is a closed set. We say that the Korenblum star has norm ‖E‖BC.
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We endow J with the topology of stable convergence where Fn → F if the Fn

converge uniformly on compact subsets of the disk to F and the Nevanlinna splitting

is preserved in the limit: InnF ′n → InnF ′, OutF ′n → OutF ′. As observed in [9], in

general, one always has semicontinuity in one direction:

InnF ′ ≥ lim sup(InnF ′n). (1.2)

Loosely speaking, our main result says that to determine InnF ′, one needs to take

the part of the limit of InnF ′n that is “uniformly concentrated” on Korenblum stars.

A precise statement will be given later in the introduction.

Two examples. If Fn is a finite Blaschke product of degree n + 1 which has a

critical point at 1 − 1/n of multiplicity n, and is normalized so that Fn(0) = 0,

F ′n(0) > 0, then the Fn converge to Sδ1 = exp
(
z+1
z−1

)
, the unique inner function with

critical structure Sδ1 . However, if Fn has n critical points (of multiplicity one) which

are sufficiently spread out on the circle {z : |z| = 1−1/n}, then the Fn may converge

to the identity mapping even if InnF ′n → Sδ1 .

1.1 Measures supported on Beurling-Carleson sets

Let MBC(N)(S1) denote the class of finite positive measures that are supported on a

Beurling-Carleson set of norm ≤ N and MBC(S1) denote the collection of measures

supported on a countable union of Beurling-Carleson sets. For a fixed N > 0, the

space MBC(N)(S1) comes equipped with the weak topology of measures. A simple

“normal families” argument shows that it is a closed subset of M(S1), the space all

measures that live on the unit circle, see [7, Lemma 7.6].

We endow MBC(S1) with the inductive limit topology . Roughly speaking, a se-

quence of positive measures µn converges to µ if up to small error, they converge in

MBC(N)(S1). More precisely, for any ε > 0, we want there to exist an N > 0 and a

“dominated” sequence νn → ν such that for all n sufficiently large,

(i) 0 ≤ νn ≤ µn,

(ii) νn ∈MBC(N)(S1),

(iii) (µn − νn)(S1) < ε and (µ− ν)(S1) < ε.
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1.2 Measures supported on Korenblum stars

We say that a finite positive measure on the closed unit disk µ belongs to the space

MBC(N)(D) if its support is contained in a Korenblum star of norm ≤ N , while

µ ∈ MBC(D) if its restriction µ|S1 ∈ MBC(S1). We define the Korenblum topology on

MBC(D) by specifying that a sequence of measures µn → µ converges in MBC(D) if

it does so weakly, and up to small error, for all sufficiently large n, most of the mass

of µn is contained in a Korenblum star KEn with ‖En‖BC ≤ N .

Taking inspiration from the work of Marcus and Ponce [15], we use the word

concentrating for sequences of measures which converge in this topology. We say

that a sequence {µn} ∈MBC(D) is equidiffuse if for any N > 0,

sup
E∈BC(N)

µn(KE)→ 0, as n→∞.

It is not hard to decompose a convergent sequence µn → µ into concentrating and

equidiffuse components (that is, to write µn = τn + νn with τn → τ and νn → ν,

where τn is equidiffuse and νn is concentrating). Even though there are infinitely

many choices for the sequences {τn} and {νn}, the limits τ and ν are uniquely

determined by {µn}. We leave the verification to the reader.

1.3 Embedding of inner functions

To an inner function I, we associate the measure

µ(I) =
∑

(1− |ai|)δai + σ(I), (1.3)

where the sum ranges over the zeros of I (counted with multiplicity) and σ(I) is the

singular measure on the unit circle associated with the singular factor of I. This

gives an embedding Inn / S1 → M(D). We say that the measure µ records the zero

structure of I and write Iµ := I. Clearly, the function Iµ is uniquely determined up

to a rotation.

We can also embed J /Aut(D) → MBC(D) by taking F → µ(InnF ′). This

embedding records the critical structure of F . We use the symbol Fµ to denote an

inner function with InnF ′µ = Iµ and Fµ(0) = 0 (again, such a function is unique up

to a rotation).
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1.4 Main result

We can now state our main theorem:

Theorem 1.2. The embedding J /Aut(D) → MBC(D) is a homeomorphism onto

its image when J /Aut(D) is equipped with the topology of stable convergence and

MBC(D) is equipped with the Korenblum topology. More precisely, if µn → µ in the

weak topology of measures and Fµn → Fν uniformly on compact subsets of the disk,

then we can decompose µn = νn + τn so that νn → ν is concentrating and τn → τ is

equidiffuse.

In fact, our argument gives a slightly stronger result: the sequence νn → ν is

concentrating if and only if the measures νn converge weakly, and up to a small error,

the radial projections of νn to the unit circle are contained in Beurling-Carleson sets

whose norms are uniformly bounded above.

1.5 Connections with the Gauss curvature equation

We now give an alternative (and slightly more general) perspective of our main

theorem in terms of conformal metrics and nonlinear differential equations. Given

a conformal pseudometric λ(z)|dz| on the unit disk with an upper semicontinuous

density, its Gaussian curvature is given by

kλ = −∆ log λ

λ2
,

where the Laplacian is taken in the sense of distributions. It is well known that

the Poincaré metric λD(z) = 1
1−|z|2 has constant curvature −4. For a holomorphic

self-map of the unit disk F ∈ Hol(D,D), consider the pullback

λF := F ∗λD =
|F ′|

1− |F |2
.

Since curvature is a conformal invariant, e.g. see [13, Theorem 2.5], it follows that

kλF = −4− 2π
∑

c∈crit(F )

λF (c)−2 · δc, (1.4)
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where crit(F ) denotes the critical set of F counted with multiplicity. After the change

of variables uF = log λF , we naturally arrive at the PDE

∆u− 4e2u = 2πν̃, ν̃ ≥ 0, (1.5)

where ν̃ =
∑

c∈crit(F ) δc is an integral sum of point masses. A theorem of Liouville

[13, Theorem 5.1] states that the correspondence F → uF is a bijection between

Hol(D,D) /Aut(D) ⇐⇒
{

solutions of (1.5) with ν̃ integral
}
.

This allows us one to translate questions about critical points of holomorphic self-

maps of the disk to problems in PDE.

It turns out that the question of describing inner functions with derivative in the

Nevanlinna class is related to studying the Gauss curvature equation with nearly-

maximal boundary values {
∆u− 4e2u = 2πν̃, in D,
uD − u = µ, on S1,

(1.6)

where uD = log λD is the pointwise maximal solution of (1.5) in the sense that it

dominates all solutions of (1.5) with any ν̃ ≥ 0. In (1.6), we allow ν̃ ∈ M(D) to be

any positive measure on the unit disk which satisfies the Blaschke condition∫
D
(1− |a|)dν̃(a) <∞, (1.7)

and µ ∈M(S1) to be any finite positive measure on the unit circle. The first equality

in (1.6) is understood weakly in the sense of distributions: we require u(z) and e2u(z)

to be in L1
loc(D), and ask that for any test function φ ∈ C∞c (D), compactly supported

in the disk, ∫
D
(u∆φ− 4e2uφ)|dz|2 = 2π

∫
D
φdν̃, (1.8)

while the second equality expresses the fact that the measures (uD−u)(dθ/2π)|{|z|=r}
converge to µ as r → 1. If µ and ν̃ are as above, set

ω(z) = µ(z) + ν(z) := µ(z) + ν̃(z)(1− |z|) ∈M(D). (1.9)
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Theorem 1.3. Given a measure ω = µ + ν ∈ MBC(D), the equation (1.6) admits

a unique solution, which we denote uµ,ν or uω. The solution uω is decreasing in ω,

that is, uω1 > uω2 if ω1 < ω2. If ω /∈MBC(D) then no solution exists.

We endow the space of solutions of (1.6) with the stable topology where uωn → uω

if the un converge weakly to u and the ωn converge weakly to ω. According to [9,

Lemma 3.3], if Fω is an inner function with critical structure ω, then

uω = log λFω = log
|F ′ω|

1− |Fω|2
.

Expressing Theorem 1.2 in this language, we arrive at the following statement:

Theorem 1.4. The space of integral solutions of the Gauss curvature equation (when

ν̃ is an integral sum of delta masses) with nearly-maximal boundary values naturally

embeds in MBC(D) equipped with the Korenblum topology.

It is likely that the restriction to integral measures ν̃ is an artifact of the proof

and is not truly necessary:

Conjecture 1.5. The stable topology on the space of solutions with nearly maximal

boundary values coincides with the Korenblum topology on MBC(D).

The difficulty stems from the fact that for general measures ν̃ ≥ 0, the Liouville

map Fω : D → D realizing the conformal metric λω = expuω is multi-valued. This

only affects our discussion of concentrating sequences (Section 3) as the study of

the equidiffuse sequences (Section 4) does not utilize the connection with complex

analysis.

1.6 Invariant subspaces of Bergman space

For a fixed α > −1 and 1 ≤ p < ∞, consider the weighted Bergman space Apα(D)

which consists of all holomorphic functions on the unit disk satisfying the norm

boundedness condition

‖f‖Apα =

(∫
D
|f(z)|p · (1− |z|)α|dz|2

)1/p

<∞. (1.10)
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For a function f ∈ Apα, let [f ] denote the (closed) z-invariant subspace generated

by f , that is the closure of the set {p(z)f(z)}, where p(z) ranges over polynomials.

In the work [11], Korenblum equipped subspaces of Apα(D) with the strong topology

where Xn → X if any x ∈ X can be obtained as a limit of a converging sequence of

xn ∈ Xn and visa versa.

We focus our attention on a small but important subclass of invariant subspaces

which are generated by a single inner function. Following [6], we say that an invariant

subspace is of κ-Beurling-type if it is of the form [BSµ] where B is a Blaschke product

and the measure µ is supported on a countable union of Beurling-Carleson sets.

(According to a classical theorem of Korenblum [10] and Roberts [20], if µ does not

charge Beurling-Carleson sets, then [Sµ] = Apα.) We show:

Theorem 1.6. For any α > −1 and 1 ≤ p < ∞, the strong topology on subspaces

of κ-Beurling-type agrees with the Korenblum topology on MBC(D).

In the work [12], Kraus proved that the critical sets of Blaschke products coincide

with zero sets of functions in A2
1. It is therefore plausible that inner functions (mod-

ulo Frostman shifts) are in bijection with the collection of z-invariant subspaces

of A2
1 satisfying the codimension one property. The work of Shimorin [21] on the

approximate spectral synthesis in Bergman spaces is likely to be of use here.

2 The Gauss curvature equation

In this section, we prove Theorem 1.3 which identifies the nearly-maximal solutions

of the Gauss curvature equation with MBC(D). Our main tool is the Perron method

which we now describe. Consider the Gauss curvature equation

−∆u = −4e2u − 2πν̃, ν̃ ≥ 0, (2.1)

with free boundary (that is, without imposing any restrictions on the behaviour of

u near the unit circle). We interpret this in the weak sense: we require that for any

non-negative function φ ∈ C∞c (D),

−
∫
D
u∆φ |dz|2 = −

∫
D

4e2uφ |dz|2 − 2π

∫
D
φdν̃. (2.2)
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Naturally, we say that u is a subsolution if one has ≤ in (2.2) while the word super-

solution indicates the sign ≥.

Theorem 2.1 (Perron method). Suppose u is a function on the unit disk which is

a subsolution of the Gauss curvature equation (2.1) with free boundary, where ν̃ ≥ 0

is a locally finite measure on the unit disk. There exists a unique minimal solution

Λν̃ [u] which exceeds u. If u is a supersolution with u ≥ u then u ≥ Λν̃ [u].

The Perron method was first applied to the Gauss curvature equation by Heins

[8]; however, since we are dealing with measure-valued singularities, we require more

modern machinery [14, 16]. The proof of Theorem 2.1 will be given in Appendix B.

If u is a subsolution of (2.1) defined on Dr = {z : |z| < r}, 0 < r < 1, we use the

symbol Λν̃
r [u] to denote the minimal dominating solution on Dr. With this definition,

Λν̃
r [u] does not depend on ν̃|D\Dr . One can alternatively describe Λν̃

r [u] as the unique

solution of (2.1) on Dr which agrees with u on ∂Dr.

We record several elementary properties of Perron hulls which follow directly from

the definition:

Lemma 2.2. (i) If u ≥ v are two subsolutions of (2.1) then Λν̃
r [u] ≥ Λν̃

r [v].

(ii) If ν̃1 ≤ ν̃2 then Λν̃1
r [u] ≥ Λν̃2

r [u].

Lemma 2.3. Suppose u is a subsolution of (2.1) on the unit disk. The family Λν̃
r [u]

is non-decreasing in r and

Λν̃ [u] = lim
r→1

Λν̃
r [u]. (2.3)

Lemma 2.4. Suppose un is a sequence of subsolutions of (2.1) with measures ν̃n. If

un → u and ν̃n → ν̃ weakly on the unit disk, then for any 0 < r < 1,

lim inf
n→∞

Λν̃n
r [un] ≥ Λν̃

r [u].

The same statement also holds with Λ in place of Λr.

The proof of the above lemma uses the following simple observation: since the

un ≤ uD are locally uniformly bounded, the weak converge of un → u implies that of

e2un → e2u.
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2.1 Generalized Blaschke products

If ν̃ is a measure on the unit disk satisfying the Blaschke condition∫
D
(1− |a|)dν̃(a) <∞, (2.4)

then ν(a) := (1 − |a|)ν̃(a) is a finite measure. It will be convenient to use the

two notations simultaneously. We define the generalized Blaschke product with zero

structure ν by the formula

Bν = exp

(∫
D

log
z − a
1− az

dν̃(a)

)
, (2.5)

cf. (1.3). While Bν may not be a single-valued function on the unit disk, its absolute

value and hence zero set are well-defined. Multiplying Bν by a singular inner function

Sµ, we obtain the generalized inner function Iω = BνSµ where ω = µ+ ν.

The following lemma is well known:

Lemma 2.5. (i) For ν ∈M(D), the measures (log 1/|Bν |)(dθ/2π)
∣∣
{|z|=r} tend weakly

to the zero measure as r → 1.

(ii) If µ ∈M(S1) is a singular measure, then (log 1/|Sµ|)(dθ/2π)
∣∣
{|z|=r}→ µ.

2.2 The space of solutions

We are now ready to prove Theorem 1.3. The heavy-lifting has been done in [9] where

Theorem 1.3 was proved in the case when ν̃ = 0. Here, we explain the extension to

general measures ν̃ ≥ 0 satisfying the Blaschke condition (2.4).

Proof of Theorem 1.3. Suppose that uω is a nearly-maximal solution of the Gauss

curvature equation with data ω = µ+ ν ∈MBC(D). We claim that

uω = Λν̃

[
uD − log

1

|Iω|

]
. (2.6)

Since (2.6) gives a formula for uω, it shows that uω is the unique nearly-maximal

solution with data ω. Combining (2.6) with Lemma 2.2, we see that uω is decreasing

in ω. Since the function

uD − uω − log
1

|Iω|
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is subharmonic and tends weakly to the zero measure on the unit circle, it is negative

in the unit disk. The definition of the Perron hull tells us that

uω ≥ Λν̃

[
uD − log

1

|Iω|

]
≥ uD − log

1

|Iω|
.

Some rearranging gives

uD − uω ≤ uD − Λν̃

[
uD − log

1

|Iω|

]
≤ log

1

|Iω|
.

Taking the weak limit as r → 1 shows that the Perron hull u∗ = Λν̃
[
uD − log 1

|Iω |

]
has “deficiency” µ on the unit circle. Since u∗ has “singularity” 2πν̃, it is also a

nearly-maximal solution of the Gauss curvature equation with data ω. To see that

u∗ = uω, we notice that the difference uω−u∗ is a non-negative subharmonic function

which tends to the zero measure on the unit circle (and hence must be identically

0). This proves the claim.

Let uµ be the nearly-maximal solution of the Gauss curvature equation ∆u = 4e2u

with deficiency µ ∈MBC(S1). The existence of uµ is non-trivial and was proved in [9]

using the connection with complex analysis provided by the Liouville correspondence.

For any Blaschke measure ν̃ ≥ 0 on the unit disk, the Perron method finds the least

solution of ∆u = 4e2u+2πν̃ satisfying uµ ≥ u ≥ uµ− log 1
|Bν | . By Lemma 2.5, u has

the correct boundary behaviour in order to solve (1.6), thereby proving the existence

of uµ,ν .

Conversely, suppose that µ /∈ MBC(D). It was proved in [9] that uµ does not

exist in this case. To show that uµ,ν does not exist for any ν ∈ M(D), we argue

by contradiction: we use the existence of uµ,ν to construct uµ. To this end, we

notice that Λ0(uµ,ν) is a solution of the Gauss curvature ∆u = e2u which is squeezed

between uµ,ν ≤ Λ0(uµ,ν) ≤ uµ,ν + log 1
|Bν | , and so must be uµ by Lemma 2.5.

2.3 Fundamental Lemma

The following lemma will play an important role in this work:

Lemma 2.6. Given two measures ωi = µi + νi ∈MBC(D), i = 1, 2, we have

uω1+ω2 = Λν̃1+ν̃2

[
uω1 − log

1

|Iω2|

]
, (2.7)
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= Λν̃1+ν̃2

[
Λν̃1

[
uD − log

1

|Iω1|

]
− log

1

|Iω2|

]
. (2.8)

Proof. The proof of (2.7) is very similar to that of (2.6). Since the quantity on

the right side (2.7) is a solution of the Gauss curvature equation with “singularity”

2π(ν̃1 + ν̃2), we simply need to check that it has the correct “deficiency” on the

unit circle. To see this, we observe that it is squeezed by quantities with deficiency

µ1 + µ2 :

uω1+ω2 ≥ Λν̃1+ν̃2

[
uω1 − log

1

|Iω2|

]
≥ uω1 − log

1

|Iω2|
.

We leave it to the reader to justify the first inequality by checking that uω1+ω2 ≥
uω1− log 1

|Iω2 |
using the argument from the proof of Theorem 1.3. Equation (2.8) can

be obtained by substituting (2.6) into (2.7).

2.4 A change of notation

To make this paper more consistent with [9], we work with conformal metrics rather

than with their logarithms. Given a conformal metric λ and a measure ω = µ+ ν ∈
MBC(D), we will write Λ

〈ω〉
r [λ] for the composition exp ◦Λν̃

r ◦ log. We adopt this

notation for the rest of the paper. We say that ω is integral if ν̃ is an integer sum

of delta masses (there is no restriction on µ). Recall that in this case, we use the

symbol Fω to denote an inner function with Fω(0) = 0 and critical structure ω (which

is unique up to multiplication by a unimodular constant).

Lemma 2.7 (Fundamental Lemma). (i) For any integral measure ω ∈ MBC(D), we

have

λFω = Λ〈ω〉[|Iω|λD].

(ii) If ω1, ω2 ∈MBC(D) are integral measures, then

λFω1+ω2 = Λ〈ω1+ω2〉[|Iω2 |λFω1 ] = Λ〈ω1+ω2〉
[
|Iω1| · Λ〈ω2〉

[
|Iω2|λD

]]
.

(iii) More generally, if ω1, ω2, . . . , ωj ∈MBC(D), then

Λ〈ω1+ω2+···+ωj〉
[
|Iω1| · . . .Λ〈ωj−1+ωj〉

[
|Iωj−1

| · Λ〈ωj〉[|Iωj |λD]
]
. . .
]

=

= Λ〈ω1+ω2+···+ωj〉
[
|Iω1+ω2+···+ωj | · λD

]
.
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3 Concentrating sequences

In this section, we study concentrating sequences of inner functions. We show:

Theorem 3.1. Suppose {Fµn} is a sequence of inner functions in J which converge

uniformly on compact subsets to Fν ∈ J . If µn → µ converge in the Korenblum

topology, then µ = ν.

To prove the above theorem, we will need some a priori bounds on Blaschke

products whose critical structure is supported on a Korenblum star. For a Beurling-

Carleson set E ⊂ S1 and parameters α ≥ 1, 0 < θ ≤ 1, we define the generalized

Korenblum star of order α as

Kα
E(θ) =

{
z ∈ D : 1− |z| ≤ θ · dist(ẑ, E)α

}
. (3.1)

If α = 1 and θ = 1, the above definition reduces to the one given earlier: KE = K1
E(1).

By default we take θ = 1, i.e. we write Kα(E) = Kα
E(1).

Lemma 3.2. Suppose F (z) is an inner function with F (0) = 0 whose “critical

structure” µ(InnF ′) is supported on a Korenblum star KE of order 1 and “critical

mass” µ(InnF ′)(D) < M . Then,

1− |F (z)|
1− |z|

≤ C(M) · dist(z, E)−4, z ∈ D \K4
E, (3.2)

where dist denotes Euclidean distance.

Under the assumptions of the above lemma, we have:

Corollary 3.3. The “zero structure” µ(F ) is supported on a higher-order Korenblum

star K4
E(θ) where θ is a parameter which depends on M . In particular, by Schwarz

reflection, F extends to an analytic function on C \ r(K4
E(θ)) where r(z) = 1/z

denotes the reflection in the unit circle.

Corollary 3.4. For a point ζ ∈ S1 on the unit circle,

|F ′(ζ)| ≤ C(M) · dist(ζ, E)−4.
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With help of Lemma 3.2 and its corollaries, the proof of Theorem 3.1 runs as

follows:

Proof of Theorem 3.1. Special case. We first prove the theorem in the special case

when each measure µn is supported on a Korenblum star KEn with norm ‖En‖BC ≤
N . In this case, F ′n → F ′ converge locally uniformly on C \ r(K4

E(θ)), where the

domains of definition C \ r(K4
En

(θ)) are changing but converge to C \ r(K4
E(θ)).

According to [9, Section 4], to show that the sequence Fn = Fµn is stable, it suffices

to check that the outer factors converge at the origin:

lim
n→∞

∫
S1

log |F ′n|dθ =

∫
S1

log |F ′|dθ.

The proof will be complete if we can argue that the functions log |F ′n| are uniformly

integrable on the unit circle. This means that for any δ > 0, there exists an ε > 0

so that
∫
A

log |F ′n|dθ < ε for any n, whenever A ⊂ S1 is a measurable set with

m(A) < δ. This estimate is provided by Corollary 3.4 above and the definition of a

Beurling-Carleson set.

General case. The convergence of µn → µ in the Korenblum topology means that

for any ε > 0, one can find a sequence µNn → µN which converges in MBC(N)(D) with

(µn − µNn )(D) < ε and (µ − µN)(D) < ε. Furthermore, for any given 0 < r < 1, we

may choose N and {µNn } so that supp(µn−µNn ) ⊂ D \B(0, r). This follows from the

rather simple observation that the ball B(0, r) is contained in a Korenblum star.

The lemma for the class MBC(N)(D) gives the convergence of the conformal metrics

λF
µNn
→ λF

µN
. The fundamental lemma (Lemma 2.7) implies that

1

|Iµn−µNn |
· λFµn ≥ λF

µNn
≥ λFµn , n = 1, 2, . . .

For a compact set K ⊂ D, we first pick an 0 < r < 1 so that K ⊂ B(0, r) and then

choose ε > 0 sufficiently small to ensure that 1−δ < |Iµn−µNn (z)| < 1 for z ∈ K. Since

δ > 0 can be made arbitrarily small, we see that the conformal metrics λFµn → λFµ
converge uniformly on compact subsets of the disk. By Liouville’s theorem, this is

equivalent to convergence of Fµn → Fµ.
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3.1 Blaschke products as approximate isometries

To prove Lemma 3.2, we use the following principle: away from the critical points,

an inner function is close to a hyperbolic isometry. Our discussion is inspired by

the work of McMullen [18, Section 10] which deals with finite Blaschke products of

fixed degree. Here, we require “degree independent” estimates. To this end, given

an inner function F (z), we consider the quantity

γF (z) = log
1

| InnF ′(z)|
(3.3)

which measures how much F deviates from a Möbius transformation near z. Let

G(z, w) denote the Green’s function on the unit disk. When w = 0, G(z, 0) = log 1
|z| .

If the singular measure σ(F ′) is trivial (e.g. if F is a finite Blaschke product), the

above definition reduces to

γF (z) =
∑

c∈crit(F )

G(z, c). (3.4)

To see that the definition of γF (z) is Möbius invariant, note that if M1,M2 ∈ Aut(D)

then Inn
[
(M1 ◦ F ◦M2)′

]
= InnF ′ ◦M2.

Lemma 3.5 (cf. Proposition 10.9 of [18]). Suppose F is an inner function. At a

point z ∈ D which is not a critical point of F , the 2-jet of F matches the 2-jet of a

hyperbolic isometry with an error of O(γ(z)).

Proof. By Möbius invariance, it suffices to consider the case when z = F (z) = 0. Set

δ = γF (0). To prove the lemma, we need to show that |F ′(0)− 1| = |F ′′(0)| = O(δ).

The definition of γF (0) gives 1−|(InnF ′)(0)| ≤ δ. By the Schwarz lemma applied to

InnF ′, we have 1−|(InnF ′)(z)| = O(δ) for z ∈ B(0, 1/2). Applying the fundamental

lemma (Lemma 2.7), we arrive at

1− Cδ < λF (z)

λD(z)
≤ 1, for z ∈ B(0, 1/2), (3.5)

where C is a universal constant (independent of δ and F ). From the above equation,

the estimate on the first derivative |F ′(0)− 1| = O(δ) is immediate. To estimate the

second derivative, note that by (3.5), |F (z) − z| = O(δ) for all z ∈ B(0, 1/2), and

then use Cauchy’s integral formula.
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We write dD(z1, z2) for the hyperbolic distance. A sample application of the above

lemma is the following:

Corollary 3.6 (cf. Theorem 10.11 and Corollary 10.7 of [18]). Suppose F (z) is a

finite Blaschke product and [z1, z2] is a segment of a hyperbolic geodesic. If for each

z ∈ [z1, z2], γF (z) < ε0 is sufficiently small, then F (z1) 6= F (z2). In fact, for any

δ > 0, we can choose ε0 > 0 small enough to guarantee that

(1− δ) · dD(z1, z2) ≤ dD
(
F (z1), F (z2)

)
≤ dD(z1, z2). (3.6)

Sketch of proof. If we choose ε0 > 0 small enough, then F |[z1,z2] is so close to an

isometry that the geodesic curvature of its image is nearly 0. But a path in hyperbolic

space with geodesic curvature less than 1 (the curvature of a horocycle) cannot cross

itself, so F (z1) 6= F (z2). Similar reasoning gives the second statement.

Remark. If γF (z) decays exponentially along [z1, z2], i.e. satisfies a bound of the form

γF (z) < M exp
(
−dD(z, z1)

)
,

for some M > 0, then McMullen’s argument gives the stronger conclusion

dD(F (z1), F (z2)) = dD(z1, z2) +O(1).

See the proof of [18, Theorem 10.11].

Lemma 3.7. Suppose I is an inner function whose zero structure µ(I) is contained in

a Korenblum star KE and its critical mass µ(I)(D) < M . Then, |I(z)| > c(M) > 0

is bounded from below on D \K2
E. More precisely,

log
1

|I(z)|
.M exp

(
−dD(z,K2

E)
)
, z ∈ D \K2

E.

For a point z ∈ D, let [0, z] denote the hyperbolic geodesic that joins 0 to z. For

n > 0, let zn be the unique point of intersection of [0, z] with ∂Kn
E if it exists.

Proof. We may assume that I is a finite Blaschke product as the general case follows

by approximating I by finite Blaschke products whose zero sets are contained in KE.
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Let a be a zero of I. Elementary hyperbolic geometry and the triangle inequality

show that the hyperbolic distance

dD(z, a) = dD(z, z1) + dD(z1, a)−O(1),

≥ dD(z, z1) + dD(0, a)− dD(0, z1)−O(1),

≥ dD(z, z2) + dD(0, a)−O(1).

In other words, the Green’s function

G(z, a) . G(0, a) exp
(
−dD(z, z2)

)
decays exponentially quickly in the hyperbolic distance dD(z, z2). If a ∈ B(0, 1/2),

we instead use the “trivial” estimate G(z, a) . exp
(
−dD(z, 0)

)
≤ exp

(
−dD(z, z2)

)
.

Combining the two inequalities, we get

G(z, a) . G∗(0, a) exp
(
−dD(z, z2)

)
where G∗(z, w) := min

(
G(z, w), 1

)
is the truncated Green’s function. Summing over

the zeros of I gives

log
1

|I(z)|
=

∑
a∈zeros(I)

G(z, a) .M exp
(
−dD(z, z2)

)
�M exp

(
−dD(z,K2

E)
)
,

where in the second step we made use of
∑

a∈zeros(I) G
∗(0, a) � µ(I)(D) ≤ M . This

proves the lemma.

Corollary 3.8. Suppose F is an inner function which satisfies the hypotheses of

Lemma 3.2. For z ∈ D \K2
E, the characteristic γF (z) .M exp

(
−dD(z,K2

E)
)
.

With these preparations, we can now prove Lemma 3.2:

Proof of Lemma 3.2. Suppose z ∈ D \ K4
E. Divide [0, z] into two parts: [0, z2] and

[z2, z]. By the Schwarz lemma,

dD(F (0), F (z2)) ≤ dD(0, z2).

However, since F restricted to [z2, z] is close to a hyperbolic isometry,

dD(F (z2), F (z)) ≥ dD(z2, z)−O(1). (3.7)
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The triangle inequality gives

dD(F (0), F (z)) ≥ dD(z4, z)−O(1),

which is equivalent to (3.2).

4 Equidiffuse sequences

We now turn our attention to equidiffuse sequences. We show:

Theorem 4.1. Suppose {Fn} is a sequence of inner functions in J which converge

uniformly on compact subsets to a function F ∈J . If µ(InnF ′n)→ µ is equidiffiuse,

then F (z) = z.

This proof is similar to the one in [9, Section 6], but requires a slightly more

intricate argument since we need to decompose measures supported on the closed

unit disk.

Given an arc I ⊂ S1 on the unit circle, set

�I,r,R := {z : z/|z| ∈ I, r ≤ |z| ≤ R},

with the convention that we include the left edge into Ir,R but not the right edge.

4.1 Roberts decompositions

Similarly to the original Roberts decomposition for measures supported on the unit

circle [20], our decomposition will depend on two parameters: a real number c > 0

and an integer j0 ≥ 1. Set nj := 22(j+j0) and rj := 1− 1/nj.

Theorem 4.2. Given a finite measure µ ∈ M(D) on the closed unit disk, one can

write it as

µ = (µ2 + µ3 + µ4 + . . . ) + νcone (4.1)

where each measure µj, j ≥ 2, enjoys the following two properties:

suppµj ⊂ �S1,rj−1,1, (4.2)
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and

|Iµj | >
1

(1− |z|2)c′
for z ∈ �S1,0,rj−2

, c′ � c; (4.3)

while the cone measure νcone is supported on a Korenblum star KEcone of norm

‖Econe‖BC ≤ N(c, j0).

Proof. We obtain the decomposition by means of an algorithm which sorts out the

mass of µ into various components. For each j = 2, 3, . . . , we consider a partition Pj

of the unit circle into nj equal arcs. Since nj divides nj+1, each next partition can

be chosen to be a refinement of the previous one.

As Step 0 of our algorithm, we move µ|B(0,r1) into νcone. (We remove this mass

from µ.)

To define µj, j = 2, 3, . . . , consider all intervals in the partition Pj. Define an

interval to be light if µ(�I,0,1) ≤ (c/nj) log nj and heavy otherwise. We do one of the

following three operations:

L. If I is light, we move the mass µ|�I,0,1 into µj.

H1. If I is heavy, we look at the box �I,rj−1,rj . If µ(�I,rj−1,rj) ≥ (c/nj) log nj, we

move µ|�I,rj−1,rj
into νcone.

H2. If µ(�I,rj−1,rj) < (c/nj) log nj, we move µ|�I,rj−1,rj
to µj. We also move some

mass from µ|�I,rj ,1 to µj so that

2(c/nj) log nj ≥ µj(�I,0,1) ≥ (c/nj) log nj.

There is some ambiguity in the second step, but the particular choice will not

be important for us.

After we followed the above instructions for j = 2, 3, . . . , it is possible that the

measure µ has not been exhausted completely: some “residual” mass may remain on

the unit circle. We move this remaining mass to νcone.

Define Econe := S1 \ L where L is the union of the light intervals (of any

generation). Since the measure νcone|S1 is supported on the set of points which
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lie in heavy intervals at every stage, supp νcone|S1 ⊂ KEcone . Observe that if I is an

interval of generation j, the box �I,rj−1,rj is contained in the union of two Stolz angles

emanating from the endpoints of I. If I is heavy, these endpoints are contained in

Econe, from which we see that supp νcone|D ⊂ KEcone as well.

To check that Econe is a Beurling-Carleson set, we follow the computation from

Roberts [20]. The relation log nj+1 = 2 log nj shows

∑
light

|I| log
1

|I|
.
∑
heavy

|J | log
1

|J |
.

∞∑
j=0

∑
J∈Pj heavy

µj(J) ≤ µ(S1), (4.4)

where we have used the fact that a light interval is contained in a heavy interval of

the previous generation. The estimate (4.3) follows from Lemma 4.3 below.

Lemma 4.3. Suppose ν is a finite measure on the closed unit disk with

supp ν ⊂ {z : 1− 1/n ≤ |z| ≤ 1}.

Assume that for any interval I ⊂ S1 of length 1/n,

ν(�I,1−1/n,1) ≤ c · |I| log
1

|I|
.

Then,

|Bν | >
1

(1− |z|2)c′
, |z| < 1− 2/n,

for some c′ � c.

Sketch of proof. The lemma is well known when supp ν ⊆ S1, e.g. see [20, Lemma

2.2]. For the general case, it suffices to show that log 1
|Bν | � log 1

|Sν̂ |
where ν̂ is the

projection of ν to the unit circle. In turn, we may check that

log
1

|Ma|
� log

1

|S(1−|a|)δâ |
, z ∈ B(0, 1− 2/n), a ∈ supp ν,

where Ma(z) = z−a
1−az and â = a/|a|. To see this, note that the level sets of log 1

|Ma|
are circles with hyperbolic center a while the level sets of log 1

|S(1−|a|)δâ |
are horocycles

which rest on â.
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4.2 Estimate on the conformal metric

Fix an ε > 0. We now show that if a positive measure µ ∈ MBC(D) gives ≤ δ(ε)

mass to any Korenblum star KE of norm N with N = N(δ, ε) sufficiently large, then

Fµ is close to the identity, in the sense that

λFµ(0) = Λ〈µ〉
[
|Iµ|λD

]
(0) > λD(0)− ε. (4.5)

Assuming (4.5), Theorem 4.1 follows from a normal families argument and the

Schwarz lemma. Fix a large integer j0 ≥ 1 and consider the Roberts decomposi-

tion with parameters c and j0, where c is small enough to ensure that c′ < 1/10 in

(4.3). By asking for N to be sufficiently large, we can guarantee that νcone(D) ≤ δ.

In view of the fundamental lemma, up to small error, we have

Λ〈µ〉[|Iµ|λD](0) ≈ Λ〈µ2+µ3+···+... 〉[|Iµ2+µ3+...|λD
]
(0).

For an integer j ≥ 2, consider the conformal metric

λj := Λr0

[
|Iµ2| · . . .Λrj−3

[
|Iµj−1

| · Λrj−2

[
|Iµj | · λD

]]
. . .

]
. (4.6)

By the monotonicity properties of Λ and Lemma 2.7,

λj ≤ Λ〈µ2+µ3+···+µj〉
[
|Iµ2| · . . .Λ〈µj−1+µj〉

[
|Iµj−1

| · Λ〈µj〉
[
|Iµj | · λD

]]
. . .

]
,

= Λ〈µ2+µ3+···+µj〉
[
|Iµ2+µ3+···+µj |λD

]
,

≈ Λ〈µ2+µ3+···+... 〉[|Iµ2+µ3+...|λD
]
.

Therefore, in order to show (4.5), we may show that λj(0) is close to λD(0), uniform

in j = 1, 2, . . . . The advantage of working with the λj is that we only apply the

operators Λr to genuine conformal metrics since the zeros of the inner functions Iµj
are located outside the disks Drj−2

. This allows us to estimate the effect of Λr by

comparing with conformal metrics Λr[C] which extend constant boundary values on

∂Dr. The proof of (4.5) can now be completed by the argument in [9, Section 6] with

help of (4.3) to estimate the |Iµj |.
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4.3 Equidiffuse sequences do not affect the limit

Theorem 4.4. Suppose {Fτn+νn} is a sequence of functions in J which converge

uniformly on compact subsets of the disk. Furthermore, suppose that νn → ν is

concentrating and τn → τ is equidiffuse. Then, Fτn+νn → Fν.

Proof. In view of the fundamental lemma (Lemma 2.7), we must show that

lim
n→∞

Λ〈τn+νn〉
[
|Iτn+νn|λD

]
= lim

n→∞
Λ〈νn〉

[
|Iνn|λD

]
.

The ≤ direction follows from the monotonicity properties of Λ (Lemma 2.2). By

Lemmas 2.3 and 2.7, for any 0 < r < 1, we have

Λ〈τn+νn〉[|Iτn+νn|λD] ≥ Λ〈τn+νn〉
r

[
|Iνn| · Λ〈τn〉[|Iτn|λD]

]
.

Since {τn} is equidiffuse,

Λ〈τn+νn〉[|Iτn+νn|λD] ≥ Λ〈τn+νn〉
r

[
(1− o(1))|Iνn|λD

]
.

Lemma 2.4 and the fact that τn|Dr → 0 as n→∞ show

lim inf
n→∞

Λ〈τn+νn〉
[
|Iτn+νn|λD

]
≥ lim inf

n→∞
Λ〈τn+νn〉
r

[
|Iνn|λD

]
≥ Λ〈ν〉r

[
|Iν |λD

]
.

Taking r → 1 completes the proof.

4.4 An improvement for discrete Blaschke measures

Suppose µ ∈ M(D) is a measure which records the zero structure of some inner

function, that is, a measure of the form (1.3). Consider the Roberts decomposition

(4.1) of µ for some choice of parameters c and j0.

Theorem 4.5. The measure νcone is contained in a set of the form

qE = {0} ∪ {z ∈ D : ẑ ∈ E} (4.7)

where E ⊂ S1 is a Beurling-Carleson set with norm ‖E‖BC ≤ N(c, j0, µ(D)).
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As a consequence, when discussing the Korenblum topology on inner functions,

we may consider sets of the form (4.7) instead of Korenblum stars.

The proof of Theorem 4.5 requires some elementary lemmas.

Lemma 4.6. Suppose x = x1 + x2 + · · ·+ xM with 0 < xi < x. Then,∑
xi log

1

xi
≤ x log

M

x
.

Lemma 4.7. Suppose F1 and F2 are two finite sets in the unit circle. Then,

‖F1 + F2‖BC ≤ ‖F1‖BC + ‖F2‖BC.

Lemma 4.8. Suppose F1 ⊆ F2 ⊆ F3 ⊆ . . . is an increasing sequence of finite subsets

of the unit circle such that the norms ‖Fn‖BC ≤M are bounded. Let F be the closure

of their union. Then, F is a Beurling-Carleson set with ‖F‖BC ≤M .

For a more general statement, see [7, Lemma 7.6].

Proof of Theorem 4.5. We crudely estimate that the number of point masses of µ

(zeros of the inner function Iµ) in a heavy box �I,rj−1,rj by nj · µ(D). Radially

project these point masses onto the unit circle. These points partition the interval I

into several pieces of lengths x1, . . . , xM , with x1 + x2 + · · ·+ xM = |I|. By Lemma

4.6 and the fact that |I| = 1/nj,∑
xi log

1

xi
≤ |I| log

nj · µ(D)

|I|
≤ C(µ(D)) · |I| log

1

|I|
.

Applying Lemma 4.7, we see that the entropy of the partition of the unit circle by

the projections of all point masses in µ|Drj union Econe is bounded by

.
∥∥Econe‖BC + µ(D) ·

∑
heavy

|I| log
1

|I|

with the implicit constant independent of j. However, the latter sum is finite by the

Roberts estimate (4.4). The proof is now completed by Lemma 4.8.

23



5 Invariant subspaces of Bergman spaces

For a fixed α > −1 and 1 ≤ p <∞, consider the weighted Bergman space Apα(D) of

holomorphic functions satisfying the norm boundedness condition (1.10). Let {In}
be a sequence of inner functions which converge uniformly on compact subsets to an

inner function I. Assume that the zero structures µ(In) ∈MBC(D) and let [In] ⊂ Apα
be the z-invariant subspace generated by In. In this section, we prove Theorem 1.6

which identifies limn→∞[In] as [I] where I is the “concentrated limit” of the In.

In general, one has semicontinuity in one direction:

[I] ⊆ lim inf
n→∞

[In]. (5.1)

To see this, note that if f ∈ [I], then it may be approximated in norm by pkI for

some polynomials {pk}∞k=1. Diagonalization allows us to express f as the limit of

pk(n)In ∈ [In].

5.1 Concentrating sequences: special case

Lemma 5.1. Suppose In → I if a sequence of inner functions which converges

uniformly on compact subsets of the unit disk. If the zero structure of each In belongs

to a Korenblum star KEn with ‖En‖BC ≤ N uniformly bounded above then [In]→ [I].

The above lemma is essentially due to Korenblum [11], albeit with a slightly

greater focus on uniformity. For a Beurling-Carleson set E, one can construct an

outer function ΦE(z) ∈ C∞(D) which vanishes precisely on E and does so to infinite

order. Examining the construction in [7, Proposition 7.11]), we may assume that ΦE

may enjoys two nice properties:

1. The function ΦE(z) varies continuously with the Beurling-Carleson set E, in

the sense that ΦEn → ΦE uniformly on compact subsets of the disk if En → E

and ‖En‖BC → ‖E‖BC.

2. For each N ≥ 0,

|ΦE(z)| · dist(z, E)−N ≤ CN
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is bounded by a constant which depends only on ‖E‖BC. It is convenient to

take C0 = 1 so that |ΦE(z)| ≤ 1 on the disk.

The central idea in Korenblum’s vision is the following division principle:

Theorem 5.2 (Korenblum’s division principle). Suppose I is an inner function with

suppµ(I) ⊂ KE and f ∈ [I]. For any δ > 0,

f δ(z) := (Φδ
E/I)f(z) ∈ Apα, (5.2)

with the norm estimate ‖f δ‖Apα ≤ C‖f‖Apα. Here, the constant C depends on δ,

‖E‖BC and µ(I)(D).

Assuming Theorem 5.2, the proof of Lemma 5.1 runs as follows:

Proof of Lemma 5.1. Suppose that a sequence of functions fn ∈ [In] converges to f

in Apα. Norm convergence implies that the fn converge to f uniformly on compact

subsets of D. By Korenblum’s division principle, for a fixed δ > 0, the functions

gn = (Φδ
n/In) · fn(z) have bounded Apα norms and converge uniformly on compact

subsets to

g = (Φδ/I) · f(z).

Fatou’s lemma implies that g ∈ Apα and therefore Φδ · f = Ig ∈ [I]. Taking δ → 0

shows that f ∈ [I] and therefore [I] ⊇ lim supn→∞ [In]. By (5.1), the other inclusion

is automatic.

Since the exact statement of Theorem 5.2 is not present in Korenblum’s work

[11], we give a proof below.

Proof of Korenblum’s division principle (Theorem 5.2). We first consider the case

when I is a finite Blaschke product and E is a finite set. Afterwards, we will deduce

the general case by a limiting argument. If I is a finite Blaschke product, it is clear

that f δ ∈ Apα. We need to give a uniform estimate on its norm.

Recall that K2
E denotes the generalized Korenblum star of order 2, see (3.1) for the

definition. According to Lemma 3.7, |1/I(z)| ≤ C
(
µ(I)(D)

)
is uniformly bounded

on D \K2
E so that |f δ(z)| ≤ C|f(z)| there.
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To estimate f δ on K2
E, we examine its values on the boundary ∂K2

E. It is well

known that a function in Bergman space does not grow too rapidly:

|f(z)| ≤ C‖f‖Apα(1− |z|)−β, z ∈ D, (5.3)

for some β = β(p, α) > 0. However, the C∞ decay of the outer function Φδ cancels

out this grows rate on ∂K2
E and we end up with

|f δ(z)| ≤ C2‖f‖Apα , z ∈ ∂K2
E.

Since f δ ∈ Apα, we can use the Phragmén-Lindelöf principle to conclude that this

bound extends to the interior of K2
E. Putting the above estimates together completes

the proof when I is a finite Blaschke product.

For the general case, we approximate I uniformly on compact subsets by finite

Blaschke products In whose zeros are contained in KE ⊃ µ(I). Using the semiconti-

nuity property (5.1), we may then approximate f ∈ [I] by fn ∈ [In] in the Apα-norm.

By the finite case of the lemma, f δn = (Φδ
E/In)fn(z) ∈ Apα with ‖f δn‖Apα bounded

above. By Fatou’s lemma, ‖f δ‖Apα ≤ lim infn→∞ ‖f δn‖Apα as desired.

5.2 Concentrating sequences: general case

Suppose I is an inner function with µ(I) ∈ MBC(D). Let {IN} be a sequence of

approximating inner functions with µ(IN) ≤ µ(I) supported on a Korenblum star of

norm ≤ N . We claim that [IN ]→ [I]. The inclusion lim infN→∞[IN ] ⊇ [I] is trivial.

Conversely, given fN ∈ IN converging to f , the sequence fN(I/IN) ∈ [I] will also

converge to f . Since [I] is closed, f ∈ [I] and lim supN→∞[IN ] ⊆ [I], which proves

the claim.

Lemma 5.3. Suppose In → I is a sequence of inner functions which converges

on compact subsets of the disk. If the associated measures µ(In) converge in the

Korenblum topology, then [In]→ [I].

Proof. By the definition of the Korenblum topology, there exist ‘approximations’

INn → IN supported on Korenblum stars of norm ≤ N . By Lemma 5.1,

lim sup
n→∞

[In] ⊆ lim sup
n→∞

[INn ] = [IN ]→N→∞ [I].

The other inclusion follows from (5.1).

26



5.3 Equidiffuse sequences

Lemma 5.4. Suppose In → I is a convergent sequence of inner functions such that

the associated measures µ(In) are equidiffuse. Then, [In]→ [1].

To prove the above lemma, we closely follow the work of Roberts [20]. Suppose

µ ∈ M(D) is a measure on the closed unit disk which is very close to being diffuse,

that is, gives ≤ ε mass to any Korenblum star of order ≤ N . We need to show

that the distance d(1, [Iµ]) from the z-invariant subspace [Iµ] ⊂ Apα to the constant

function 1 is small. As in Section 4, we consider the (c, j0) Roberts decomposition

µ = (µ2 + µ3 + µ4 + . . . ) + νcone

from Section 4, where the parameter c is small and j0 is large. If N(c, j0) is large,

then the assumption on µ guarantees that νcone(D) ≤ ε. Set µ̃ = µ2 + µ3 + µ4 + . . . .

We may instead show that d(1, [Iµ̃]) is small since the triangle inequality would

imply that d(1, [Iµ]) is also small. In [20], Roberts proved such an estimate for

singular inner functions (in which case, the measures µj are supported on the unit

circle). Roberts’ argument is a clever iterative scheme which is quite similar to the

one employed in Section 4. Actually, the techniques of Section 4 are adapted from

Roberts’ work where the use of the corona theorem is replaced with estimates on

conformal metrics. In our setting, the function Iµ might have zeros and therefore µj

are measures on the closed unit disk. Nevertheless, Roberts’ argument ([20, Lemmas

2.3 and 2.4]) extends to this more general case almost verbatim.

Lemma 5.5 (cf. Lemma 2.3 of [20]). Fix β > 0 so that ‖zn‖Apα ≤ n−β for n ≥ 2.

Suppose I is an inner function which enjoys the estimate

|I(z)| ≥ n−γ, |z| ≤ 1− 1/n. (5.4)

If γ > 0 and n ≥ N(γ) is sufficiently large, there exists a function g ∈ H∞(D) with

‖g‖∞ ≤ nβ/3, ‖1− gI‖Apα ≤ n−2β/3. (5.5)

Roberts introduced the function D[{n1, n2, . . . , nk}] which is defined recursively

by D[∅] = 0 and D[{n1, n2, . . . , nk}] = n
β/3
1 D[{n2, n3, . . . , nk}] + n

−2β/3
1 . In view of

monotonicity, this definition naturally extends to infinite sequences.
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Lemma 5.6 (cf. Lemma 2.4 of [20]). Suppose In1 , In2 , . . . , Ink are inner functions

such that

|Inj(z)| ≥ n−γ, |z| ≤ 1− 1/nj, j = 1, 2, . . . , k. (5.6)

Assume that min(n1, n2, . . . , nk) ≥ N . If I =
∏k

j=1 Inj then d(1, [I]) ≤ D[{nj}].

Roberts noticed that if j0 ≥ 1 is large, then the sequence of integers nj = 22(j+j0)

in the Roberts decomposition (Theorem 4.2) is sufficiently sparse to ensure that

D[{nj}] is small. Of course, the condition (5.6) is easily verified using Lemma 4.3.

This completes our sketch of Lemma 5.4. We leave the details to the reader.

Remark. In the special case of the weighted Bergman space A2
1, we can give an

alternative argument based on the methods of this paper. For each In, we may form

an inner function Fn with Fn(0) = 0 and InnF ′n = In. According to Theorem 4.1,

Fn → z uniformly on compact subsets. However, the bound ‖Fn‖H∞ ≤ 1 implies that

‖Fn‖H2 ≤ ‖z‖H2 which forces Fn → z to converge in the H2-norm. The Littlewood-

Paley formula

‖Fn‖H2 =
1

π

∫
D
|F ′n|2 log

1

|z|2
|dz|2 � ‖F ′n‖A2

1

then shows that F ′n → 1 in the A2
1-norm. Since F ′n ∈ [In],

lim
n→∞

[In] ⊃ lim
n→∞

[F ′n] ⊃ [1] = A2
1.

As in Section 4, equidiffuse sequences cannot change the limiting function: if

In = I ′nJn with Jn → J equidiffuse, then limn→∞[In] = limn→∞[I ′n]. In the present

setting, the proof is rather trivial.

A Entropy of universal covering maps

Let m be the Lebesgue measure on the unit circle, normalized to have unit mass. It

is well known that if F is an inner function with F (0) = 0, then m is F -invariant,

i.e. m(E) = m(F−1(E)) for any measurable set E ⊂ S1. In the work [4], M. Craizer

showed that if F ∈J , then the integral∫
|z|=1

log |F ′(z)|dm
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has the dynamical interpretation as the measure-theoretic entropy of m. It is there-

fore of interest to compute it in special cases. For finite Blaschke products, one may

easily compute the entropy using Jensen’s formula:

Theorem A.1. Suppose F is a finite Blaschke product with F (0) = 0 and F ′(0) 6= 0.

We have
1

2π

∫
|z|=1

log |F ′(z)|dθ =
∑
crit

log
1

|ci|
−
∑
zeros

log
1

|zi|
, (A.1)

where in the sum over the zeros of F , we omit the trivial zero at the origin.

In this appendix, we discuss a complementary example:

Theorem A.2 (Pommerenke). Let P be a relatively closed subset of the unit disk

not containing 0. Let UP : D → D \ P be the universal covering map, normalized

so that UP (0) = 0 and U ′P (0) > 0. Then UP ∈ J if and only if P is a Blaschke

sequence, in which case

1

2π

∫
|z|=1

log |U ′P (z)|dθ =
∑
pi∈P

log
1

|pi|
−
∑
zeros

log
1

|zi|
. (A.2)

A theorem of Frostman says that UP is an inner function if and only if the set

P has logarithmic capacity 0, see [3, Chapter 2.8]. In particular, UP is inner if P is

countable.

For brevity, we will write F = UP . While Pommerenke did not explicitly state

(A.2), in the work [19], he proved the equivalent statement

InnF ′(z) =
k∏
i=1

Fpi(z) =
k∏
i=1

F (z)− pi
1− piF (z)

, (A.3)

so we feel that it is appropriate to name the above theorem after him. Actually,

Pommerenke worked in the significantly greater generality of Green’s functions for

Fuchsian groups of Widom type, so this is only a special case of his result. Below,

we give a more direct proof of Theorem A.2 which may be of independent interest.
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A.1 Preliminaries

We first recall a well known property of Nevanlinna averages:

Lemma A.3. If f ∈ N is a function in the Nevanlinna class and is not identically

0, then

1

2π

∫
|z|=1

log |f(z)|dθ − lim
r→1

{
1

2π

∫
|z|=r

log |f(z)|dθ
}

= σ(f)(S1). (A.4)

See [9, Section 3] for a proof. For x ∈ D, let Fx = Tx ◦ f denote the Frostman

shift of F with respect to x, where Tx(z) = z−x
1−xz . Frostman showed that if x avoids

an exceptional set E of capacity zero, then Fx is a Blaschke product, in which case

σ(Fx) = 0. We will also need:

Lemma A.4. Let F be an inner function with F (0) = 0. For any x ∈ D \ {0},

log
1

|x|
=

∑
F (y)=x

log
1

|y|
+ σ(Fx). (A.5)

Proof. Taking f = Fx in Lemma A.3 gives

0 = lim
r→1

1

2π

∫
|z|=r

log |Fx(z)|dθ + σ(Fx).

The lemma follows after applying Jensen’s formula and taking r → 1.

In the case when F ∈ J , Ahern and Clark [1] observed that the exceptional

set E of F is at most countable and that the singular masses of different Frostman

shifts Fx are mutually singular. More precisely, they showed that the measure σ(Fx)

is supported on the set of points on the unit circle at which the radial limit of F is

x. Since the singular inner function SingFx divides F ′x, it must also divide its inner

part InnF ′x = InnF ′. This shows that

σ(F ′) ≥
∑
x∈E

σ(Fx). (A.6)

In other words, InnF ′ is divisible by the product
∏

x∈E SingFx.
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A.2 Proof of Theorem A.2 when P is a finite set

We first prove Theorem A.2 when P = {p1, p2, . . . , pk} is a finite set. In the formula

(A.1), one considers the sum
∑

crit log 1
|ci| over critical points. It appears that the

identity (A.5) allows one to sum over the “critical values” p1, p2, . . . , pk instead. To

make this rigorous, we will construct a special approximation Fn → F by finite

Blaschke products with critical values sets {p1, p2, . . . , pk}. Assuming the existence

of such an approximating sequence, the argument runs as follows: since the entropy

can only decrease after taking limits [9, Theorem 4.2],

1

2π

∫
|z|=1

log |F ′(z)|dθ ≤ lim inf
n→∞

1

2π

∫
|z|=1

log |F ′n(z)|dθ,

≤ lim inf
n→∞

{
log |F ′n(0)|+

k∑
i=1

∑
Fn(qi)=pi

log
1

|qi|

}
,

= log |F ′(0)|+
k∑
i=1

log
1

|pi|
.

However, by (A.6), the other direction is automatic:

1

2π

∫
|z|=1

log |F ′(z)|dθ = lim
r→1

1

2π

∫
|z|=r

log |F ′(z)|dθ + σ(F ′),

≥ log |F ′(0)|+
k∑
i=1

σ(Fpi),

= log |F ′(0)|+
k∑
i=1

log
1

|pi|
.

Logic dictates that the sequence Fn → F is stable and the formula (A.2) holds.

A.3 Construction of the approximating sequence

For the construction of the approximating sequence, we employ the gluing technique

of Stephenson [22], also see the paper of Bishop [2]. For each puncture pi, choose

a real-analytic arc which joins pi to a point on the unit circle, so that the arcs are

disjoint and do not pass through the origin. Define a tile or sheet to be the shape
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D \ ∪ki=1γi. Let Γ = 〈g1, g2, . . . , gk〉 be the free group on k generators. Consider the

countable collection {Tg}g∈Γ of tiles indexed by elements of Γ. We form a simply-

connected Riemann surface S by gluing the lower side of γi in Tg to the upper side

of γi in Tgig. The surface S comes equipped with a natural projection to the disk D
which sends a point in a tile Tg to its representative in the model D \ ∪ki=1γi. We

may uniformize D ∼= S by taking 0 in the base tile Te to 0. In this uniformizing

coordinate, the projection F becomes a holomorphic self-map of the disk. Since all

the slits have been glued up, F is an inner function, and a little thought shows that

it is the universal covering map of D \ {p1, p2, . . . , pk}.
We now give a slightly different description of the above construction. For this

purpose, we need the notion of an ∞-stack : a countable collection of tiles {Tj}j∈Z,

where the lower side of γi in Tj is identified with the upper side of γi in Tj+1. To

highlight the dependence on the curve γi, we say that the ∞-stack is glued over γi.

Similarly, by an n-stack , we mean a set of n tiles with the above identifications made

modulo n. Now, to construct S, we begin with the base tile Te ∼= D \ ∪ki=1γi, and at

each slit γi ⊂ Te, we glue an∞-stack (i.e. we add the tiles {Tj}j∈Z\{0} and treat Te as

T0). We refer to the tiles that were just added as the tiles of generation 1. To each

of the k − 1 unglued slits in each tile of generation 1, we glue a further ∞-stack of

tiles, which we call tiles of generation 2. Repeating this construction infinitely many

times gives the Riemann surface S from before.

For the finite approximations, we slightly modify the above procedure. We begin

with a base tile Te ∼= D \ ∪ki=1γi with k slits. At each of these k slits, we glue in

an n-stack of sheets (sheets of generation 1). At each of the k − 1 unresolved slits

of sheet of generation 1, we glue in a further n-stack (sheets of generation 2). We

repeat for n generations. Finally, at sheets of generation n, we resolve the slits by

simply sowing their edges together. This gives us a Riemann surface Sn and a finite

Blaschke product Fn with critical values p1, p2, . . . , pk.

Since the Riemann surfaces Sn → S converge in the Carathéodory topology, the

maps Fn → F converge uniformly on compact sets. With the construction of the

special approximating sequence, the proof of Theorem A.2 is complete (when the

number of punctures is finite).
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A.4 Proof of Theorem A.2 when P is infinite

We handle the infinite case by reducing it to the finite case. This is achieved by the

following lemma:

Lemma A.5. Suppose that UP is an inner function. Then,

1

2π

∫
|z|=1

log |U ′P (z)|dθ ≥ 1

2π

∫
|z|=1

log |U ′Q(z)|dθ, (A.7)

for any Q ⊆ P .

Proof. Topological considerations allow us to factor UP = UQ ◦ h, where h is a

holomorphic map of the disk. The normalizations UP (0) = UQ(0) = 0 imply that

h(0) = 0. Since UP is inner, h must also be inner. The chain rule and the h-invariance

of Lebesgue measure give

1

2π

∫
|z|=1

log |U ′P |dθ =
1

2π

∫
|z|=1

log |U ′Q|dθ +
1

2π

∫
|z|=1

log |h′|dθ

Since h is inner and h(0) = 0, |h′(z)| ≥ 1 for z ∈ S1, see e.g. [17, Theorem 4.15].

Dropping second term gives (A.7).

Proof of Theorem A.2 when P is infinite. The above lemma shows that if P is not a

Blaschke sequence, then UP cannot be an inner function of finite entropy. Conversely,

if P = {p1, p2, . . . } is a Blaschke sequence, then the integrals

1

2π

∫
|z|=1

log |U ′Pk(z)|dθ, Pk = {p1, p2, . . . , pk},

are increasing in k and

1

2π

∫
|z|=1

log |U ′P (z)|dθ ≥ lim
k→∞

1

2π

∫
|z|=1

log |U ′Pk(z)|dθ. (A.8)

Since the entropy can only decrease in the limit [9, Theorem 4.2], we must have

equality in (A.8). This completes the proof.
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B Existence of Perron hulls

Here, we prove Theorem 2.1 which says that any subsolution of the Gauss curvature

equation admits a minimal dominating solution (a Perron hull). We will deduce it

from the following the following theorem:

Theorem B.1. If ν̃ ≥ 0 is a Blaschke measure on the unit disk and h ∈ L1(∂D),

then the Gauss curvature equation{
∆u− 4e2u = 2πν̃, in D,
u = h, on S1,

(B.1)

admits a unique solution.

We can make sense of the boundary condition in (B.1) in two equivalent ways. In

the spirit of this paper, we can say that u is a solution if the measures (u dθ)|{|z|=r}
tend weakly to h dθ. To state the second interpretation, note that by Green’s formula,

if φ ∈ C2
0(D) is a C2 function which vanishes on the unit circle, then∫

D
(−u∆φ+ φ∆u)|dz|2 = − lim

r→1

∫
∂Dr

∂nφ · u dθ,

where ∂n denotes the derivative with respect to the outward unit normal. This

suggests that one may can call u a solution of (B.1) if the equality∫
D
−u∆φ|dz|2 + φ(e2u|dz|2 + 2π dν̃) = −

∫
S1
∂nφ · h dθ (B.2)

holds for every non-negative φ ∈ C2
0(D). This definition is used in the book of Marcus

and Véron [16] which we use as a reference for this section. The equivalence of the

two definitions easily follows from Green’s formula. One may define the notions of

subsolution and supersolution by changing (B.2) to an inequality.

Proof of Theorem B.1. A well known result of Brezis and Strauss [16, Proposition

2.1.2] says that there exists a unique solution uh for the equation{
∆u− 4e2u = 0, in D,
u = h, on S1,

(B.3)
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since we have L1-data (the choice of non-linearity e2u is not important here). This is

a supersolution for the boundary value problem (B.1) since it has boundary measure

h dθ. Also, uh− log 1
|Iν | is a subsolution for (B.1) since it also has boundary measure

h dθ. By [16, Theorem 2.2.4], there exists a solution of (B.1). Uniqueness is provided

by [16, Proposition 2.2.1].

We can now explain the construction of the Perron hull:

Proof of Theorem 2.1. Let u be a subsolution of the Gauss curvature equation ∆u−
4e2u = 2πν̃ on the unit disk where ν̃ is a locally finite measure. For each 0 < r < 1, we

may use Theorem B.1 to produce a solution Λr[u] on the disk Dr = {z : |z| < r} with

boundary values u|∂Dr , which are guaranteed to be in L1(Dr) since u is subharmonic.

As r → 1, the Λr[u] form an increasing family of solutions (defined on an increasing

family of domains) which are bounded above by uD, and therefore they must converge

to a solution Λ[u]. This can be easily verified using the definition of a subsolution

and the dominated convergence theorem. From the construction, it is clear that

Λr[u] and Λ[u] are minimal dominating solutions.

Suppose that u ≥ u is a dominating supersolution. To show that u ≥ Λ[u], it

suffices to show u ≥ Λr[u] on Dr for any 0 < r < 1. However, this follows from

the principle that there is a solution between a subsolution and any supersolution

greater than it, see [16, Theorem 2.2.4].
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