
S T E A D Y  H E AT  C O N D U C T I O N

In heat transfer analysis, we are often interested in the rate of heat transfer
through a medium under steady conditions and surface temperatures. Such
problems can be solved easily without involving any differential equations

by the introduction of thermal resistance concepts in an analogous manner to
electrical circuit problems. In this case, the thermal resistance corresponds
to electrical resistance, temperature difference corresponds to voltage, and the
heat transfer rate corresponds to electric current.

We start this chapter with one-dimensional steady heat conduction in
a plane wall, a cylinder, and a sphere, and develop relations for thermal resis-
tances in these geometries. We also develop thermal resistance relations for
convection and radiation conditions at the boundaries. We apply this concept
to heat conduction problems in multilayer plane walls, cylinders, and spheres
and generalize it to systems that involve heat transfer in two or three dimen-
sions. We also discuss the thermal contact resistance and the overall heat
transfer coefficient and develop relations for the critical radius of insulation
for a cylinder and a sphere. Finally, we discuss steady heat transfer from
finned surfaces and some complex geometrics commonly encountered in
practice through the use of conduction shape factors.
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3–1 STEADY HEAT CONDUCTION IN PLANE WALLS
Consider steady heat conduction through the walls of a house during a winter
day. We know that heat is continuously lost to the outdoors through the wall.
We intuitively feel that heat transfer through the wall is in the normal direc-
tion to the wall surface, and no significant heat transfer takes place in the wall
in other directions (Fig. 3–1).

Recall that heat transfer in a certain direction is driven by the temperature
gradient in that direction. There will be no heat transfer in a direction in which
there is no change in temperature. Temperature measurements at several loca-
tions on the inner or outer wall surface will confirm that a wall surface is
nearly isothermal. That is, the temperatures at the top and bottom of a wall
surface as well as at the right or left ends are almost the same. Therefore, there
will be no heat transfer through the wall from the top to the bottom, or from
left to right, but there will be considerable temperature difference between the
inner and the outer surfaces of the wall, and thus significant heat transfer in
the direction from the inner surface to the outer one.

The small thickness of the wall causes the temperature gradient in that
direction to be large. Further, if the air temperatures in and outside the house
remain constant, then heat transfer through the wall of a house can be modeled
as steady and one-dimensional. The temperature of the wall in this case
will depend on one direction only (say the x-direction) and can be expressed
as T(x).

Noting that heat transfer is the only energy interaction involved in this case
and there is no heat generation, the energy balance for the wall can be ex-
pressed as

or

Q
·

in � Q
·

out � (3-1)

But dEwall /dt � 0 for steady operation, since there is no change in the temper-
ature of the wall with time at any point. Therefore, the rate of heat transfer into
the wall must be equal to the rate of heat transfer out of it. In other words, the
rate of heat transfer through the wall must be constant, Q

·
cond, wall � constant.

Consider a plane wall of thickness L and average thermal conductivity k.
The two surfaces of the wall are maintained at constant temperatures of
T1 and T2. For one-dimensional steady heat conduction through the wall,
we have T(x). Then Fourier’s law of heat conduction for the wall can be
expressed as

Q
·

cond, wall � �kA (W) (3-2)

where the rate of conduction heat transfer Q
·

cond wall and the wall area A are
constant. Thus we have dT/dx � constant, which means that the temperature

dT
dx

dEwall

dt

� Rate of
heat transfer
into the wall� � � Rate of

heat transfer
out of the wall� � �Rate of change

of the energy
of the wall �

�
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FIGURE 3–1
Heat flow through a wall is one-
dimensional when the temperature of
the wall varies in one direction only.

cen58933_ch03.qxd  9/10/2002  8:58 AM  Page 128



through the wall varies linearly with x. That is, the temperature distribution in
the wall under steady conditions is a straight line (Fig. 3–2).

Separating the variables in the above equation and integrating from x � 0,
where T(0) � T1, to x � L, where T(L) � T2, we get

Q
·

cond, wall dx � � kA dT

Performing the integrations and rearranging gives

Q
·

cond, wall � kA (W) (3-3)

which is identical to Eq. 3–1. Again, the rate of heat conduction through
a plane wall is proportional to the average thermal conductivity, the wall
area, and the temperature difference, but is inversely proportional to the
wall thickness. Also, once the rate of heat conduction is available, the tem-
perature T(x) at any location x can be determined by replacing T2 in Eq. 3–3
by T, and L by x.

The Thermal Resistance Concept
Equation 3–3 for heat conduction through a plane wall can be rearranged as

Q
·

cond, wall � (W) (3-4)

where

Rwall � (°C/W) (3-5)

is the thermal resistance of the wall against heat conduction or simply the
conduction resistance of the wall. Note that the thermal resistance of a
medium depends on the geometry and the thermal properties of the medium.

The equation above for heat flow is analogous to the relation for electric
current flow I, expressed as

I � (3-6)

where Re � L/�e A is the electric resistance and V1 � V2 is the voltage differ-
ence across the resistance (�e is the electrical conductivity). Thus, the rate of
heat transfer through a layer corresponds to the electric current, the thermal
resistance corresponds to electrical resistance, and the temperature difference
corresponds to voltage difference across the layer (Fig. 3–3).

Consider convection heat transfer from a solid surface of area As and tem-
perature Ts to a fluid whose temperature sufficiently far from the surface is T�,
with a convection heat transfer coefficient h. Newton’s law of cooling for con-
vection heat transfer rate Q

·
conv � hAs (Ts � T�) can be rearranged as

Q
·

conv � (W) (3-7)
Ts � T�

Rconv

V1 � V2

Re

L
kA

T1 � T2

Rwall

T1 � T2

L

�T2

T�T1

�L

x�0
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FIGURE 3–2
Under steady conditions,

the temperature distribution in
a plane wall is a straight line.
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FIGURE 3–3
Analogy between thermal

and electrical resistance concepts.
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where

Rconv � (°C/W) (3-8)

is the thermal resistance of the surface against heat convection, or simply the
convection resistance of the surface (Fig. 3–4). Note that when the convec-
tion heat transfer coefficient is very large (h → �), the convection resistance
becomes zero and Ts � T�. That is, the surface offers no resistance to convec-
tion, and thus it does not slow down the heat transfer process. This situation is
approached in practice at surfaces where boiling and condensation occur. Also
note that the surface does not have to be a plane surface. Equation 3–8 for
convection resistance is valid for surfaces of any shape, provided that the as-
sumption of h � constant and uniform is reasonable.

When the wall is surrounded by a gas, the radiation effects, which we have
ignored so far, can be significant and may need to be considered. The rate of
radiation heat transfer between a surface of emissivity � and area As at tem-
perature Ts and the surrounding surfaces at some average temperature Tsurr can
be expressed as

Q
·

rad � �� As ( � ) � hrad As (Ts � Tsurr) � (W) (3-9)

where

Rrad � (K/W) (3-10)

is the thermal resistance of a surface against radiation, or the radiation re-
sistance, and

hrad � � ��( � (Ts � Tsurr) (W/m2 · K) (3-11)

is the radiation heat transfer coefficient. Note that both Ts and Tsurr must be
in K in the evaluation of hrad. The definition of the radiation heat transfer co-
efficient enables us to express radiation conveniently in an analogous manner
to convection in terms of a temperature difference. But hrad depends strongly
on temperature while hconv usually does not.

A surface exposed to the surrounding air involves convection and radiation
simultaneously, and the total heat transfer at the surface is determined by
adding (or subtracting, if in the opposite direction) the radiation and convec-
tion components. The convection and radiation resistances are parallel to each
other, as shown in Fig. 3–5, and may cause some complication in the thermal
resistance network. When Tsurr � T�, the radiation effect can properly be ac-
counted for by replacing h in the convection resistance relation by

hcombined � hconv � hrad (W/m2 · K) (3-12)

where hcombined is the combined heat transfer coefficient. This way all the
complications associated with radiation are avoided.

T 2
surr)T 2

s

Q·
rad

As(Ts � Tsurr)

1
hrad As

Ts � Tsurr

Rrad
T 4

surrT 4
s

1
hAs
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FIGURE 3–4
Schematic for convection
resistance at a surface.
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FIGURE 3–5
Schematic for convection and
radiation resistances at a surface.
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Thermal Resistance Network
Now consider steady one-dimensional heat flow through a plane wall of thick-
ness L, area A, and thermal conductivity k that is exposed to convection on
both sides to fluids at temperatures T�1 and T�2 with heat transfer coefficients
h1 and h2, respectively, as shown in Fig. 3–6. Assuming T�2 � T�1, the varia-
tion of temperature will be as shown in the figure. Note that the temperature
varies linearly in the wall, and asymptotically approaches T�1 and T�2 in the
fluids as we move away from the wall.

Under steady conditions we have

or

Q
·

� h1 A(T�1 � T1) � kA � h2 A(T2 � T�2) (3-13)

which can be rearranged as

Q
·

�

� (3-14)

Adding the numerators and denominators yields (Fig. 3–7)

Q
·

� (W) (3-15)
T� � T�2

Rtotal

T�1 � T1

Rconv, 1
�

T1 � T2

Rwall
�

T2 � T�2

Rconv, 2

T�1 � T1

1/h1 A
�

T1 � T2

L /kA
�

T2 � T�2

1/h2 A

T1 � T2

L

� Rate of
heat convection

into the wall � � � Rate of
heat conduction
through the wall� � � Rate of

heat convection
from the wall �
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FIGURE 3–6
The thermal resistance network for heat transfer through a plane wall subjected to convection on both sides,

and the electrical analogy.
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where

Rtotal � Rconv, 1 � Rwall � Rconv, 2 � (°C/W) (3-16)

Note that the heat transfer area A is constant for a plane wall, and the rate of
heat transfer through a wall separating two mediums is equal to the tempera-
ture difference divided by the total thermal resistance between the mediums.
Also note that the thermal resistances are in series, and the equivalent thermal
resistance is determined by simply adding the individual resistances, just like
the electrical resistances connected in series. Thus, the electrical analogy still
applies. We summarize this as the rate of steady heat transfer between two
surfaces is equal to the temperature difference divided by the total thermal re-
sistance between those two surfaces.

Another observation that can be made from Eq. 3–15 is that the ratio of the
temperature drop to the thermal resistance across any layer is constant, and
thus the temperature drop across any layer is proportional to the thermal
resistance of the layer. The larger the resistance, the larger the temperature
drop. In fact, the equation Q

·
� 	T/R can be rearranged as

	T � Q
·
R (°C) (3-17)

which indicates that the temperature drop across any layer is equal to the rate
of heat transfer times the thermal resistance across that layer (Fig. 3–8). You
may recall that this is also true for voltage drop across an electrical resistance
when the electric current is constant.

It is sometimes convenient to express heat transfer through a medium in an
analogous manner to Newton’s law of cooling as

Q
·

� UA 	T (W) (3-18)

where U is the overall heat transfer coefficient. A comparison of Eqs. 3–15
and 3–18 reveals that

1
h1 A

�
L
kA

�
1

h2 A
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FIGURE 3–8
The temperature drop across a layer is
proportional to its thermal resistance.
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UA � (3-19)

Therefore, for a unit area, the overall heat transfer coefficient is equal to the
inverse of the total thermal resistance.

Note that we do not need to know the surface temperatures of the wall in or-
der to evaluate the rate of steady heat transfer through it. All we need to know
is the convection heat transfer coefficients and the fluid temperatures on both
sides of the wall. The surface temperature of the wall can be determined as
described above using the thermal resistance concept, but by taking the
surface at which the temperature is to be determined as one of the terminal
surfaces. For example, once Q

·
is evaluated, the surface temperature T1 can be

determined from

Q
·

� (3-20)

Multilayer Plane Walls
In practice we often encounter plane walls that consist of several layers of dif-
ferent materials. The thermal resistance concept can still be used to determine
the rate of steady heat transfer through such composite walls. As you may
have already guessed, this is done by simply noting that the conduction resis-
tance of each wall is L/kA connected in series, and using the electrical analogy.
That is, by dividing the temperature difference between two surfaces at known
temperatures by the total thermal resistance between them.

Consider a plane wall that consists of two layers (such as a brick wall with
a layer of insulation). The rate of steady heat transfer through this two-layer
composite wall can be expressed as (Fig. 3–9)

Q
·

� (3-21)
T�1 � T�2

Rtotal

T�1 � T1

Rconv, 1
�

T�1 � T1

1/h1 A

1
Rtotal
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FIGURE 3–9
The thermal resistance network for
heat transfer through a two-layer
plane wall subjected to
convection on both sides.

Wall 1 Wall 2T�1

T�2

T�2T�1

T1 T2

L1

k2k1

T3

R1
L1

k1A

T1

A T2

T3

h2

h1

= —–– R2
L2

k2A
= —–– Rconv, 2

1
h2A

= —––Rconv, 1
1

h1A
= —––

Q
·

L2

cen58933_ch03.qxd  9/10/2002  8:59 AM  Page 133



where Rtotal is the total thermal resistance, expressed as

Rtotal � Rconv, 1 � Rwall, 1 � Rwall, 2 � Rconv, 2

� (3-22)

The subscripts 1 and 2 in the Rwall relations above indicate the first and the
second layers, respectively. We could also obtain this result by following the
approach used above for the single-layer case by noting that the rate of steady
heat transfer Q

·
through a multilayer medium is constant, and thus it must be

the same through each layer. Note from the thermal resistance network that
the resistances are in series, and thus the total thermal resistance is simply the
arithmetic sum of the individual thermal resistances in the path of heat flow.

This result for the two-layer case is analogous to the single-layer case, ex-
cept that an additional resistance is added for the additional layer. This result
can be extended to plane walls that consist of three or more layers by adding
an additional resistance for each additional layer.

Once Q
·

is known, an unknown surface temperature Tj at any surface or in-
terface j can be determined from

Q
·

� (3-23)

where Ti is a known temperature at location i and Rtotal, i � j is the total thermal
resistance between locations i and j. For example, when the fluid temperatures
T�1 and T�2 for the two-layer case shown in Fig. 3–9 are available and Q

·
is

calculated from Eq. 3–21, the interface temperature T2 between the two walls
can be determined from (Fig. 3–10)

Q
·

� (3-24)

The temperature drop across a layer is easily determined from Eq. 3–17 by
multiplying Q

·
by the thermal resistance of that layer.

The thermal resistance concept is widely used in practice because it is intu-
itively easy to understand and it has proven to be a powerful tool in the solu-
tion of a wide range of heat transfer problems. But its use is limited to systems
through which the rate of heat transfer Q

·
remains constant; that is, to systems

involving steady heat transfer with no heat generation (such as resistance
heating or chemical reactions) within the medium.

T�1 � T2

Rconv, 1 � Rwall, 1
�

T�1 � T2

1
h1 A

�
L1

k1 A

Ti � Tj

Rtotal, i�j

1
h1 A

�
L1

k1 A
�

L2

k2 A
�

1
h2 A
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FIGURE 3–10
The evaluation of the surface and
interface temperatures when T�1 and
T�2 are given and Q

·
is calculated.

EXAMPLE 3–1 Heat Loss through a Wall

Consider a 3-m-high, 5-m-wide, and 0.3-m-thick wall whose thermal con-
ductivity is k � 0.9 W/m · °C (Fig. 3–11). On a certain day, the temperatures of
the inner and the outer surfaces of the wall are measured to be 16°C and 2°C,
respectively. Determine the rate of heat loss through the wall on that day.

Wall

2°C

16°C

L = 0.3 m

A

5 m

3 m
Q
·

FIGURE 3–11
Schematic for Example 3–1.
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SOLUTION The two surfaces of a wall are maintained at specified tempera-
tures. The rate of heat loss through the wall is to be determined.
Assumptions 1 Heat transfer through the wall is steady since the surface
temperatures remain constant at the specified values. 2 Heat transfer is one-
dimensional since any significant temperature gradients will exist in the direc-
tion from the indoors to the outdoors. 3 Thermal conductivity is constant.
Properties The thermal conductivity is given to be k � 0.9 W/m · °C.
Analysis Noting that the heat transfer through the wall is by conduction and
the area of the wall is A � 3 m 
 5 m � 15 m2, the steady rate of heat transfer
through the wall can be determined from Eq. 3–3 to be

Q
·

� kA � (0.9 W/m · °C)(15 m2) � 630 W

We could also determine the steady rate of heat transfer through the wall by
making use of the thermal resistance concept from

Q
·

�

where

Rwall � � 0.02222°C/ W

Substituting, we get

Q
·

� � 630 W

Discussion This is the same result obtained earlier. Note that heat conduction
through a plane wall with specified surface temperatures can be determined
directly and easily without utilizing the thermal resistance concept. However,
the thermal resistance concept serves as a valuable tool in more complex heat
transfer problems, as you will see in the following examples.

(16 � 2)°C
0.02222°C/ W

L
kA

�
0.3 m

(0.9 W/m ·  °C)(15 m2)

	Twall

Rwall

(16 � 2)°C
0.3 m

T1 � T2

L

EXAMPLE 3–2 Heat Loss through a Single-Pane Window

Consider a 0.8-m-high and 1.5-m-wide glass window with a thickness of 8 mm
and a thermal conductivity of k � 0.78 W/m · °C. Determine the steady rate of
heat transfer through this glass window and the temperature of its inner surface
for a day during which the room is maintained at 20°C while the temperature of
the outdoors is �10°C. Take the heat transfer coefficients on the inner and
outer surfaces of the window to be h1 � 10 W/m2 · °C and h2 � 40 W/m2 · °C,
which includes the effects of radiation.

SOLUTION Heat loss through a window glass is considered. The rate of
heat transfer through the window and the inner surface temperature are to be
determined.
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Assumptions 1 Heat transfer through the window is steady since the surface
temperatures remain constant at the specified values. 2 Heat transfer through
the wall is one-dimensional since any significant temperature gradients will ex-
ist in the direction from the indoors to the outdoors. 3 Thermal conductivity is
constant.
Properties The thermal conductivity is given to be k � 0.78 W/m · °C.
Analysis This problem involves conduction through the glass window and con-
vection at its surfaces, and can best be handled by making use of the thermal
resistance concept and drawing the thermal resistance network, as shown in
Fig. 3–12. Noting that the area of the window is A � 0.8 m 
 1.5 m � 1.2 m2,
the individual resistances are evaluated from their definitions to be

Ri � Rconv, 1 � � 0.08333°C/ W

Rglass � � 0.00855°C/ W

Ro � Rconv, 2 � � 0.02083°C/ W

Noting that all three resistances are in series, the total resistance is

Rtotal � Rconv, 1 � Rglass � Rconv, 2 � 0.08333 � 0.00855 � 0.02083

� 0.1127°C/ W

Then the steady rate of heat transfer through the window becomes

Q
·

� � 266 W

Knowing the rate of heat transfer, the inner surface temperature of the window
glass can be determined from

Q
·

� → T1 � T�1 � Q
·
Rconv, 1

� 20°C � (266 W)(0.08333°C/ W)

� �2.2°C

Discussion Note that the inner surface temperature of the window glass will be
�2.2°C even though the temperature of the air in the room is maintained at
20°C. Such low surface temperatures are highly undesirable since they cause
the formation of fog or even frost on the inner surfaces of the glass when the
humidity in the room is high.

T�1 � T1

Rconv, 1

T�1 � T�2

Rtotal
�

[20 � (�10)]°C
0.1127°C/ W

1
h2 A

�
1

(40 W/m2 ·  °C)(1.2 m2)

L
kA

�
0.008 m

(0.78 W/m ·  °C)(1.2 m2)

1
h1 A

�
1

(10 W/m2 ·  °C)(1.2 m2)

T2

Rglass Ro

L = 8 mm

Ri

T1 T2

T1

h1 = 10 W/m2·°C h2 = 40 W/m2·°C

Glass

20°C

–10°C

T�1 T�2

FIGURE 3–12
Schematic for Example 3–2.

EXAMPLE 3–3 Heat Loss through Double-Pane Windows

Consider a 0.8-m-high and 1.5-m-wide double-pane window consisting of two
4-mm-thick layers of glass (k � 0.78 W/m · °C) separated by a 10-mm-wide
stagnant air space (k � 0.026 W/m · °C). Determine the steady rate of heat
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transfer through this double-pane window and the temperature of its inner sur-
face for a day during which the room is maintained at 20°C while the tempera-
ture of the outdoors is �10°C. Take the convection heat transfer coefficients on
the inner and outer surfaces of the window to be h1 � 10 W/m2 · °C and h2 �
40 W/m2 · °C, which includes the effects of radiation.

SOLUTION A double-pane window is considered. The rate of heat transfer
through the window and the inner surface temperature are to be determined.
Analysis This example problem is identical to the previous one except that
the single 8-mm-thick window glass is replaced by two 4-mm-thick glasses that
enclose a 10-mm-wide stagnant air space. Therefore, the thermal resistance
network of this problem will involve two additional conduction resistances cor-
responding to the two additional layers, as shown in Fig. 3–13. Noting that the
area of the window is again A � 0.8 m 
 1.5 m � 1.2 m2, the individual re-
sistances are evaluated from their definitions to be

Ri � Rconv, 1 � � 0.08333°C/ W

R1 � R3 � Rglass � � 0.00427°C/ W

R2 � Rair � � 0.3205°C/ W

Ro � Rconv, 2 � � 0.02083°C/ W

Noting that all three resistances are in series, the total resistance is

Rtotal � Rconv, 1 � Rglass, 1 � Rair � Rglass, 2 � Rconv, 2

� 0.08333 � 0.00427 � 0.3205 � 0.00427 � 0.02083

� 0.4332°C/ W

Then the steady rate of heat transfer through the window becomes

Q
·

� � 69.2 W

which is about one-fourth of the result obtained in the previous example. This
explains the popularity of the double- and even triple-pane windows in cold
climates. The drastic reduction in the heat transfer rate in this case is due to
the large thermal resistance of the air layer between the glasses.

The inner surface temperature of the window in this case will be

T1 � T�1 � Q
·
R conv, 1 � 20°C � (69.2 W)(0.08333°C/ W) � 14.2°C

which is considerably higher than the �2.2°C obtained in the previous ex-
ample. Therefore, a double-pane window will rarely get fogged. A double-pane
window will also reduce the heat gain in summer, and thus reduce the air-
conditioning costs.

T�1 � T�2

Rtotal
�

[20 � (�10)]°C
0.4332°C/ W

1
h2 A

�
1

(40 W/m2 ·  °C)(1.2 m2)

L2

k2 A
�

0.01 m
(0.026 W/m ·  °C)(1.2 m2)

L1

k1 A
�

0.004 m
(0.78 W/m ·  °C)(1.2 m2)

1
h1 A

�
1

(10 W/m2 ·  °C)(1.2 m2)

T1
T2

T3

R1Ri R3R2

T4

10 mm

20°C
Air

Glass

–10°C

4 mm 4 mm

Ro T�2T�1

Glass

FIGURE 3–13
Schematic for Example 3–3.
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3–2 THERMAL CONTACT RESISTANCE
In the analysis of heat conduction through multilayer solids, we assumed
“perfect contact” at the interface of two layers, and thus no temperature drop
at the interface. This would be the case when the surfaces are perfectly smooth
and they produce a perfect contact at each point. In reality, however, even flat
surfaces that appear smooth to the eye turn out to be rather rough when ex-
amined under a microscope, as shown in Fig. 3–14, with numerous peaks and
valleys. That is, a surface is microscopically rough no matter how smooth it
appears to be.

When two such surfaces are pressed against each other, the peaks will form
good material contact but the valleys will form voids filled with air. As a re-
sult, an interface will contain numerous air gaps of varying sizes that act as
insulation because of the low thermal conductivity of air. Thus, an interface
offers some resistance to heat transfer, and this resistance per unit interface
area is called the thermal contact resistance, Rc. The value of Rc is deter-
mined experimentally using a setup like the one shown in Fig. 3–15, and as
expected, there is considerable scatter of data because of the difficulty in char-
acterizing the surfaces.

Consider heat transfer through two metal rods of cross-sectional area A that
are pressed against each other. Heat transfer through the interface of these two
rods is the sum of the heat transfers through the solid contact spots and the
gaps in the noncontact areas and can be expressed as

Q
·

� Q
·

contact � Q
·

gap (3-25)

It can also be expressed in an analogous manner to Newton’s law of cooling as

Q
·

� hc A 	Tinterface (3-26)

�
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FIGURE 3–14
Temperature distribution and heat flow

lines along two solid plates pressed
against each other for the case of

perfect and imperfect contact.

Layer 1

(a) Ideal (perfect) thermal contact (b) Actual (imperfect) thermal contact

Layer 2 Layer 1 Layer 2

Temperature
drop

∆TNo
temperature

drop

Temperature
distribution

Interface

T1 = T2

T1 

T2 

Interface

Cold
fluid

Applied load

Loading shaft
Alignment collar
Top plate
Steel ball
Pencil heaters
Heaters block

Bell jar
base plate

Bottom plate
Steel ball

Lower heat flux meter

Lower test specimen

Upper test specimen

Load cell

Cold plate

Thermocouples

Interface

FIGURE 3–15
A typical experimental setup for
the determination of thermal contact
resistance (from Song et al., Ref. 11).
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where A is the apparent interface area (which is the same as the cross-sectional
area of the rods) and 	Tinterface is the effective temperature difference at the
interface. The quantity hc, which corresponds to the convection heat transfer
coefficient, is called the thermal contact conductance and is expressed as

hc � (W/m2 · °C) (3-27)

It is related to thermal contact resistance by

Rc � (m2 · °C/W) (3-28)

That is, thermal contact resistance is the inverse of thermal contact conduc-
tance. Usually, thermal contact conductance is reported in the literature, but
the concept of thermal contact resistance serves as a better vehicle for ex-
plaining the effect of interface on heat transfer. Note that Rc represents ther-
mal contact resistance per unit area. The thermal resistance for the entire
interface is obtained by dividing Rc by the apparent interface area A.

The thermal contact resistance can be determined from Eq. 3–28 by
measuring the temperature drop at the interface and dividing it by the heat
flux under steady conditions. The value of thermal contact resistance depends
on the surface roughness and the material properties as well as the tem-
perature and pressure at the interface and the type of fluid trapped at the
interface. The situation becomes more complex when plates are fastened by
bolts, screws, or rivets since the interface pressure in this case is nonuniform.
The thermal contact resistance in that case also depends on the plate thick-
ness, the bolt radius, and the size of the contact zone. Thermal contact
resistance is observed to decrease with decreasing surface roughness 
and increasing interface pressure, as expected. Most experimentally deter-
mined values of the thermal contact resistance fall between 0.000005 and
0.0005 m2 · °C/W (the corresponding range of thermal contact conductance
is 2000 to 200,000 W/m2 · °C).

When we analyze heat transfer in a medium consisting of two or more lay-
ers, the first thing we need to know is whether the thermal contact resistance
is significant or not. We can answer this question by comparing the magni-
tudes of the thermal resistances of the layers with typical values of thermal
contact resistance. For example, the thermal resistance of a 1-cm-thick layer
of an insulating material per unit surface area is

Rc, insulation � � 0.25 m2 · °C/W

whereas for a 1-cm-thick layer of copper, it is

Rc, copper � � 0.000026 m2 · °C/W

Comparing the values above with typical values of thermal contact resistance,
we conclude that thermal contact resistance is significant and can even domi-
nate the heat transfer for good heat conductors such as metals, but can be

L
k

�
0.01 m

386 W/m ·  °C

L
k

�
0.01 m

0.04 W/m ·  °C

1
hc

�
	Tinterface

Q· /A

Q· /A
	Tinterface
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disregarded for poor heat conductors such as insulations. This is not surpris-
ing since insulating materials consist mostly of air space just like the inter-
face itself.

The thermal contact resistance can be minimized by applying a thermally
conducting liquid called a thermal grease such as silicon oil on the surfaces
before they are pressed against each other. This is commonly done when at-
taching electronic components such as power transistors to heat sinks. The
thermal contact resistance can also be reduced by replacing the air at the in-
terface by a better conducting gas such as helium or hydrogen, as shown in
Table 3–1.

Another way to minimize the contact resistance is to insert a soft metallic
foil such as tin, silver, copper, nickel, or aluminum between the two surfaces.
Experimental studies show that the thermal contact resistance can be reduced
by a factor of up to 7 by a metallic foil at the interface. For maximum effec-
tiveness, the foils must be very thin. The effect of metallic coatings on thermal
contact conductance is shown in Fig. 3–16 for various metal surfaces.

There is considerable uncertainty in the contact conductance data reported
in the literature, and care should be exercised when using them. In Table 3–2
some experimental results are given for the contact conductance between sim-
ilar and dissimilar metal surfaces for use in preliminary design calculations.
Note that the thermal contact conductance is highest (and thus the contact re-
sistance is lowest) for soft metals with smooth surfaces at high pressure.
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TABLE 3–1

Thermal contact conductance
for aluminum plates with different
fluids at the interface for a surface
roughness of 10 �m and interface
pressure of 1 atm (from Fried,
Ref. 5)

Contact
Fluid at the Conductance, hc,
Interface W/m2 · °C

Air 3640
Helium 9520

Hydrogen 13,900
Silicone oil 19,000

Glycerin 37,700
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104
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FIGURE 3–16
Effect of metallic coatings on
thermal contact conductance
(from Peterson, Ref. 10).

EXAMPLE 3–4 Equivalent Thickness for Contact Resistance

The thermal contact conductance at the interface of two 1-cm-thick aluminum
plates is measured to be 11,000 W/m2 · °C. Determine the thickness of the alu-
minum plate whose thermal resistance is equal to the thermal resistance of the
interface between the plates (Fig. 3–17).

SOLUTION The thickness of the aluminum plate whose thermal resistance
is equal to the thermal contact resistance is to be determined.
Properties The thermal conductivity of aluminum at room temperature is
k � 237 W/m · °C (Table A-3).
Analysis Noting that thermal contact resistance is the inverse of thermal con-
tact conductance, the thermal contact resistance is

Rc � � 0.909 
 10�4 m2 · °C/ W

For a unit surface area, the thermal resistance of a flat plate is defined as

R �

where L is the thickness of the plate and k is the thermal conductivity. Setting
R � Rc, the equivalent thickness is determined from the relation above to be

L � kRc � (237 W/m · °C)(0.909 
 10�4 m2 · °C/ W) � 0.0215 m � 2.15 cm

L
k

1
hc

�
1

11,000 W/m2 ·  °C
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TABLE 3–2

Thermal contact conductance of some metal surfaces in air (from various sources)

Surface Rough- Tempera- Pressure, hc,*
Material Condition ness, �m ture, °C MPa W/m2 · °C

Identical Metal Pairs
416 Stainless steel Ground 2.54 90–200 0.3–2.5 3800
304 Stainless steel Ground 1.14 20 4–7 1900
Aluminum Ground 2.54 150 1.2–2.5 11,400
Copper Ground 1.27 20 1.2–20 143,000
Copper Milled 3.81 20 1–5 55,500
Copper (vacuum) Milled 0.25 30 0.7–7 11,400

Dissimilar Metal Pairs
Stainless steel– 10 2900

Aluminum 20–30 20 20 3600

Stainless steel– 10 16,400
Aluminum 1.0–2.0 20 20 20,800

Steel Ct-30– 10 50,000
Aluminum Ground 1.4–2.0 20 15–35 59,000

Steel Ct-30– 10 4800
Aluminum Milled 4.5–7.2 20 30 8300

5 42,000
Aluminum-Copper Ground 1.3–1.4 20 15 56,000

10 12,000
Aluminum-Copper Milled 4.4–4.5 20 20–35 22,000

*Divide the given values by 5.678 to convert to Btu/h · ft2 · °F.

Plate
1

1 cm

Plate
2

Interface

1 cm

Plate
1

Equivalent
aluminum

layer

1 cm

Plate
2

2.15 cm 1 cm

FIGURE 3–17
Schematic for Example 3–4.

Discussion Note that the interface between the two plates offers as much re-
sistance to heat transfer as a 2.3–cm-thick aluminum plate. It is interesting
that the thermal contact resistance in this case is greater than the sum of the
thermal resistances of both plates.

EXAMPLE 3–5 Contact Resistance of Transistors

Four identical power transistors with aluminum casing are attached on one side
of a 1-cm-thick 20-cm 
 20-cm square copper plate (k � 386 W/m · °C) by
screws that exert an average pressure of 6 MPa (Fig. 3–18). The base area of
each transistor is 8 cm2, and each transistor is placed at the center of a 10-cm

 10-cm quarter section of the plate. The interface roughness is estimated to
be about 1.5 �m. All transistors are covered by a thick Plexiglas layer, which is
a poor conductor of heat, and thus all the heat generated at the junction of the
transistor must be dissipated to the ambient at 20°C through the back surface
of the copper plate. The combined convection/radiation heat transfer coefficient
at the back surface can be taken to be 25 W/m2 · °C. If the case temperature of
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20°C

Copper
plate

70°C

20 cm

1 cm

Plexiglas cover

FIGURE 3–18
Schematic for Example 3–5.

the transistor is not to exceed 70°C, determine the maximum power each
transistor can dissipate safely, and the temperature jump at the case-plate
interface.

SOLUTION Four identical power transistors are attached on a copper plate. For
a maximum case temperature of 70°C, the maximum power dissipation and the
temperature jump at the interface are to be determined.

Assumptions 1 Steady operating conditions exist. 2 Heat transfer can be ap-
proximated as being one-dimensional, although it is recognized that heat con-
duction in some parts of the plate will be two-dimensional since the plate area
is much larger than the base area of the transistor. But the large thermal con-
ductivity of copper will minimize this effect. 3 All the heat generated at the
junction is dissipated through the back surface of the plate since the transistors
are covered by a thick Plexiglas layer. 4 Thermal conductivities are constant.

Properties The thermal conductivity of copper is given to be k � 386
W/m · °C. The contact conductance is obtained from Table 3–2 to be hc �
42,000 W/m2 · °C, which corresponds to copper-aluminum interface for the
case of 1.3–1.4 �m roughness and 5 MPa pressure, which is sufficiently close
to what we have.

Analysis The contact area between the case and the plate is given to be 8 cm2,
and the plate area for each transistor is 100 cm2. The thermal resistance net-
work of this problem consists of three resistances in series (interface, plate, and
convection), which are determined to be

Rinterface � � 0.030°C/ W

Rplate � � 0.0026°C/ W

Rconv � � 4.0°C/ W

The total thermal resistance is then

Rtotal � Rinterface � Rplate � Rambient � 0.030 � 0.0026 � 4.0 � 4.0326°C/ W

Note that the thermal resistance of a copper plate is very small and can be
ignored altogether. Then the rate of heat transfer is determined to be

Q
·

� � 12.4 W

Therefore, the power transistor should not be operated at power levels greater
than 12.4 W if the case temperature is not to exceed 70°C.

The temperature jump at the interface is determined from

	Tinterface � Q
·
R interface � (12.4 W)(0.030°C/ W) � 0.37°C

which is not very large. Therefore, even if we eliminate the thermal contact re-
sistance at the interface completely, we will lower the operating temperature of
the transistor in this case by less than 0.4°C.

	T
Rtotal

�
(70 � 20)°C
4.0326°C/ W

1
ho A

�
1

(25 W/m2 ·  °C)(0.01 m2)

L
kA

�
0.01 m

(386 W/m ·  °C)(0.01 m2)

1
hc Ac

�
1

(42,000 W/m2 ·  °C)(8 
 10�4 m2)
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3–3 GENERALIZED THERMAL RESISTANCE
NETWORKS

The thermal resistance concept or the electrical analogy can also be used to
solve steady heat transfer problems that involve parallel layers or combined
series-parallel arrangements. Although such problems are often two- or even
three-dimensional, approximate solutions can be obtained by assuming one-
dimensional heat transfer and using the thermal resistance network.

Consider the composite wall shown in Fig. 3–19, which consists of two par-
allel layers. The thermal resistance network, which consists of two parallel re-
sistances, can be represented as shown in the figure. Noting that the total heat
transfer is the sum of the heat transfers through each layer, we have

Q
·

� Q
·

1 � Q
·

2 � � (T1 � T2) (3-29)

Utilizing electrical analogy, we get

Q
·

� (3-30)

where

→ Rtotal � (3-31)

since the resistances are in parallel.
Now consider the combined series-parallel arrangement shown in Fig.

3–20. The total rate of heat transfer through this composite system can again
be expressed as

Q
·

� (3-32)

where

Rtotal � R12 � R3 � Rconv � � R3 � Rconv (3-33)

and

R1 � , R2 � , R3 � , Rconv � (3-34)

Once the individual thermal resistances are evaluated, the total resistance and
the total rate of heat transfer can easily be determined from the relations
above.

The result obtained will be somewhat approximate, since the surfaces of the
third layer will probably not be isothermal, and heat transfer between the first
two layers is likely to occur.

Two assumptions commonly used in solving complex multidimensional
heat transfer problems by treating them as one-dimensional (say, in the 

1
hA3

L 3

k3 A3
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k2 A2
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k1 A1

R1R2
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1
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1
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FIGURE 3–19
Thermal resistance

network for two parallel layers.
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FIGURE 3–20
Thermal resistance network for

combined series-parallel arrangement.
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x-direction) using the thermal resistance network are (1) any plane wall nor-
mal to the x-axis is isothermal (i.e., to assume the temperature to vary in the
x-direction only) and (2) any plane parallel to the x-axis is adiabatic (i.e., to
assume heat transfer to occur in the x-direction only). These two assumptions
result in different resistance networks, and thus different (but usually close)
values for the total thermal resistance and thus heat transfer. The actual result
lies between these two values. In geometries in which heat transfer occurs pre-
dominantly in one direction, either approach gives satisfactory results.
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EXAMPLE 3–6 Heat Loss through a Composite Wall

A 3-m-high and 5-m-wide wall consists of long 16-cm 
 22-cm cross section
horizontal bricks (k � 0.72 W/m · °C) separated by 3-cm-thick plaster layers
(k � 0.22 W/m · °C). There are also 2-cm-thick plaster layers on each side of
the brick and a 3-cm-thick rigid foam (k � 0.026 W/m · °C) on the inner side
of the wall, as shown in Fig. 3–21. The indoor and the outdoor temperatures are
20°C and �10°C, and the convection heat transfer coefficients on the inner
and the outer sides are h1 � 10 W/m2 · °C and h2 � 25 W/m2 · °C, respectively.
Assuming one-dimensional heat transfer and disregarding radiation, determine
the rate of heat transfer through the wall.

SOLUTION The composition of a composite wall is given. The rate of heat
transfer through the wall is to be determined.
Assumptions 1 Heat transfer is steady since there is no indication of change
with time. 2 Heat transfer can be approximated as being one-dimensional since
it is predominantly in the x-direction. 3 Thermal conductivities are constant.
4 Heat transfer by radiation is negligible.
Properties The thermal conductivities are given to be k � 0.72 W/m · °C
for bricks, k � 0.22 W/m · °C for plaster layers, and k � 0.026 W/m · °C for the
rigid foam.
Analysis There is a pattern in the construction of this wall that repeats itself
every 25-cm distance in the vertical direction. There is no variation in the hori-
zontal direction. Therefore, we consider a 1-m-deep and 0.25-m-high portion of
the wall, since it is representative of the entire wall.

Assuming any cross section of the wall normal to the x-direction to be
isothermal, the thermal resistance network for the representative section of
the wall becomes as shown in Fig. 3–21. The individual resistances are eval-
uated as:

Ri � Rconv, 1 � � 0.4°C/ W

R1 � Rfoam � � 4.6°C/ W

R2 � R6 � Rplaster, side �

� 0.36°C/ W

R3 � R5 � Rplaster, center �

� 48.48°C/ W

L
kA

�
0.16 m

(0.22 W/m ·  °C)(0.015 
 1 m2)

L
kA

�
0.02 m

(0.22 W/m ·  °C)(0.25 
 1 m2)

L
kA

�
0.03 m

(0.026 W/m ·  °C)(0.25 
 1 m2)

1
h1 A

�
1

(10 W/m2 ·  °C)(0.25 
 1 m2)
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h1

T�1

h2
T�2

1.5 cm

22 cm
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3

x
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R5

R4
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R6Ri R1 R2 Ro T�2T�1

FIGURE 3–21
Schematic for Example 3–6.
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R4 � Rbrick � � 1.01°C/ W

Ro � Rconv, 2 � � 0.16°C/ W

The three resistances R3, R4, and R5 in the middle are parallel, and their equiv-
alent resistance is determined from

� 1.03 W/°C

which gives

Rmid � 0.97°C/ W

Now all the resistances are in series, and the total resistance is

Rtotal � Ri � R1 � R2 � Rmid � R6 � Ro

� 0.4 � 4.6 � 0.36 � 0.97 � 0.36 � 0.16

� 6.85°C/ W

Then the steady rate of heat transfer through the wall becomes

Q
·

� � 4.38 W (per 0.25 m2 surface area)

or 4.38/0.25 � 17.5 W per m2 area. The total area of the wall is A � 3 m 
 5
m � 15 m2. Then the rate of heat transfer through the entire wall becomes

Q
·

total � (17.5 W/m2)(15 m2) � 263 W

Of course, this result is approximate, since we assumed the temperature within
the wall to vary in one direction only and ignored any temperature change (and
thus heat transfer) in the other two directions.
Discussion In the above solution, we assumed the temperature at any cross
section of the wall normal to the x-direction to be isothermal. We could also
solve this problem by going to the other extreme and assuming the surfaces par-
allel to the x-direction to be adiabatic. The thermal resistance network in this
case will be as shown in Fig. 3–22. By following the approach outlined above,
the total thermal resistance in this case is determined to be Rtotal � 6.97°C/W,
which is very close to the value 6.85°C/ W obtained before. Thus either ap-
proach would give roughly the same result in this case. This example demon-
strates that either approach can be used in practice to obtain satisfactory
results.
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[20 � (�10)]°C
6.85°C/ W

1
Rmid

�
1
R3

�
1
R4

�
1
R5

�
1

48.48
�

1
1.01

�
1

48.48

1
h2 A

�
1

(25 W/m2 ·  °C)(0.25 
 1 m2)

L
kA

�
0.16 m

(0.72 W/m ·  °C)(0.22 
 1 m2)

x

Ro T�2

RiT�1

Adiabatic
lines

FIGURE 3–22
Alternative thermal resistance

network for Example 3–6 for the
case of surfaces parallel to the

primary direction of heat
transfer being adiabatic.
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3–4 HEAT CONDUCTION IN
CYLINDERS AND SPHERES

Consider steady heat conduction through a hot water pipe. Heat is continu-
ously lost to the outdoors through the wall of the pipe, and we intuitively feel
that heat transfer through the pipe is in the normal direction to the pipe surface
and no significant heat transfer takes place in the pipe in other directions
(Fig. 3–23). The wall of the pipe, whose thickness is rather small, separates
two fluids at different temperatures, and thus the temperature gradient in the
radial direction will be relatively large. Further, if the fluid temperatures in-
side and outside the pipe remain constant, then heat transfer through the pipe
is steady. Thus heat transfer through the pipe can be modeled as steady and
one-dimensional. The temperature of the pipe in this case will depend on one
direction only (the radial r-direction) and can be expressed as T � T(r). The
temperature is independent of the azimuthal angle or the axial distance. This
situation is approximated in practice in long cylindrical pipes and spherical
containers.

In steady operation, there is no change in the temperature of the pipe with
time at any point. Therefore, the rate of heat transfer into the pipe must be
equal to the rate of heat transfer out of it. In other words, heat transfer through
the pipe must be constant, Q

·
cond, cyl � constant.

Consider a long cylindrical layer (such as a circular pipe) of inner radius r1,
outer radius r2, length L, and average thermal conductivity k (Fig. 3–24). The
two surfaces of the cylindrical layer are maintained at constant temperatures
T1 and T2. There is no heat generation in the layer and the thermal conductiv-
ity is constant. For one-dimensional heat conduction through the cylindrical
layer, we have T(r). Then Fourier’s law of heat conduction for heat transfer
through the cylindrical layer can be expressed as

Q
·

cond, cyl � �kA (W) (3-35)

where A � 2�rL is the heat transfer area at location r. Note that A depends on
r, and thus it varies in the direction of heat transfer. Separating the variables
in the above equation and integrating from r � r1, where T(r1) � T1, to r � r2,
where T(r2) � T2, gives

dr � � k dT (3-36)

Substituting A � 2�rL and performing the integrations give

Q
·

cond, cyl � 2�Lk (W) (3-37)

since Q
·

cond, cyl � constant. This equation can be rearranged as

Q
·

cond, cyl � (W) (3-38)
T1 � T2

Rcyl

T1 � T2

ln(r2 /r1)

�T2

T�T1

� r2

r�r1

 
Q· cond, cyl

A

dT
dr

�
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h
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r

Q
·

FIGURE 3–23
Heat is lost from a hot water pipe to
the air outside in the radial direction,
and thus heat transfer from a long
pipe is one-dimensional.

r1

k

r2

T1

T2

FIGURE 3–24
A long cylindrical pipe (or spherical
shell) with specified inner and outer
surface temperatures T1 and T2.

cen58933_ch03.qxd  9/10/2002  8:59 AM  Page 146



where

Rcyl � (3-39)

is the thermal resistance of the cylindrical layer against heat conduction, or
simply the conduction resistance of the cylinder layer.

We can repeat the analysis above for a spherical layer by taking A � 4�r2

and performing the integrations in Eq. 3–36. The result can be expressed as

Q
·

cond, sph � (3-40)

where

Rsph � � (3-41)

is the thermal resistance of the spherical layer against heat conduction, or sim-
ply the conduction resistance of the spherical layer.

Now consider steady one-dimensional heat flow through a cylindrical or
spherical layer that is exposed to convection on both sides to fluids at temper-
atures T�1 and T�2 with heat transfer coefficients h1 and h2, respectively, as
shown in Fig. 3–25. The thermal resistance network in this case consists of
one conduction and two convection resistances in series, just like the one for
the plane wall, and the rate of heat transfer under steady conditions can be ex-
pressed as

Q
·

� (3-42)
T�1 � T�2

Rtotal

Outer radius � Inner radius
4�(Outer radius)(Inner radius)(Thermal conductivity)

r2 � r1

4�r1r2 k

T1 � T2

Rsph

ln(r2 /r1)
2�Lk

�
ln(Outer radius/Inner radius)

2� 
 (Length) 
 (Thermal conductivity)
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FIGURE 3–25
The thermal resistance network

for a cylindrical (or spherical)
shell subjected to convection from
both the inner and the outer sides.

r1
r2

T1

Rconv, 2Rconv, 1

Rtotal = Rconv, 1 + Rcyl + Rconv, 2 

Rcyl

T2 T�2T�1

h2

h1

Q
·

cen58933_ch03.qxd  9/10/2002  8:59 AM  Page 147



where

Rtotal � Rconv, 1 � Rcyl � Rconv, 2

� (3-43)

for a cylindrical layer, and

Rtotal � Rconv, 1 � Rsph � Rconv, 2

� (3-44)

for a spherical layer. Note that A in the convection resistance relation Rconv �
1/hA is the surface area at which convection occurs. It is equal to A � 2�rL
for a cylindrical surface and A � 4�r2 for a spherical surface of radius r. Also
note that the thermal resistances are in series, and thus the total thermal resis-
tance is determined by simply adding the individual resistances, just like the
electrical resistances connected in series.

Multilayered Cylinders and Spheres
Steady heat transfer through multilayered cylindrical or spherical shells can be
handled just like multilayered plane walls discussed earlier by simply add-
ing an additional resistance in series for each additional layer. For example,
the steady heat transfer rate through the three-layered composite cylinder
of length L shown in Fig. 3–26 with convection on both sides can be ex-
pressed as

Q
·

� (3-45)
T�1 � T�2

Rtotal

1
(4�r 2

1 )h1
�

r2 � r1

4�r1r2 k
�

1
(4�r 2

2 )h2

1
(2�r1L)h1

�
ln(r2 /r1)

2�Lk
�

1
(2�r2L)h2
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FIGURE 3–26
The thermal resistance network for heat transfer through a three-layered composite cylinder
subjected to convection on both sides.
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where Rtotal is the total thermal resistance, expressed as

Rtotal � Rconv, 1 � Rcyl, 1 � Rcyl, 2 � Rcyl, 3 � Rconv, 2

� (3-46)

where A1 � 2�r1L and A4 � 2�r4L. Equation 3–46 can also be used for a
three-layered spherical shell by replacing the thermal resistances of cylindri-
cal layers by the corresponding spherical ones. Again, note from the thermal
resistance network that the resistances are in series, and thus the total thermal
resistance is simply the arithmetic sum of the individual thermal resistances in
the path of heat flow.

Once Q
·

is known, we can determine any intermediate temperature Tj by ap-
plying the relation Q

·
� (Ti � Tj)/Rtotal, i � j across any layer or layers such that

Ti is a known temperature at location i and Rtotal, i � j is the total thermal resis-
tance between locations i and j (Fig. 3–27). For example, once Q

·
has been

calculated, the interface temperature T2 between the first and second cylindri-
cal layers can be determined from

Q
·

� (3-47)

We could also calculate T2 from

Q
·

� (3-48)

Although both relations will give the same result, we prefer the first one since
it involves fewer terms and thus less work.

The thermal resistance concept can also be used for other geometries, pro-
vided that the proper conduction resistances and the proper surface areas in
convection resistances are used.

T2 � T�2

R2 � R3 � Rconv, 2
�

T2 � T�2

ln(r3 /r2)
2�Lk2

�
ln(r4 /r3)
2�Lk3

�
1

ho(2�r4L)

T�1 � T2

Rconv, 1 � Rcyl, 1
�

T�1 � T2

1
h1(2�r1L)

�
ln(r2 /r1)
2�Lk1

1
h1 A1

�
ln(r2 /r1)
2�Lk1

�
ln(r3 /r2)
2�Lk2

�
ln(r4 /r3)
2�Lk3

�
1

h2 A4
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T�1 T1–
Rconv,1

= ————

T�1 T2–
Rconv,1 + R1

= ————

T1 T3–
R1 + R2

= ————

T2 T3–
R2

= ————

T2 T�2–
R2 + Rconv,2

= ————

= . . .

T�2T�1

R1

T1 T2 T3

Rconv,1 Rconv,2R2

Q
·

FIGURE 3–27
The ratio 	T/R across any layer is

equal to Q·
, which remains constant in

one-dimensional steady conduction.

EXAMPLE 3–7 Heat Transfer to a Spherical Container

A 3-m internal diameter spherical tank made of 2-cm-thick stainless steel
(k � 15 W/m · °C) is used to store iced water at T�1 � 0°C. The tank is located
in a room whose temperature is T�2 � 22°C. The walls of the room are also at
22°C. The outer surface of the tank is black and heat transfer between the outer
surface of the tank and the surroundings is by natural convection and radiation.
The convection heat transfer coefficients at the inner and the outer surfaces of
the tank are h1 � 80 W/m2 · °C and h2 � 10 W/m2 · °C, respectively. Determine
(a) the rate of heat transfer to the iced water in the tank and (b) the amount of
ice at 0°C that melts during a 24-h period.

SOLUTION A spherical container filled with iced water is subjected to convec-
tion and radiation heat transfer at its outer surface. The rate of heat transfer
and the amount of ice that melts per day are to be determined.
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Assumptions 1 Heat transfer is steady since the specified thermal conditions at
the boundaries do not change with time. 2 Heat transfer is one-dimensional
since there is thermal symmetry about the midpoint. 3 Thermal conductivity is
constant.

Properties The thermal conductivity of steel is given to be k � 15 W/m · °C.
The heat of fusion of water at atmospheric pressure is hif � 333.7 kJ/kg. The
outer surface of the tank is black and thus its emissivity is � � 1.

Analysis (a) The thermal resistance network for this problem is given in
Fig. 3–28. Noting that the inner diameter of the tank is D1 � 3 m and the outer
diameter is D2 � 3.04 m, the inner and the outer surface areas of the tank are

A1 � � � �(3 m)2 � 28.3 m2

A2 � � � �(3.04 m)2 � 29.0 m2

Also, the radiation heat transfer coefficient is given by

hrad � ��( )(T2 � T�2)

But we do not know the outer surface temperature T2 of the tank, and thus we
cannot calculate hrad. Therefore, we need to assume a T2 value now and check
the accuracy of this assumption later. We will repeat the calculations if neces-
sary using a revised value for T2.

We note that T2 must be between 0°C and 22°C, but it must be closer 
to 0°C, since the heat transfer coefficient inside the tank is much larger. Taking
T2 � 5°C � 278 K, the radiation heat transfer coefficient is determined to be

hrad � (1)(5.67 
 10�8 W/m2 · K4)[(295 K)2 � (278 K)2][(295 � 278) K]

� 5.34 W/m2 · K � 5.34 W/m2 · °C

Then the individual thermal resistances become

Ri � Rconv, 1 � � 0.000442°C/ W

R1 � Rsphere �

� 0.000047°C/ W

Ro � Rconv, 2 � � 0.00345°C/ W

Rrad � � 0.00646°C/ W

The two parallel resistances Ro and Rrad can be replaced by an equivalent resis-
tance Requiv determined from

� 444.7 W/°C

which gives

Requiv � 0.00225°C/ W

1
Requiv

�
1
Ro

�
1

Rrad
�

1
0.00345

�
1

0.00646

1
hrad A2

�
1

(5.34 W/m2 ·  °C)(29.0 m2)

1
h2 A2

�
1

(10 W/m2 ·  °C)(29.0 m2)

r2 � r1

4�kr1r2
�

(1.52 � 1.50) m
4� (15 W/m ·  °C)(1.52 m)(1.50 m)

1
h1 A1

�
1

(80 W/m2 ·  °C)(28.3 m2)

T 2
2 � T 2

�2

D 2
2

D 2
1

T�1 T1 T�2

T�2

Ri

h2

R1

Rrad

Ro

1.5 m

2 cm

0°C

Iced
water h1

FIGURE 3–28
Schematic for Example 3–7.
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Now all the resistances are in series, and the total resistance is determined
to be

Rtotal � Ri � R1 � Requiv � 0.000442 � 0.000047 � 0.00225 � 0.00274°C/ W

Then the steady rate of heat transfer to the iced water becomes

Q
·

� � 8029 W (or Q
·

� 8.027 kJ/s)

To check the validity of our original assumption, we now determine the outer
surface temperature from

Q
·

� → T2 � T�2 � Q
·
R equiv

� 22°C � (8029 W)(0.00225°C/ W) � 4°C

which is sufficiently close to the 5°C assumed in the determination of the radi-
ation heat transfer coefficient. Therefore, there is no need to repeat the calcu-
lations using 4°C for T2.
(b) The total amount of heat transfer during a 24-h period is

Q � Q
·

	t � (8.029 kJ/s)(24 
 3600 s) � 673,700 kJ

Noting that it takes 333.7 kJ of energy to melt 1 kg of ice at 0°C, the amount
of ice that will melt during a 24-h period is

mice � � 2079 kg

Therefore, about 2 metric tons of ice will melt in the tank every day.
Discussion An easier way to deal with combined convection and radiation at a
surface when the surrounding medium and surfaces are at the same tempera-
ture is to add the radiation and convection heat transfer coefficients and to treat
the result as the convection heat transfer coefficient. That is, to take h � 10 �
5.34 � 15.34 W/m2 · °C in this case. This way, we can ignore radiation since
its contribution is accounted for in the convection heat transfer coefficient. The
convection resistance of the outer surface in this case would be

Rcombined � � 0.00225°C/ W

which is identical to the value obtained for the equivalent resistance for the par-
allel convection and the radiation resistances.

1
hcombined A2

�
1

(15.34 W/m2 ·  °C)(29.0 m2)

Q
hif

�
673,700 kJ
333.7 kJ/kg

T�2 � T2

Requiv

T�2 � T�1

Rtotal
�

(22 � 0)°C
0.00274°C/ W

EXAMPLE 3–8 Heat Loss through an Insulated Steam Pipe

Steam at T�1 � 320°C flows in a cast iron pipe (k � 80 W/m · °C) whose inner
and outer diameters are D1 � 5 cm and D2 � 5.5 cm, respectively. The pipe is
covered with 3-cm-thick glass wool insulation with k � 0.05 W/m · °C. Heat is
lost to the surroundings at T�2 � 5°C by natural convection and radiation, with
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a combined heat transfer coefficient of h2 � 18 W/m2 · °C. Taking the heat
transfer coefficient inside the pipe to be h1 � 60 W/m2 · °C, determine the rate
of heat loss from the steam per unit length of the pipe. Also determine the tem-
perature drops across the pipe shell and the insulation.

SOLUTION A steam pipe covered with glass wool insulation is subjected to
convection on its surfaces. The rate of heat transfer per unit length and the
temperature drops across the pipe and the insulation are to be determined.
Assumptions 1 Heat transfer is steady since there is no indication of any
change with time. 2 Heat transfer is one-dimensional since there is thermal
symmetry about the centerline and no variation in the axial direction. 3 Thermal
conductivities are constant. 4 The thermal contact resistance at the interface is
negligible.
Properties The thermal conductivities are given to be k � 80 W/m · °C for cast
iron and k � 0.05 W/m · °C for glass wool insulation.
Analysis The thermal resistance network for this problem involves four resis-
tances in series and is given in Fig. 3–29. Taking L � 1 m, the areas of the
surfaces exposed to convection are determined to be

A1 � 2�r1L � 2�(0.025 m)(1 m) � 0.157 m2

A3 � 2�r3L � 2�(0.0575 m)(1 m) � 0.361 m2

Then the individual thermal resistances become

Ri � Rconv, 1 � � 0.106°C/ W

R1 � Rpipe � � 0.0002°C/ W

R2 � Rinsulation � � 2.35°C/ W

Ro � Rconv, 2 � � 0.154°C/ W

Noting that all resistances are in series, the total resistance is determined to be

Rtotal � Ri � R1 � R2 � Ro � 0.106 � 0.0002 � 2.35 � 0.154 � 2.61°C/ W

Then the steady rate of heat loss from the steam becomes

Q
·

� � 121 W (per m pipe length)

The heat loss for a given pipe length can be determined by multiplying the
above quantity by the pipe length L.

The temperature drops across the pipe and the insulation are determined
from Eq. 3–17 to be

	Tpipe � Q
·
R pipe � (121 W)(0.0002°C/ W) � 0.02°C

	Tinsulation � Q
·
R insulation � (121 W)(2.35°C/ W) � 284°C

That is, the temperatures between the inner and the outer surfaces of the pipe
differ by 0.02°C, whereas the temperatures between the inner and the outer
surfaces of the insulation differ by 284°C.

T�1 � T�2

Rtotal
�

(320 � 5)°C
2.61°C/W

1
h2 A3

�
1

(18 W/m2 ·  °C)(0.361 m2)

ln(r3 /r2)
2�k2L

�
ln(5.75/2.75)

2�(0.05 W/m ·  °C)(1 m)

ln(r2 /r1)
2�k1L

�
ln(2.75/2.5)

2�(80 W/m ·  °C)(1 m)

1
h1 A

�
1

(60 W/m2 ·  °C)(0.157 m2)

T1 T2 T3

h2

T�2T�1

T�2

R1Ri RoR2

Insulation

T�1

h1

r3

Q
·T1

T2

T3

Steam

r1 r2

FIGURE 3–29
Schematic for Example 3–8.
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3–5 CRITICAL RADIUS OF INSULATION
We know that adding more insulation to a wall or to the attic always decreases
heat transfer. The thicker the insulation, the lower the heat transfer rate. This
is expected, since the heat transfer area A is constant, and adding insulation
always increases the thermal resistance of the wall without increasing the
convection resistance.

Adding insulation to a cylindrical pipe or a spherical shell, however, is a dif-
ferent matter. The additional insulation increases the conduction resistance of
the insulation layer but decreases the convection resistance of the surface be-
cause of the increase in the outer surface area for convection. The heat trans-
fer from the pipe may increase or decrease, depending on which effect
dominates.

Consider a cylindrical pipe of outer radius r1 whose outer surface tempera-
ture T1 is maintained constant (Fig. 3–30). The pipe is now insulated with a
material whose thermal conductivity is k and outer radius is r2. Heat is lost
from the pipe to the surrounding medium at temperature T�, with a convection
heat transfer coefficient h. The rate of heat transfer from the insulated pipe to
the surrounding air can be expressed as (Fig. 3–31)

Q
·

� (3-49)

The variation of Q
·

with the outer radius of the insulation r2 is plotted in
Fig. 3–31. The value of r2 at which Q

·
reaches a maximum is determined from

the requirement that dQ
·
/dr2 � 0 (zero slope). Performing the differentiation

and solving for r2 yields the critical radius of insulation for a cylindrical
body to be

rcr, cylinder � (m) (3-50)

Note that the critical radius of insulation depends on the thermal conductivity
of the insulation k and the external convection heat transfer coefficient h.
The rate of heat transfer from the cylinder increases with the addition of insu-
lation for r2 � rcr, reaches a maximum when r2 � rcr, and starts to decrease for
r2 
 rcr. Thus, insulating the pipe may actually increase the rate of heat trans-
fer from the pipe instead of decreasing it when r2 � rcr.

The important question to answer at this point is whether we need to be con-
cerned about the critical radius of insulation when insulating hot water pipes
or even hot water tanks. Should we always check and make sure that the outer

k
h

T1 � T�

Rins � Rconv
�

T1 � T�

ln(r2 /r1)
2�Lk

�
1

h(2�r2L)

�
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Discussion Note that the thermal resistance of the pipe is too small relative to
the other resistances and can be neglected without causing any significant
error. Also note that the temperature drop across the pipe is practically zero,
and thus the pipe can be assumed to be isothermal. The resistance to heat flow
in insulated pipes is primarily due to insulation.

T1

RconvRins

r2r1

Insulation

T�

T�

h

k

FIGURE 3–30
An insulated cylindrical pipe

exposed to convection from the outer
surface and the thermal resistance

network associated with it.

r2

k
hr1

r1
0 r2rcr = k /h

Q
·

Q
·

Qmax
·

Qbare
·

FIGURE 3–31
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radius of insulation exceeds the critical radius before we install any insula-
tion? Probably not, as explained here.

The value of the critical radius rcr will be the largest when k is large and h is
small. Noting that the lowest value of h encountered in practice is about
5 W/m2 · °C for the case of natural convection of gases, and that the thermal
conductivity of common insulating materials is about 0.05 W/m2 · °C, the
largest value of the critical radius we are likely to encounter is

rcr, max � � � 0.01 m � 1 cm

This value would be even smaller when the radiation effects are considered.
The critical radius would be much less in forced convection, often less than
1 mm, because of much larger h values associated with forced convection.
Therefore, we can insulate hot water or steam pipes freely without worrying
about the possibility of increasing the heat transfer by insulating the pipes.

The radius of electric wires may be smaller than the critical radius. There-
fore, the plastic electrical insulation may actually enhance the heat transfer
from electric wires and thus keep their steady operating temperatures at lower
and thus safer levels.

The discussions above can be repeated for a sphere, and it can be shown in
a similar manner that the critical radius of insulation for a spherical shell is

rcr, sphere � (3-51)

where k is the thermal conductivity of the insulation and h is the convection
heat transfer coefficient on the outer surface.

2k
h

0.05 W/m ·  °C
5 W/m2 ·  °C

kmax, insulation

hmin
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EXAMPLE 3–9 Heat Loss from an Insulated Electric Wire

A 3-mm-diameter and 5-m-long electric wire is tightly wrapped with a 2-mm-
thick plastic cover whose thermal conductivity is k � 0.15 W/m · °C. Electrical
measurements indicate that a current of 10 A passes through the wire and there
is a voltage drop of 8 V along the wire. If the insulated wire is exposed to a
medium at T� � 30°C with a heat transfer coefficient of h � 12 W/m2 · °C, de-
termine the temperature at the interface of the wire and the plastic cover in
steady operation. Also determine whether doubling the thickness of the plastic
cover will increase or decrease this interface temperature.

SOLUTION An electric wire is tightly wrapped with a plastic cover. The inter-
face temperature and the effect of doubling the thickness of the plastic cover
on the interface temperature are to be determined.
Assumptions 1 Heat transfer is steady since there is no indication of any
change with time. 2 Heat transfer is one-dimensional since there is thermal
symmetry about the centerline and no variation in the axial direction. 3 Thermal
conductivities are constant. 4 The thermal contact resistance at the interface is
negligible. 5 Heat transfer coefficient incorporates the radiation effects, if any.
Properties The thermal conductivity of plastic is given to be k � 0.15
W/m · °C.
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Analysis Heat is generated in the wire and its temperature rises as a result of
resistance heating. We assume heat is generated uniformly throughout the wire
and is transferred to the surrounding medium in the radial direction. In steady
operation, the rate of heat transfer becomes equal to the heat generated within
the wire, which is determined to be

Q
·

� W
·
e � VI � (8 V)(10 A) � 80 W

The thermal resistance network for this problem involves a conduction resis-
tance for the plastic cover and a convection resistance for the outer surface in
series, as shown in Fig. 3–32. The values of these two resistances are deter-
mined to be

A2 � (2�r2)L � 2�(0.0035 m)(5 m) � 0.110 m2

Rconv � � 0.76°C/ W

Rplastic � � 0.18°C/ W

and therefore

Rtotal � Rplastic � Rconv � 0.76 � 0.18 � 0.94°C/ W

Then the interface temperature can be determined from

Q
·

� → T1 � T� � Q
·
R total

� 30°C � (80 W)(0.94°C/ W) � 105°C

Note that we did not involve the electrical wire directly in the thermal resistance
network, since the wire involves heat generation.

To answer the second part of the question, we need to know the critical radius
of insulation of the plastic cover. It is determined from Eq. 3–50 to be

rcr � � 0.0125 m � 12.5 mm

which is larger than the radius of the plastic cover. Therefore, increasing the
thickness of the plastic cover will enhance heat transfer until the outer radius
of the cover reaches 12.5 mm. As a result, the rate of heat transfer Q· will in-
crease when the interface temperature T1 is held constant, or T1 will decrease
when Q· is held constant, which is the case here.

Discussion It can be shown by repeating the calculations above for a 4-mm-
thick plastic cover that the interface temperature drops to 90.6°C when the
thickness of the plastic cover is doubled. It can also be shown in a similar man-
ner that the interface reaches a minimum temperature of 83°C when the outer
radius of the plastic cover equals the critical radius.

k
h

�
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ln(r2 /r1)
2�kL

�
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2�(0.15 W/m ·  °C)(5 m)

1
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�
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h

T1 T2
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Q
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Q
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FIGURE 3–32
Schematic for Example 3–9.
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3–6 HEAT TRANSFER FROM FINNED SURFACES
The rate of heat transfer from a surface at a temperature Ts to the surrounding
medium at T� is given by Newton’s law of cooling as

Q
·

conv � hAs (Ts � T�)

where As is the heat transfer surface area and h is the convection heat transfer
coefficient. When the temperatures Ts and T� are fixed by design considera-
tions, as is often the case, there are two ways to increase the rate of heat trans-
fer: to increase the convection heat transfer coefficient h or to increase the
surface area As. Increasing h may require the installation of a pump or fan, or
replacing the existing one with a larger one, but this approach may or may not
be practical. Besides, it may not be adequate. The alternative is to increase the
surface area by attaching to the surface extended surfaces called fins made of
highly conductive materials such as aluminum. Finned surfaces are manu-
factured by extruding, welding, or wrapping a thin metal sheet on a surface.
Fins enhance heat transfer from a surface by exposing a larger surface area to
convection and radiation.

Finned surfaces are commonly used in practice to enhance heat transfer, and
they often increase the rate of heat transfer from a surface severalfold. The car
radiator shown in Fig. 3–33 is an example of a finned surface. The closely
packed thin metal sheets attached to the hot water tubes increase the surface
area for convection and thus the rate of convection heat transfer from the tubes
to the air many times. There are a variety of innovative fin designs available
in the market, and they seem to be limited only by imagination (Fig. 3–34).

In the analysis of fins, we consider steady operation with no heat generation
in the fin, and we assume the thermal conductivity k of the material to remain
constant. We also assume the convection heat transfer coefficient h to be con-
stant and uniform over the entire surface of the fin for convenience in the
analysis. We recognize that the convection heat transfer coefficient h, in gen-
eral, varies along the fin as well as its circumference, and its value at a point
is a strong function of the fluid motion at that point. The value of h is usually
much lower at the fin base than it is at the fin tip because the fluid is sur-
rounded by solid surfaces near the base, which seriously disrupt its motion to

�
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FIGURE 3–33
The thin plate fins of a car radiator

greatly increase the rate of
heat transfer to the air (photo by

Yunus Çengel and  James Kleiser).

FIGURE 3–34
Some innovative fin designs.
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the point of “suffocating” it, while the fluid near the fin tip has little contact
with a solid surface and thus encounters little resistance to flow. Therefore,
adding too many fins on a surface may actually decrease the overall heat
transfer when the decrease in h offsets any gain resulting from the increase in
the surface area.

Fin Equation
Consider a volume element of a fin at location x having a length of 	x, cross-
sectional area of Ac, and a perimeter of p, as shown in Fig. 3–35. Under steady
conditions, the energy balance on this volume element can be expressed as

or

Q
·

cond, x � Q
·

cond, x � 	x � Q
·

conv

where

Q
·

conv � h(p 	x)(T � T�)

Substituting and dividing by 	x, we obtain

� hp(T � T�) � 0 (3-52)

Taking the limit as 	x → 0 gives

� hp(T � T�) � 0 (3-53)

From Fourier’s law of heat conduction we have

Q
·

cond � �kAc (3-54)

where Ac is the cross-sectional area of the fin at location x. Substitution of this
relation into Eq. 3–53 gives the differential equation governing heat transfer
in fins,

� hp(T � T�) � 0 (3-55)

In general, the cross-sectional area Ac and the perimeter p of a fin vary with x,
which makes this differential equation difficult to solve. In the special case of
constant cross section and constant thermal conductivity, the differential
equation 3–55 reduces to

� a2� � 0 (3-56)
d2�

dx2

d
dx

 �kAc 
dT
dx �

dT
dx

dQ· cond

dx

Q·
cond, x � 	x � Q· cond, x

	x

� Rate of heat
conduction into
the element at x� � � Rate of heat

conduction from the
element at x � 	x � � � Rate of heat

convection from
the element �

CHAPTER 3
157

x

x

h, T�

Volume
element

L
∆x

0

T0 Ac

Qconv
·
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·

Qcond, x
·

FIGURE 3–35
Volume element of a fin at location x

having a length of 	x, cross-sectional
area of Ac, and perimeter of p.
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where

a2 � (3-57)

and � � T � T� is the temperature excess. At the fin base we have 
�b � Tb � T�.

Equation 3–56 is a linear, homogeneous, second-order differential equation
with constant coefficients. A fundamental theory of differential equations
states that such an equation has two linearly independent solution functions,
and its general solution is the linear combination of those two solution func-
tions. A careful examination of the differential equation reveals that subtract-
ing a constant multiple of the solution function � from its second derivative
yields zero. Thus we conclude that the function � and its second derivative
must be constant multiples of each other. The only functions whose deriva-
tives are constant multiples of the functions themselves are the exponential
functions (or a linear combination of exponential functions such as sine and
cosine hyperbolic functions). Therefore, the solution functions of the dif-
ferential equation above are the exponential functions e�ax or eax or constant
multiples of them. This can be verified by direct substitution. For example,
the second derivative of e�ax is a2e�ax, and its substitution into Eq. 3–56 yields
zero. Therefore, the general solution of the differential equation Eq. 3–56 is

�(x) � C1eax � C2e�ax (3-58)

where C1 and C2 are arbitrary constants whose values are to be determined
from the boundary conditions at the base and at the tip of the fin. Note that we
need only two conditions to determine C1 and C2 uniquely.

The temperature of the plate to which the fins are attached is normally
known in advance. Therefore, at the fin base we have a specified temperature
boundary condition, expressed as

Boundary condition at fin base: �(0) � �b � Tb � T� (3-59)

At the fin tip we have several possibilities, including specified temperature,
negligible heat loss (idealized as an insulated tip), convection, and combined
convection and radiation (Fig. 3–36). Next, we consider each case separately.

1 Infinitely Long Fin (Tfin tip � T�)
For a sufficiently long fin of uniform cross section (Ac � constant), the tem-
perature of the fin at the fin tip will approach the environment temperature T�

and thus � will approach zero. That is,

Boundary condition at fin tip: �(L) � T(L) � T� � 0 as L → �

This condition will be satisfied by the function e�ax, but not by the other
prospective solution function eax since it tends to infinity as x gets larger.
Therefore, the general solution in this case will consist of a constant multiple
of e�ax. The value of the constant multiple is determined from the require-
ment that at the fin base where x � 0 the value of � will be �b. Noting that

hp
kAc
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Tb

0

Specified
temperature

(a) Specified temperature
(b) Negligible heat loss
(c) Convection
(d) Convection and radiation

T�

L
x

FIGURE 3–36
Boundary conditions at the
fin base and the fin tip.
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e�ax � e0 � 1, the proper value of the constant is �b, and the solution function
we are looking for is �(x) � �be�ax. This function satisfies the differential
equation as well as the requirements that the solution reduce to �b at the fin
base and approach zero at the fin tip for large x. Noting that � � T � T� and
a � , the variation of temperature along the fin in this case can be
expressed as

Very long fin: � e�ax � (3-60)

Note that the temperature along the fin in this case decreases exponentially
from Tb to T�, as shown in Fig. 3–37. The steady rate of heat transfer from the
entire fin can be determined from Fourier’s law of heat conduction

Very long fin: Q
·

long fin � �kAc � (Tb � T�) (3-61)

where p is the perimeter, Ac is the cross-sectional area of the fin, and x is the
distance from the fin base. Alternatively, the rate of heat transfer from the fin
could also be determined by considering heat transfer from a differential
volume element of the fin and integrating it over the entire surface of the fin.
That is,

Q
·

fin � h[T(x) � T�] dAfin � h�(x) dAfin (3-62)

The two approaches described are equivalent and give the same result since,
under steady conditions, the heat transfer from the exposed surfaces of the fin
is equal to the heat transfer to the fin at the base (Fig. 3–38).

2 Negligible Heat Loss from the Fin Tip
(Insulated fin tip, Q· fin tip � 0)

Fins are not likely to be so long that their temperature approaches the sur-
rounding temperature at the tip. A more realistic situation is for heat transfer
from the fin tip to be negligible since the heat transfer from the fin is propor-
tional to its surface area, and the surface area of the fin tip is usually a negli-
gible fraction of the total fin area. Then the fin tip can be assumed to be
insulated, and the condition at the fin tip can be expressed as

Boundary condition at fin tip: � 0 (3-63)

The condition at the fin base remains the same as expressed in Eq. 3–59. The
application of these two conditions on the general solution (Eq. 3–58) yields,
after some manipulations, this relation for the temperature distribution:

Adiabatic fin tip: (3-64)
T(x) � T�

Tb � T�
�

cosh a(L � x)
cosh aL

d�
dx �x � L

�
Afin

�
Afin

�hpkAc
dT
dx �

x�0

e�x�hp/kAc

T(x) � T�

Tb � T�

�hp/kAc
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T(x) = T� + (Tb – T�)e
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L
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Ab = Ac

k

h, T�
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—–
kAc

–x

D

(p =    D, Ac =    D2/4 for a cylindrical fin)π π

FIGURE 3–37
A long circular fin of uniform cross

section and the variation of
temperature along it.

Qbase
·

Qbase = Qfin
· ·

Qfin
·

FIGURE 3–38
Under steady conditions, heat transfer

from the exposed surfaces of the
fin is equal to heat conduction

to the fin at the base.
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The rate of heat transfer from the fin can be determined again from Fourier’s
law of heat conduction:

Adiabatic fin tip: Q
·

insulated tip � �kAc

� (Tb � T�) tanh aL (3-65)

Note that the heat transfer relations for the very long fin and the fin with
negligible heat loss at the tip differ by the factor tanh aL, which approaches 1
as L becomes very large.

3 Convection (or Combined Convection and Radiation)
from Fin Tip

The fin tips, in practice, are exposed to the surroundings, and thus the proper
boundary condition for the fin tip is convection that also includes the effects
of radiation. The fin equation can still be solved in this case using the convec-
tion at the fin tip as the second boundary condition, but the analysis becomes
more involved, and it results in rather lengthy expressions for the temperature
distribution and the heat transfer. Yet, in general, the fin tip area is a small
fraction of the total fin surface area, and thus the complexities involved can
hardly justify the improvement in accuracy.

A practical way of accounting for the heat loss from the fin tip is to replace
the fin length L in the relation for the insulated tip case by a corrected length
defined as (Fig. 3–39)

Corrected fin length: Lc � L � (3-66)

where Ac is the cross-sectional area and p is the perimeter of the fin at the tip.
Multiplying the relation above by the perimeter gives Acorrected � Afin (lateral) �
Atip, which indicates that the fin area determined using the corrected length is
equivalent to the sum of the lateral fin area plus the fin tip area.

The corrected length approximation gives very good results when the vari-
ation of temperature near the fin tip is small (which is the case when aL � 1)
and the heat transfer coefficient at the fin tip is about the same as that at the
lateral surface of the fin. Therefore, fins subjected to convection at their tips
can be treated as fins with insulated tips by replacing the actual fin length by
the corrected length in Eqs. 3–64 and 3–65.

Using the proper relations for Ac and p, the corrected lengths for rectangu-
lar and cylindrical fins are easily determined to be

Lc, rectangular fin � L � and Lc, cylindrical fin � L �

where t is the thickness of the rectangular fins and D is the diameter of the
cylindrical fins.

Fin Efficiency
Consider the surface of a plane wall at temperature Tb exposed to a medium at
temperature T�. Heat is lost from the surface to the surrounding medium by

D
4

t
2

Ac

p

�hpkAc

dT
dx �

x � 0
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Lc
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(b) Equivalent fin with insulated tip

Qfin
·

L

Convection

(a) Actual fin with
     convection at the tip

Qfin
·

Ac–—p

FIGURE 3–39
Corrected fin length Lc is defined such
that heat transfer from a fin of length
Lc with insulated tip is equal to heat
transfer from the actual fin of length L
with convection at the fin tip.
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convection with a heat transfer coefficient of h. Disregarding radiation or
accounting for its contribution in the convection coefficient h, heat transfer
from a surface area As is expressed as Q

·
� hAs (Ts � T�).

Now let us consider a fin of constant cross-sectional area Ac � Ab and length
L that is attached to the surface with a perfect contact (Fig. 3–40). This time
heat will flow from the surface to the fin by conduction and from the fin to the
surrounding medium by convection with the same heat transfer coefficient h.
The temperature of the fin will be Tb at the fin base and gradually decrease to-
ward the fin tip. Convection from the fin surface causes the temperature at any
cross section to drop somewhat from the midsection toward the outer surfaces.
However, the cross-sectional area of the fins is usually very small, and thus
the temperature at any cross section can be considered to be uniform. Also, the
fin tip can be assumed for convenience and simplicity to be insulated by using
the corrected length for the fin instead of the actual length.

In the limiting case of zero thermal resistance or infinite thermal conduc-
tivity (k → �), the temperature of the fin will be uniform at the base value of
Tb. The heat transfer from the fin will be maximum in this case and can be
expressed as

Q
·

fin, max � hAfin (Tb � T�) (3-67)

In reality, however, the temperature of the fin will drop along the fin, and
thus the heat transfer from the fin will be less because of the decreasing tem-
perature difference T(x) � T� toward the fin tip, as shown in Fig. 3–41. To ac-
count for the effect of this decrease in temperature on heat transfer, we define
a fin efficiency as

�fin � (3-68)

or

Q
·

fin � �fin Q
·

fin, max � �fin hAfin (Tb � T�) (3-69)

where Afin is the total surface area of the fin. This relation enables us to deter-
mine the heat transfer from a fin when its efficiency is known. For the cases
of constant cross section of very long fins and fins with insulated tips, the fin
efficiency can be expressed as

�long fin � (3-70)

and

�insulated tip � � (3-71)

since Afin � pL for fins with constant cross section. Equation 3–71 can also be
used for fins subjected to convection provided that the fin length L is replaced
by the corrected length Lc.

 
tanh aL

aL
Q· fin

Q·
fin, max

�
�hpkAc (Tb � T�) tanh aL

hAfin (Tb � T�)

Q· fin

Q·
fin, max

�
�hpkAc (Tb � T�)

hAfin (Tb � T�)
�

1
L

 �kAc

hp
�

1
aL

Q·
fin

Qfin, max
�

Actual heat transfer rate from the fin
Ideal heat transfer rate from the fin

if the entire fin were at base temperature
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(a) Surface without fins 

(b) Surface with a fin 
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Afin = 2 × w × L + w × t

       ≅ 2 × w × L

Ab = w × t

FIGURE 3–40
Fins enhance heat transfer from

a surface by enhancing surface area.
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FIGURE 3–41
Ideal and actual

temperature distribution in a fin.
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Fin efficiency relations are developed for fins of various profiles and are
plotted in Fig. 3–42 for fins on a plain surface and in Fig. 3–43 for circular
fins of constant thickness. The fin surface area associated with each profile is
also given on each figure. For most fins of constant thickness encountered in
practice, the fin thickness t is too small relative to the fin length L, and thus
the fin tip area is negligible.
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FIGURE 3–42
Efficiency of circular, rectangular, and

triangular fins on a plain surface of
width w (from Gardner, Ref. 6).
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Note that fins with triangular and parabolic profiles contain less material
and are more efficient than the ones with rectangular profiles, and thus are
more suitable for applications requiring minimum weight such as space appli-
cations.

An important consideration in the design of finned surfaces is the selection
of the proper fin length L. Normally the longer the fin, the larger the heat
transfer area and thus the higher the rate of heat transfer from the fin. But also
the larger the fin, the bigger the mass, the higher the price, and the larger the
fluid friction. Therefore, increasing the length of the fin beyond a certain
value cannot be justified unless the added benefits outweigh the added cost.
Also, the fin efficiency decreases with increasing fin length because of the de-
crease in fin temperature with length. Fin lengths that cause the fin efficiency
to drop below 60 percent usually cannot be justified economically and should
be avoided. The efficiency of most fins used in practice is above 90 percent.

Fin Effectiveness
Fins are used to enhance heat transfer, and the use of fins on a surface cannot
be recommended unless the enhancement in heat transfer justifies the added
cost and complexity associated with the fins. In fact, there is no assurance that
adding fins on a surface will enhance heat transfer. The performance of the
fins is judged on the basis of the enhancement in heat transfer relative to the
no-fin case. The performance of fins expressed in terms of the fin effectiveness
�fin is defined as (Fig. 3–44)

�fin � (3-72)

Here, Ab is the cross-sectional area of the fin at the base and Q
·

no fin represents
the rate of heat transfer from this area if no fins are attached to the surface.
An effectiveness of �fin � 1 indicates that the addition of fins to the surface
does not affect heat transfer at all. That is, heat conducted to the fin through
the base area Ab is equal to the heat transferred from the same area Ab to the
surrounding medium. An effectiveness of �fin � 1 indicates that the fin actu-
ally acts as insulation, slowing down the heat transfer from the surface. This
situation can occur when fins made of low thermal conductivity materials are
used. An effectiveness of �fin 
 1 indicates that fins are enhancing heat trans-
fer from the surface, as they should. However, the use of fins cannot be justi-
fied unless �fin is sufficiently larger than 1. Finned surfaces are designed on
the basis of maximizing effectiveness for a specified cost or minimizing cost
for a desired effectiveness.

Note that both the fin efficiency and fin effectiveness are related to the per-
formance of the fin, but they are different quantities. However, they are
related to each other by

�fin � �fin (3-73)
Q·

fin

Q·
no fin

�
Q·

fin

hAb (Tb � T�)
�

�fin hAfin (Tb � T�)
hAb (Tb � T�)

�
Afin

Ab

Q·
fin

Q·
no fin

�
Q·

fin

hAb (Tb � T�)
�

Heat transfer rate from
the fin of base area Ab

Heat transfer rate from
the surface of area Ab
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FIGURE 3–44
The effectiveness of a fin.
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Therefore, the fin effectiveness can be determined easily when the fin effi-
ciency is known, or vice versa.

The rate of heat transfer from a sufficiently long fin of uniform cross section
under steady conditions is given by Eq. 3–61. Substituting this relation into
Eq. 3–72, the effectiveness of such a long fin is determined to be

�long fin � (3-74)

since Ac � Ab in this case. We can draw several important conclusions from
the fin effectiveness relation above for consideration in the design and selec-
tion of the fins:

• The thermal conductivity k of the fin material should be as high as
possible. Thus it is no coincidence that fins are made from metals, with
copper, aluminum, and iron being the most common ones. Perhaps the
most widely used fins are made of aluminum because of its low cost and
weight and its resistance to corrosion.

• The ratio of the perimeter to the cross-sectional area of the fin p/Ac

should be as high as possible. This criterion is satisfied by thin plate fins
and slender pin fins.

• The use of fins is most effective in applications involving a low
convection heat transfer coefficient. Thus, the use of fins is more easily
justified when the medium is a gas instead of a liquid and the heat
transfer is by natural convection instead of by forced convection.
Therefore, it is no coincidence that in liquid-to-gas heat exchangers such
as the car radiator, fins are placed on the gas side.

When determining the rate of heat transfer from a finned surface, we must
consider the unfinned portion of the surface as well as the fins. Therefore, the
rate of heat transfer for a surface containing n fins can be expressed as

Q
·

total, fin � Q
·

unfin � Q
·

fin

� hAunfin (Tb � T�) � �fin hAfin (Tb � T�)

� h(Aunfin � �fin Afin)(Tb � T�) (3-75)

We can also define an overall effectiveness for a finned surface as the ratio
of the total heat transfer from the finned surface to the heat transfer from the
same surface if there were no fins,

�fin, overall � (3-76)

where Ano fin is the area of the surface when there are no fins, Afin is the total
surface area of all the fins on the surface, and Aunfin is the area of the unfinned
portion of the surface (Fig. 3–45). Note that the overall fin effectiveness
depends on the fin density (number of fins per unit length) as well as the
effectiveness of the individual fins. The overall effectiveness is a better mea-
sure of the performance of a finned surface than the effectiveness of the indi-
vidual fins.

Q·
total, fin

Q·
total, no fin

�
h(Aunfin � �fin Afin)(Tb � T�)

hAno fin (Tb � T�)

Q·
fin

Q·
no fin

�
�hpkAc (Tb � T�)

hAb (Tb � T�)
� � kp

hAc
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FIGURE 3–45
Various surface areas associated with a
rectangular surface with three fins.
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Proper Length of a Fin
An important step in the design of a fin is the determination of the appropriate
length of the fin once the fin material and the fin cross section are specified.
You may be tempted to think that the longer the fin, the larger the surface area
and thus the higher the rate of heat transfer. Therefore, for maximum heat
transfer, the fin should be infinitely long. However, the temperature drops
along the fin exponentially and reaches the environment temperature at some
length. The part of the fin beyond this length does not contribute to heat trans-
fer since it is at the temperature of the environment, as shown in Fig. 3–46.
Therefore, designing such an “extra long” fin is out of the question since it
results in material waste, excessive weight, and increased size and thus in-
creased cost with no benefit in return (in fact, such a long fin will hurt perfor-
mance since it will suppress fluid motion and thus reduce the convection heat
transfer coefficient). Fins that are so long that the temperature approaches the
environment temperature cannot be recommended either since the little in-
crease in heat transfer at the tip region cannot justify the large increase in the
weight and cost.

To get a sense of the proper length of a fin, we compare heat transfer from
a fin of finite length to heat transfer from an infinitely long fin under the same
conditions. The ratio of these two heat transfers is

� tanh aL (3-77)

Using a hand calculator, the values of tanh aL are evaluated for some values
of aL and the results are given in Table 3–3. We observe from the table that
heat transfer from a fin increases with aL almost linearly at first, but the curve
reaches a plateau later and reaches a value for the infinitely long fin at about
aL � 5. Therefore, a fin whose length is L � a can be considered to be an
infinitely long fin. We also observe that reducing the fin length by half in that
case (from aL � 5 to aL � 2.5) causes a drop of just 1 percent in heat trans-
fer. We certainly would not hesitate sacrificing 1 percent in heat transfer per-
formance in return for 50 percent reduction in the size and possibly the cost of
the fin. In practice, a fin length that corresponds to about aL � 1 will transfer
76.2 percent of the heat that can be transferred by an infinitely long fin, and
thus it should offer a good compromise between heat transfer performance
and the fin size.

A common approximation used in the analysis of fins is to assume the fin
temperature varies in one direction only (along the fin length) and the tem-
perature variation along other directions is negligible. Perhaps you are won-
dering if this one-dimensional approximation is a reasonable one. This is
certainly the case for fins made of thin metal sheets such as the fins on a car
radiator, but we wouldn’t be so sure for fins made of thick materials. Studies
have shown that the error involved in one-dimensional fin analysis is negligi-
ble (less than about 1 percent) when

� 0.2
h�
k

1
5

Q·
fin

Q·
long fin

�
�hpkAc (Tb � T�) tanh aL

�hpkAc (Tb � T�)
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FIGURE 3–46
Because of the gradual temperature

drop along the fin, the region
near the fin tip makes little or

no contribution to heat transfer.

TABLE 3–3

The variation of heat transfer from
a fin relative to that from an
infinitely long fin

aL � tanh aL

0.1 0.100
0.2 0.197
0.5 0.462
1.0 0.762
1.5 0.905
2.0 0.964
2.5 0.987
3.0 0.995
4.0 0.999
5.0 1.000

Q
.

fin

Q
.

long fin
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where � is the characteristic thickness of the fin, which is taken to be the plate
thickness t for rectangular fins and the diameter D for cylindrical ones.

Specially designed finned surfaces called heat sinks, which are commonly
used in the cooling of electronic equipment, involve one-of-a-kind complex
geometries, as shown in Table 3–4. The heat transfer performance of heat
sinks is usually expressed in terms of their thermal resistances R in °C/W,
which is defined as

Q
·

fin � � hAfin �fin (Tb � T�) (3-78)

A small value of thermal resistance indicates a small temperature drop across
the heat sink, and thus a high fin efficiency.

Tb � T�

R
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Q
·

FIGURE 3–47
Schematic for Example 3–10.

EXAMPLE 3–10 Maximum Power Dissipation of a Transistor

Power transistors that are commonly used in electronic devices consume large
amounts of electric power. The failure rate of electronic components increases
almost exponentially with operating temperature. As a rule of thumb, the failure
rate of electronic components is halved for each 10°C reduction in the junction
operating temperature. Therefore, the operating temperature of electronic com-
ponents is kept below a safe level to minimize the risk of failure.

The sensitive electronic circuitry of a power transistor at the junction is pro-
tected by its case, which is a rigid metal enclosure. Heat transfer characteris-
tics of a power transistor are usually specified by the manufacturer in terms of
the case-to-ambient thermal resistance, which accounts for both the natural
convection and radiation heat transfers.

The case-to-ambient thermal resistance of a power transistor that has a max-
imum power rating of 10 W is given to be 20°C/W. If the case temperature of
the transistor is not to exceed 85°C, determine the power at which this transis-
tor can be operated safely in an environment at 25°C.

SOLUTION The maximum power rating of a transistor whose case temperature
is not to exceed 85°C is to be determined.
Assumptions 1 Steady operating conditions exist. 2 The transistor case is iso-
thermal at 85°C.
Properties The case-to-ambient thermal resistance is given to be 20°C/W.
Analysis The power transistor and the thermal resistance network associated
with it are shown in Fig. 3–47. We notice from the thermal resistance network
that there is a single resistance of 20°C/W between the case at Tc � 85°C and
the ambient at T� � 25°C, and thus the rate of heat transfer is

Q
·

� � � � 3 W

Therefore, this power transistor should not be operated at power levels above
3 W if its case temperature is not to exceed 85°C.
Discussion This transistor can be used at higher power levels by attaching it to
a heat sink (which lowers the thermal resistance by increasing the heat transfer
surface area, as discussed in the next example) or by using a fan (which lowers
the thermal resistance by increasing the convection heat transfer coefficient).

(85 � 25)°C
20°C/ W

Tc � T�

Rcase-ambient
�	T

R �
case-ambient
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TABLE 3–4

Combined natural convection and radiation thermal resistance of various
heat sinks used in the cooling of electronic devices between the heat sink and
the surroundings. All fins are made of aluminum 6063T-5, are black anodized,
and are 76 mm (3 in.) long (courtesy of Vemaline Products, Inc.).

R � 0.9°C/ W (vertical)
R � 1.2°C/W (horizontal)

Dimensions: 76 mm 
 105 mm 
 44 mm
Surface area: 677 cm2

R � 5°C/ W

Dimensions: 76 mm 
 38 mm 
 24 mm
Surface area: 387 cm2

R � 1.4°C/ W (vertical)
R � 1.8°C/W (horizontal)

Dimensions: 76 mm 
 92 mm 
 26 mm
Surface area: 968 cm2

R � 1.8°C/ W (vertical)
R � 2.1°C/W (horizontal)

Dimensions: 76 mm 
 127 mm 
 91 mm
Surface area: 677 cm2

R � 1.1°C/ W (vertical)
R � 1.3°C/W (horizontal)

Dimensions: 76 mm 
 102 mm 
 25 mm
Surface area: 929 cm2

R � 2.9°C/ W (vertical)
R � 3.1°C/W (horizontal)

Dimensions: 76 mm 
 97 mm 
 19 mm
Surface area: 290 cm2

EXAMPLE 3–11 Selecting a Heat Sink for a Transistor

A 60-W power transistor is to be cooled by attaching it to one of the commer-
cially available heat sinks shown in Table 3–4. Select a heat sink that will allow
the case temperature of the transistor not to exceed 90°C in the ambient air
at 30°C.
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SOLUTION A commercially available heat sink from Table 3–4 is to be se-
lected to keep the case temperature of a transistor below 90°C.
Assumptions 1 Steady operating conditions exist. 2 The transistor case is iso-
thermal at 90°C. 3 The contact resistance between the transistor and the heat
sink is negligible.
Analysis The rate of heat transfer from a 60-W transistor at full power is
Q· � 60 W. The thermal resistance between the transistor attached to the heat
sink and the ambient air for the specified temperature difference is determined
to be

Q
·

� → R � � 1.0°C/ W

Therefore, the thermal resistance of the heat sink should be below 1.0°C/ W.
An examination of Table 3–4 reveals that the HS 5030, whose thermal resis-
tance is 0.9°C/ W in the vertical position, is the only heat sink that will meet
this requirement.

	T
Q·

�
(90 � 30)°C

60 W
	T
R

EXAMPLE 3–12 Effect of Fins on Heat Transfer from Steam Pipes

Steam in a heating system flows through tubes whose outer diameter is
D1 � 3 cm and whose walls are maintained at a temperature of 120°C. Circu-
lar aluminum fins (k � 180 W/m · °C) of outer diameter D2 � 6 cm and con-
stant thickness t � 2 mm are attached to the tube, as shown in Fig. 3–48. The
space between the fins is 3 mm, and thus there are 200 fins per meter length
of the tube. Heat is transferred to the surrounding air at T� � 25°C, with a com-
bined heat transfer coefficient of h � 60 W/m2 · °C. Determine the increase in
heat transfer from the tube per meter of its length as a result of adding fins.

SOLUTION Circular aluminum fins are to be attached to the tubes of a heating
system. The increase in heat transfer from the tubes per unit length as a result
of adding fins is to be determined.
Assumptions 1 Steady operating conditions exist. 2 The heat transfer coeffi-
cient is uniform over the entire fin surfaces. 3 Thermal conductivity is constant.
4 Heat transfer by radiation is negligible.
Properties The thermal conductivity of the fins is given to be k � 180
W/m · °C.
Analysis In the case of no fins, heat transfer from the tube per meter of its
length is determined from Newton’s law of cooling to be

Ano fin � �D1L � �(0.03 m)(1 m) � 0.0942 m2

Q
·

no fin � hAno fin(Tb � T�)

� (60 W/m2 · °C)(0.0942 m2)(120 � 25)°C

� 537 W

The efficiency of the circular fins attached to a circular tube is plotted in Fig.
3–43. Noting that L � (D2 � D1) � (0.06 � 0.03) � 0.015 m in this case,
we have

1
2

1
2

t = 2 mm

S = 3 mm

T�
h

Tb

r2 = 3 cm r1 = 1.5 cm

FIGURE 3–48
Schematic for Example 3–12.
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3-7 HEAT TRANSFER IN
COMMON CONFIGURATIONS

So far, we have considered heat transfer in simple geometries such as large
plane walls, long cylinders, and spheres. This is because heat transfer in such
geometries can be approximated as one-dimensional, and simple analytical
solutions can be obtained easily. But many problems encountered in practice
are two- or three-dimensional and involve rather complicated geometries for
which no simple solutions are available.

�
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Afin � 2�( � ) � 2�r2t
� 2�[(0.03 m)2 � (0.015 m)2] � 2�(0.03 m)(0.002 m)

� 0.00462 m2

Q
·

fin � �finQ
·

fin, max � �finhAfin (Tb � T�)

� 0.95(60 W/m2 · °C)(0.00462 m2)(120 � 25)°C

� 25.0 W

Heat transfer from the unfinned portion of the tube is

Aunfin � �D1S � �(0.03 m)(0.003 m) � 0.000283 m2

Q
·

unfin � hAunfin(Tb � T�)

� (60 W/m2 · °C)(0.000283 m2)(120 � 25)°C

� 1.60 W

Noting that there are 200 fins and thus 200 interfin spacings per meter length
of the tube, the total heat transfer from the finned tube becomes

Q
·

total, fin � n(Q
·

fin � Q
·

unfin) � 200(25.0 � 1.6) W � 5320 W

Therefore, the increase in heat transfer from the tube per meter of its length as
a result of the addition of fins is

Q
·

increase � Q
·

total, fin � Q
·

no fin � 5320 � 537 � 4783 W (per m tube length)

Discussion The overall effectiveness of the finned tube is

�fin, overall � � 9.9

That is, the rate of heat transfer from the steam tube increases by a factor of
almost 10 as a result of adding fins. This explains the widespread use of finned
surfaces.

Q·
total, fin

Q·
total, no fin

�
5320 W
537 W

r 2
1r 2

2

r2 � 1
2

t
r1

�
(0.03 � 1

2

 0.002) m

0.015 m
� 2.07

(L � 1
2

t ) � h
kt

� (0.015 � 1
2


 0.002) m 
 � 60 W/m2 ·  °C
(180 W/m ·  °C)(0.002 m)

� 0.207
	

 
�fin � 0.95
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An important class of heat transfer problems for which simple solutions are
obtained encompasses those involving two surfaces maintained at constant
temperatures T1 and T2. The steady rate of heat transfer between these two sur-
faces is expressed as

Q � Sk(T1 � T2) (3-79)

where S is the conduction shape factor, which has the dimension of length,
and k is the thermal conductivity of the medium between the surfaces. The
conduction shape factor depends on the geometry of the system only.

Conduction shape factors have been determined for a number of configura-
tions encountered in practice and are given in Table 3–5 for some common
cases. More comprehensive tables are available in the literature. Once the
value of the shape factor is known for a specific geometry, the total steady
heat transfer rate can be determined from the equation above using the speci-
fied two constant temperatures of the two surfaces and the thermal conductiv-
ity of the medium between them. Note that conduction shape factors are
applicable only when heat transfer between the two surfaces is by conduction.
Therefore, they cannot be used when the medium between the surfaces is a
liquid or gas, which involves natural or forced convection currents.

A comparison of Equations 3-4 and 3-79 reveals that the conduction shape
factor S is related to the thermal resistance R by R � 1/kS or S � 1/kR. Thus,
these two quantities are the inverse of each other when the thermal conduc-
tivity of the medium is unity. The use of the conduction shape factors is illus-
trated with examples 3–13 and 3–14.
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EXAMPLE 3–13 Heat Loss from Buried Steam Pipes

A 30-m-long, 10-cm-diameter hot water pipe of a district heating system is
buried in the soil 50 cm below the ground surface, as shown in Figure 3–49.
The outer surface temperature of the pipe is 80°C. Taking the surface tempera-
ture of the earth to be 10°C and the thermal conductivity of the soil at that lo-
cation to be 0.9 W/m · °C, determine the rate of heat loss from the pipe.

SOLUTION The hot water pipe of a district heating system is buried in the soil.
The rate of heat loss from the pipe is to be determined.
Assumptions 1 Steady operating conditions exist. 2 Heat transfer is two-
dimensional (no change in the axial direction). 3 Thermal conductivity of the
soil is constant.
Properties The thermal conductivity of the soil is given to be k � 0.9 W/m · °C.
Analysis The shape factor for this configuration is given in Table 3–5 to be

S �

since z 
 1.5D, where z is the distance of the pipe from the ground surface,
and D is the diameter of the pipe. Substituting,

S � � 62.9 m
2� 
 (30 m)

ln(4 
 0.5/0.1)

2�L
ln(4z/D)

L = 30 m

D = 10 cm

T1 = 80°C

z = 0.5 m

T2 = 10°C

FIGURE 3–49
Schematic for Example 3–13.
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TABLE 3-5

Conduction shape factors S for several configurations for use in Q
·

� kS(T1 � T2) to determine the steady rate of heat
transfer through a medium of thermal conductivity k between the surfaces at temperatures T1 and T2

(continued)

(1) Isothermal cylinder of length L
      buried in a semi-infinite medium
      (L >>D and z >1.5D)

(2) Vertical isothermal cylinder of length L
      buried in a semi-infinite medium
      (L >>D)

(3) Two parallel isothermal cylinders
      placed in an infinite medium
      (L >>D1, D2 , z)

(4) A row of equally spaced parallel isothermal
     cylinders buried in a semi-infinite medium
      (L >>D, z  and w >1.5D)

(5) Circular isothermal cylinder of length L
      in the midplane of an infinite wall
      (z > 0.5D)

(6) Circular isothermal cylinder of length L
      at the center of a square solid bar of the
      same length

(7) Eccentric circular isothermal cylinder
      of length L in a cylinder of the same
      length (L > D2)

(8) Large plane wall

S = ———–2   L
ln (4z /D)

π S = ———–2   L
ln(4L /D)

S = —————–————2   L

4z2 – D2
1 – D2

2

2D1D2
cosh–1   –———————

S = —————–————2   L

 D2
1 + D2

2 – 4z2 

2D1D2
cosh–1   –———————

S = —————–—2   L

2w
D

2   z
w

 ln  ——  sinh  ——

S = ———–2   L
ln(8z /  D)

S = —————–2   L
ln (1.08w/D)

S = —–A
L

T1

z

T2T1

T1

T2

T2

T1

T2

T2T1

A

L

L

w

D

L

z

L

z

L

z

z
D

(per cylinder)

T2

π

π
π

ππ

π
π

π

π

T2

D1

D2 L

T1

z

D2
D1

L

L

D

T2

T1

D

w w w

T2
T1

D
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TABLE 3-5 (CONCLUDED)

(9) A long cylindrical layer (10) A square flow passage

(a) For a /b > 1.4,

(11) A spherical layer (12) Disk buried parallel to
        the surface in a semi-infinite
         medium (z >> D)

(13) The edge of two adjoining
       walls of equal thickness

(14) Corner of three walls
       of equal thickness

L

(inside)
L

LT1

(outside)
T2

(15) Isothermal sphere buried in a
       semi-infinite medium

(16) Isothermal sphere buried
        in a semi-infinite medium at T2
        whose surface is insulated

S = ———–—2   L
ln (D2/D1)

S = ————–
2   D1D2
D2– D1

S = ———–———–2   L
0.93 ln (0.948a /b)

(b) For a /b < 1.41,

S = ———–———–2   L
0.785 ln (a /b)

S = —————2   D
1 – 0.25D/z

S = —————2   D
1 + 0.25D/z

S = 4 D

(S = 2 D when z = 0)

S = 0.54 w S = 0.15L

D1

D2

T1

T2

L

L

T2

T2

T1

D

T1

T2 Insulated

w

z

T2 (medium)

D

T2

T2

T1

T1
z

b

a

L

D

T1z

T2

T1

D1

L

D2

π
π

π

π

π π
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It is well known that insulation reduces heat transfer and saves energy and
money. Decisions on the right amount of insulation are based on a heat trans-
fer analysis, followed by an economic analysis to determine the “monetary
value” of energy loss. This is illustrated with Example 3–15.
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Then the steady rate of heat transfer from the pipe becomes

Q
·

� Sk(T1 � T2) � (62.9 m)(0.9 W/m · °C)(80 � 10)°C � 3963 W

Discussion Note that this heat is conducted from the pipe surface to the sur-
face of the earth through the soil and then transferred to the atmosphere by
convection and radiation.

EXAMPLE 3–14 Heat Transfer between Hot and Cold Water Pipes

A 5-m-long section of hot and cold water pipes run parallel to each other in a
thick concrete layer, as shown in Figure 3–50. The diameters of both pipes are
5 cm, and the distance between the centerline of the pipes is 30 cm. The sur-
face temperatures of the hot and cold pipes are 70°C and 15°C, respectively.
Taking the thermal conductivity of the concrete to be k � 0.75 W/m · °C, de-
termine the rate of heat transfer between the pipes.

SOLUTION Hot and cold water pipes run parallel to each other in a thick con-
crete layer. The rate of heat transfer between the pipes is to be determined.
Assumptions 1 Steady operating conditions exist. 2 Heat transfer is two-
dimensional (no change in the axial direction). 3 Thermal conductivity of the
concrete is constant.
Properties The thermal conductivity of concrete is given to be k � 0.75
W/m · °C.
Analysis The shape factor for this configuration is given in Table 3–5 to be

S �

where z is the distance between the centerlines of the pipes and L is their
length. Substituting,

S � � 6.34 m

Then the steady rate of heat transfer between the pipes becomes

Q
·

� Sk(T1 � T2) � (6.34 m)(0.75 W/m · °C)(70 � 15°)C � 262 W

Discussion We can reduce this heat loss by placing the hot and cold water
pipes further away from each other.

2� 
 (5 m)

cosh�1�4 
 0.32 � 0.052 � 0.052

2 
 0.05 
 0.05 �

2�L

cosh�1�4z2 � D2
1 � D2

2

2D1D2
�

D 2
 =

 5 
cm

T1 = 70°C

L 
= 

5 m

z = 30 cm

T2 = 15°C

D 1
 =

 5 
cm

FIGURE 3–50
Schematic for Example 3-14.
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Rwall RoRi

T1 T2

T1
T2

Wall, R=13

75°F

45°F

T�1 T�2

FIGURE 3–51
Schematic for Example 3–15.

EXAMPLE 3–15 Cost of Heat Loss through Walls in Winter

Consider an electrically heated house whose walls are 9 ft high and have an
R-value of insulation of 13 (i.e., a thickness-to-thermal conductivity ratio of
L/k � 13 h · ft2 · °F/Btu). Two of the walls of the house are 40 ft long and the
others are 30 ft long. The house is maintained at 75°F at all times, while
the temperature of the outdoors varies. Determine the amount of heat lost
through the walls of the house on a certain day during which the average tem-
perature of the outdoors is 45°F. Also, determine the cost of this heat loss to the
homeowner if the unit cost of electricity is $0.075/kWh. For combined convec-
tion and radiation heat transfer coefficients, use the ASHRAE (American Soci-
ety of Heating, Refrigeration, and Air Conditioning Engineers) recommended
values of hi � 1.46 Btu/h · ft2 · °F for the inner surface of the walls and ho �
4.0 Btu/h · ft2 · °F for the outer surface of the walls under 15 mph wind condi-
tions in winter.

SOLUTION An electrically heated house with R-13 insulation is considered.
The amount of heat lost through the walls and its cost are to be determined.
Assumptions 1 The indoor and outdoor air temperatures have remained at the
given values for the entire day so that heat transfer through the walls is steady.
2 Heat transfer through the walls is one-dimensional since any significant
temperature gradients in this case will exist in the direction from the indoors
to the outdoors. 3 The radiation effects are accounted for in the heat transfer
coefficients.
Analysis This problem involves conduction through the wall and convection at
its surfaces and can best be handled by making use of the thermal resistance
concept and drawing the thermal resistance network, as shown in Fig. 3–51.
The heat transfer area of the walls is

A � Circumference 
 Height � (2 
 30 ft � 2 
 40 ft)(9 ft) � 1260 ft2

Then the individual resistances are evaluated from their definitions to be

Ri � Rconv, i � � 0.00054 h · °F/Btu

Rwall � � 0.01032 h · °F/Btu

Ro � Rconv, o � � 0.00020 h · °F/Btu

Noting that all three resistances are in series, the total resistance is

Rtotal � Ri � Rwall � Ro � 0.00054 � 0.01032 � 0.00020 � 0.01106 h · °F/Btu

Then the steady rate of heat transfer through the walls of the house becomes

Q
·

� � 2712 Btu/h

Finally, the total amount of heat lost through the walls during a 24-h period and
its cost to the home owner are

Q � Q
·

	t � (2712 Btu/h)(24-h/day) � 65,099 Btu/day � 19.1 kWh/day

T�1 � T�2

Rtotal
�

(75 � 45)°F
0.01106 h ·  °F/Btu

1
hc A

�
1

(4.0 Btu/h ·  ft2 ·  °F)(1260 ft2)

L
kA

�
R-value

A
�

13 h ·  ft2 ·  °F/Btu
1260 ft2

1
hi A

�
1

(1.46 Btu/h ·  ft2 ·  °F)(1260 ft2)
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since 1 kWh � 3412 Btu, and

Heating cost � (Energy lost)(Cost of energy) � (19.1 kWh/day)($0.075/kWh)

� $1.43/day

Discussion The heat losses through the walls of the house that day will cost
the home owner $1.43 worth of electricity.

TOPIC OF SPECIAL INTEREST*

Heat Transfer Through Walls and Roofs

Under steady conditions, the rate of heat transfer through any section of a
building wall or roof can be determined from

Q
·

� UA(Ti � To) � (3-80)

where Ti and To are the indoor and outdoor air temperatures, A is the heat
transfer area, U is the overall heat transfer coefficient (the U-factor), and
R � 1/U is the overall unit thermal resistance (the R-value). Walls and
roofs of buildings consist of various layers of materials, and the structure
and operating conditions of the walls and the roofs may differ significantly
from one building to another. Therefore, it is not practical to list the
R-values (or U-factors) of different kinds of walls or roofs under different
conditions. Instead, the overall R-value is determined from the thermal
resistances of the individual components using the thermal resistance net-
work. The overall thermal resistance of a structure can be determined most
accurately in a lab by actually assembling the unit and testing it as a whole,
but this approach is usually very time consuming and expensive. The ana-
lytical approach described here is fast and straightforward, and the results
are usually in good agreement with the experimental values.

The unit thermal resistance of a plane layer of thickness L and thermal
conductivity k can be determined from R � L/k. The thermal conductivity
and other properties of common building materials are given in the appen-
dix. The unit thermal resistances of various components used in building
structures are listed in Table 3–6 for convenience.

Heat transfer through a wall or roof section is also affected by the con-
vection and radiation heat transfer coefficients at the exposed surfaces. The
effects of convection and radiation on the inner and outer surfaces of walls
and roofs are usually combined into the combined convection and radiation
heat transfer coefficients (also called surface conductances) hi and ho,
respectively, whose values are given in Table 3–7 for ordinary surfaces
(� � 0.9) and reflective surfaces (� � 0.2 or 0.05). Note that surfaces hav-
ing a low emittance also have a low surface conductance due to the reduc-
tion in radiation heat transfer. The values in the table are based on a surface

A(Ti � To)
R

*This section can be skipped without a loss of continuity.

TABLE 3–7

Combined convection and radiation
heat transfer coefficients at window,
wall, or roof surfaces (from ASHRAE
Handbook of Fundamentals, Ref. 1,
Chap. 22, Table 1).

Direc-
tion of

Posi- Heat
tion Flow 0.90 0.20 0.05

Still air (both indoors and outdoors)
Horiz. Up ↑ 9.26 5.17 4.32
Horiz. Down ↓ 6.13 2.10 1.25
45° slope Up ↑ 9.09 5.00 4.15
45° slope Down ↓ 7.50 3.41 2.56
Vertical Horiz. → 8.29 4.20 3.35

Moving air (any position, any direction)
Winter condition 

(winds at 15 mph 
or 24 km/h) 34.0 — —

Summer condition 
(winds at 7.5 mph 
or 12 km/h) 22.7 — —

*Multiply by 0.176 to convert to Btu/h · ft2 · °F.
Surface resistance can be obtained from R � 1/h.

h, W/m2 · °C*

Surface
Emittance, �
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temperature of 21°C (72°F) and a surface–air temperature difference of
5.5°C (10°F). Also, the equivalent surface temperature of the environment
is assumed to be equal to the ambient air temperature. Despite the conve-
nience it offers, this assumption is not quite accurate because of the addi-
tional radiation heat loss from the surface to the clear sky. The effect of sky
radiation can be accounted for approximately by taking the outside tem-
perature to be the average of the outdoor air and sky temperatures.

The inner surface heat transfer coefficient hi remains fairly constant
throughout the year, but the value of ho varies considerably because of its
dependence on the orientation and wind speed, which can vary from less
than 1 km/h in calm weather to over 40 km/h during storms. The com-
monly used values of hi and ho for peak load calculations are

hi � 8.29 W/m2 · °C � 1.46 Btu/h · ft2 · °F (winter and summer)

ho �

which correspond to design wind conditions of 24 km/h (15 mph) for win-
ter and 12 km/h (7.5 mph) for summer. The corresponding surface thermal
resistances (R-values) are determined from Ri � 1/hi and Ro � 1/ho. The
surface conductance values under still air conditions can be used for inte-
rior surfaces as well as exterior surfaces in calm weather.


34.0 W/m2 ·  °C � 6.0 Btu/h ·  ft2 ·  °F     (winter)
22.7 W/m2 ·  °C � 4.0 Btu/h ·  ft2 ·  °F     (summer)

 

TABLE 3–6

Unit thermal resistance (the R-value) of common components used in buildings

R-value

Component m2 · °C/W ft2 · h · °F/Btu

Outside surface (winter) 0.030 0.17
Outside surface (summer) 0.044 0.25
Inside surface, still air 0.12 0.68
Plane air space, vertical, ordinary surfaces (�eff � 0.82):

13 mm ( in.) 0.16 0.90
20 mm ( in.) 0.17 0.94
40 mm (1.5 in.) 0.16 0.90
90 mm (3.5 in.) 0.16 0.91

Insulation, 25 mm (1 in.)
Glass fiber 0.70 4.00
Mineral fiber batt 0.66 3.73
Urethane rigid foam 0.98 5.56

Stucco, 25 mm (1 in.) 0.037 0.21
Face brick, 100 mm (4 in.) 0.075 0.43
Common brick, 100 mm (4 in.) 0.12 0.79
Steel siding 0.00 0.00
Slag, 13 mm ( in.) 0.067 0.38
Wood, 25 mm (1 in.) 0.22 1.25
Wood stud, nominal 2 in. 


4 in. (3.5 in. or 90 mm wide) 0.63 3.58

1
2

3
4

1
2

R-value

Component m2 · °C/W ft2 · h · °F/Btu

Wood stud, nominal 2 in. 

6 in. (5.5 in. or 140 mm wide) 0.98 5.56

Clay tile, 100 mm (4 in.) 0.18 1.01
Acoustic tile 0.32 1.79
Asphalt shingle roofing 0.077 0.44
Building paper 0.011 0.06
Concrete block, 100 mm (4 in.):

Lightweight 0.27 1.51
Heavyweight 0.13 0.71

Plaster or gypsum board, 
13 mm ( in.) 0.079 0.45

Wood fiberboard, 13 mm ( in.) 0.23 1.31
Plywood, 13 mm ( in.) 0.11 0.62
Concrete, 200 mm (8 in.):

Lightweight 1.17 6.67
Heavyweight 0.12 0.67

Cement mortar, 13 mm (1/2 in.) 0.018 0.10
Wood bevel lapped siding, 

13 mm 
 200 mm 
(1/2 in. 
 8 in.) 0.14 0.81

1
2

1
2

1
2
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Building components often involve trapped air spaces between various
layers. Thermal resistances of such air spaces depend on the thickness of
the layer, the temperature difference across the layer, the mean air temper-
ature, the emissivity of each surface, the orientation of the air layer, and the
direction of heat transfer. The emissivities of surfaces commonly encoun-
tered in buildings are given in Table 3–8. The effective emissivity of a
plane-parallel air space is given by

� 1 (3-81)

where �1 and �2 are the emissivities of the surfaces of the air space. Table
3–8 also lists the effective emissivities of air spaces for the cases where
(1) the emissivity of one surface of the air space is � while the emissivity
of the other surface is 0.9 (a building material) and (2) the emissivity of
both surfaces is �. Note that the effective emissivity of an air space between
building materials is 0.82/0.03 � 27 times that of an air space between sur-
faces covered with aluminum foil. For specified surface temperatures, ra-
diation heat transfer through an air space is proportional to effective
emissivity, and thus the rate of radiation heat transfer in the ordinary sur-
face case is 27 times that of the reflective surface case.

Table 3–9 lists the thermal resistances of 20-mm-, 40-mm-, and 90-mm-
(0.75-in., 1.5-in., and 3.5-in.) thick air spaces under various conditions. The
thermal resistance values in the table are applicable to air spaces of uniform
thickness bounded by plane, smooth, parallel surfaces with no air leakage.
Thermal resistances for other temperatures, emissivities, and air spaces can
be obtained by interpolation and moderate extrapolation. Note that the
presence of a low-emissivity surface reduces radiation heat transfer across
an air space and thus significantly increases the thermal resistance. The
thermal effectiveness of a low-emissivity surface will decline, however, if
the condition of the surface changes as a result of some effects such as con-
densation, surface oxidation, and dust accumulation.

The R-value of a wall or roof structure that involves layers of uniform
thickness is determined easily by simply adding up the unit thermal re-
sistances of the layers that are in series. But when a structure involves
components such as wood studs and metal connectors, then the ther-
mal resistance network involves parallel connections and possible two-
dimensional effects. The overall R-value in this case can be determined by
assuming (1) parallel heat flow paths through areas of different construc-
tion or (2) isothermal planes normal to the direction of heat transfer. The
first approach usually overpredicts the overall thermal resistance, whereas
the second approach usually underpredicts it. The parallel heat flow path
approach is more suitable for wood frame walls and roofs, whereas the
isothermal planes approach is more suitable for masonry or metal frame
walls.

The thermal contact resistance between different components of building
structures ranges between 0.01 and 0.1 m2 · °C/W, which is negligible in
most cases. However, it may be significant for metal building components
such as steel framing members.

1
�effective

�
1
�1

�
1
�2

TABLE 3–8

Emissivities � of various surfaces
and the effective emissivity of air
spaces (from ASHRAE Handbook
of Fundamentals, Ref. 1, Chap. 22,
Table 3).

Effective
Emissivity of

Air Space

�1 � � �1 � �
Surface � �2 � 0.9 �2 � �

Aluminum foil, 
bright 0.05* 0.05 0.03

Aluminum 
sheet 0.12 0.12 0.06

Aluminum-
coated 
paper, 
polished 0.20 0.20 0.11

Steel, galvanized, 
bright 0.25 0.24 0.15

Aluminum 
paint 0.50 0.47 0.35

Building materials: 
Wood, paper, 
masonry, nonmetallic 
paints 0.90 0.82 0.82

Ordinary glass 0.84 0.77 0.72

*Surface emissivity of aluminum foil
increases to 0.30 with barely visible
condensation, and to 0.70 with clearly
visible condensation.
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TABLE 3–9

Unit thermal resistances (R-values) of well-sealed plane air spaces (from ASHRAE Handbook of Fundamentals, Ref. 1,
Chap. 22, Table 2)
(a) SI units (in m2 · °C/W)

20-mm Air Space 40-mm Air Space 90-mm Air Space

Effective Effective Effective
Emissivity, �eff Emissivity, �eff Emissivity, �eff

Position Direction Mean Temp.
of Air of Heat Temp., Diff., 
Space Flow °C °C 0.03 0.05 0.5 0.82 0.03 0.05 0.5 0.82 0.03 0.05 0.5 0.82

32.2 5.6 0.41 0.39 0.18 0.13 0.45 0.42 0.19 0.14 0.50 0.47 0.20 0.14
10.0 16.7 0.30 0.29 0.17 0.14 0.33 0.32 0.18 0.14 0.27 0.35 0.19 0.15

Horizontal Up ↑ 10.0 5.6 0.40 0.39 0.20 0.15 0.44 0.42 0.21 0.16 0.49 0.47 0.23 0.16
�17.8 11.1 0.32 0.32 0.20 0.16 0.35 0.34 0.22 0.17 0.40 0.38 0.23 0.18

32.2 5.6 0.52 0.49 0.20 0.14 0.51 0.48 0.20 0.14 0.56 0.52 0.21 0.14
10.0 16.7 0.35 0.34 0.19 0.14 0.38 0.36 0.20 0.15 0.40 0.38 0.20 0.15

45° slope Up ↑ 10.0 5.6 0.51 0.48 0.23 0.17 0.51 0.48 0.23 0.17 0.55 0.52 0.24 0.17
�17.8 11.1 0.37 0.36 0.23 0.18 0.40 0.39 0.24 0.18 0.43 0.41 0.24 0.19

32.2 5.6 0.62 0.57 0.21 0.15 0.70 0.64 0.22 0.15 0.65 0.60 0.22 0.15
10.0 16.7 0.51 0.49 0.23 0.17 0.45 0.43 0.22 0.16 0.47 0.45 0.22 0.16

Vertical Horizontal → 10.0 5.6 0.65 0.61 0.25 0.18 0.67 0.62 0.26 0.18 0.64 0.60 0.25 0.18
�17.8 11.1 0.55 0.53 0.28 0.21 0.49 0.47 0.26 0.20 0.51 0.49 0.27 0.20

32.2 5.6 0.62 0.58 0.21 0.15 0.89 0.80 0.24 0.16 0.85 0.76 0.24 0.16
10.0 16.7 0.60 0.57 0.24 0.17 0.63 0.59 0.25 0.18 0.62 0.58 0.25 0.18

45° slope Down ↓ 10.0 5.6 0.67 0.63 0.26 0.18 0.90 0.82 0.28 0.19 0.83 0.77 0.28 0.19
�17.8 11.1 0.66 0.63 0.30 0.22 0.68 0.64 0.31 0.22 0.67 0.64 0.31 0.22

32.2 5.6 0.62 0.58 0.21 0.15 1.07 0.94 0.25 0.17 1.77 1.44 0.28 0.18
10.0 16.7 0.66 0.62 0.25 0.18 1.10 0.99 0.30 0.20 1.69 1.44 0.33 0.21

Horizontal Down ↓ 10.0 5.6 0.68 0.63 0.26 0.18 1.16 1.04 0.30 0.20 1.96 1.63 0.34 0.22
�17.8 11.1 0.74 0.70 0.32 0.23 1.24 1.13 0.39 0.26 1.92 1.68 0.43 0.29

(b) English units (in h · ft2 · °F/Btu)

0.75-in. Air Space 1.5-in. Air Space 3.5-in. Air Space

Effective Effective Effective
Emissivity, �eff Emissivity, �eff Emissivity, �eff

Position Direction Mean Temp.
of Air of Heat Temp., Diff., 
Space Flow °F °F 0.03 0.05 0.5 0.82 0.03 0.05 0.5 0.82 0.03 0.05 0.5 0.82

90 10 2.34 2.22 1.04 0.75 2.55 2.41 1.08 0.77 2.84 2.66 1.13 0.80
50 30 1.71 1.66 0.99 0.77 1.87 1.81 1.04 0.80 2.09 2.01 1.10 0.84

Horizontal Up ↑ 50 10 2.30 2.21 1.16 0.87 2.50 2.40 1.21 0.89 2.80 2.66 1.28 0.93
0 20 1.83 1.79 1.16 0.93 2.01 1.95 1.23 0.97 2.25 2.18 1.32 1.03

90 10 2.96 2.78 1.15 0.81 2.92 2.73 1.14 0.80 3.18 2.96 1.18 0.82
50 30 1.99 1.92 1.08 0.82 2.14 2.06 1.12 0.84 2.26 2.17 1.15 0.86

45° slope Up ↑ 50 10 2.90 2.75 1.29 0.94 2.88 2.74 1.29 0.94 3.12 2.95 1.34 0.96
0 20 2.13 2.07 1.28 1.00 2.30 2.23 1.34 1.04 2.42 2.35 1.38 1.06

90 10 3.50 3.24 1.22 0.84 3.99 3.66 1.27 0.87 3.69 3.40 1.24 0.85
50 30 2.91 2.77 1.30 0.94 2.58 2.46 1.23 0.90 2.67 2.55 1.25 0.91

Vertical Horizontal → 50 10 3.70 3.46 1.43 1.01 3.79 3.55 1.45 1.02 3.63 3.40 1.42 1.01
0 20 3.14 3.02 1.58 1.18 2.76 2.66 1.48 1.12 2.88 2.78 1.51 1.14

90 10 3.53 3.27 1.22 0.84 5.07 4.55 1.36 0.91 4.81 4.33 1.34 0.90
50 30 3.43 3.23 1.39 0.99 3.58 3.36 1.42 1.00 3.51 3.30 1.40 1.00

45° slope Down ↓ 50 10 3.81 3.57 1.45 1.02 5.10 4.66 1.60 1.09 4.74 4.36 1.57 1.08
0 20 3.75 3.57 1.72 1.26 3.85 3.66 1.74 1.27 3.81 3.63 1.74 1.27

90 10 3.55 3.29 1.22 0.85 6.09 5.35 1.43 0.94 10.07 8.19 1.57 1.00
50 30 3.77 3.52 1.44 1.02 6.27 5.63 1.70 1.14 9.60 8.17 1.88 1.22

Horizontal Down ↓ 50 10 3.84 3.59 1.45 1.02 6.61 5.90 1.73 1.15 11.15 9.27 1.93 1.24
0 20 4.18 3.96 1.81 1.30 7.03 6.43 2.19 1.49 10.90 9.52 2.47 1.62

178
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EXAMPLE 3–16 The R-Value of a Wood Frame Wall

Determine the overall unit thermal resistance (the R-value) and the overall heat
transfer coefficient (the U-factor) of a wood frame wall that is built around
38-mm 
 90-mm (2 
 4 nominal) wood studs with a center-to-center distance
of 400 mm. The 90-mm-wide cavity between the studs is filled with glass fiber
insulation. The inside is finished with 13-mm gypsum wallboard and the out-
side with 13-mm wood fiberboard and 13-mm 
 200-mm wood bevel lapped
siding. The insulated cavity constitutes 75 percent of the heat transmission
area while the studs, plates, and sills constitute 21 percent. The headers con-
stitute 4 percent of the area, and they can be treated as studs.

Also, determine the rate of heat loss through the walls of a house whose
perimeter is 50 m and wall height is 2.5 m in Las Vegas, Nevada, whose winter
design temperature is �2°C. Take the indoor design temperature to be 22°C
and assume 20 percent of the wall area is occupied by glazing.

SOLUTION The R-value and the U-factor of a wood frame wall as well as the
rate of heat loss through such a wall in Las Vegas are to be determined.

Assumptions 1 Steady operating conditions exist. 2 Heat transfer through the
wall is one-dimensional. 3 Thermal properties of the wall and the heat transfer
coefficients are constant.

Properties The R-values of different materials are given in Table 3–6.

Analysis The schematic of the wall as well as the different elements used in its
construction are shown here. Heat transfer through the insulation and through
the studs will meet different resistances, and thus we need to analyze the ther-
mal resistance for each path separately. Once the unit thermal resistances and
the U-factors for the insulation and stud sections are available, the overall av-
erage thermal resistance for the entire wall can be determined from

Roverall � 1/Uoverall

where

Uoverall � (U 
 farea)insulation � (U 
 farea)stud

and the value of the area fraction farea is 0.75 for the insulation section and
0.25 for the stud section since the headers that constitute a small part of the
wall are to be treated as studs. Using the available R-values from Table 3–6 and
calculating others, the total R-values for each section can be determined in a
systematic manner in the table in this sample.

We conclude that the overall unit thermal resistance of the wall is 2.23
m2 · °C/W, and this value accounts for the effects of the studs and headers. It
corresponds to an R-value of 2.23 
 5.68 � 12.7 (or nearly R-13) in English
units. Note that if there were no wood studs and headers in the wall, the over-
all thermal resistance would be 3.05 m2 · °C/W, which is 37 percent greater
than 2.23 m2 · °C/W. Therefore, the wood studs and headers in this case serve
as thermal bridges in wood frame walls, and their effect must be considered in
the thermal analysis of buildings.
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Schematic R-value,
m2 · °C/W

Between At 
Construction Studs Studs

1. Outside surface, 
24 km/h wind 0.030 0.030

2. Wood bevel lapped 
siding 0.14 0.14

3. Wood fiberboard 
sheeting, 13 mm 0.23 0.23

4a. Glass fiber 
insulation, 90 mm 2.45 —

4b. Wood stud, 38 mm 

90 mm — 0.63

5. Gypsum wallboard, 
13 mm 0.079 0.079

6. Inside surface, still air 0.12 0.12

Total unit thermal resistance of each section, R (in m2 · °C/W) 3.05 1.23
The U-factor of each section, U � 1/R, in W/m2 · °C 0.328 0.813
Area fraction of each section, farea 0.75 0.25
Overall U-factor: U � �farea, i Ui � 0.75 
 0.328 � 0.25 
 0.813

� 0.449 W/m2 · °C
Overall unit thermal resistance: R � 1/U � 2.23 m2 · °C/W

The perimeter of the building is 50 m and the height of the walls is 2.5 m.
Noting that glazing constitutes 20 percent of the walls, the total wall area is

Awall � 0.80(Perimeter)(Height) � 0.80(50 m)(2.5 m) � 100 m2

Then the rate of heat loss through the walls under design conditions becomes

Q
·

wall � (UA)wall (Ti � To)

� (0.449 W/m2 · °C)(100 m2)[22 � (�2)°C]

� 1078 W

Discussion Note that a 1-kW resistance heater in this house will make up al-
most all the heat lost through the walls, except through the doors and windows,
when the outdoor air temperature drops to �2°C.

4a

1

3
2

4b

5
6

EXAMPLE 3–17 The R-Value of a Wall with Rigid Foam

The 13-mm-thick wood fiberboard sheathing of the wood stud wall discussed in
the previous example is replaced by a 25-mm-thick rigid foam insulation. De-
termine the percent increase in the R-value of the wall as a result.
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SOLUTION The overall R-value of the existing wall was determined in Example
3–16 to be 2.23 m2 · °C/W. Noting that the R-values of the fiberboard and the
foam insulation are 0.23 m2 · °C/W and 0.98 m2 · °C/W, respectively, and
the added and removed thermal resistances are in series, the overall R-value of
the wall after modification becomes

Rnew � Rold � Rremoved � Radded

� 2.23 � 0.23 � 0.98

� 2.98 m2 · °C/W

This represents an increase of (2.98 � 2.23)/2.23 � 0.34 or 34 percent in
the R-value of the wall. This example demonstrated how to evaluate the new
R-value of a structure when some structural members are added or removed.

EXAMPLE 3–18 The R-Value of a Masonry Wall

Determine the overall unit thermal resistance (the R-value) and the overall heat
transfer coefficient (the U-factor) of a masonry cavity wall that is built around
6-in.-thick concrete blocks made of lightweight aggregate with 3 cores filled
with perlite (R � 4.2 h · ft2 · °F/Btu). The outside is finished with 4-in. face
brick with -in. cement mortar between the bricks and concrete blocks. The in-
side finish consists of in. gypsum wallboard separated from the concrete block
by -in.-thick (1-in. 
 3-in. nominal) vertical furring (R � 4.2 h · ft2 · °F/Btu)
whose center-to-center distance is 16 in. Both sides of the -in.-thick air space
between the concrete block and the gypsum board are coated with reflective
aluminum foil (� � 0.05) so that the effective emissivity of the air space is
0.03. For a mean temperature of 50°F and a temperature difference of 30°F,
the R-value of the air space is 2.91 h · ft2 · °F/Btu. The reflective air space con-
stitutes 80 percent of the heat transmission area, while the vertical furring con-
stitutes 20 percent.

SOLUTION The R-value and the U-factor of a masonry cavity wall are to be
determined.
Assumptions 1 Steady operating conditions exist. 2 Heat transfer through the
wall is one-dimensional. 3 Thermal properties of the wall and the heat transfer
coefficients are constant.
Properties The R-values of different materials are given in Table 3–6.
Analysis The schematic of the wall as well as the different elements used in its
construction are shown below. Following the approach described here and using
the available R-values from Table 3–6, the overall R-value of the wall is deter-
mined in this table.

3
4

3
4

1
2

1
2
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Schematic R-value, 
h · ft2 · °F/Btu

Between At
Construction Furring Furring

1. Outside surface, 
15 mph wind 0.17 0.17

2. Face brick, 4 in. 0.43 0.43
3. Cement mortar, 

0.5 in. 0.10 0.10
4. Concrete block, 6 in. 4.20 4.20
5a. Reflective air space, 

in. 2.91 —
5b. Nominal 1 
 3 

vertical furring — 0.94
6. Gypsum wallboard, 

0.5 in. 0.45 0.45
7. Inside surface, 

still air 0.68 0.68

Total unit thermal resistance of each section, R 8.94 6.97
The U-factor of each section, U � 1/R, in Btu/h · ft2 · °F 0.112 0.143
Area fraction of each section, farea 0.80 0.20
Overall U-factor: U � �farea, i Ui � 0.80 
 0.112 � 0.20 
 0.143

� 0.118 Btu/h · ft2 · °F
Overall unit thermal resistance: R � 1/U � 8.46 h · ft2 · °F/Btu

Therefore, the overall unit thermal resistance of the wall is 8.46 h · ft2 · °F/Btu
and the overall U-factor is 0.118 Btu/h · ft2 · °F. These values account for the
effects of the vertical furring.

3
4

7
6

5a

5b

4
3

2

1

EXAMPLE 3–19 The R-Value of a Pitched Roof

Determine the overall unit thermal resistance (the R-value) and the overall heat
transfer coefficient (the U-factor) of a 45° pitched roof built around nominal
2-in. 
 4-in. wood studs with a center-to-center distance of 16 in. The 3.5-in.-
wide air space between the studs does not have any reflective surface and thus
its effective emissivity is 0.84. For a mean temperature of 90°F and a temper-
ature difference of 30°F, the R-value of the air space is 0.86 h · ft2 · °F/Btu.
The lower part of the roof is finished with -in. gypsum wallboard and the upper
part with -in. plywood, building paper, and asphalt shingle roofing. The air
space constitutes 75 percent of the heat transmission area, while the studs and
headers constitute 25 percent.

SOLUTION The R-value and the U-factor of a 45° pitched roof are to be
determined.
Assumptions 1 Steady operating conditions exist. 2 Heat transfer through the
roof is one-dimensional. 3 Thermal properties of the roof and the heat transfer
coefficients are constant.
Properties The R-values of different materials are given in Table 3–6.

5
8

1
2
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The construction of wood frame flat ceilings typically involve 2-in. 

6-in. joists on 400-mm (16-in.) or 600-mm (24-in.) centers. The fraction of
framing is usually taken to be 0.10 for joists on 400-mm centers and 0.07
for joists on 600-mm centers.

Most buildings have a combination of a ceiling and a roof with an attic
space in between, and the determination of the R-value of the roof–attic–
ceiling combination depends on whether the attic is vented or not. For ad-
equately ventilated attics, the attic air temperature is practically the same as
the outdoor air temperature, and thus heat transfer through the roof is gov-
erned by the R-value of the ceiling only. However, heat is also transferred
between the roof and the ceiling by radiation, and it needs to be considered
(Fig. 3–52). The major function of the roof in this case is to serve as a ra-
diation shield by blocking off solar radiation. Effectively ventilating the at-
tic in summer should not lead one to believe that heat gain to the building
through the attic is greatly reduced. This is because most of the heat trans-
fer through the attic is by radiation.

CHAPTER 3
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Analysis The schematic of the pitched roof as well as the different elements
used in its construction are shown below. Following the approach described
above and using the available R-values from Table 3–6, the overall R-value of
the roof can be determined in the table here.

Schematic R-value,
h · ft2 · °F/Btu

Between At 
Construction Studs Studs

1. Outside surface, 
15 mph wind 0.17 0.17

2. Asphalt shingle 
roofing 0.44 0.44

3. Building paper 0.10 0.10
4. Plywood deck, in. 0.78 0.78
5a. Nonreflective air 

space, 3.5 in. 0.86 —
5b. Wood stud, 2 in. by 4 in. — 3.58
6. Gypsum wallboard, 0.5 in. 0.45 0.45
7. Inside surface, 

45° slope, still air 0.63 0.63

Total unit thermal resistance of each section, R 3.43 6.15
The U-factor of each section, U � 1/R, in Btu/h · ft2 · °F 0.292 0.163
Area fraction of each section, farea 0.75 0.25
Overall U-factor: U � �farea, i Ui � 0.75 
 0.292 � 0.25 
 0.163

� 0.260 Btu/h · ft2 · °F
Overall unit thermal resistance: R � 1/U � 3.85 h · ft2 · °F/Btu

Therefore, the overall unit thermal resistance of this pitched roof is
3.85 h · ft2 · °F/Btu and the overall U-factor is 0.260 Btu/h · ft2 · °F. Note that
the wood studs offer much larger thermal resistance to heat flow than the air
space between the studs.

5
8

45°

1 2 3 4 5a 5b 6 7

Air
intake

Air
intake

3 in.3 in. Radiant
barrier

Air
exhaust

6 in.

FIGURE 3–52
Ventilation paths for a naturally

ventilated attic and the appropriate
size of the flow areas around the

radiant barrier for proper air
circulation (from DOE/CE-0335P,

U.S. Dept. of Energy).
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Radiation heat transfer between the ceiling and the roof can be mini-
mized by covering at least one side of the attic (the roof or the ceiling side)
by a reflective material, called radiant barrier, such as aluminum foil or
aluminum-coated paper. Tests on houses with R-19 attic floor insulation
have shown that radiant barriers can reduce summer ceiling heat gains by
16 to 42 percent compared to an attic with the same insulation level and no
radiant barrier. Considering that the ceiling heat gain represents about 15 to
25 percent of the total cooling load of a house, radiant barriers will reduce
the air conditioning costs by 2 to 10 percent. Radiant barriers also reduce
the heat loss in winter through the ceiling, but tests have shown that the
percentage reduction in heat losses is less. As a result, the percentage
reduction in heating costs will be less than the reduction in the air-
conditioning costs. Also, the values given are for new and undusted radiant
barrier installations, and percentages will be lower for aged or dusty radi-
ant barriers.

Some possible locations for attic radiant barriers are given in Figure
3–53. In whole house tests on houses with R-19 attic floor insulation, radi-
ant barriers have reduced the ceiling heat gain by an average of 35 percent
when the radiant barrier is installed on the attic floor, and by 24 percent
when it is attached to the bottom of roof rafters. Test cell tests also demon-
strated that the best location for radiant barriers is the attic floor, provided
that the attic is not used as a storage area and is kept clean.

For unvented attics, any heat transfer must occur through (1) the ceiling,
(2) the attic space, and (3) the roof (Fig. 3–54). Therefore, the overall
R-value of the roof–ceiling combination with an unvented attic depends on
the combined effects of the R-value of the ceiling and the R-value of the
roof as well as the thermal resistance of the attic space. The attic space can
be treated as an air layer in the analysis. But a more practical way of ac-
counting for its effect is to consider surface resistances on the roof and ceil-
ing surfaces facing each other. In this case, the R-values of the ceiling and
the roof are first determined separately (by using convection resistances for
the still-air case for the attic surfaces). Then it can be shown that the over-
all R-value of the ceiling–roof combination per unit area of the ceiling can
be expressed as

184
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FIGURE 3–53
Three possible locations for an attic radiant barrier (from DOE/CE-0335P, U.S. Dept. of Energy).

(a) Under the roof deck (b) At the bottom of rafters (c) On top of attic floor insulation

Roof deckingAir space

Rafter

Roof decking

Rafter

Roof decking

Radiant
barrier

JoistJoistJoist InsulationInsulationInsulation

Radiant
barrier

Radiant
barrier

Rafter

Rroof

Rceiling

To

Ti

Deck

Shingles

Rafter

Attic

Ceiling joist

Aroof

Tattic

Aceiling

FIGURE 3–54
Thermal resistance network for a
pitched roof–attic–ceiling combination
for the case of an unvented attic.
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R � Rceiling � Rroof (3-82)

where Aceiling and Aroof are the ceiling and roof areas, respectively. The area
ratio is equal to 1 for flat roofs and is less than 1 for pitched roofs. For a 45°
pitched roof, the area ratio is Aceiling/Aroof � 1/ � 0.707. Note that the
pitched roof has a greater area for heat transfer than the flat ceiling, and the
area ratio accounts for the reduction in the unit R-value of the roof when
expressed per unit area of the ceiling. Also, the direction of heat flow is up
in winter (heat loss through the roof) and down in summer (heat gain
through the roof).

The R-value of a structure determined by analysis assumes that the ma-
terials used and the quality of workmanship meet the standards. Poor work-
manship and substandard materials used during construction may result in
R-values that deviate from predicted values. Therefore, some engineers use
a safety factor in their designs based on experience in critical applications.

�2

�Aceiling

Aroof
�
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SUMMARY

One-dimensional heat transfer through a simple or composite
body exposed to convection from both sides to mediums at
temperatures T�1 and T�2 can be expressed as

Q
·

� (W)

where Rtotal is the total thermal resistance between the two
mediums. For a plane wall exposed to convection on both
sides, the total resistance is expressed as

Rtotal � Rconv, 1 � Rwall � Rconv, 2 �

This relation can be extended to plane walls that consist of two
or more layers by adding an additional resistance for each ad-
ditional layer. The elementary thermal resistance relations can
be expressed as follows:

Conduction resistance (plane wall): Rwall �

Conduction resistance (cylinder): Rcyl �

Conduction resistance (sphere): Rsph �

Convection resistance: Rconv �

Interface resistance: Rinterface �

Radiation resistance: Rrad �

where hc is the thermal contact conductance, Rc is the thermal
contact resistance, and the radiation heat transfer coefficient is
defined as

hrad � �� (Ts � Tsurr)

Once the rate of heat transfer is available, the temperature drop
across any layer can be determined from

	T � Q
·
R

The thermal resistance concept can also be used to solve steady
heat transfer problems involving parallel layers or combined
series-parallel arrangements.

Adding insulation to a cylindrical pipe or a spherical shell
will increase the rate of heat transfer if the outer radius of
the insulation is less than the critical radius of insulation,
defined as

rcr, cylinder �

rcr, sphere �

The effectiveness of an insulation is often given in terms of
its R-value, the thermal resistance of the material per unit sur-
face area, expressed as

R-value � (flat insulation)

where L is the thickness and k is the thermal conductivity of the
material.

L
k

2kins

h

kins

h

(T 2
s � T 2

surr)

1
hrad A

1
hc A

�
Rc

A

1
hA

r2 � r1

4�r1r2 k

ln(r2 /r1)
2�Lk

L
kA

1
h1 A

�
L
kA

�
1

h2 A

T�1 � T�2

Rtotal
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Finned surfaces are commonly used in practice to enhance
heat transfer. Fins enhance heat transfer from a surface by ex-
posing a larger surface area to convection. The temperature
distribution along the fin for very long fins and for fins with
negligible heat transfer at the fin are given by

Very long fin:

Adiabatic fin tip:

where a � , p is the perimeter, and Ac is the cross
sectional area of the fin. The rates of heat transfer for both
cases are given to be

Q
·

long fin � �kAc

Q
·

insulated tip � �kAc

Fins exposed to convection at their tips can be treated as fins
with insulated tips by using the corrected length Lc � L � Ac/p
instead of the actual fin length.

The temperature of a fin drops along the fin, and thus the
heat transfer from the fin will be less because of the decreasing
temperature difference toward the fin tip. To account for the ef-
fect of this decrease in temperature on heat transfer, we define
fin efficiency as

�fin �

When the fin efficiency is available, the rate of heat transfer
from a fin can be determined from

Q
·

fin � �finQ
·

fin, max � �finhAfin (Tb � T�)

The performance of the fins is judged on the basis of the en-
hancement in heat transfer relative to the no-fin case and is ex-
pressed in terms of the fin effectiveness �fin, defined as

�fin �

Here, Ab is the cross-sectional area of the fin at the base and
Q
·

no fin represents the rate of heat transfer from this area if no
fins are attached to the surface. The overall effectiveness for a
finned surface is defined as the ratio of the total heat transfer
from the finned surface to the heat transfer from the same sur-
face if there were no fins,

�fin, overall �

Fin efficiency and fin effectiveness are related to each other by

�fin � �fin

Certain multidimensional heat transfer problems involve two
surfaces maintained at constant temperatures T1 and T2. The
steady rate of heat transfer between these two surfaces is ex-
pressed as

Q
·

� Sk(T1 � T2)

where S is the conduction shape factor that has the dimen-
sion of length and k is the thermal conductivity of the medium
between the surfaces.

Afin

Ab

Q·
total, fin

Q·
total, no fin

�
h(Aunfin � �fin Afin)(Tb � T�)

hAno fin (Tb � T�)

Q· fin

Q· no fin

�
Q· fin

hAb (Tb � T�)
�

Heat transfer rate from
the fin of base area Ab

Heat transfer rate from
the surface of area Ab

Q· fin

Q· fin, max

�
Actual heat transfer rate from the fin
Ideal heat transfer rate from the fin if
the entire fin were at base temperature

dT
dx �

x � 0
� �hpkAc (Tb � T�) tanh aL

Adiabatic
fin 
tip:

dT
dx �

x � 0
� �hpkAc (Tb � T�)

Very
long
fin:

�hp/kAc

T(x) � T�

Tb � T�
�

cosh a(L � x)
cosh aL

T(x) � T�

Tb � T�
 � e�x�hp/kAc
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PROBLEMS*

Steady Heat Conduction in Plane Walls

3–1C Consider one-dimensional heat conduction through
a cylindrical rod of diameter D and length L. What is the
heat transfer area of the rod if (a) the lateral surfaces of the rod
are insulated and (b) the top and bottom surfaces of the rod are
insulated?

3–2C Consider heat conduction through a plane wall. Does
the energy content of the wall change during steady heat con-
duction? How about during transient conduction? Explain.

3–3C Consider heat conduction through a wall of thickness L
and area A. Under what conditions will the temperature distri-
butions in the wall be a straight line?

3–4C What does the thermal resistance of a medium
represent?

3–5C How is the combined heat transfer coefficient defined?
What convenience does it offer in heat transfer calculations?

3–6C Can we define the convection resistance per unit
surface area as the inverse of the convection heat transfer
coefficient?

3–7C Why are the convection and the radiation resistances at
a surface in parallel instead of being in series?

3–8C Consider a surface of area A at which the convection
and radiation heat transfer coefficients are hconv and hrad, re-
spectively. Explain how you would determine (a) the single
equivalent heat transfer coefficient, and (b) the equivalent ther-
mal resistance. Assume the medium and the surrounding sur-
faces are at the same temperature.

3–9C How does the thermal resistance network associated
with a single-layer plane wall differ from the one associated
with a five-layer composite wall?

3–10C Consider steady one-dimensional heat transfer
through a multilayer medium. If the rate of heat transfer Q

·
is

known, explain how you would determine the temperature
drop across each layer.

3–11C Consider steady one-dimensional heat transfer
through a plane wall exposed to convection from both sides to
environments at known temperatures T�1 and T�2 with known
heat transfer coefficients h1 and h2. Once the rate of heat trans-
fer Q

·
has been evaluated, explain how you would determine

the temperature of each surface.

3–12C Someone comments that a microwave oven can be
viewed as a conventional oven with zero convection resistance
at the surface of the food. Is this an accurate statement?

3–13C Consider a window glass consisting of two 4-mm-
thick glass sheets pressed tightly against each other. Compare
the heat transfer rate through this window with that of one con-
sisting of a single 8-mm-thick glass sheet under identical con-
ditions.

3–14C Consider steady heat transfer through the wall of a
room in winter. The convection heat transfer coefficient at the
outer surface of the wall is three times that of the inner surface
as a result of the winds. On which surface of the wall do you
think the temperature will be closer to the surrounding air tem-
perature? Explain.

3–15C The bottom of a pan is made of a 4-mm-thick alu-
minum layer. In order to increase the rate of heat transfer
through the bottom of the pan, someone proposes a design for
the bottom that consists of a 3-mm-thick copper layer sand-
wiched between two 2-mm-thick aluminum layers. Will the
new design conduct heat better? Explain. Assume perfect con-
tact between the layers.

3–16C Consider two cold canned drinks, one wrapped in a
blanket and the other placed on a table in the same room.
Which drink will warm up faster?

3–17 Consider a 4-m-high, 6-m-wide, and 0.3-m-thick brick
wall whose thermal conductivity is k � 0.8 W/m · °C . On a
certain day, the temperatures of the inner and the outer surfaces
of the wall are measured to be 14°C and 6°C, respectively. De-
termine the rate of heat loss through the wall on that day.

*Problems designated by a “C” are concept questions, and
students are encouraged to answer them all. Problems designated
by an “E” are in English units, and the SI users can ignore them.
Problems with an EES-CD icon are solved using EES, and
complete solutions together with parametric studies are included
on the enclosed CD. Problems with a computer-EES icon are
comprehensive in nature, and are intended to be solved with a
computer, preferably using the EES software that accompanies
this text.
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3–18 Consider a 1.2-m-high and 2-m-wide glass window
whose thickness is 6 mm and thermal conductivity is k � 0.78
W/m · °C. Determine the steady rate of heat transfer through
this glass window and the temperature of its inner surface for a
day during which the room is maintained at 24°C while the
temperature of the outdoors is �5°C. Take the convection heat
transfer coefficients on the inner and outer surfaces of the win-
dow to be h1 � 10 W/m2 · °C and h2 � 25 W/m2 · °C, and dis-
regard any heat transfer by radiation.

3–19 Consider a 1.2-m-high and 2-m-wide double-pane win-
dow consisting of two 3-mm-thick layers of glass (k � 0.78
W/m · °C) separated by a 12-mm-wide stagnant air space (k �
0.026 W/m · °C). Determine the steady rate of heat transfer
through this double-pane window and the temperature of its
inner surface for a day during which the room is maintained
at 24°C while the temperature of the outdoors is �5°C. Take
the convection heat transfer coefficients on the inner and outer

surfaces of the window to be h1 � 10 W/m2 · °C and h2 �
25 W/m2 · °C, and disregard any heat transfer by radiation.

Answers: 114 W, 19.2°C

3–20 Repeat Problem 3–19, assuming the space between the
two glass layers is evacuated.

3–21 Reconsider Problem 3–19. Using EES (or other)
software, plot the rate of heat transfer through the

window as a function of the width of air space in the range of
2 mm to 20 mm, assuming pure conduction through the air.
Discuss the results.

3–22E Consider an electrically heated brick house (k � 0.40
Btu/h · ft · °F) whose walls are 9 ft high and 1 ft thick. Two of
the walls of the house are 40 ft long and the others are 30 ft
long. The house is maintained at 70°F at all times while the
temperature of the outdoors varies. On a certain day, the tem-
perature of the inner surface of the walls is measured to be at
55°F while the average temperature of the outer surface is ob-
served to remain at 45°F during the day for 10 h and at 35°F at
night for 14 h. Determine the amount of heat lost from the
house that day. Also determine the cost of that heat loss to the
homeowner for an electricity price of $0.09/kWh.

3–23 A cylindrical resistor element on a circuit board dissi-
pates 0.15 W of power in an environment at 40°C. The resistor
is 1.2 cm long, and has a diameter of 0.3 cm. Assuming heat to
be transferred uniformly from all surfaces, determine (a) the
amount of heat this resistor dissipates during a 24-h period,
(b) the heat flux on the surface of the resistor, in W/m2, and
(c) the surface temperature of the resistor for a combined con-
vection and radiation heat transfer coefficient of 9 W/m2 · °C.

3–24 Consider a power transistor that dissipates 0.2 W of
power in an environment at 30°C. The transistor is 0.4 cm long
and has a diameter of 0.5 cm. Assuming heat to be transferred
uniformly from all surfaces, determine (a) the amount of heat
this resistor dissipates during a 24-h period, in kWh; (b) the
heat flux on the surface of the transistor, in W/m2; and (c) the
surface temperature of the resistor for a combined convection
and radiation heat transfer coefficient of 18 W/m2 · °C.

3–25 A 12-cm 
 18-cm circuit board houses on its surface
100 closely spaced logic chips, each dissipating 0.07 W in an
environment at 40°C. The heat transfer from the back surface
of the board is negligible. If the heat transfer coefficient on the

2 mm
3 mm
2 mm

Aluminum Copper

FIGURE P3–15C

Frame

3 12 3 mm

Glass

FIGURE P3–19

30 ft
40 ft

9 ft
Tin = 70°F

FIGURE P3–22E
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surface of the board is 10 W/m2 · °C, determine (a) the heat
flux on the surface of the circuit board, in W/m2; (b) the surface
temperature of the chips; and (c) the thermal resistance be-
tween the surface of the circuit board and the cooling medium,
in °C/W.

3–26 Consider a person standing in a room at 20°C with an
exposed surface area of 1.7 m2. The deep body temperature of
the human body is 37°C, and the thermal conductivity of the
human tissue near the skin is about 0.3 W/m · °C. The body is
losing heat at a rate of 150 W by natural convection and radia-
tion to the surroundings. Taking the body temperature 0.5 cm
beneath the skin to be 37°C, determine the skin temperature of
the person. Answer: 35.5° C

3–27 Water is boiling in a 25-cm-diameter aluminum pan (k �
237 W/m · °C) at 95°C. Heat is transferred steadily to the boil-
ing water in the pan through its 0.5-cm-thick flat bottom at a
rate of 800 W. If the inner surface temperature of the bottom of
the pan is 108°C, determine (a) the boiling heat transfer coeffi-
cient on the inner surface of the pan, and (b) the outer surface
temperature of the bottom of the pan.

3–28E A wall is constructed of two layers of 0.5-in-thick
sheetrock (k � 0.10 Btu/h · ft · °F), which is a plasterboard
made of two layers of heavy paper separated by a layer of
gypsum, placed 5 in. apart. The space between the sheetrocks

is filled with fiberglass insulation (k � 0.020 Btu/h · ft · °F).
Determine (a) the thermal resistance of the wall, and (b) its
R-value of insulation in English units.

3–29 The roof of a house consists of a 3–cm-thick concrete
slab (k � 2 W/m · °C) that is 15 m wide and 20 m long. The
convection heat transfer coefficients on the inner and outer sur-
faces of the roof are 5 and 12 W/m2 · °C, respectively. On a
clear winter night, the ambient air is reported to be at 10°C,
while the night sky temperature is 100 K. The house and the in-
terior surfaces of the wall are maintained at a constant temper-
ature of 20°C. The emissivity of both surfaces of the concrete
roof is 0.9. Considering both radiation and convection heat
transfers, determine the rate of heat transfer through the roof,
and the inner surface temperature of the roof.

If the house is heated by a furnace burning natural gas with
an efficiency of 80 percent, and the price of natural gas is
$0.60/therm (1 therm � 105,500 kJ of energy content), deter-
mine the money lost through the roof that night during a 14-h
period.

3–30 A 2-m 
 1.5-m section of wall of an industrial furnace
burning natural gas is not insulated, and the temperature at the
outer surface of this section is measured to be 80°C. The tem-
perature of the furnace room is 30°C, and the combined con-
vection and radiation heat transfer coefficient at the surface of
the outer furnace is 10 W/m2 · °C. It is proposed to insulate this
section of the furnace wall with glass wool insulation (k �
0.038 W/m · °C) in order to reduce the heat loss by 90 percent.
Assuming the outer surface temperature of the metal section
still remains at about 80°C, determine the thickness of the in-
sulation that needs to be used.

The furnace operates continuously and has an efficiency of
78 percent. The price of the natural gas is $0.55/therm (1 therm
� 105,500 kJ of energy content). If the installation of the insu-
lation will cost $250 for materials and labor, determine how
long it will take for the insulation to pay for itself from the en-
ergy it saves.

3–31 Repeat Problem. 3–30 for expanded perlite insulation
assuming conductivity is k � 0.052 W/m · °C.
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3–32 Reconsider Problem 3–30. Using EES (or other)
software, investigate the effect of thermal con-

ductivity on the required insulation thickness. Plot the thick-
ness of insulation as a function of the thermal conductivity of
the insulation in the range of 0.02 W/m · °C to 0.08 W/m · °C,
and discuss the results.

3–33E Consider a house whose walls are 12 ft high and 40 ft
long. Two of the walls of the house have no windows, while
each of the other two walls has four windows made of 0.25-in.-
thick glass (k � 0.45 Btu/h · ft · °F), 3 ft 
 5 ft in size. The
walls are certified to have an R-value of 19 (i.e., an L/k value of
19 h · ft2 · °F/Btu). Disregarding any direct radiation gain or
loss through the windows and taking the heat transfer coef-
ficients at the inner and outer surfaces of the house to be 2 and
4 Btu/h · ft2 · °F, respectively, determine the ratio of the heat
transfer through the walls with and without windows.

3–34 Consider a house that has a 10-m 
 20-m base and a
4-m-high wall. All four walls of the house have an R-value of
2.31 m2 · °C/W. The two 10-m 
 4-m walls have no windows.
The third wall has five windows made of 0.5-cm-thick glass
(k � 0.78 W/m · °C), 1.2 m 
 1.8 m in size. The fourth wall
has the same size and number of windows, but they are double-
paned with a 1.5-cm-thick stagnant air space (k � 0.026
W/m · °C) enclosed between two 0.5-cm-thick glass layers.
The thermostat in the house is set at 22°C and the average tem-
perature outside at that location is 8°C during the seven-month-
long heating season. Disregarding any direct radiation gain or
loss through the windows and taking the heat transfer coeffi-
cients at the inner and outer surfaces of the house to be 7 and
15 W/m2 · °C, respectively, determine the average rate of heat
transfer through each wall.

If the house is electrically heated and the price of electricity
is $0.08/kWh, determine the amount of money this household
will save per heating season by converting the single-pane win-
dows to double-pane windows.

3–35 The wall of a refrigerator is constructed of fiberglass in-
sulation (k � 0.035 W/m · °C) sandwiched between two layers
of 1-mm-thick sheet metal (k � 15.1 W/m · °C). The refriger-
ated space is maintained at 3°C, and the average heat transfer
coefficients at the inner and outer surfaces of the wall are

4 W/m2 · °C and 9 W/m2 · °C, respectively. The kitchen tem-
perature averages 25°C. It is observed that condensation occurs
on the outer surfaces of the refrigerator when the temperature
of the outer surface drops to 20°C. Determine the minimum
thickness of fiberglass insulation that needs to be used in the
wall in order to avoid condensation on the outer surfaces.

3–36 Reconsider Problem 3–35. Using EES (or other)
software, investigate the effects of the thermal

conductivities of the insulation material and the sheet metal on
the thickness of the insulation. Let the thermal conductivity
vary from 0.02 W/m · °C to 0.08 W/m · °C for insulation and
10 W/m · °C to 400 W/m · °C for sheet metal. Plot the thick-
ness of the insulation as the functions of the thermal con-
ductivities of the insulation and the sheet metal, and discuss
the results.

3–37 Heat is to be conducted along a circuit board that has a
copper layer on one side. The circuit board is 15 cm long and
15 cm wide, and the thicknesses of the copper and epoxy lay-
ers are 0.1 mm and 1.2 mm, respectively. Disregarding heat
transfer from side surfaces, determine the percentages of heat
conduction along the copper (k � 386 W/m · °C) and epoxy
(k � 0.26 W/m · °C) layers. Also determine the effective ther-
mal conductivity of the board.

Answers: 0.8 percent, 99.2 percent, and 29.9 W/m · °C

3–38E A 0.03-in-thick copper plate (k � 223 Btu/h · ft · °F)
is sandwiched between two 0.1-in.-thick epoxy boards (k �
0.15 Btu/h · ft · °F) that are 7 in. 
 9 in. in size. Determine the
effective thermal conductivity of the board along its 9-in.-long
side. What fraction of the heat conducted along that side is con-
ducted through copper?

Thermal Contact Resistance

3–39C What is thermal contact resistance? How is it related
to thermal contact conductance?

3–40C Will the thermal contact resistance be greater for
smooth or rough plain surfaces?
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3–41C A wall consists of two layers of insulation pressed
against each other. Do we need to be concerned about the ther-
mal contact resistance at the interface in a heat transfer analy-
sis or can we just ignore it?

3–42C A plate consists of two thin metal layers pressed
against each other. Do we need to be concerned about the
thermal contact resistance at the interface in a heat transfer
analysis or can we just ignore it?

3–43C Consider two surfaces pressed against each other.
Now the air at the interface is evacuated. Will the thermal con-
tact resistance at the interface increase or decrease as a result?

3–44C Explain how the thermal contact resistance can be
minimized.

3–45 The thermal contact conductance at the interface of two
1-cm-thick copper plates is measured to be 18,000 W/m2 · °C.
Determine the thickness of the copper plate whose thermal
resistance is equal to the thermal resistance of the interface
between the plates.

3–46 Six identical power transistors with aluminum casing
are attached on one side of a 1.2-cm-thick 20-cm 
 30-cm
copper plate (k � 386 W/m · °C) by screws that exert an aver-
age pressure of 10 MPa. The base area of each transistor is
9 cm2, and each transistor is placed at the center of a 10-cm 

10-cm section of the plate. The interface roughness is esti-
mated to be about 1.4 �m. All transistors are covered by a thick
Plexiglas layer, which is a poor conductor of heat, and thus all
the heat generated at the junction of the transistor must be dis-
sipated to the ambient at 15°C through the back surface of the
copper plate. The combined convection/radiation heat transfer
coefficient at the back surface can be taken to be 30 W/m2 · °C.
If the case temperature of the transistor is not to exceed 85°C,
determine the maximum power each transistor can dissipate
safely, and the temperature jump at the case-plate interface.

3–47 Two 5-cm-diameter, 15–cm-long aluminum bars (k �
176 W/m · °C) with ground surfaces are pressed against each
other with a pressure of 20 atm. The bars are enclosed in an in-
sulation sleeve and, thus, heat transfer from the lateral surfaces
is negligible. If the top and bottom surfaces of the two-bar sys-
tem are maintained at temperatures of 150°C and 20°C, re-
spectively, determine (a) the rate of heat transfer along the
cylinders under steady conditions and (b) the temperature drop
at the interface. Answers: (a) 142.4 W, (b) 6.4°C

3–48 A 1-mm-thick copper plate (k � 386 W/m · °C) is sand-
wiched between two 5-mm-thick epoxy boards (k � 0.26
W/m · °C) that are 15 cm 
 20 cm in size. If the thermal con-
tact conductance on both sides of the copper plate is estimated
to be 6000 W/m · °C, determine the error involved in the total
thermal resistance of the plate if the thermal contact conduc-
tances are ignored.

0.03 in.

7 in.

9 in.

Epoxy
boards

Copper
plate

FIGURE P3–38E

15°C

Copper
plateTransistor

85°C

Plexiglas
cover

1.2 cm

FIGURE P3–46

5
mm

5
mm

Heat
flow

Epoxy

hc

Copper

Epoxy

FIGURE P3–48

cen58933_ch03.qxd  9/10/2002  9:00 AM  Page 191



192
HEAT TRANSFER

Generalized Thermal Resistance Networks

3–49C When plotting the thermal resistance network associ-
ated with a heat transfer problem, explain when two resistances
are in series and when they are in parallel.

3–50C The thermal resistance networks can also be used
approximately for multidimensional problems. For what kind
of multidimensional problems will the thermal resistance
approach give adequate results?

3–51C What are the two approaches used in the develop-
ment of the thermal resistance network for two-dimensional
problems?

3–52 A 4-m-high and 6-m-wide wall consists of a long
18-cm 
 30-cm cross section of horizontal bricks (k � 0.72
W/m · °C) separated by 3-cm-thick plaster layers (k � 0.22
W/m · °C). There are also 2-cm-thick plaster layers on each
side of the wall, and a 2-cm-thick rigid foam (k �
0.026 W/m · °C) on the inner side of the wall. The indoor and
the outdoor temperatures are 22°C and �4°C, and the convec-
tion heat transfer coefficients on the inner and the outer sides
are h1 � 10 W/m2 · °C and h2 � 20 W/m2 · °C, respectively.
Assuming one-dimensional heat transfer and disregarding radi-
ation, determine the rate of heat transfer through the wall.

3–53 Reconsider Problem 3–52. Using EES (or other)
software, plot the rate of heat transfer through

the wall as a function of the thickness of the rigid foam in the
range of 1 cm to 10 cm. Discuss the results.

3–54 A 10-cm-thick wall is to be constructed with 2.5-m-
long wood studs (k � 0.11 W/m · °C) that have a cross section
of 10 cm 
 10 cm. At some point the builder ran out of those
studs and started using pairs of 2.5-m-long wood studs that
have a cross section of 5 cm 
 10 cm nailed to each other

instead. The manganese steel nails (k � 50 W/m · °C) are
10 cm long and have a diameter of 0.4 cm. A total of 50 nails
are used to connect the two studs, which are mounted to the
wall such that the nails cross the wall. The temperature differ-
ence between the inner and outer surfaces of the wall is 8°C.
Assuming the thermal contact resistance between the two
layers to be negligible, determine the rate of heat transfer
(a) through a solid stud and (b) through a stud pair of equal
length and width nailed to each other. (c) Also determine the
effective conductivity of the nailed stud pair.

3–55 A 12-m-long and 5-m-high wall is constructed of two
layers of 1-cm-thick sheetrock (k � 0.17 W/m · °C) spaced
12 cm by wood studs (k � 0.11 W/m · °C) whose cross section
is 12 cm 
 5 cm. The studs are placed vertically 60 cm apart,
and the space between them is filled with fiberglass insulation
(k � 0.034 W/m · °C). The house is maintained at 20°C and the
ambient temperature outside is �5°C. Taking the heat transfer
coefficients at the inner and outer surfaces of the house to be
8.3 and 34 W/m2 · °C, respectively, determine (a) the thermal
resistance of the wall considering a representative section of it
and (b) the rate of heat transfer through the wall.

3–56E A 10-in.-thick, 30-ft-long, and 10-ft-high wall is
to be constructed using 9-in.-long solid bricks (k � 0.40
Btu/h · ft · °F) of cross section 7 in. 
 7 in., or identical size
bricks with nine square air holes (k � 0.015 Btu/h · ft · °F) that
are 9 in. long and have a cross section of 1.5 in. 
 1.5 in. There
is a 0.5-in.-thick plaster layer (k � 0.10 Btu/h · ft · °F) between
two adjacent bricks on all four sides and on both sides of the
wall. The house is maintained at 80°F and the ambient tem-
perature outside is 30°F. Taking the heat transfer coefficients
at the inner and outer surfaces of the wall to be 1.5 and
4 Btu/h · ft2 · °F, respectively, determine the rate of heat
transfer through the wall constructed of (a) solid bricks and
(b) bricks with air holes.
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3–57 Consider a 5-m-high, 8-m-long, and 0.22-m-thick wall
whose representative cross section is as given in the figure. The
thermal conductivities of various materials used, in W/m · °C,
are kA � kF � 2, kB � 8, kC � 20, kD � 15, and kE � 35. The
left and right surfaces of the wall are maintained at uniform
temperatures of 300°C and 100°C, respectively. Assuming heat
transfer through the wall to be one-dimensional, determine
(a) the rate of heat transfer through the wall; (b) the tem-
perature at the point where the sections B, D, and E meet; and
(c) the temperature drop across the section F. Disregard any
contact resistances at the interfaces.

3–58 Repeat Problem 3–57 assuming that the thermal contact
resistance at the interfaces D-F and E-F is 0.00012 m2 · °C/W.

3–59 Clothing made of several thin layers of fabric with
trapped air in between, often called ski clothing, is commonly
used in cold climates because it is light, fashionable, and a very
effective thermal insulator. So it is no surprise that such cloth-
ing has largely replaced thick and heavy old-fashioned coats.

Consider a jacket made of five layers of 0.1-mm-thick syn-
thetic fabric (k � 0.13 W/m · °C) with 1.5-mm-thick air space
(k � 0.026 W/m · °C) between the layers. Assuming the inner
surface temperature of the jacket to be 28°C and the surface
area to be 1.1 m2, determine the rate of heat loss through the
jacket when the temperature of the outdoors is �5°C and the
heat transfer coefficient at the outer surface is 25 W/m2 · °C.

What would your response be if the jacket is made of a sin-
gle layer of 0.5-mm-thick synthetic fabric? What should be the
thickness of a wool fabric (k � 0.035 W/m · °C) if the person
is to achieve the same level of thermal comfort wearing a thick
wool coat instead of a five-layer ski jacket?

3–60 Repeat Problem 3–59 assuming the layers of the jacket
are made of cotton fabric (k � 0.06 W/m · °C).

3–61 A 5-m-wide, 4-m-high, and 40-m-long kiln used to cure
concrete pipes is made of 20-cm-thick concrete walls and ceil-
ing (k � 0.9 W/m · °C). The kiln is maintained at 40°C by in-
jecting hot steam into it. The two ends of the kiln, 4 m 
 5 m
in size, are made of a 3-mm-thick sheet metal covered with
2-cm-thick Styrofoam (k � 0.033 W/m · °C). The convection
heat transfer coefficients on the inner and the outer surfaces of
the kiln are 3000 W/m2 · °C and 25 W/m2 · °C, respectively.
Disregarding any heat loss through the floor, determine the rate
of heat loss from the kiln when the ambient air is at �4°C.

3–62 Reconsider Problem 3–61. Using EES (or other)
software, investigate the effects of the thickness

of the wall and the convection heat transfer coefficient on the
outer surface of the rate of heat loss from the kiln. Let the
thickness vary from 10 cm to 30 cm and the convection heat
transfer coefficient from 5 W/m2 · °C to 50 W/m2 · °C. Plot the
rate of heat transfer as functions of wall thickness and the con-
vection heat transfer coefficient, and discuss the results.

3–63E Consider a 6-in. 
 8-in. epoxy glass laminate (k �
0.10 Btu/h · ft · °F) whose thickness is 0.05 in. In order to re-
duce the thermal resistance across its thickness, cylindrical
copper fillings (k � 223 Btu/h · ft · °F) of 0.02 in. diameter are
to be planted throughout the board, with a center-to-center
distance of 0.06 in. Determine the new value of the thermal
resistance of the epoxy board for heat conduction across its
thickness as a result of this modification.

Answer: 0.00064 h · °F/Btu
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Heat Conduction in Cylinders and Spheres

3–64C What is an infinitely long cylinder? When is it proper
to treat an actual cylinder as being infinitely long, and when
is it not?

3–65C Consider a short cylinder whose top and bottom sur-
faces are insulated. The cylinder is initially at a uniform tem-
perature Ti and is subjected to convection from its side surface
to a medium at temperature T�, with a heat transfer coefficient
of h. Is the heat transfer in this short cylinder one- or two-
dimensional? Explain.

3–66C Can the thermal resistance concept be used for a solid
cylinder or sphere in steady operation? Explain.

3–67 A 5-m-internal-diameter spherical tank made of
1.5-cm-thick stainless steel (k � 15 W/m · °C) is used to store
iced water at 0°C. The tank is located in a room whose temper-
ature is 30°C. The walls of the room are also at 30°C. The outer
surface of the tank is black (emissivity � � 1), and heat trans-
fer between the outer surface of the tank and the surroundings
is by natural convection and radiation. The convection heat

transfer coefficients at the inner and the outer surfaces of the
tank are 80 W/m2 · °C and 10 W/m2 · °C, respectively. Deter-
mine (a) the rate of heat transfer to the iced water in the tank
and (b) the amount of ice at 0°C that melts during a 24-h
period. The heat of fusion of water at atmospheric pressure is
hif � 333.7 kJ/kg.

3–68 Steam at 320°C flows in a stainless steel pipe (k �
15 W/m · °C) whose inner and outer diameters are 5 cm and
5.5 cm, respectively. The pipe is covered with 3-cm-thick glass
wool insulation (k � 0.038 W/m · °C). Heat is lost to the sur-
roundings at 5°C by natural convection and radiation, with
a combined natural convection and radiation heat transfer co-
efficient of 15 W/m2 · °C. Taking the heat transfer coefficient
inside the pipe to be 80 W/m2 · °C, determine the rate of heat
loss from the steam per unit length of the pipe. Also determine
the temperature drops across the pipe shell and the insulation.

3–69 Reconsider Problem 3–68. Using EES (or other)
software, investigate the effect of the thickness of

the insulation on the rate of heat loss from the steam and the
temperature drop across the insulation layer. Let the insulation
thickness vary from 1 cm to 10 cm. Plot the rate of heat loss
and the temperature drop as a function of insulation thickness,
and discuss the results.

3–70 A 50-m-long section of a steam pipe whose outer
diameter is 10 cm passes through an open space

at 15°C. The average temperature of the outer surface of the
pipe is measured to be 150°C. If the combined heat transfer co-
efficient on the outer surface of the pipe is 20 W/m2 · °C, de-
termine (a) the rate of heat loss from the steam pipe, (b) the
annual cost of this energy lost if steam is generated in a natural
gas furnace that has an efficiency of 75 percent and the price of
natural gas is $0.52/therm (1 therm � 105,500 kJ), and (c) the
thickness of fiberglass insulation (k � 0.035 W/m · °C) needed
in order to save 90 percent of the heat lost. Assume the pipe
temperature to remain constant at 150°C.

3–71 Consider a 2-m-high electric hot water heater that has a
diameter of 40 cm and maintains the hot water at 55°C. The
tank is located in a small room whose average temperature is

0.02 in. 0.06 in.
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27°C, and the heat transfer coefficients on the inner and outer
surfaces of the heater are 50 and 12 W/m2 · °C, respectively.
The tank is placed in another 46-cm-diameter sheet metal tank
of negligible thickness, and the space between the two tanks is
filled with foam insulation (k � 0.03 W/m · °C). The thermal
resistances of the water tank and the outer thin sheet metal
shell are very small and can be neglected. The price of elec-
tricity is $0.08/kWh, and the home owner pays $280 a year for
water heating. Determine the fraction of the hot water energy
cost of this household that is due to the heat loss from the tank.

Hot water tank insulation kits consisting of 3-cm-thick fiber-
glass insulation (k � 0.035 W/m · °C) large enough to wrap the
entire tank are available in the market for about $30. If such an
insulation is installed on this water tank by the home owner
himself, how long will it take for this additional insulation to
pay for itself? Answers: 17.5 percent, 1.5 years

3–72 Reconsider Problem 3–71. Using EES (or other)
software, plot the fraction of energy cost of hot

water due to the heat loss from the tank as a function of the
hot water temperature in the range of 40°C to 90°C. Discuss
the results.

3–73 Consider a cold aluminum canned drink that is initially
at a uniform temperature of 3°C. The can is 12.5 cm high and
has a diameter of 6 cm. If the combined convection/radiation
heat transfer coefficient between the can and the surrounding
air at 25°C is 10 W/m2 · °C, determine how long it will take for
the average temperature of the drink to rise to 10°C.

In an effort to slow down the warming of the cold drink, a
person puts the can in a perfectly fitting 1-cm-thick cylindrical
rubber insulation (k � 0.13 W/m · °C). Now how long will it
take for the average temperature of the drink to rise to 10°C?
Assume the top of the can is not covered.

3–74 Repeat Problem 3–73, assuming a thermal contact
resistance of 0.00008 m2 · °C/W between the can and the
insulation.

3–75E Steam at 450°F is flowing through a steel pipe (k � 8.7
Btu/h · ft · °F) whose inner and outer diameters are 3.5 in. and
4.0 in., respectively, in an environment at 55°F. The pipe is
insulated with 2-in.-thick fiberglass insulation (k � 0.020
Btu/h · ft · °F). If the heat transfer coefficients on the inside and
the outside of the pipe are 30 and 5 Btu/h · ft2 · °F, respectively,
determine the rate of heat loss from the steam per foot length of
the pipe. What is the error involved in neglecting the thermal
resistance of the steel pipe in calculations?

3–76 Hot water at an average temperature of 90°C is flowing
through a 15-m section of a cast iron pipe (k � 52 W/m · °C)
whose inner and outer diameters are 4 cm and 4.6 cm, respec-
tively. The outer surface of the pipe, whose emissivity is 0.7, is
exposed to the cold air at 10°C in the basement, with a heat
transfer coefficient of 15 W/m2 · °C. The heat transfer coeffi-
cient at the inner surface of the pipe is 120 W/m2 · °C. Taking
the walls of the basement to be at 10°C also, determine the rate
of heat loss from the hot water. Also, determine the average
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velocity of the water in the pipe if the temperature of the water
drops by 3°C as it passes through the basement.

3–77 Repeat Problem 3–76 for a pipe made of copper (k �
386 W/m · °C) instead of cast iron.

3–78E Steam exiting the turbine of a steam power plant at
100°F is to be condensed in a large condenser by cooling water
flowing through copper pipes (k � 223 Btu/h · ft · °F) of inner
diameter 0.4 in. and outer diameter 0.6 in. at an average
temperature of 70°F. The heat of vaporization of water at
100°F is 1037 Btu/lbm. The heat transfer coefficients are 1500
Btu/h · ft2 · °F on the steam side and 35 Btu/h · ft2 · °F on the
water side. Determine the length of the tube required to con-
dense steam at a rate of 120 lbm/h. Answer: 1148 ft

3–79E Repeat Problem 3–78E, assuming that a 0.01-in.-thick
layer of mineral deposit (k � 0.5 Btu/h · ft · °F) has formed on
the inner surface of the pipe.

3–80 Reconsider Problem 3–78E. Using EES (or
other) software, investigate the effects of the

thermal conductivity of the pipe material and the outer di-
ameter of the pipe on the length of the tube required. Let
the thermal conductivity vary from 10 Btu/h · ft · °F to 400
Btu/h · ft · °F and the outer diameter from 0.5 in. to 1.0 in. Plot
the length of the tube as functions of pipe conductivity and the
outer pipe diameter, and discuss the results.

3–81 The boiling temperature of nitrogen at atmospheric
pressure at sea level (1 atm pressure) is �196°C. Therefore, ni-
trogen is commonly used in low-temperature scientific studies
since the temperature of liquid nitrogen in a tank open to the at-
mosphere will remain constant at �196°C until it is depleted.
Any heat transfer to the tank will result in the evaporation of
some liquid nitrogen, which has a heat of vaporization of 198
kJ/kg and a density of 810 kg/m3 at 1 atm.

Consider a 3-m-diameter spherical tank that is initially filled
with liquid nitrogen at 1 atm and �196°C. The tank is exposed
to ambient air at 15°C, with a combined convection and radia-
tion heat transfer coefficient of 35 W/m2 · °C. The temperature
of the thin-shelled spherical tank is observed to be almost the
same as the temperature of the nitrogen inside. Determine
the rate of evaporation of the liquid nitrogen in the tank as a
result of the heat transfer from the ambient air if the tank is
(a) not insulated, (b) insulated with 5-cm-thick fiberglass insu-
lation (k � 0.035 W/m · °C), and (c) insulated with 2-cm-thick
superinsulation which has an effective thermal conductivity of
0.00005 W/m · °C.

3–82 Repeat Problem 3–81 for liquid oxygen, which has
a boiling temperature of �183°C, a heat of vaporization of
213 kJ/kg, and a density of 1140 kg/m3 at 1 atm pressure.

Critical Radius of Insulation

3–83C What is the critical radius of insulation? How is it
defined for a cylindrical layer?

3–84C A pipe is insulated such that the outer radius of the
insulation is less than the critical radius. Now the insulation is
taken off. Will the rate of heat transfer from the pipe increase
or decrease for the same pipe surface temperature?

3–85C A pipe is insulated to reduce the heat loss from it.
However, measurements indicate that the rate of heat loss
has increased instead of decreasing. Can the measurements
be right?

3–86C Consider a pipe at a constant temperature whose ra-
dius is greater than the critical radius of insulation. Someone
claims that the rate of heat loss from the pipe has increased
when some insulation is added to the pipe. Is this claim valid?

3–87C Consider an insulated pipe exposed to the atmo-
sphere. Will the critical radius of insulation be greater on calm
days or on windy days? Why?
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3–88 A 2-mm-diameter and 10-m-long electric wire is tightly
wrapped with a 1-mm-thick plastic cover whose thermal con-
ductivity is k � 0.15 W/m · °C. Electrical measurements indi-
cate that a current of 10 A passes through the wire and there is
a voltage drop of 8 V along the wire. If the insulated wire is ex-
posed to a medium at T� � 30°C with a heat transfer coeffi-
cient of h � 24 W/m2 · °C, determine the temperature at the
interface of the wire and the plastic cover in steady operation.
Also determine if doubling the thickness of the plastic cover
will increase or decrease this interface temperature.

3–89E A 0.083-in.-diameter electrical wire at 115°F is
covered by 0.02-in.-thick plastic insulation (k � 0.075
Btu/h · ft · °F). The wire is exposed to a medium at 50°F, with
a combined convection and radiation heat transfer coefficient
of 2.5 Btu/h · ft2 · °F. Determine if the plastic insulation on the
wire will increase or decrease heat transfer from the wire.

Answer: It helps

3–90E Repeat Problem 3–89E, assuming a thermal contact
resistance of 0.001 h · ft2 · °F/Btu at the interface of the wire
and the insulation.

3–91 A 5-mm-diameter spherical ball at 50°C is covered by a
1-mm-thick plastic insulation (k � 0.13 W/m · °C). The ball is
exposed to a medium at 15°C, with a combined convection and
radiation heat transfer coefficient of 20 W/m2 · °C. Determine
if the plastic insulation on the ball will help or hurt heat trans-
fer from the ball.

3–92 Reconsider Problem 3–91. Using EES (or other)
software, plot the rate of heat transfer from the

ball as a function of the plastic insulation thickness in the range
of 0.5 mm to 20 mm. Discuss the results.

Heat Transfer from Finned Surfaces

3–93C What is the reason for the widespread use of fins on
surfaces?

3–94C What is the difference between the fin effectiveness
and the fin efficiency?

3–95C The fins attached to a surface are determined to have
an effectiveness of 0.9. Do you think the rate of heat transfer
from the surface has increased or decreased as a result of the
addition of these fins?

3–96C Explain how the fins enhance heat transfer from a
surface. Also, explain how the addition of fins may actually
decrease heat transfer from a surface.

3–97C How does the overall effectiveness of a finned sur-
face differ from the effectiveness of a single fin?

3–98C Hot water is to be cooled as it flows through the tubes
exposed to atmospheric air. Fins are to be attached in order to
enhance heat transfer. Would you recommend attaching the
fins inside or outside the tubes? Why?

3–99C Hot air is to be cooled as it is forced to flow through
the tubes exposed to atmospheric air. Fins are to be added in
order to enhance heat transfer. Would you recommend attach-
ing the fins inside or outside the tubes? Why? When would you
recommend attaching fins both inside and outside the tubes?

3–100C Consider two finned surfaces that are identical
except that the fins on the first surface are formed by casting
or extrusion, whereas they are attached to the second surface
afterwards by welding or tight fitting. For which case do you
think the fins will provide greater enhancement in heat trans-
fer? Explain.

3–101C The heat transfer surface area of a fin is equal to the
sum of all surfaces of the fin exposed to the surrounding
medium, including the surface area of the fin tip. Under what
conditions can we neglect heat transfer from the fin tip?

3–102C Does the (a) efficiency and (b) effectiveness of a fin
increase or decrease as the fin length is increased?

3–103C Two pin fins are identical, except that the diameter
of one of them is twice the diameter of the other. For which fin
will the (a) fin effectiveness and (b) fin efficiency be higher?
Explain.

3–104C Two plate fins of constant rectangular cross section
are identical, except that the thickness of one of them is twice
the thickness of the other. For which fin will the (a) fin effec-
tiveness and (b) fin efficiency be higher? Explain.

3–105C Two finned surfaces are identical, except that the
convection heat transfer coefficient of one of them is twice that
of the other. For which finned surface will the (a) fin effective-
ness and (b) fin efficiency be higher? Explain.

3–106 Obtain a relation for the fin efficiency for a fin of con-
stant cross-sectional area Ac, perimeter p, length L, and thermal
conductivity k exposed to convection to a medium at T� with a
heat transfer coefficient h. Assume the fins are sufficiently long
so that the temperature of the fin at the tip is nearly T�. Take
the temperature of the fin at the base to be Tb and neglect heat
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transfer from the fin tips. Simplify the relation for (a) a circu-
lar fin of diameter D and (b) rectangular fins of thickness t.

3–107 The case-to-ambient thermal resistance of a power
transistor that has a maximum power rating of 15 W is given to
be 25°C/W. If the case temperature of the transistor is not to
exceed 80°C, determine the power at which this transistor can
be operated safely in an environment at 40°C.

3–108 A 40-W power transistor is to be cooled by attaching
it to one of the commercially available heat sinks shown in
Table 3–4. Select a heat sink that will allow the case tempera-
ture of the transistor not to exceed 90° in the ambient air at 20°.

3–109 A 30-W power transistor is to be cooled by attaching
it to one of the commercially available heat sinks shown in
Table 3–4. Select a heat sink that will allow the case tempera-
ture of the transistor not to exceed 80°C in the ambient air at
35°C.

3–110 Steam in a heating system flows through tubes whose
outer diameter is 5 cm and whose walls are maintained at a
temperature of 180°C. Circular aluminum alloy 2024-T6 fins
(k � 186 W/m · °C) of outer diameter 6 cm and constant thick-
ness 1 mm are attached to the tube. The space between the fins
is 3 mm, and thus there are 250 fins per meter length of the
tube. Heat is transferred to the surrounding air at T� � 25°C,
with a heat transfer coefficient of 40 W/m2 · °C. Determine the
increase in heat transfer from the tube per meter of its length as
a result of adding fins. Answer: 2639 W

3–111E Consider a stainless steel spoon (k � 8.7
Btu/h · ft · °F) partially immersed in boiling water at 200°F in
a kitchen at 75°F. The handle of the spoon has a cross section
of 0.08 in. 
 0.5 in., and extends 7 in. in the air from the free

surface of the water. If the heat transfer coefficient at the ex-
posed surfaces of the spoon handle is 3 Btu/h · ft2 · °F, deter-
mine the temperature difference across the exposed surface of
the spoon handle. State your assumptions. Answer: 124.6°F

3–112E Repeat Problem 3–111 for a silver spoon (k � 247
Btu/h · ft · °F).

3–113E Reconsider Problem 3–111E. Using EES (or
other) software, investigate the effects of the

thermal conductivity of the spoon material and the length of its
extension in the air on the temperature difference across the
exposed surface of the spoon handle. Let the thermal conduc-
tivity vary from 5 Btu/h · ft · °F to 225 Btu/h · ft · °F and the
length from 5 in. to 12 in. Plot the temperature difference as the
functions of thermal conductivity and length, and discuss
the results.

3–114 A 0.3-cm-thick, 12-cm-high, and 18-cm-long circuit
board houses 80 closely spaced logic chips on one side, each
dissipating 0.04 W. The board is impregnated with copper fill-
ings and has an effective thermal conductivity of 20 W/m · °C.
All the heat generated in the chips is conducted across the cir-
cuit board and is dissipated from the back side of the board
to a medium at 40°C, with a heat transfer coefficient of 50
W/m2 · °C. (a) Determine the temperatures on the two sides
of the circuit board. (b) Now a 0.2-cm-thick, 12-cm-high, and
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18-cm-long aluminum plate (k � 237 W/m · °C) with 864
2-cm-long aluminum pin fins of diameter 0.25 cm is attached
to the back side of the circuit board with a 0.02-cm-thick epoxy
adhesive (k � 1.8 W/m · °C). Determine the new temperatures
on the two sides of the circuit board.

3–115 Repeat Problem 3–114 using a copper plate with cop-
per fins (k � 386 W/m · °C) instead of aluminum ones.

3–116 A hot surface at 100°C is to be cooled by attach-
ing 3-cm-long, 0.25-cm-diameter aluminum pin fins (k �
237 W/m · °C) to it, with a center-to-center distance of 0.6 cm.
The temperature of the surrounding medium is 30°C, and the
heat transfer coefficient on the surfaces is 35 W/m2 · °C.
Determine the rate of heat transfer from the surface for a
1-m 
 1-m section of the plate. Also determine the overall
effectiveness of the fins.

3–117 Repeat Problem 3–116 using copper fins (k � 386
W/m · °C) instead of aluminum ones.

3–118 Reconsider Problem 3–116. Using EES (or
other) software, investigate the effect of the cen-

ter-to-center distance of the fins on the rate of heat transfer
from the surface and the overall effectiveness of the fins. Let
the center-to-center distance vary from 0.4 cm to 2.0 cm. Plot
the rate of heat transfer and the overall effectiveness as a func-
tion of the center-to-center distance, and discuss the results.

3–119 Two 3-m-long and 0.4-cm-thick cast iron (k � 52
W/m · °C) steam pipes of outer diameter 10 cm are connected
to each other through two 1-cm-thick flanges of outer diameter
20 cm. The steam flows inside the pipe at an average tempera-
ture of 200°C with a heat transfer coefficient of 180 W/m2 · °C.
The outer surface of the pipe is exposed to an ambient at 12°C,
with a heat transfer coefficient of 25 W/m2 · °C. (a) Disregard-
ing the flanges, determine the average outer surface tempera-
ture of the pipe. (b) Using this temperature for the base of the
flange and treating the flanges as the fins, determine the fin ef-
ficiency and the rate of heat transfer from the flanges. (c) What
length of pipe is the flange section equivalent to for heat trans-
fer purposes?

Heat Transfer in Common Configurations

3-120C What is a conduction shape factor? How is it related
to the thermal resistance?

3-121C What is the value of conduction shape factors in
engineering?

3-122 A 20-m-long and 8-cm-diameter hot water pipe of a
district heating system is buried in the soil 80 cm below the
ground surface. The outer surface temperature of the pipe is
60°C. Taking the surface temperature of the earth to be 5°C
and the thermal conductivity of the soil at that location to be
0.9 W/m · °C, determine the rate of heat loss from the pipe.

3–123 Reconsider Problem 3–122. Using EES (or
other) software, plot the rate of heat loss from

the pipe as a function of the burial depth in the range of 20 cm
to 2.0 m. Discuss the results.

3-124 Hot and cold water pipes 8 m long run parallel to each
other in a thick concrete layer. The diameters of both pipes are
5 cm, and the distance between the centerlines of the pipes is
40 cm. The surface temperatures of the hot and cold pipes are
60°C and 15°C, respectively. Taking the thermal conductivity
of the concrete to be k � 0.75 W/m · °C, determine the rate of
heat transfer between the pipes. Answer: 306 W
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3–125 Reconsider Problem 3–124. Using EES (or
other) software, plot the rate of heat transfer

between the pipes as a function of the distance between the
centerlines of the pipes in the range of 10 cm to 1.0 m. Discuss
the results.

3-126E A row of 3-ft-long and 1-in.-diameter used uranium
fuel rods that are still radioactive are buried in the ground par-
allel to each other with a center-to-center distance of 8 in. at a
depth 15 ft from the ground surface at a location where the
thermal conductivity of the soil is 0.6 Btu/h · ft · °F. If the sur-
face temperature of the rods and the ground are 350°F and
60°F, respectively, determine the rate of heat transfer from the
fuel rods to the atmosphere through the soil.

3-127 Hot water at an average temperature of 60°C and an
average velocity of 0.6 m/s is flowing through a 5-m section
of a thin-walled hot water pipe that has an outer diameter of
2.5 cm. The pipe passes through the center of a 14-cm-thick
wall filled with fiberglass insulation (k � 0.035 W/m · °C). If
the surfaces of the wall are at 18°C, determine (a) the rate of
heat transfer from the pipe to the air in the rooms and (b) the
temperature drop of the hot water as it flows through this
5-m-long section of the wall. Answers: 23.5 W, 0.02°C

3-128 Hot water at an average temperature of 80°C and an
average velocity of 1.5 m/s is flowing through a 25-m section
of a pipe that has an outer diameter of 5 cm. The pipe extends
2 m in the ambient air above the ground, dips into the ground

(k � 1.5 W/m · °C) vertically for 3 m, and continues horizon-
tally at this depth for 20 m more before it enters the next build-
ing. The first section of the pipe is exposed to the ambient air
at 8°C, with a heat transfer coefficient of 22 W/m2 · °C. If the
surface of the ground is covered with snow at 0°C, determine
(a) the total rate of heat loss from the hot water and (b) the
temperature drop of the hot water as it flows through this
25-m-long section of the pipe.

3-129 Consider a house with a flat roof whose outer dimen-
sions are 12 m 
 12 m. The outer walls of the house are 6 m
high. The walls and the roof of the house are made of 20-cm-
thick concrete (k � 0.75 W/m · °C). The temperatures of the in-
ner and outer surfaces of the house are 15°C and 3°C,
respectively. Accounting for the effects of the edges of adjoin-
ing surfaces, determine the rate of heat loss from the house
through its walls and the roof. What is the error involved in ig-
noring the effects of the edges and corners and treating the roof
as a 12 m 
 12 m surface and the walls as 6 m 
 12 m surfaces
for simplicity?

3-130 Consider a 10-m-long thick-walled concrete duct (k �
0.75 W/m · °C) of square cross-section. The outer dimensions
of the duct are 20 cm 
 20 cm, and the thickness of the duct
wall is 2 cm. If the inner and outer surfaces of the duct are at
100°C and 15°C, respectively, determine the rate of heat trans-
fer through the walls of the duct. Answer: 22.9 kW

3-131 A 3-m-diameter spherical tank containing some radio-
active material is buried in the ground (k � 1.4 W/m · °C). The
distance between the top surface of the tank and the ground
surface is 4 m. If the surface temperatures of the tank and the
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ground are 140°C and 15°C, respectively, determine the rate of
heat transfer from the tank.

3–132 Reconsider Problem 3–131. Using EES (or
other) software, plot the rate of heat transfer

from the tank as a function of the tank diameter in the range of
0.5 m to 5.0 m. Discuss the results.

3-133 Hot water at an average temperature of 85°C passes
through a row of eight parallel pipes that are 4 m long and have
an outer diameter of 3 cm, located vertically in the middle of a
concrete wall (k � 0.75 W/m · °C) that is 4 m high, 8 m long,
and 15 cm thick. If the surfaces of the concrete walls are
exposed to a medium at 32°C, with a heat transfer coefficient
of 12 W/m2 · °C, determine the rate of heat loss from the hot
water and the surface temperature of the wall.

Special Topics:
Heat Transfer through the Walls and Roofs

3–134C What is the R-value of a wall? How does it differ
from the unit thermal resistance of the wall? How is it related
to the U-factor?

3–135C What is effective emissivity for a plane-parallel air
space? How is it determined? How is radiation heat transfer
through the air space determined when the effective emissivity
is known?

3–136C The unit thermal resistances (R-values) of both
40-mm and 90-mm vertical air spaces are given in Table 3–9 to
be 0.22 m2 · °C/W, which implies that more than doubling the
thickness of air space in a wall has no effect on heat transfer
through the wall. Do you think this is a typing error? Explain.

3–137C What is a radiant barrier? What kind of materials are
suitable for use as radiant barriers? Is it worthwhile to use ra-
diant barriers in the attics of homes?

3–138C Consider a house whose attic space is ventilated ef-
fectively so that the air temperature in the attic is the same as
the ambient air temperature at all times. Will the roof still have
any effect on heat transfer through the ceiling? Explain.

3–139 Determine the summer R-value and the U-factor of a
wood frame wall that is built around 38-mm 
 140-mm wood
studs with a center-to-center distance of 400 mm. The 140-
mm-wide cavity between the studs is filled with mineral fiber
batt insulation. The inside is finished with 13-mm gypsum
wallboard and the outside with 13-mm wood fiberboard and
13-mm 
 200-mm wood bevel lapped siding. The insulated
cavity constitutes 80 percent of the heat transmission area,
while the studs, headers, plates, and sills constitute 20 percent.

Answers: 3.213 m2 · °C/W, 0.311 W/m2 · °C

3–140 The 13-mm-thick wood fiberboard sheathing of the
wood stud wall in Problem 3–139 is replaced by a 25-mm-
thick rigid foam insulation. Determine the percent increase in
the R-value of the wall as a result.

3–141E Determine the winter R-value and the U-factor of a
masonry cavity wall that is built around 4-in.-thick concrete
blocks made of lightweight aggregate. The outside is finished
with 4-in. face brick with -in. cement mortar between the
bricks and concrete blocks. The inside finish consists of -in.
gypsum wallboard separated from the concrete block by -in.-
thick (1-in. by 3-in. nominal) vertical furring whose center-to-
center distance is 16 in. Neither side of the -in.-thick air space
between the concrete block and the gypsum board is coated
with any reflective film. When determining the R-value of the
air space, the temperature difference across it can be taken to
be 30°F with a mean air temperature of 50°F. The air space
constitutes 80 percent of the heat transmission area, while the
vertical furring and similar structures constitute 20 percent.

3–142 Consider a flat ceiling that is built around 38-mm 

90-mm wood studs with a center-to-center distance of 400 mm.
The lower part of the ceiling is finished with 13-mm gypsum
wallboard, while the upper part consists of a wood subfloor
(R � 0.166 m2 · °C/W), a 13-mm plywood, a layer of felt (R �
0.011 m2 · °C/W), and linoleum (R � 0.009 m2 · °C/W). Both
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sides of the ceiling are exposed to still air. The air space con-
stitutes 82 percent of the heat transmission area, while the
studs and headers constitute 18 percent. Determine the winter
R-value and the U-factor of the ceiling assuming the 90-mm-
wide air space between the studs (a) does not have any reflec-
tive surface, (b) has a reflective surface with � � 0.05 on one
side, and (c) has reflective surfaces with � � 0.05 on both
sides. Assume a mean temperature of 10°C and a temperature
difference of 5.6°C for the air space.

3–143 Determine the winter R-value and the U-factor of a
masonry cavity wall that consists of 100-mm common bricks,
a 90-mm air space, 100-mm concrete blocks made of light-
weight aggregate, 20-mm air space, and 13-mm gypsum wall-
board separated from the concrete block by 20-mm-thick
(1-in. 
 3-in. nominal) vertical furring whose center-to-center
distance is 400 mm. Neither side of the two air spaces is coated
with any reflective films. When determining the R-value of the
air spaces, the temperature difference across them can be taken
to be 16.7°C with a mean air temperature of 10°C. The air
space constitutes 84 percent of the heat transmission area,

while the vertical furring and similar structures constitute
16 percent. Answers: 1.02 m2 · °C/W, 0.978 W/m2 · °C

3–144 Repeat Problem 3–143 assuming one side of both air
spaces is coated with a reflective film of � � 0.05.

3–145 Determine the winter R-value and the U-factor of a
masonry wall that consists of the following layers: 100-mm
face bricks, 100-mm common bricks, 25-mm urethane rigid
foam insulation, and 13-mm gypsum wallboard.

Answers: 1.404 m2 · °C/W, 0.712 W/m2 · °C

3–146 The overall heat transfer coefficient (the U-value) of a
wall under winter design conditions is U � 1.55 W/m2 · °C.
Determine the U-value of the wall under summer design
conditions.

3–147 The overall heat transfer coefficient (the U-value) of a
wall under winter design conditions is U � 2.25 W/m2 · °C.
Now a layer of 100-mm face brick is added to the outside,
leaving a 20-mm air space between the wall and the bricks. De-
termine the new U-value of the wall. Also, determine the rate
of heat transfer through a 3-m-high, 7-m-long section of the
wall after modification when the indoor and outdoor tempera-
tures are 22°C and �5°C, respectively.

3–148 Determine the summer and winter R-values, in
m2 · °C/W, of a masonry wall that consists of 100-mm face
bricks, 13-mm of cement mortar, 100-mm lightweight concrete
block, 40-mm air space, and 20-mm plasterboard.

Answers: 0.809 and 0.795 m2 · °C/W

3–149E The overall heat transfer coefficient of a wall is
determined to be U � 0.09 Btu/h · ft2 · °F under the conditions
of still air inside and winds of 7.5 mph outside. What will the
U-factor be when the wind velocity outside is doubled?

Answer: 0.0907 Btu/h · ft2 · °F

3–150 Two homes are identical, except that the walls of one
house consist of 200-mm lightweight concrete blocks, 20-mm
air space, and 20-mm plasterboard, while the walls of the other
house involve the standard R-2.4 m2 · °C/W frame wall con-
struction. Which house do you think is more energy efficient?
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3–151 Determine the R-value of a ceiling that consists of a
layer of 19-mm acoustical tiles whose top surface is covered
with a highly reflective aluminum foil for winter conditions.
Assume still air below and above the tiles.

Review Problems

3–152E Steam is produced in the copper tubes (k � 223
Btu/h · ft · °F) of a heat exchanger at a temperature of 250°F by
another fluid condensing on the outside surfaces of the tubes at
350°F. The inner and outer diameters of the tube are 1 in. and
1.3 in., respectively. When the heat exchanger was new, the
rate of heat transfer per foot length of the tube was 2 
 104

Btu/h. Determine the rate of heat transfer per foot length
of the tube when a 0.01-in.-thick layer of limestone (k �
1.7 Btu/h · ft · °F) has formed on the inner surface of the tube
after extended use.

3–153E Repeat Problem 3–152E, assuming that a 0.01-in.-
thick limestone layer has formed on both the inner and outer
surfaces of the tube.

3–154 A 1.2-m-diameter and 6-m-long cylindrical propane
tank is initially filled with liquid propane whose density is 581
kg/m3. The tank is exposed to the ambient air at 30°C, with a
heat transfer coefficient of 25 W/m2 · °C. Now a crack devel-
ops at the top of the tank and the pressure inside drops to 1 atm
while the temperature drops to �42°C, which is the boiling
temperature of propane at 1 atm. The heat of vaporization of

propane at 1 atm is 425 kJ/kg. The propane is slowly vaporized
as a result of the heat transfer from the ambient air into the
tank, and the propane vapor escapes the tank at �42°C through
the crack. Assuming the propane tank to be at about the same
temperature as the propane inside at all times, determine how
long it will take for the propane tank to empty if the tank is
(a) not insulated and (b) insulated with 7.5-cm-thick glass wool
insulation (k � 0.038 W/m · °C).

3–155 Hot water is flowing at an average velocity of 1.5 m/s
through a cast iron pipe (k � 52 W/m · °C) whose inner and
outer diameters are 3 cm and 3.5 cm, respectively. The pipe
passes through a 15-m-long section of a basement whose
temperature is 15°C. If the temperature of the water drops
from 70°C to 67°C as it passes through the basement and the
heat transfer coefficient on the inner surface of the pipe is 400
W/m2 · °C, determine the combined convection and radiation
heat transfer coefficient at the outer surface of the pipe.

Answer: 272.5 W/m2 · °C

3–156 Newly formed concrete pipes are usually cured first
overnight by steam in a curing kiln maintained at a temperature
of 45°C before the pipes are cured for several days outside. The
heat and moisture to the kiln is provided by steam flowing in a
pipe whose outer diameter is 12 cm. During a plant inspection,
it was noticed that the pipe passes through a 10-m section that
is completely exposed to the ambient air before it reaches the
kiln. The temperature measurements indicate that the average
temperature of the outer surface of the steam pipe is 82°C
when the ambient temperature is 8°C. The combined convec-
tion and radiation heat transfer coefficient at the outer surface
of the pipe is estimated to be 25 W/m2 · °C. Determine the
amount of heat lost from the steam during a 10-h curing
process that night.

Steam is supplied by a gas-fired steam generator that has
an efficiency of 80 percent, and the plant pays $0.60/therm of
natural gas (1 therm � 105,500 kJ). If the pipe is insulated and
90 percent of the heat loss is saved as a result, determine the
amount of money this facility will save a year as a result of
insulating the steam pipes. Assume that the concrete pipes are
cured 110 nights a year. State your assumptions.

3–157 Consider an 18-cm 
 18-cm multilayer circuit board
dissipating 27 W of heat. The board consists of four layers
of 0.2-mm-thick copper (k � 386 W/m · °C) and three layers of
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1.5-mm-thick epoxy glass (k � 0.26 W/m · °C) sandwiched
together, as shown in the figure. The circuit board is attached to
a heat sink from both ends, and the temperature of the board at
those ends is 35°C. Heat is considered to be uniformly gener-
ated in the epoxy layers of the board at a rate of 0.5 W per 1-cm

 18-cm epoxy laminate strip (or 1.5 W per 1-cm 
 18-cm
strip of the board). Considering only a portion of the board be-
cause of symmetry, determine the magnitude and location of
the maximum temperature that occurs in the board. Assume
heat transfer from the top and bottom faces of the board to be
negligible.

3–158 The plumbing system of a house involves a 0.5-m sec-
tion of a plastic pipe (k � 0.16 W/m · °C) of inner diameter
2 cm and outer diameter 2.4 cm exposed to the ambient air.
During a cold and windy night, the ambient air temperature re-
mains at about �5°C for a period of 14 h. The combined con-
vection and radiation heat transfer coefficient on the outer
surface of the pipe is estimated to be 40 W/m2 · °C, and the
heat of fusion of water is 333.7 kJ/kg. Assuming the pipe to
contain stationary water initially at 0°C, determine if the water
in that section of the pipe will completely freeze that night.

3–159 Repeat Problem 3–158 for the case of a heat transfer
coefficient of 10 W/m2 · °C on the outer surface as a result of
putting a fence around the pipe that blocks the wind.

3–160E The surface temperature of a 3-in.-diameter baked
potato is observed to drop from 300°F to 200°F in 5 minutes in
an environment at 70°F. Determine the average heat transfer
coefficient between the potato and its surroundings. Using this

heat transfer coefficient and the same surface temperature,
determine how long it will take for the potato to experience
the same temperature drop if it is wrapped completely in a
0.12-in.-thick towel (k � 0.035 Btu/h · ft · °F). You may use the
properties of water for potato.

3–161E Repeat Problem 3–160E assuming there is a 0.02-
in.-thick air space (k � 0.015 Btu/h · ft · °F) between the potato
and the towel.

3–162 An ice chest whose outer dimensions are 30 cm 

40 cm 
 50 cm is made of 3-cm-thick Styrofoam (k � 0.033
W/m · °C). Initially, the chest is filled with 45 kg of ice at 0°C,
and the inner surface temperature of the ice chest can be taken
to be 0°C at all times. The heat of fusion of ice at 0°C is 333.7
kJ/kg, and the heat transfer coefficient between the outer
surface of the ice chest and surrounding air at 35°C is 18
W/m2 · °C. Disregarding any heat transfer from the 40-cm 

50-cm base of the ice chest, determine how long it will take for
the ice in the chest to melt completely.

3–163 A 4-m-high and 6-m-long wall is constructed of two
large 2-cm-thick steel plates (k � 15 W/m · °C) separated by
1-cm-thick and 20-cm-wide steel bars placed 99 cm apart. The
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remaining space between the steel plates is filled with fiber-
glass insulation (k � 0.035 W/m · °C). If the temperature dif-
ference between the inner and the outer surfaces of the walls is
22°C, determine the rate of heat transfer through the wall. Can
we ignore the steel bars between the plates in heat transfer
analysis since they occupy only 1 percent of the heat transfer
surface area?

3–164 A 0.2-cm-thick, 10-cm-high, and 15-cm-long circuit
board houses electronic components on one side that dissipate
a total of 15 W of heat uniformly. The board is impregnated
with conducting metal fillings and has an effective thermal
conductivity of 12 W/m · °C. All the heat generated in the com-
ponents is conducted across the circuit board and is dissipated
from the back side of the board to a medium at 37°C, with a
heat transfer coefficient of 45 W/m2 · °C. (a) Determine the
surface temperatures on the two sides of the circuit board.
(b) Now a 0.1-cm-thick, 10-cm-high, and 15-cm-long alumi-
num plate (k � 237 W/m · °C) with 20 0.2-cm-thick, 2-cm-
long, and 15-cm-wide aluminum fins of rectangular profile are
attached to the back side of the circuit board with a 0.03–cm-
thick epoxy adhesive (k � 1.8 W/m · °C). Determine the new
temperatures on the two sides of the circuit board.

3–165 Repeat Problem 3–164 using a copper plate with cop-
per fins (k � 386 W/m · °C) instead of aluminum ones.

3-166 A row of 10 parallel pipes that are 5 m long and have
an outer diameter of 6 cm are used to transport steam at 150°C
through the concrete floor (k � 0.75 W/m · °C) of a 10-m 

5-m room that is maintained at 25°C. The combined con-
vection and radiation heat transfer coefficient at the floor is
12 W/m2 · °C. If the surface temperature of the concrete floor
is not to exceed 40°C, determine how deep the steam pipes
should be buried below the surface of the concrete floor.

3–167 Consider two identical people each generating 60 W
of metabolic heat steadily while doing sedentary work, and dis-
sipating it by convection and perspiration. The first person
is wearing clothes made of 1-mm-thick leather (k � 0.159
W/m · °C) that covers half of the body while the second one is
wearing clothes made of 1-mm-thick synthetic fabric (k � 0.13
W/m · °C) that covers the body completely. The ambient air is
at 30°C, the heat transfer coefficient at the outer surface is
15 W/m2 · °C, and the inner surface temperature of the clothes
can be taken to be 32°C. Treating the body of each person as a
25-cm-diameter 1.7-m-long cylinder, determine the fractions
of heat lost from each person by perspiration.

3–168 A 6-m-wide 2.8-m-high wall is constructed of one
layer of common brick (k � 0.72 W/m · °C) of thickness
20 cm, one inside layer of light-weight plaster (k � 0.36
W/m · °C) of thickness 1 cm, and one outside layer of cement
based covering (k � 1.40 W/m · °C) of thickness 2 cm. The in-
ner surface of the wall is maintained at 23°C while the outer
surface is exposed to outdoors at 8°C with a combined convec-
tion and radiation heat transfer coefficient of 17 W/m2 · °C.
Determine the rate of heat transfer through the wall and tem-
perature drops across the plaster, brick, covering, and surface-
ambient air.

3–169 Reconsider Problem 3–168. It is desired to insulate the
wall in order to decrease the heat loss by 85 percent. For the
same inner surface temperature, determine the thickness of in-
sulation and the outer surface temperature if the wall is insu-
lated with (a) polyurethane foam (k � 0.025 W/m · °C) and
(b) glass fiber (k � 0.036 W/m · °C).

3–170 Cold conditioned air at 12°C is flowing inside a
1.5-cm-thick square aluminum (k � 237 W/m · °C) duct of
inner cross section 22 cm 
 22 cm at a mass flow rate of
0.8 kg/s. The duct is exposed to air at 33°C with a combined
convection-radiation heat transfer coefficient of 8 W/m2 · °C.
The convection heat transfer coefficient at the inner surface is
75 W/m2 · °C. If the air temperature in the duct should not
increase by more than 1°C determine the maximum length of
the duct.

3–171 When analyzing heat transfer through windows, it
is important to consider the frame as well as the glass area.
Consider a 2-m-wide 1.5-m-high wood-framed window with
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85 percent of the area covered by 3-mm-thick single-pane glass
(k � 0.7 W/m · °C). The frame is 5 cm thick, and is made of
pine wood (k � 0.12 W/m · °C). The heat transfer coefficient is
7 W/m2 · °C inside and 13 W/m2 · °C outside. The room is
maintained at 24°C, and the temperature outdoors is 40°C. De-
termine the percent error involved in heat transfer when the
window is assumed to consist of glass only.

3–172 Steam at 235°C is flowing inside a steel pipe (k �
61 W/m · °C) whose inner and outer diameters are 10 cm and
12 cm, respectively, in an environment at 20°C. The heat trans-
fer coefficients inside and outside the pipe are 105 W/m2 · °C
and 14 W/m2 · °C, respectively. Determine (a) the thickness of
the insulation (k � 0.038 W/m · °C) needed to reduce the heat
loss by 95 percent and (b) the thickness of the insulation
needed to reduce the exposed surface temperature of insulated
pipe to 40°C for safety reasons.

3–173 When the transportation of natural gas in a pipeline is
not feasible for economic or other reasons, it is first liquefied at
about �160°C, and then transported in specially insulated
tanks placed in marine ships. Consider a 6-m-diameter spheri-
cal tank that is filled with liquefied natural gas (LNG) at
�160°C. The tank is exposed to ambient air at 18°C with a
heat transfer coefficient of 22 W/m2 · °C. The tank is thin-
shelled and its temperature can be taken to be the same as the
LNG temperature. The tank is insulated with 5-cm-thick super
insulation that has an effective thermal conductivity of 0.00008
W/m · °C. Taking the density and the specific heat of LNG to
be 425 kg/m3 and 3.475 kJ/kg · °C, respectively, estimate how
long it will take for the LNG temperature to rise to �150°C.

3–174 A 15-cm 
 20-cm hot surface at 85°C is to be cooled
by attaching 4-cm-long aluminum (k � 237 W/m · °C) fins of
2-mm 
 2-mm square cross section. The temperature of sur-
rounding medium is 25°C and the heat transfer coefficient on
the surfaces can be taken to be 20 W/m2 · °C. If it is desired to
triple the rate of heat transfer from the bare hot surface, deter-
mine the number of fins that needs to be attached.

3–175 Reconsider Problem 3–174. Using EES (or
other) software, plot the number of fins as a

function of the increase in the heat loss by fins relative to no
fin case (i.e., overall effectiveness of the fins) in the range of
1.5 to 5. Discuss the results. Is it realistic to assume the heat
transfer coefficient to remain constant?

3–176 A 1.4-m-diameter spherical steel tank filled with iced
water at 0°C is buried underground at a location where the
thermal conductivity of the soil is k � 0.55 W/m · °C. The dis-
tance between the tank center and the ground surface is 2.4 m.
For ground surface temperature of 18°C, determine the rate of
heat transfer to the iced water in the tank. What would your
answer be if the soil temperature were 18°C and the ground
surface were insulated?

3–177 A 0.6-m-diameter 1.9-m-long cylindrical tank con-
taining liquefied natural gas (LNG) at �160°C is placed at the
center of a 1.9-m-long 1.4-m 
 1.4-m square solid bar made of
an insulating material with k � 0.0006 W/m · °C. If the outer
surface temperature of the bar is 20°C, determine the rate of
heat transfer to the tank. Also, determine the LNG temperature
after one month. Take the density and the specific heat of LNG
to be 425 kg/m3 and 3.475 kJ/kg · °C, respectively.

Design and Essay Problems

3–178 The temperature in deep space is close to absolute
zero, which presents thermal challenges for the astronauts who
do space walks. Propose a design for the clothing of the astro-
nauts that will be most suitable for the thermal environment in
space. Defend the selections in your design.

3–179 In the design of electronic components, it is very de-
sirable to attach the electronic circuitry to a substrate material
that is a very good thermal conductor but also a very effective
electrical insulator. If the high cost is not a major concern, what
material would you propose for the substrate?

3–180 Using cylindrical samples of the same material, devise
an experiment to determine the thermal contact resistance.
Cylindrical samples are available at any length, and the thermal
conductivity of the material is known.

3–181 Find out about the wall construction of the cabins of
large commercial airplanes, the range of ambient conditions
under which they operate, typical heat transfer coefficients on
the inner and outer surfaces of the wall, and the heat generation
rates inside. Determine the size of the heating and air-
conditioning system that will be able to maintain the cabin
at 20°C at all times for an airplane capable of carrying
400 people.

3–182 Repeat Problem 3–181 for a submarine with a crew of
60 people.

3–183 A house with 200-m2 floor space is to be heated with
geothermal water flowing through pipes laid in the ground
under the floor. The walls of the house are 4 m high, and there
are 10 single-paned windows in the house that are 1.2 m wide
and 1.8 m high. The house has R-19 (in h · ft2 · °F/Btu) insula-
tion in the walls and R-30 on  the ceiling. The floor temperature
is not to exceed 40°C. Hot geothermal water is available at
90°C, and the inner and outer diameter of the pipes to be used
are 2.4 cm and 3.0 cm. Design such a heating system for this
house in your area.

3–184 Using a timer (or watch) and a thermometer, conduct
this experiment to determine the rate of heat gain of your
refrigerator. First, make sure that the door of the refrigerator
is not opened for at least a few hours to make sure that steady
operating conditions are established. Start the timer when the
refrigerator stops running and measure the time 	t1 it stays off

cen58933_ch03.qxd  9/10/2002  9:00 AM  Page 206



CHAPTER 3
207

before it kicks in. Then measure the time 	t2 it stays on. Not-
ing that the heat removed during 	t2 is equal to the heat gain of
the refrigerator during 	t1 � 	t2 and using the power con-
sumed by the refrigerator when it is running, determine the av-
erage rate of heat gain for your refrigerator, in watts. Take the
COP (coefficient of performance) of your refrigerator to be 1.3
if it is not available.

Now, clean the condenser coils of the refrigerator and re-
move any obstacles on the way of airflow through the coils By
replacing these measurements, determine the improvement in
the COP of the refrigerator.
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