
...

OWASP
Automated Threat Handbook

Web Applications

Version 1.2

..

..

OWASP Automated Threat Handbook Web Applications

Open Web Application Security Project

OWASP
Automated Threat Handbook

Web Applications

The OWASP Automated Threat Handbook provides actionable information and
resources to help defend against automated threats to web applications

Authors

Colin Watson and Tin Zaw

Project Reviewers

Igor Andriushchenko, Gabriel Mendez Justiniano and Matt Tesauro

Other Project Contributors

Jason Chan, Mark Hall, Andrew van der Stock and Roland Weber,
everyone else who contributed information anonymously, and the authors of

the referenced information sources; v1.2: Sumit Agarwal and Omri Iluz

Version 1.2 published 15th February 2018

ISBN 978-1-329-42709-9

© 2015-2018 OWASP Foundation

This document is licensed under the Creative Commons Attribution-ShareAlike 3.0 license

..

..
v1.2

..

..

OWASP Automated Threat Handbook Web Applications

Open Web Application Security Project

Contents

Prefaces . 1

Terminology . 4

Introduction . 5

Research. 7

The Ontology . 9

 Figure 1: Threat Events, ordered by ascending name. .10

 Figure 8: Automated Threat Countermeasure Classes .20

 Figure 2: Subset related to Account Credentials .11

 Figure 3: Subset related to Payment Cardholder Data .11

 Figure 4: Subset related to Vulnerability Identification .11

 Figure 5: Subset related to Availability of Inventory .11

 Figure 6: WASC Threat Classification view of the Threat Events.12

 Figure 7: Mitre CAPEC view of the Threat Events .13

Use Case Scenarios . 23

Countermeasures . 19

Project Details. 26

Handbook Roadmap . 27

 Automated Threat Event Reference . 28

..

..
v1.2

..

..

OWASP Automated Threat Handbook Web Applications

Open Web Application Security Project

Preface to v1.2

From its original release in 2015, the OWASP Automated Threat Handbook has now become a
de facto industry standard in detecting and mitigating threats by malicious web automation.
Every bot mitigation vendor and many buyers of these services now use the ontology defined in
this handbook. In this new version of the OWASP Automated Threat Handbook , the previously
named automated threat event OAT-009 CAPTCHA Bypass has been renamed OAT-009 CAPTCHA
Defeat, and a new threat event OAT-021 Denial of Inventory has been added.

CAPTCHA Bypass was originally used for OAT-009 since this is by far the most common name
used. However, subsequent feedback suggests this is confusing, since the puzzle is not actually
bypassed, but is solved in an automated manner – not because the CAPTCHA was implemented
improperly, but because the CAPTCHA itself is simply not effective against motivated attackers.
The name CAPTCHA Defeat has therefore been adopted.

Denial of Inventory has been added since its defining characteristics do not match any of the 20
previously defined automated threat events. This threat is often seen in ecommerce applications
where attackers add items to their basket to deny them to other users through the creation of
a stock-out condition, and never actually check out. Similar allocation without purchase, or
payment, or transaction completion, also occur in some non-ecommerce applications.

In addition to these changes, we have acknowledged additional contributors and reviewers,
updated the countermeasures copy, added other names and examples to several threat events,
and made numerous corrections to grammar, spelling mistakes, and typographical errors.

Colin Watson and Tin Zaw, 15th February 2018

..

..
1v1.2

Preface to v1.1

With the welcome addition of a co-project leader, and feedback from the community, we have
been able to add significant new content to the OWASP Automated Threat Handbook .

A new addition for v1.1 is the work we have undertaken on enumeration and documentation
of 14 automated threat countermeasure classes in the main body of the text of this document,
and details of threat-specific explanations on each of the threat descriptions in the yellow threat
event reference. The technology and vendor agnostic countermeasure classes attempt to group
together the types of design, development and operational controls identified from research
that are being used to partially or fully mitigate the likelihood and/or impact of automated
threats to web applications.

Additionally more examples of symptoms for each threat have been provided, and we have tried
to make them more consistent. The indicative diagrams and page keys have been recreated to
improve legibility.

The automated web application threat events listed, their identity numbers and their names, are
unchanged from the previous version (v1.0).

Colin Watson and Tin Zaw, 3rd November 2016

..

..

OWASP Automated Threat Handbook Web Applications

2 Open Web Application Security Project

Preface to v1.0

Most web applications are not under a constant state of compromise, regardless of whether
weaknesses and vulnerabilities are present. However, attackers are still using the software in a
manner that causes significant pain to the owners/operators, and sometimes also the users.

Previous work on OWASP AppSensor (application-specific attack detection and response)
has identified 50 or so types of detection points, and I had speculated about which detection
points would be most beneficial to implement first. All AppSensor detection points should
have an extremely low false positive attack detection rate so that normal usage is never
flagged as malicious, but I wondered which detection points might identify attackers sooner
than others - before some potential vulnerability could be targeted. What I needed was a list
of threats (probably automated threats) that were not just attempting to exploit individual
implementation bugs or misconfigurations. In other words, what are attackers actually doing
most of the time?

And here I came across a blocker - there did not seem to be a clear categorisation or
quantification of the actual automated threats most web application owners have to deal with
day to day. These are also mostly not included in “breach” statistics and discussions, even
though breaches of security are occurring. Instead, there is a greater focus on individual types
of weaknesses and vulnerabilities, root cause analysis of data confidentiality breaches, and
capabilities from vendors about product/services.

Some business owners are submerged in technical details that lead to a lack of comprehension
about the relationships between security requirements, security activities during development,
deployment and operation, and the operational impact of attacks. It also seems to be the
case there is too great a focus on individual weaknesses/vulnerabilities in technical assurance
activities, especially where the severity rating of each issue in isolation fails to provide the
overall picture. For example, it is common for a number of individual low or medium severity
issues to contribute to a much more significant business impact.

The potential misuse of valid functionality is also a concern, as this is an aspect where early
design decisions have a significant effect on operational risk.

In order to quantify these threats, it is necessary to be able to name them. This did not seem to
exist in the usual dictionaries and classifications. Therefore, I decided to produce an ontology of
automated threats from the perspective of defenders. To contain the scope somewhat, I decided
to focus solely on web applications, reducing the size of the task.

The first project output, this OWASP Automated Threat Handbook, includes the ontology.
And now I am moving on to produce other materials for those bulding and defending web
applications against automated threat events.

Colin Watson, 30th July 2015

..

..
3v1.2

Terminology

This handbook uses terminology based on the following sources:

1. Risk Taxonomy, Technical Standard, The Open Group, 2009
http://pubs.opengroup.org/onlinepubs/9699919899/toc.pdf

2. NISTIR 7298 rev 2, NIST
http://nvlpubs.nist.gov/nistpubs/ir/2013/NIST.IR.7298r2.pdf

3. OSI model, Wikipedia
http://en.wikipedia.org/wiki/OSI_model

4. TCP/IP model, Wikipedia
http://en.wikipedia.org/wiki/Internet_protocol_suite

5. Architecture of the World Wide Web, Volume One, W3C
http://www.w3.org/TR/webarch/

6. Help and FAQ, W3C
http://www.w3.org/Help/

Action
 An act taken against an asset by a threat agent. Requires first that contact occurs between
 the asset and threat agent (Ref 1).

Application
 Software that performs a business process, i.e. not system software. A software program
 hosted by an information system (Ref 2).

Application layer
 “Layer 7” in the OSI model (Ref 3) and “application layer” in the TCP/IP model (Ref 4).

Threat
 Anything that is capable of acting in a manner resulting in harm to an asset and/or
 organization; for example, acts of God (weather, geological events, etc.); malicious actors;
 errors; failures (Ref 1).

Threat Agent
 Any agent (e.g., object, substance, human, etc.) that is capable of acting against an asset in
 a manner that can result in harm (Ref 1).

Threat Event
 Occurs when a threat agent acts against an asset (Ref 1).

Web
 The World Wide Web (WWW, or simply Web) is an information space in which the items of
 interest, referred to as resources, are identified by global identifiers called Uniform
 Resource Identifiers (URI) (Ref 5). The first three specifications for Web technologies defined
 URLs, HTTP, and HTML (Ref 6).

Web application
 An application delivered over the web.

..

..

OWASP Automated Threat Handbook Web Applications

Open Web Application Security Project4

Introduction

Background

There is a significant body of knowledge about application vulnerability types, and some
general consensus about identification and naming. But issues relating to the misuse of valid
functionality (which may be caused by design flaws rather than implementation bugs) are less
well defined. Yet these problems are seen day-in, day-out by web application owners. Some
examples commonly referred to are:

• Account enumeration

• Aggregation

• Click fraud

• Comment spam

• Content scraping

• etc.

Excessive abuse of functionality is commonly misreported as application denial-of-service (DoS)
attacks, such as HTTP flooding or application resource exhaustion, when in fact the DoS is a
side-effect. Most of these problems seen regularly by web application owners are not listed in
any OWASP Top Ten or in any other top issue list or dictionary.

This has contributed to inadequate visibility, and an inconsistency in naming such threats, with
a consequent lack of clarity in attempts to address the issues.

Requirements

The aim was to produce an ontology that would provide a common language for developers,
architects, operators, business owners, security engineers, purchasers, and suppliers/vendors,
in order to facilitate clear communication and help tackle these issues. The project also intends
to identify symptoms, mitigations and controls in this problem area. Like all OWASP outputs,
everything is free and published using an open source licence.

Objectives

The objectives defined in early 2015 were:

• Provide a definition of the term “automated threat”

• Create a common vocabulary of automated threats and their relationships to each other
that maintains consistency with existing literature.

This would involve creating a listing of vendor-neutral, technology-agnostic terms that
describe real-world automated threats to web applications, at a level of abstraction suitable
for application owners. The ontology and other supporting materials need to be practical and
useful for a range of activities throughout a secure software development lifecycle (S-SDLC).

..

..
5v1.2

Scope

The focus for the project is the abuse of functionality - misuse of inherent functionality and
related design flaws, some of which are also referred to as business logic flaws. There is no
coverage of implementation bugs. It is neither the case that implementation bugs are not the
target of attacks, nor that their exploitation cannot be automated, but there is much more
knowledge published in that area with a greater agreement on terminology. The intention was
that all the threats must require the web to exist for the threat to be materialised; thus attacks
that can be achieved without the web are out of scope.

The threat events are scenarios which are seen commonly by real operating web applications,
and are multi-step and/or highly iterative and/or multiple weaknesses involved, and not
primarily about events that relate to the tool-based exploitation of single-issue vulnerabilities
of individual web applications. Essentially the ontology is a list of concise answers to the
operational question “what is happening right now?”.

The summary definition created to describe this is “Threat events to web applications
undertaken using automated actions”.

The terms threat, threat event, web, applications and automated are defined in the terminology
on page 2.

Some examples that are out of scope for this ontology are:

• Native mobile apps (but web application endpoint threats are in scope)

• Threats pre deployment (e.g. design, development, testing, deployment)

• Threats that affect web application businesses, but that are not undertaken using the web
(e.g. in e-commerce: return fraud, wear & return fraud, not delivered fraud, price arbitrage,
nearby address fraud, cross-merchant no-receipt returns, friendly fraud)

• Other layer 7 protocols including e.g. FTP, SMTP

• Host addressing and identification

• Attacks targeting network infrastructure

• Network, HTTP and SSL/TLS denial of service

• Physical and environmental attacks against components supporting web applications.

Therefore, attacks like phishing, pharming, and trojan distribution are excluded.

..

..

OWASP Automated Threat Handbook Web Applications

6 Open Web Application Security Project

Research

Literature review

Work began on the project in late January 2015. Over 150 sources of information were identified,
read and relevant threat information extracted. The full list of academic papers, blog posts,
briefings, conference presentations, dictionaries, news stories, reports, technical papers and
white papers is too long to include in this handbook but is published on the OWASP wiki:

https://www.owasp.org/index.php/OWASP_Automated_Threats_to_Web_Applications#tab=Bibliography

This created over 600 data points describing a mixture of threats, attacks and some
vulnerabilities. Updates were periodically posted to the project pages on the OWASP wiki.

Analysis

In order to distil the data points to a more manageable scope, the information was first
converted into a large-scale diagram. This attempted to remove duplication and highlight
interrelationships. The diagram can be found on the OWASP wiki:

https://www.owasp.org/index.php/File:Automated-threats.pdf

Anything relating to exploitation of implementation bugs was excluded. Forty or so clusters
of threats were extracted from this diagram, and this was reduced further to a slightly smaller
number of candid threat event names. Work then began to identify inter-relationships,
similarities, overlaps and unique aspects. This process was undertaken over 1-2 months
and reduced the number of recommended threat event names to twenty-four. Further de-
duplication reduced the final count to twenty. See below for a discussion of some of the
candidate names that did not make the list. In v1.2 OAT-021 Denial of Inventory was added.

Peer review and comparison with other dictionaries, taxonomies and lists

The project was announced in the OWASP Foundation’s Connector newsletter sent to 60,000+
recipients in April 2015. It was also highlighted in a two-side colour flyer included in every
delegate’s bag at AppSec EU 2015 in Amsterdam. A limited amount of peer review has been
undertaken over a couple of months with:

• Professional colleagues

• Web application owners

• Web application developers

• Delegates at AppSec EU 2015 via an online and printed survey form

• One-to-one interviews with participants of the OWASP Project Summit 2015 in Amsterdam

• Others who found the project by search, or from coverage relating to a presentation given
at AppSec USA in San Francisco in September 2015.

The peer review led to clearer scope, suggestions for additional threats, and changes to both the
names and descriptions of the threat events. Further peer review would be welcome.

..

..
7v1.2

Three OWASP projects were reviewed at an early stage:

• The OWASP Top 10 [Web Application] Risks is the most well known OWASP output, but is a
high-level awareness document with the aim to educate developers, designers, architects,
managers, and organisations about the consequences of the most important web
application security weaknesses; it highlights common and higher impact risks caused by
both design flaws and implementation bugs; abuse of functionality is not a current top 10
item; no names from the OWASP Top 10 are included in the ontology

• The OWASP Top Ten [Web Application] Proactive Controls is a list of security techniques
that should be included in every software development project; it is focused on reducing
the incidence of weaknesses and vulnerabilities, but does not particularly address
automated threats

• The OWASP WASC (Web Application Security Consortium) Web Hacking Incidents Database
Project (WHID) classifies publicly known incidents using attack methods, weaknesses and
outcomes. As such, it excludes incidents that were not reported, and thus is lacking in data
relating to misuse of functionality. Some of the application denial of service incidents may
include data that relates to other threat events described in the ontology.

The OWASP wiki includes many categorisations, one of which is “attack”. The named items
point to some automated threats, and were reviewed in the research stage. During the literature
review and subsequent analysis and finalisation of the ontology, two reference sources were
referred to again and again:

• Common Attack Pattern Enumeration and Classification (CAPEC) is a dictionary and
classification taxonomy of known attacks on software. Its primary classification structures
are Domains of attack (3000) and Mechanism of Attack (1000). While CAPEC includes many
closely related threat events, and many detailed description of attacks, the dictionary
does not provide coverage of all the automated threats identified in this ontology; the
best match is often the category CAPEC-210 Abuse of Functionality; see Appendix B for a
mapping of CAPEC category and attack pattern IDs to the ontology

• The Web Application Security Consortium (WASC) Threat Classification classifies
weaknesses and attacks that can lead to the compromise of a website, its data, or its users;
this was a useful source of automated threat information, but apart from authentication
threats, most of the relevant concerns fall within a single classification (WASC-42 Abuse of
Functionality).

But none of the above, nor Mitre’s Common Weakness Enumeration (CWE) which is the most
comprehensive dictionary of software weaknesses, provide the coverage and owner-viewpoint
that this project aims to create.

..

..

OWASP Automated Threat Handbook Web Applications

8 Open Web Application Security Project

The Ontology

Introduction

The original research, analysis and discussions with peers, completed over five months, whittled
down the threat actions to a smaller core list of twenty in v1.0 (now twenty-one in v1.2), as
described above.

The names used, combined with their defining characteristics, are taken from existing usage
whenever possible. However, terminology is not used consistently within the literature sources
reviewed, and also in some cases it was necessary to use a more generic term that captures the
wider idea, instead of an individual common name. Furthermore, the intended outcomes of the
threat action are usually unknown at the time of the action taking place, and thus outcome-
related names were generally rejected. For example, is the creation of a fake account intended
for distributing malware in user-generated content, or to manipulate search engine scoring, or
to influence other users, or to explore the authenticated parts of the application?

The ontology is a list of threat event scenarios (when a threat agent acts against an asset,
partially ordered in time) by software. The threat events cause a divergence from accepted
behavior producing one or more undesirable effects on a web application. The list excludes tool-
based exploitation of single-issue vulnerabilities.

The list

Full details of the finalised ontology threat events are provided in the beige coloured pages at
the end of this handbook. A summary is provided below. Figure 1 lists the threat events ordered
by ascending name, and Figures 2–5 illustrate some subsets.

The details at the end of this handbook categorise the threat events by:

• Sectors Targeted - Sectors that are targeted more commonly than others for the specific
threat event are highlighted in amber; this is currently just the author’s opinion, but the
project is seeking information to define this aspect more accurately

• Parties Affected - Whether individuals, groups of people, the application owner and other
parties are most often affected adversely by the threat event; the threat event may affect
other parties depending upon the application and its data; the parties affected, excluding
subsequent further misuse

• Data Commonly Misused - The types of data are web application specific; however, some
threat events are more likely to occur for certain data types.

Each threat event is also cross-referenced with:

• Mitre CAPEC - best full and/or partial match CAPEC category IDs and/or attack pattern IDs

• WASC Threat Classification - best match to threat IDs

• Mitre Common Weakness Enumeration - closely related base, class & variant weakness IDs

• Matching pages defining terms classified as attacks on the OWASP wiki.

..

..
9v1.2

Figure 1: Automated Threat Events, ordered by ascending name

Identity Code Name Defining characteristics

OAT-020 Account Aggregation Use by an intermediary application that collects together multiple accounts and interacts on
their behalf

OAT-019 Account Creation Create multiple accounts for subsequent misuse

OAT-003 Ad Fraud False clicks and fraudulent display of web-placed advertisements

OAT-009 CAPTCHA Defeat Solve anti-automation tests

OAT-001 Carding Multiple payment authorisation attempts used to verify the validity of bulk stolen payment
card data

OAT-010 Card Cracking Identify missing start/expiry dates and security codes for stolen payment card data by trying
different values

OAT-012 Cashing Out Buy goods or obtain cash utilising validated stolen payment card or other user account data

OAT-007 Credential Cracking Identify valid login credentials by trying different values for usernames and/or passwords

OAT-008 Credential Stuffing Mass log in attempts used to verify the validity of stolen username/password pairs

OAT-021 Denial of Inventory Deplete goods or services stock without ever completing the purchase or committing to the
transaction

OAT-015 Denial of Service Target resources of the application and database servers, or individual user accounts, to
achieve denial of service (DoS)

OAT-006 Expediting Perform actions to hasten progress of usually slow, tedious or time-consuming actions

OAT-004 Fingerprinting Elicit information about the supporting software and framework types and versions

OAT-018 Footprinting Probe and explore application to identify its constituents and properties

OAT-005 Scalping Obtain limited-availability and/or preferred goods/services by unfair methods

OAT-011 Scraping Collect application content and/or other data for use elsewhere

OAT-016 Skewing Repeated link clicks, page requests or form submissions intended to alter some metric

OAT-013 Sniping Last minute bid or offer for goods or services

OAT-017 Spamming Malicious or questionable information addition that appears in public or private content,
databases or user messages

OAT-002 Token Cracking Mass enumeration of coupon numbers, voucher codes, discount tokens, etc

OAT-014 Vulnerability Scanning Crawl and fuzz application to identify weaknesses and possible vulnerabilities

..

..

OWASP Automated Threat Handbook Web Applications

10 Open Web Application Security Project

The Ontology

The detailed definations at the end of this handbook provide multiple classifications. Some are
highlighted here as subsets of the twenty-one threat events.

Figure 2: Subset of Automated Threat Events Related to Account Credentials

Identity Code Name Defining characteristics

OAT-020 Account Aggregation Use by an intermediary application that collects together multiple accounts and interacts
on their behalf

OAT-019 Account Creation Create multiple accounts for subsequent misuse

OAT-007 Credential Cracking Identify valid login credentials by trying different values for usernames and/or passwords

OAT-008 Credential Stuffing Mass log in attempts used to verify the validity of stolen username/password pairs

Figure 3: Subset of Automated Threat Events Related to Payment Cardholder Data

Identity Code Name Defining characteristics

OAT-001 Carding Multiple payment authorisation attempts used to verify the validity of bulk stolen payment
card data

OAT-010 Card Cracking Identify missing start/expiry dates and security codes for stolen payment card data by trying
different values

OAT-012 Cashing Out Buy goods or obtain cash utilising validated stolen payment card or other user account data

Figure 4: Subset of Automated Threat Events Related to Vulnerability Identification

Identity Code Name Defining characteristics

OAT-004 Fingerprinting Elicit information about the supporting software and framework types and versions

OAT-018 Footprinting Probe and explore application to identify its constituents and properties

OAT-014 Vulnerability Scanning Crawl and fuzz application to identify weaknesses and possible vulnerabilities

Figure 5: Subset of Automated Threat Events Related to Availability of Inventory to Legitimate
Users

Identity Code Name

OAT-021 Denial of Inventory Deplete goods or services stock without ever completing the purchase or committing to the
transaction

OAT-005 Scalping Obtain limited-availability and/or preferred goods/services by unfair methods

OAT-011 Sniping Collect application content and/or other data for use elsewhere

..

..
11v1.2

Mappings to other lists

The cross-references with the WASC Threat Classification and Mitre CAPEC, defined in the
reference section at the back of this handbook, were examined further to determine how those
differ from this ontology.

Figure 6: WASC Threat Classification view of the Automated Threat Events
The majority of the threat events are both the weakness WASC-21 Insufficient Anti-automation
and the attack WASC-42 Abuse of Functionality. Three also relate to the attack WASC-11
Brute Force. WASC-45 Fingerprinting includes both OAT-004 Fingerprinting and OAT-018
Footprinting. Both WASC and this ontology have a unqiue category for Denial of Service.

Vulnerability Scanning
OAT-014

Token Cracking
OAT-002

Credential Cracking
OAT-007

Card Cracking
OAT-010

Carding
OAT-001

Ad Fraud
OAT-003

Scalping
OAT-005

Expediting
OAT-006

Credential Stu�ing
OAT-008

CAPTCHA Defeat
OAT-009

Scraping
OAT-011

Cashing Out
OAT-012

Sniping
OAT-013

Skewing
OAT-016

Spamming
OAT-017

Account Aggregation
OAT-020

Account Creation
OAT-019

WASC-11: Brute Force

WASC-42: Abuse of Functionality

W
AS

C-2
1: In

su

�icient A
nti-a

utomation

Fingerprinting
OAT-004

Footprinting
OAT-018

WASC-45: Fingerprinting

W
ASC-10: Denial of Service

Denial of Service
OAT-015

Denial of Inventory
OAT-021

..

..

OWASP Automated Threat Handbook Web Applications

12 Open Web Application Security Project

The Ontology

Figure 7: Mitre CAPEC view of the Automated Threat Events
Again, there are many threat events in the CAPEC-210 Abuse of Functionality. CAPEC also has
additional categorisations for brute force attacks and denial of service. Two threat events,
OAT-009 CAPTCHA Defeat and OAT-014 Vulnerability Scanning, do not appear to exist within
CAPEC.

Scraping
OAT-011

Account Aggregation
OAT-020

CAPTCHA Defeat
OAT-009

Vulnerability Scanning
OAT-014

Carding
OAT-001

Ad Fraud
OAT-003

Scalping
OAT-005

Expediting
OAT-006

Credential Stu­ing
OAT-008

Cashing Out
OAT-012

Sniping
OAT-013

Skewing
OAT-016

Spamming
OAT-017

Account Creation
OAT-019

Token Cracking
OAT-002

Card Cracking
OAT-010

Credential Cracking
OAT-007

Denial of Service
OAT-015

CAPEC-49: P
ass

wor
d

Br
ut

e
Fo

rc
in

g

CAPEC-112: Brute Force

CAPEC-210: Abuse of Functionality

CAPEC-281: Analyze Target

CAPEC-167: Li�ing Sensitive Data from
 the Client

CAPEC-16: Dictionary-based P
as

sw
or

d Attack
CAPEC-70: Try Common (d

efa
ul

t)
Us

ern
ames

CAPEC-119: Deplete Resources

CAPEC-2: Inducing Account Lockout

CAP
EC

-2
5:

 F
or

ce
d

De
ad

lock

Fingerprinting
OAT-004

Footprinting
OAT-018

CAPEC-169: Footprinting

CAPEC-170: Web Application Fingerprinting

CA
PE

C-
54

1:
Application Fingerprinting

Denial of Inventory
OAT-021

..

..
13v1.2

Notes

Threat event names

In all cases, “automated web application” could be used as a prefix to each name. Thus, for
example, OAT-012 Cashing Out is concerned only with using web applications to obtain cash or
goods; the ontology’s scope excludes cashing out using ATMs. OAT-015 Denial of Service is web
application denial of service, and not an SSL/TLS or network DoS. When referencing the terms in
other contexts, it may be useful to ensure that the web application scope is identified.

Whenever possible, an existing term already used in literature or industry usage was preferred,
but in many cases, it was difficult to identify such a term; as such, in some cases a more generic
version had to be used. A good example of this is OAT-013 Sniping, where auction sniping is the
most commonly cited case; it was determined that the characteristics of sniping also occur in
threat events against other types of applications, and the selected name was thus made more
general.

A handful of threat event names in the ontology are very specific since they are reported to
occur frequently (e.g. OAT-001 Carding, OAT-019 Account Creation). Others are larger buckets
(e.g. OAT-011 Scraping, OAT-017 Spamming, OAT-014 Vulnerability Scanning) that cannot be
broken down easily without sharding the threat events into a multitude of sector-specific and
function-specific examples.

For a while during the development of the ontology, aggregation of user accounts was
temporarily included within OAT-011 Scraping. However, during final review it was felt
the aspects of customer opt in, the intermediarisation and resulting disengagement were
sufficiently different from scraping to make it a separate term. Furthermore, it was a threat
commonly seen in financial services. The threat event was added back in as OAT-020 Account
Aggregation. Other threat events described below were removed or consumed in other terms.

The only name newly created is OAT-006 Expediting, as there appeared to be a large number
of sector-specific threats involving increased multi-step velocity that could otherwise not be
aggregated together under a single name.

In v1.2 of this handbook, a new threat event OAT-021 Denial of Inventory was added since this
type of stock depletion attack was not covered in any other OAT. Furthermore, the previously
named OAT-009 CAPTCHA Bypass was renamed to OAT-009 CAPTCHA Defeat due to community
feedback that the name could be misinterpreted too easily as circumventing CAPTCHAs due to
an implementation bug, even though the name CAPTCHA Bypass is being used widely.

Threat event identity codes

To enable internal cross-referencing and referencing from elsewhere, each threat event has
been given an identification (ID) code. This is a three-digit number prefixed by a hyphen and
an abbreviation for OWASP Automated Threat (OAT) e.g. OAT-015. The ID codes were randomly

..

..

OWASP Automated Threat Handbook Web Applications

14 Open Web Application Security Project

The Ontology

assigned in an attempt to stop the ontology being seen as an ordered list, and also to ensure
that neighbouring items are not necessarily related. Other cross-referencing is provided.
Currently codes 001 to 021 are used, and it is expected the total number should be many fewer
than fifty, unless many sub-items are ever added. Three digits, rather than two, were allotted
in case the first digit is used for some other aspect in future, e.g. perhaps mobile application
automated threat events could be 1xx, and 2xx for embedded software, etc.

Timing, duration and frequency

The scope focuses on threat events that involve multi-step and/or highly iterative interactions
with the application. But by their nature, the identified threat events vary significantly in scale,
and their timing, duration and frequency can all vary considerably. This is an area that could be
explored further in future work.

Magnitude of impact

Events related to automated threats can have impacts on more than just the application owner.
Individuals, third parties and even society can be adversely affected. This ontology does not
attempt to provide information on, or rank the threat events in terms of impact, since it will be
organisation, data, threat actor and victim-perspective specific. An organisation may choose to
use its own risk assessment processes to rank these threats for each operational entity, or each
market, or even by individual application.

The perpetrators

During the early stages of the ontology’s creation, it was believed it would be possible to suggest
which threat actors might be most likely to initiate the threat event. These threat agents might
be groups like competitors, journalists, petty criminals, organised crime, nation states, etc
and of course users such as citizens, clients, customers and employees. However, on further
inspection, the threat agents appear to be more closely related to the type of data, and thus
sector, rather than the particular threat event. Consequently, it is believed threat agents should
be re-considered in future sector-specific views of the ontology.

Furthermore, some threat events may be undertaken by, or with the knowledge or implicit
support of, application owners. For example, search engine indexing is generally encouraged
due to the benefit of increased user traffic (OAT-011 Scraping); automated monitoring of web
applications may be commissioned (OAT-011 Scraping); excessive account creation might
contribute to enhanced market reputation when promoting the size of its customer base
(OAT-019 Account Creation); the application owner with hosted advertisements could receive
additional income for false impressions (OAT-003 Ad Fraud).

Fraud, legality and cheating

In general, the ontology tries to avoid the use of judgmental words like fraud. But in one case,
the industry accepted term for the threat event includes this word: OAT-003 Ad Fraud.

..

..
15v1.2

In legal terms, whether an action is fraudulent depends on legislation and regulation in the
relevant jurisdiction(s). Some of the events in this ontology may be illegal actions, or may be
prohibited in a commercial contract. This will also depend upon the types of data handled,
regulation of the application and its owner, and application-specific mandates like terms of use.

Rather than being illegal, some threat events will be considered cheating by other normal users,
including OAT-006 Expediting, OAT-005 Scalping, OAT-016 Skewing and OAT-013 Sniping.
These will be sector, application and culturally specific views, but can undermine user trust and
the reputation of the application and its owner.

Terms excluded

A small number of threat events were removed during analysis and review based on discussions
with peers and website owners. The primary reason for removal was either being out of scope,
or because the term could not be adequately distinguished from another. Other people may
have alternative views on these, so the discarded temporary working names and justifications
are provided below alphabetically.

Application Consumption was a temporary working name given the misuse of the application
to perform calculations, or process data, or perform other actions against other applications,
hosts, or in the physical world, i.e. unauthorised real-time consumption of a normal application
as if it were an API. Unlike data harvesting, in which information is gathered once or periodically,
in consumption, the thought was the application is used on-demand by another system to
provide calculated output, send requests to another application, or possibly affect physical
assets the application provides direct control over. For example the application might be used
to generate images or other files based on user input. In the second case, the application checks
user submitted data (e.g. hostname, email address) by undertaking a reverse lookup, pingback
or a reputation service check, contributing to a denial of service attack against that other host.
In these situations, there seemed to be a close similarity with data harvesting and thus it was
eventually concluded to be another example of OAT-011 Scraping.

Application Worms, also called cross-site scripting worms, are a combination of two different
implementation flaws – cross-site request forgery (CSRF) and cross-site scripting (XSS).
Additionally, the automation is undertaken by the web application itself in conjunction with
often normal usage by innocent users. Therefore, it was decided this did not fall within the
defined scope.

Asset Stripping was considered to encompass the removal of application stored non-data assets
using compromised accounts and sessions, including data theft, collecting micro deposits,
and collecting refunds. However, this asset removal, extraction or copying from applications
used as repositories is no different from other data harvesting at the time of extraction. The
only difference is the assets have value in other non-application contexts and may include fiat
money, credit, refunds, financial instruments, reputation, virtual assets (e.g. status, score, virtual

..

..

OWASP Automated Threat Handbook Web Applications

16 Open Web Application Security Project

The Ontology

currency, identity), awards and points, and possible physical assets the application provides
control over. But this value is often very subjective. Since these are data, it was considered
this threat event was actually part of OAT-011 Scraping. The objectives of the attacker and
consequences are data and application specific. Additionally, the transfer of money was
included within OAT-012 Cashing Out. Consequently, Asset Stripping was not included as a
separate term.

Attack Platform was at first used to describe the misuse of an application to mount automated
attacks against another application or other external information system component. This
would include reflected DoS, anti-spam check DoS, amplification DoS, and numerous HTML5
attacks. For example, if the application checks user submitted data (e.g. hostname, email
address) by undertaking a reverse lookup, pingback or a reputation service check, contributing
to a denial of service attack against that host. Or if an HTML application is compromised
to undertake attacks against local and other remote systems. The affected host is not the
application itself; instead, the application performs the attack on some other system. Ultimately,
like the somewhat related Code Modification below, this was dropped from the ontology.

Code Modification relates to when the application logic is changed by modification of the source
code, or the executing code, or the configuration, or some combination of these. The kinds of
attacks included are malicious software download, malicious software update, advert injection,
code tampering, DOM modification, web browser tools, form tampering, malicious software
implanting, backdoor addition, shared data manipulation, use of untrusted code, memory
modification, AngularJS attack, configuration data modification, exposed reflection, reflection
injection, autobinding, and Rich Internet Application (RIA) attacks. The issue is made more
significant with the growing use of client-side code. But it was felt these threats were related
to lack of integrity checks, particularly during development and distribution, rather than being
typical automated threats, and therefore Code Modification is not included in this ontology.

Form Hijacking (e.g. email spam, form to Email spam, SMS spam, use as a spam relay, and
unsolicited bulk email) was initially thought to be a core threat event and would have been
an ideal candidate for the threat event ontology. But again, it was realised that this is an
implementation flaw that leverages vulnerabilities produced when an web server fails to
validate input, and thus it does not fit into this ontology.

Man in the Browser (MitB), in which the attacker controls the user’s web browser, so that
information being transferred can be observed, intercepted and manipulated, was another
threat event that was thought at the start of the project would be in the final ontology. The most
well-known use case is to undertake financial fraud, and is the result of compromise of the user’s
device by a banking trojan, such as URLzone, Torpig, and Zeus. However, MitB can also be used
for advert injection, and some simpler variants have been labelled Boy in the Browser (BitB).
MitB/BitB are believed to be out-of-scope, since the trojan distribution and the interception/
change of information, are both occurring outside the web application’s boundaries.

..

..
17v1.2

Reverse Engineering is exercising an application or part of an application with the intent to gain
insight into how it is constructed and operates. The purpose may be to understand the inner
workings, and may be used to determine business logic such as pricing models, reproduce the
application elsewhere, or to assist with vulnerability exploitation and data compromise. It was
decided to be an intended outcome of a combination of other threat actions - typically,

OAT-011 Scraping and OAT-018 Footprinting, which include the testing and collection of
evidence to determine the underlying logic, structures, algorithms, functions, methods, and
secrets of the application. Thus, as an outcome it was decided that Reverse Engineering is not a
valid part of the ontology.

..

..

OWASP Automated Threat Handbook Web Applications

18 Open Web Application Security Project

Countermeasures

Overview

In November 2016, Version 1.1 of this handbook added information about countermeasures.
Some automated threats may be mitigated completely through appropriate development and/
or operational controls. However, many automated threat events cannot usually be prevented
completely if the attacker is determined and wants to target a single application, but it may
still be possible to reduce the risk to an acceptable level. In all applications, builder-defender
collaboration is key in controlling and mitigating automated threats – the best protected
applications do not rely solely upon standalone external operational protections, but also have
integrated protection built into the design.

Similarly to other types of application security threat, it is important to build consideration of
automated threats into multiple phases of a secure software development lifecycle (S-SDLC).
This includes:

• Educating and providing guidance to architects, developers, and testers

• Assessing risks during requirements definition

• Building countermeasures into the application and its environment

• Implementing adequate monitoring

• Tracking time spent dealing with automated threats

• Creating appropriate incident response measures.

Countermeasures are controls that attempt to mitigate the identified automated threats in three
ways:

• Prevent - Controls to reduce the susceptibility to automated threats

• Detect - Controls to identify whether a user is an automated process rather than a human,
and/or to identify if an automated attack is occurring, or occurred in the past

• Recover - Controls to assist response to incidents caused by automated threats, including
to mitigate the impact of the attack, and to to assist return of the application to its normal
state.

As mentioned previously, some threat events in this ontology may be illegal actions. Apart from
subsequent contract-specific comments, web application owners should make themselves
familiar with local legislation and regulation that affects the operation and use of their
applications. For example, consumer protection legislation could reduce the likelihood of some
automated threat events.

It is important to remember that not all automated usage of web applications is necessarily
unwanted or malicious (e.g. search engine indexing at a reasonable rate and frequency is often
very desirable). Some automated usage may also be implemented and/or authorised by the
application’s owner itself (e.g. periodic report generation, internal indexing, uptime/change/
malware monitoring, vulnerability scanning).

..

..
19v1.2

Each owner must decide what is permissible, and for what period, and at what rate. If
countermeasures are being applied to an existing web application, be careful of assumptions
about what normal real user behaviour is – automated traffic may form a significant proportion
of current usage already.

Classification of countermeasures

In an attempt to structure the countermeasure suggestions in this handbook, they are grouped
using the following classes.

Figure 8: Automated Threat Countermeasure Classes

Countermeasure class SDLC stage Countermeasure type

Keyword Description Builder Defender Prevent Detect Recover

Value Removing or limiting the value of assets accessed using the
application can reduce the benefits of an automated attack.
This includes reviewing whether the data and/or functionality
is necessary, or whether it can be changed to reduce its value
to an attacker.

Y Y

Requirements Identify relevant automated threats in security risk
assessment, and assess effects of alternative countermeasures
on functionality usability and accessibility. Use this to then
define additional application development and deployment
requirements

Y Y Y Y Y

Testing Create abuse and misuse test cases that simulate automated
web attacks.

Y Y

Capacity Build adequate capacity so that any permitted and possible
unwanted automated usage do not affect normal usage/
performance.

Y Y Y Y

Obfuscation Hinder automated attacks by dynamically changing URLs,
field names and content, or limiting access to indexing data,
or adding extra headers/fields dynamically, or converting data
into images, or adding page and session-specific tokens. This
countermeasure also includes minimising information leakage,
randomisation of functionality such that the application
cannot be fully determined in advance, cloaking and other
changes to confuse or misinform automated systems from
understanding or fully mapping the application and its
functions.

Y Y Y

Fingerprinting Consider identifying and restricting automated usage by
automation identification techniques. Utilise user agent
string, and/or HTTP request format (e.g. header ordering),
and/or HTTP header anomalies (e.g. HTTP protocol, header
inconsistencies), and/or device fingerprint content to
determine whether a user is likely to be a human or not.

Y Y Y Y

..

..

OWASP Automated Threat Handbook Web Applications

20 Open Web Application Security Project

Countermeasures

Countermeasure class SDLC stage Countermeasure type

Keyword Description Builder Defender Prevent Detect Recover

Reputation Consider identifying and restricting automated usage by
reputation methods. Utilise reputation analysis of user identity
(e.g. web browser fingerprint, device fingerprint, username,
session, IP address/range/geolocation), and/or user behaviour
(e.g. previous site, entry point, time of day, rate of requests,
rate of new session generation, paths through application),
and/or types of resources accessed (e.g. static vs dynamic,
invisible/hidden links, robots.txt file, paths excluded in robots.
txt, honeytrap resources, cache-defined resources), and/or
types of resources not accessed (e.g. JavaScript generated
links), and/or types of resources repeatedly accessed. Like
Fingerprinting, used to determine whether a user is likely to be
a human or not. Includes use of fraud detection systems and
third-party deny/block lists, reputation, and credit-checking
services.

Y Y Y Y

Authentication Implement access control lists, or require users to be
authenticated, or to re-authenticate, or behavioural
biometrics, or to require greater identity verification to
perform some functions including email address validation,
use of puzzles/CAPTCHAs, out-of-band verification, password
complexity and aging requirements, strong authentication,
two-factor authentication, additional identity check at
delivery/collection time, preventing concurrent usage
with same identity, avoiding single-factor password based
authentication, preventing the use of single sign on (SSO), and
not supporting virtual currencies.

Y Y Y

Rate Set upper and/or lower limits and/or trend thresholds, and
limit number and/or rate of usage per user, per group of
users, per IP address/range, per device ID/fingerprint etc.
Also limitation of value per event/transaction. Also includes
use of queuing systems, user-prioritization functionality, and
randomisation of asset allocation.

Y Y Y Y

Monitoring Monitor errors, anomalies, function usage/sequencing, and
provide alerting and/or monitoring dashboard. Monitor (e.g
moderate) user-generated content by automated systems.

Y Y Y

Instrumentation Build in application-wide instrumentation to perform real-time
attack detection and automated response such as defined
in OWASP AppSensor. Responses to an identified automated
attack could be instigated by the application directly, and/
or using some other system component such as a gateway,
network firewall or application firewall. Responses can include
increased monitoring, locking users out, blocking, delaying,
changing behaviour, altering capacity/capability, enhanced
identity authentication, CAPTCHA, penalty box, etc.

Y Y Y Y Y

Contract Require users not to undertake automated attacks against
the application through terms & conditions, contracts, and
guidance. Understand contractual restrictions imposed by
other parties on the application (e.g. service level agreements,
financial credit).

Y Y

Response Define actions in an incident response plan for various
automated attack scenarios. Consider automated responses
once an attack is detected. Consider using actual incident data
to feed back into other countermeasures (e.g. Requirements,
Testing, Monitoring).

Y Y

Sharing Share information about automated attacks, such as IP
addresses or known violator device fingerprints, with others
in same sector, with trade organisations, and with national
CERTs.

Y Y

..

..
21v1.2

Many countermeasures should be built in, but there are a range of anti-automation and
anti-bot vendors providing detection and prevention products and services, typically in
the countermeasure classes of Capacity, Obfuscation, Fingerprinting, Reputation, Rate and
Monitoring. Some such services/appliances span multiple classes. There are also open source
options in these areas.

The effort of defining, implementing, configuring, tuning and maintaining countermeasures
should not be underestimated. Existing solutions may help with these issues, especially where
countermeasures are to be deployed across a portfolio of web applications.

The web application owner must decide what action to take when a particular type and level of
automated threat event occurs, and what user(s) or IP(s), etc will the action(s) apply to. Actions
might include:

• Increase monitoring

• Adapt the targeted function or whole application (e.g. raise authentication requirements,
reduce functionality, limit exposure, disable)

• Block access.

For each threat and possible countermeasures, consider how they could be applied to
particular user groups, or progressively activated to minimise the effect on normal users. Where
“restricting automated usage” is mentioned, it is up to each affected party to determine what is
permissible, achievable, relevant and practical. The possible side effects of actively responding
to automated threat events should not be ignored.

Countermeasure selection

The relevant countermeasures should be drawn from an analysis of those that are:

• Generic and apply to all automated threats

• Specific to each particular relevant threat

• Specific to the application, its data and users.

For each OWASP Automated Threat (OAT) defined later in this handbook, threat-specific
countermeasures in the above classes are provided on the second page. The guidance in this
document is not specific to any particular application, or technology, or indeed product or
service, but instead is provided as suggestions that can be considered, reviewed, and assessed,
and their impact and efficacy considered for the particular web application.

The suggested countermeasures can reduce the likelihood of attack, and/or reduce the impact
of a successful attack. The effect will depend greatly upon the type of application, types of data
and types of users. Some countermeasures may be completely or relatively invisible to normal
users, and others may be more visible but still acceptable in the context.

..

..

OWASP Automated Threat Handbook Web Applications

22 Open Web Application Security Project

Use Case Scenarios

Introduction

The following scenarios and organisation names are completely fictitious.

Scenario: Defining application development security requirements

Cinnaminta SpA intends to build and launch a new multi-lingual and multi-currency
e-commerce website. The development will be outsourced and Cinnaminta has been working
on the functional design document. Among many other requirements, the application security
specification requires that the website must not include any vulnerabilities identified in PCI
DSS v3.1 Requirement 6.5, nor any other vulnerabilities that could affect the protection of
payment cardholder data. Cinnaminta specifies that the website’s payment functions must not
be susceptible to the threat events OAT-001 Carding or OAT-010 Card Cracking, as defined in
the OWASP Automated Threat Handbook. In addition, the application must interact with the
company’s existing fraud detection system to counter OAT-012 Cashing Out. The requirements
are specified in terms of these threat events, rather than particular product or service categories.
Development houses responding to the call for bids use the ontology to focus their answers to
these aspects appropriately.

Scenario: Sharing intelligence within a sector

Unlimited Innovations Inc develops and supports patient-facing software solutions to a range
of healthcare providers, many of which participate in the National Health Service Cyber
Intelligence Sharing Center (NHS-CISC). Unlimited Innovations already builds continuous
monitoring capabilities into its software and decides to provide an optional enhancement
so that customers could choose to share their misuse event data with each other, to benefit
from the combined threat intelligence. Rather than sharing large quantities of low-level data,
Unlimited Innovations aggregates information and broadcasts validated and categorised threat
data amongst the participating organisations. Automation attacks are classified according to the
threat events defined in the OWASP Automated Threat Handbook so that each receiving party
understands the nature of the threat. Even organisations that do not want to take part in this
information sharing can benefit, since their own categorised information is made available to
internal business management in the form of an easy-to-comprehend monitoring dashboard.
The information gathered can also be fed into their other business information management
systems to help improve patient service.

Scenario: Exchanging threat data between CERTs

National Computer Emergency Response Teams (CERTs) recognise that sharing of local
information can contribute to worldwide prevention of cyber attacks. Despite advances in
cooperation between CERTs, anything to increase continuity and interoperability, such as
standards for data exchange, is encouraged. CERT Zog is concerned about the sparsity of
application-specific data it receives, and also the classification of that data. It has a particular
concern about attacks and breaches that affect sectors defined in Zog’s 2015 national cyber

..

..
23v1.2

security strategy. CERT Zog and its neighbour CERT Tarset agree to tag threat events using the
OWASP Automated Threat Handbook, in order to add greater context to existing solutions being
used for threat data exchange between them. The programme also collects sector metadata, so
that all organisations within these can benefit from the centralised intelligence.

Scenario: Enhancing application penetration test findings

Specialist application security penetration testing firm Cherak Industries Pte Ltd works primarily
for financial services companies in the banking and insurance sectors, and is looking to expand
its business throughout Asia. Cherak has some innovative pen test result reporting systems
which integrate with client software fault and vulnerability tracking systems, and it actively
looks for methods to provide additional value to its clients. Cherak has identified that pen test
clients would benefit from help in understanding the effects of combinations of vulnerabilities,
especially design flaws, and has decided to utilise the OWASP Automated Threat Handbook
to define and explain the automation-related threats. The individual vulnerabilities were
scored as normal using CVSSv2 and v3, the matching CWEs identified, and mitigations in place
documented. In addition, Cherak uses the threat events defined in the OWASP Automated
Threat Handbook to help create a new section in the executive summary that explains how
combinations of the issues found could lead to automation threats and the possible technical
and business impacts. For example, an assessment for one client had identified weaknesses in
authentication so that there is a risk of OAT-008 Credential Stuffing. The defined identifier was
provided to the client, so its technical staff could refer to additional information on the OWASP
website.

Scenario: Specifying service acquisition needs

Falstone Paradise Inc is concerned about malicious use of their portfolio of hotel and resort
websites. The majority of the websites use a shared application platform, but there are some
unique applications and a large number of other micro-sites, some of which use generic content
management systems such as Wordpress and Drupal. Falstone Paradise has identified that its
IT operations team are spending too much time dealing with the effects of automated misuse,
such as cleaning up data, resetting customer accounts and providing extra capacity during
attacks. Furthermore, the unwanted automation is also causing some instabilities leading
to negative feedback from customers. Therefore Falstone Paradise decides to go out to the
security marketplace to identify, assess and select products or services that might help address
these automation issues for all its websites. Their buying team works with their information
technology colleagues to write the detailed requirements in an Invitation to Tender (ITT)
document. This describes the types of attacks its web applications are receiving, their frequency
of occurrence and their magnitudes. These are defined according to the OWASP Automated
Threat Handbook, so that vendors do not misunderstand the requirements, and each vendor’s
offering can be assessed against the particular automation threat events of concern.

..

..

OWASP Automated Threat Handbook Web Applications

24 Open Web Application Security Project

Use Case Scenarios

Scenario: Characterising vendor services

Better Best Ltd has developed an innovative technology to help gaming companies defend
against a range of automated threats that can otherwise permit cheating and distortion of the
game, leading to disruption for normal players. The solution can be deployed on premises, but is
also available in the cloud as a service. But Better Best is finding difficulty explaining its solution
in the market place, especially since it does not fit into any conventional product category.
Better Best decide to use the terminology and threat events listed in the OWASP Automated
Threat Handbook to define their product’s capabilities. They hope this will provide some clarity
about their offering, and also demonstrate how their product can be used to replace more than
one other conventional security device. Additionally, Better Best writes a white paper describing
how their product has been successfully used by one of their reference customers Hollybush
Challenge Games to protect against OAT-006 Expediting, OAT-005 Scalping, OAT-016 Skewing
and OAT-013 Sniping.

..

..
25v1.2

Project Details

OWASP project

The wiki page for OWASP Automated Threats to Web Applications Project is:

https://www.owasp.org/index.php/OWASP_Automated_Threats_to_Web_Applications

It is classed as an OWASP Incubator project. The project’s mailing list is:

https://lists.owasp.org/mailman/listinfo/automated_threats_to_web_applications

The project leaders are Colin Watson and Tin Zaw. The project has been rigorously reviewed,
and was promoted to Labs status by OWASP in September 2017.

All OWASP Projects are run and developed by volunteers and rely on personal donations
and sponsorship to continue their development. OWASP does not endorse or recommend
commercial products or services, allowing our community to remain vendor neutral with the
collective wisdom of the best minds in software security worldwide. This project has received
the sponsorship element of corporate OWASP membership fees from Verizon Digital Media
Services in 2016 and 2017, and Distil Networks in 2017. These have already contributed to the
v1.2 production design costs, and will also be utilised to help raise awareness of the threats.

Source materials and outputs

Electronic versions of this handbook are maintained at these locations:

• Screen-optimised PDF
https://www.owasp.org/index.php/File:Automated-threat-handbook.pdf

• Source Adobe InDesign
https://www.owasp.org/index.php/File:Owasp-automated-threat-handbook-source-files.zip

Other working materials and outputs are:

• Print on demand book, colour
http://www.lulu.com/spotlight/owasp

• Project flyer, 2-page PDF
https://www.owasp.org/index.php/File:Automation-project-briefing.pdf

• Survey sheet used at Appsec EU 2015, PDF
https://www.owasp.org/index.php/File:Automation-questionnaire-1v0.pdf

• Summary threats and attacks extracted during the research phase, large-scale PDF
https://www.owasp.org/index.php/File:Automated-threats.pdf

• Project presentation, AppSec USA 2015
 https://www.owasp.org/index.php/File:Colinwatson-a-new-ontology-of-unwanted-automation.pptx

• Project presentation, AppSec Cali 2017
https://www.owasp.org/index.php/File:BadBots_OWASP_AppSec_CA_2017.pptx

..

..

OWASP Automated Threat Handbook Web Applications

26 Open Web Application Security Project

Handbook Roadmap

Ongoing improvement

It is hoped that the production of the ontology and handbook will lead to further discussion
and debate and encourage additional project participants. For example, additional content and
feedback are sought for the suggested countermeasures, effectiveness of alternative controls
and threat identification metrics. A key area where help is required is in gathering data on the
prevalence of these threats, where some form of data collection initiative is required.

People can contribute by posting ideas, suggestions, and other inputs to the project’s public
mailing list (see Project Details on the previous page).

Enhancements

It is also intended to develop sector-specific guides that include:

• Highest risk threat events

• Attacker motivations.

Retail and financial service sectors appear to be good candidates to begin with.

It would also be useful to summarise the developer-relevant information into a new Automated
Threat Cheat Sheet, and contribute that to the OWASP Cheat Sheet Series.

The author also hopes this OWASP Automated Threat Handbook, with its industry cross-
referencing, may be of help in contributing to Mitre’s Common Weakness Risk Analysis
Framework (CWRAF) and Common Attack Pattern Enumeration and Classification (CAPEC). In
the future, the terms might also be useful for helping to describe some application events in the
Mitre/DHS Structured Threat Information eXpression (STIX).

..

..
27v1.2

Automated Threat Event Reference

..

The following pages define each automated threat event in detail. The second page of each
describes possible symptoms and will be extended in future to include security controls.

..

..

OWASP Automated Threat Handbook Web Applications

28 Open Web Application Security Project

Unique OWASP Automated Threat
(OAT) identity number 001-021

Summary defining
characteristics of
the threat event

Unique automated
threat event name

Indicative diagram
illustrating main threat
aspects of threat actor
(see key on next page)

Full description of the
automted threat event

Internal cross reference:
Related or similar OAT
indentities and names

External cross reference 2:
Related Common Weakness

Enumeration (CWE) base (abstract) IDs,
class (very abstract) IDs and

variant specific IDs

External cross reference 3:
Most closely matching Open Web

Application Security Project
(OWASP) attack subcatergories

and attack names

External cross reference 4:
Best match Web Application
Security Consortium (WASC)

Threat Classification threat IDs
Ontology version

External cross reference 1:
Best match Common Attack Pattern
Enumeration and Classification (CAPEC)
category IDs and attack pattern IDs

Categorisations:

Sectors it is believed are targeted more
commonly than others for the specific
threat event, are highlighted in amber.

Which parties (individuals, groups of
people, the application owner and others)
are most o�en a�ected adversely by the
threat event - shown in amber. The
threat event may a�ect other parties
depending upon the application
and it’s data.

Data most o�en misused by the
threat event, shown in amber.
WIll be application specific.

Alternative threat event
names, sector-specific names,
and attack examples as
found in literature

Example Page with Annotations

Key

..

Automated Threat Event Reference

Each threat event defined in the ontology is laid out on identically laid out pages. The
annonated example below gives additional information about the various components. Further
information is provided in the previous pages of this document.

External cross-reference information sources:

1. Common Attack Pattern Enumeration and Classification (CAPEC), v2.6, The Mitre Corporation, July 2014

https://capec.mitre.org

2. Common Weakness Enumeration (CWE), v2.8, The Mitre Corporation, July 2014

 http://cwe.mitre.org

3. Category: Attack, Open Web Application Security Project (OWASP)

https://www.owasp.org/index.php/Category:Attack

4. The WASC Threat Classification, v2.0, Web Application Security Consortium, January 2010

http://projects.webappsec.org/w/page/13246978/Threat%20Classification

..

..
29v1.2

Key

...

Each threat event includes an indicative diagram. The key below explains the meaning of the
symbols used and an annotated example.

Target URL(s) Processes Identificatied
Components

Action

One
Event

Many
Events Process(es)

Repeated

Component

Threat Actor

Business
Process(es)

Third Party
Process(es)

Pause Awaiting
Event

Multiple data values used
by the threat actor as inputs

to the application’s processes

The application’s processes
executed many times

Multiple components identified

The information collected
by the threat actor

Context-specific
explanatory captions

A collection or target URLs which
may be a structured file, or stored

in some form of database

Brute Forcer

Third-Party
Content

Ouput Data,
State or Message(s)

Repository List
or Database

Application

Actors

System Components

Annotated Example

Actions

..

..

OWASP Automated Threat Handbook Web Applications

30 Open Web Application Security Project

OAT-001 Carding

Multiple payment authorisation attempts used to verify the validity of bulk stolen payment
card data.

Automated Threat Event Reference

...

Description

Lists of full credit and/or debit card data are tested against a merchant’s payment
processes to identify valid card details. The quality of stolen data is often unknown,
and Carding is used to identify good data of higher value. Payment cardholder data
may have been stolen from another application, stolen from a different payment
channel, or acquired from a criminal marketplace.

When partial cardholder data is available, and the expiry date and/or security code
are not known, the process is instead known as OAT-010 Card Cracking. The use of
stolen cards to obtain cash or goods is OAT-012 Cashing Out.

Other Names and Examples

• Card stuffing; Credit card stuffing;
 Card verification

Sectors Targeted

Education

Entertainment

Financial

Government

Health

Retail

Technology

Social Networking

Parties Affected

Few Individual Users

Many Users

Application Owner

Third Parties

Society

Data Commonly Misused

Authentication Credentials

Payment Cardholder Data

Other Financial Data

Medical Data

Other Personal Data

Intellectual Property

Other Business Data

Public Information

See Also

• OAT-010 Card Cracking
• OAT-012 Cashing Out

..
CAPEC Category / Attack Pattern IDs

• 210 Abuse of Functionality

WASC Threat IDs

• 21 Insufficient Anti-Automation
• 42 Abuse of Functionality

CWE Base / Class / Variant IDs

• 799 Improper Control of Interaction
 Frequency
• 837 Improper Enforcement of a Single,
 Unique Action

OWASP Attack Category / Attack IDs

• Abuse of Functionality

Stolen Payment
Cardholder Data

Card Payment
Process

Validated
Cardholder Data

..

..
31v1.2

Carding OAT-001

...

Class Threat-Specific Comments
Value Consider fully outsourcing all payment aspects to an appropriate payment services provider (PSP) that
 has its own countermeasures in place for OAT-001. Consider increasing the minimum checkout value.
 Consider removing payment by card completely if alternatives are available and suitable.
Requirements Document acceptable use of payment functions; define additional requirements.
Testing Define test cases for OAT-001 Carding that confirm the application will detect and/or prevent users
 attempting to use cardholder data in bulk.
Capacity Not applicable
Obfuscation Consider randomising the content and URLs of payment form and payment submission pages, tying
 these changes to the individual user’s session, verifying the changes at each payment step, and
 restricting any identified automated usage.
Fingerprinting Consider identifying and restricting automated usage by fingerprinting the User Agent for its unique
 characteristics.
Reputation Consider identifying and restricting automated usage by reputation methods. In particular, consider
 using geolocation and/or IP address block lists to prevent access to payment parts of the application.
 Consider using address and card reputation services. Consider adding delays in the checkout steps for
 new and/or infrequent customers, and for smaller checkout baskets, and for users that appear to have
 skipped directly to payment bypassing basket addition and checkout, or are using known fraudulent
 payment cards.
Authentication Consider removing guest checkout and/or requiring greater identity authentication for customers.
 Consider adding a CAPTCHA step for new and/or infrequent customers, and for smaller checkout
 baskets, and for users that appear to have skipped directly to payment. Consider implementing 3D
 Secure for some or all card payments. Consider pre-registering users and implementing strong
 authentication for access to any exposed payment APIs.
Rate Limit the number of card authorisation attempts per session/user/IP address/device/fingerprint.
Monitoring Log abandoned baskets; monitor rates. Log basket payment amount (and currency); monitor average
 value trends. Log successful and failed card authorisations; monitor rates relative to normal activity and
 also relative the usage of the rest of the application. Track chargeback amounts and trends.
Instrumentation Consider blocking or delaying payment function access by users in a particular session, IP address/range
 or geolocation or everyone once Monitoring has identified a real Carding attack, or other anomalous
 behaviour that has identified the user as an attacker.
Contract Use application access/use terms and conditions (T&Cs) to explicitly ban users from using the payment
 parts of the application to undertake Carding, and consider requiring opt-in agreement to these before
 the application can be used (or as part of the checkout process). Define service limits for any payment
 APIs.
Response Define actions to be taken in the event a Carding attack is detected.
Sharing Participate in e-commerce threat intelligence exchanges and contribute attack data to sector-wide
 sharing systems. Participate in any fraud detection and prevention arrangements offered by the
 payment service provider or merchant bank.

• Elevated basket abandonment
• Reduced average basket price
• Higher proportion of failed payment authorisations
• Disproportionate use of the payment step

• Increased chargebacks
• Multiple failed payment authorizations from the

same user and/or IP address and/or User Agent and/
or session and/or device ID/fingerprint

Possible Symptoms

Suggested Threat-Specific Countermeasures

Multiple payment authorisation attempts used to verify the validity of bulk stolen payment
card data.

..

..

OWASP Automated Threat Handbook Web Applications

32 Open Web Application Security Project

OAT-002 Token Cracking

..

...

Mass enumeration of coupon numbers, voucher codes, discount tokens, etc.

Parties Affected
Education
Entertainment
Financial
Government
Health
Retail
Technology
Social Networking

Parties Affected

Few Individual Users

Many Users

Application Owner

Third Parties

Society

Data Commonly Misused

Authentication Credentials

Payment Cardholder Data

Other Financial Data

Medical Data

Other Personal Data

Intellectual Property

Other Business Data

Public Information CWEs

• 799 Improper Control of Interaction
 Frequency
• 837 Improper Enforcement of a Single,
 Unique Action

OWASP Attacks

• Abuse of Functionality
• Brute Force Attack

CAPEC Category / Attack Pattern IDs

• 112 Brute Force
• 210 Abuse of Functionality

WASC Threat IDs

• 11 Brute Force
• 21 Insufficient Anti-Automation
• 42 Abuse of Functionality

See Also

• OAT-007 Credential Cracking
• OAT-011 Scraping
• OAT-012 Cashing Out

Other Names and Examples

Coupon guessing; Voucher, gift card and
discount enumeration

Description

Identification of valid token codes providing some form of user benefit within the
application. The benefit may be a cash alternative, a non-cash credit, a discount, or
an opportunity such as access to a limited offer.

For cracking of usernames, see OAT-007 Credential Cracking instead.

Token Dictionaries,
Lists, Randoms
& Brute Forcing

Token Code
Validation Process(es)

Validated
Token Codes

Automated Threat Event Reference

..

..
33v1.2

Token Cracking OAT-002

...

Mass enumeration of coupon numbers, voucher codes, discount tokens, etc.

Class Threat-Specific Comments
Value Consider decreasing the attractiveness of tokens in the application, by removing them, reducing their
 value, or limiting their life or scope of use. Consider disallowing vouchers schemes.
Requirements Document all locations where coupon numbers, voucher codes, discount tokens and similar elements
 are used in the application. Specify limits on acceptable use of each function related each token; define
 additional requirements.
Testing Define test cases for OAT-002 Token Cracking that confirm the application will detect and/or prevent
 users trying to enumerate and/or use tokens at a disproportionate scale.
Capacity Not applicable
Obfuscation Consider randomising the content and URLs of token submission pages, tying these changes to the
 individual user’s session, verifying the changes at each token-related request, and restricting any
 identified automated usage.
Fingerprinting Consider identifying and restricting automated usage by fingerprinting the User Agent for its unique
 characteristics.
Reputation Consider identifying and restricting automated usage by reputation methods.
Authentication Consider requiring identity authentication, re-authentication or some other increased authentication
 assurance for access to areas where tokens are generated or consumed.
Rate Limit the number of failed token submission attempts per session/user/IP address/device/fingerprint.
Monitoring Log successful and failed token submissions; monitor rates relative to normal activity and also relative
 the usage of the rest of the application. Where applicable, track token creation trends.
Instrumentation Consider blocking or delaying access by users in a particular session, IP address/range or geolocation
 once Monitoring has identified a real Token Cracking attack, or other anomalous behaviour that has
 identified the user as an attacker.
Contract Define T&Cs to explicitly ban users from misusing the application to undertake Token Cracking, and
 similar activities. Define service limits for any token validation or creation APIs.
Response Define actions to be taken in the event a Token Cracking attack is detected.
Sharing Participate in relevant threat intelligence exchanges and contribute attack data to sector-wide sharing
 systems.

• Multiple failed token attempts from the same user and/or IP address and/or User Agent and/or device ID/fingerprint
• High number of failed token attempts

Possible Symptoms

Suggested Threat-Specific Countermeasures

..

..

OWASP Automated Threat Handbook Web Applications

34 Open Web Application Security Project

OAT-003 Ad Fraud

..

...

False clicks and fraudulent display of web-placed advertisements.

CWEs

-

OWASP Attacks

• Abuse of Functionality

CAPEC Category / Attack Pattern IDs

• 210 Abuse of Functionality

WASC Threat IDs

• 21 Insufficient Anti-Automation
• 42 Abuse of Functionality

See Also

• OAT-016 Skewing

Other Names and Examples

Advert fraud; Adware traffic; Click bot;
Click fraud; Hit fraud; Impression fraud;
Pay per click advertising abuse; Phoney
ad traffic

Description

Falsification of the number of times an item such as an advert is clicked on, or the
number of times an advertisement is displayed. Performed by owners of web sites
displaying ads, competitors and vandals.

See OAT-016 Skewing instead for similar activity that does not involve web-placed
advertisements.

Target URL(s)
and/or

Advertisements

Third Party
Advertisement

Content

Process Clicks
& Impressions

Elevated Count

Sectors Targeted

Education

Entertainment

Financial

Government

Health

Retail

Technology

Social Networking

Parties Affected

Few Individual Users

Many Users

Application Owner

Third Parties

Society

Data Commonly Misused

Authentication Credentials

Payment Cardholder Data

Other Financial Data

Medical Data

Other Personal Data

Intellectual Property

Other Business Data

Public Information

Automated Threat Event Reference

..

..
35v1.2

Ad Fraud OAT-003

...

False clicks and fraudulent display of web-placed advertisements.

Builder-defender collaboration is key in controlling and mitigating this threat.
Class Threat-Specific Comments
Value Consider limiting the maximum benefit offered in defined time periods. Consider using multi-touch
 attribution instead of last click. Consider not hosting advertisements in some parts of the application.
 Consider serving “house” or low-value ads to suspect requests.
Requirements Document all types, locations, revenue methods, and any providers of advertising. Define logging
 requirements that capture sufficient information for thorough analysis of conversion and common
 patterns. Define downstream workflow systems to determine quality of clicks or impressions. Have
 downstream systems consume information produced by the company’s own systems as well as
 information fed by outside vendors – such as IP reputation – in determining quality of clicks or
 impressions. Define additional requirements.
Testing Define test cases for OAT-003 Ad Fraud that confirm a variety of advertising-related fraud techniques are
 detectable.
Capacity Not applicable
Obfuscation Not applicable
Fingerprinting Consider identifying and restricting automated usage by fingerprinting the User Agent for its unique
 characteristics and using the information to reject or restrict value of related clicks/impressions.
Reputation Subscribe to IP reputation data and use it as a factor in determining click or impression quality.
Authentication Consider requiring identity authentication, re-authentication or some other increased authentication
 assurance in areas where advertisements are displayed so that clicks, impressions, etc can be more
 easily attributed.
Rate Not applicable
Monitoring Log impressions, clicks and conversions; monitor relative rates. Identify internal vs external users, and
 human vs system users where known. Perform analysis, near real-time if possible, for common patterns
 in users’ system fingerprints, IP addresses and HTTP headers (such as User Agent, cookies, etc.),
 especially for requests during traffic peaks, and track relationship to conversation ratios.
Instrumentation Not applicable
Contract Build limitations in liability (of payment) on fraudulent clicks and impressions in contractual and
 commercial terms. Define end user T&Cs, employee contracts, corporate policies etc to ensure users
 understand that Ad Fraud is not permissible.
Response Define actions to be taken in the event an Ad Fraud attack is detected.
Sharing Participate in any fraud detection and prevention arrangements offered by the advertisement providers.

• Common patterns — such as the same Referer or User
Agent — in click or impression spikes (peaks)

• Low conversion ratios during the spikes
• Unusual peaks in the number of clicks or impressions
• No increase in the number of conversions during

peaks in impressions or clicks
• Drop in the number of page views during peaks in

impressions or clicks
• Higher bounce rate during peaks in impressions or

clicks

Possible Symptoms

Suggested Threat-Specific Countermeasures

..

..

OWASP Automated Threat Handbook Web Applications

36 Open Web Application Security Project

OAT-004 Fingerprinting

..

...

Elicit information about the supporting software and framework types and versions.

Automated Threat Event Reference

Sectors Targeted

Education

Entertainment

Financial

Government

Health

Retail

Technology

Social Networking

Parties Affected

Few Individual Users

Many Users

Application Owner

Third Parties

Society

Data Commonly Misused

Authentication Credentials

Payment Cardholder Data

Other Financial Data

Medical Data

Other Personal Data

Intellectual Property

Other Business Data

Public Information

CAPEC Category / Attack Pattern IDs

• 541 Application Fingerprinting
• 170 Web Application Fingerprinting

WASC Threat IDs

• 45 Fingerprinting

CWEs

• 200 Information Exposure

OWASP Attacks

-

See Also

• OAT-011 Scraping
• OAT-018 Footprinting

Other Names and Examples

Google dorking; Google hacking;
Shodaning; Target acquisition; Target
scanning; Finding potentially vulnerable
applications; Reconnaissance;
URL harvesting; Web application
fingerprinting

Description

Specific requests are sent to the application eliciting information in order to profile
the application. This probing typically examines HTTP header names and values,
session identifier names and formats, contents of error page messages, URL path
case sensitivity, URL path patterns, file extensions, and whether software-specific files
and directories exist. Fingerprinting is often reliant on information leakage and this
profiling may also reveal some network architecture/topology. The fingerprinting may
be undertaken without any direct usage of the application, e.g. by querying a store of
exposed application properties such as held in a search engine’s index.

Fingerprinting seeks to identity application components, whereas OAT-018
Footprinting is a more detailed analysis of how the application works.

Target URL(s) Processes Identificatied
Components

..

..
37v1.2

Fingerprinting OAT-004

...

Elicit information about the supporting software and framework types and versions.

Class Threat-Specific Comments
Value Remove or mask system information leakages
 (e.g. HTTP headers, error messages, URL paths, and file extensions).
Requirements Not applicable
Testing Utilise automated scanners to ensure no information on application components is being leaked.
Capacity Not applicable
Obfuscation Consider masking or changing or removing software and framework details from all types of responses
 (e.g .system details in HTTP headers can be removed if using an HTTP proxy or by configuring the web
 server). Consider preventing indexing by search engines.
Fingerprinting Not applicable
Reputation Consider restricting access from IP addresses with low reputation.
Authentication Consider requiring normal or strong authentication for some or all parts of the application.
Rate Not applicable
Monitoring Not applicable
Instrumentation Not applicable
Contract Not applicable
Response Not applicable
Sharing Not applicable

• Single HTTP requests (just one single request and no more from that browser/session/device/fingerprint)
• Often none, but possibly requests for a wide range of missing resources
• Requests for resources that are rarely requested

Possible Symptoms

Suggested Threat-Specific Countermeasures

..

..

OWASP Automated Threat Handbook Web Applications

38 Open Web Application Security Project

OAT-005 Scalping

..

...

Obtain limited-availability and/or preferred goods/services by unfair methods.

Automated Threat Event Reference

Sectors Targeted

Education

Entertainment

Financial

Government

Health

Retail

Technology

Social Networking

Parties Affected

Few Individual Users

Many Users

Application Owner

Third Parties

Society

Data Commonly Misused

Authentication Credentials

Payment Cardholder Data

Other Financial Data

Medical Data

Other Personal Data

Intellectual Property

Other Business Data

Public Information

CAPEC Category / Attack Pattern IDs

• 210 Abuse of Functionality

WASC Threat IDs

• 21 Insufficient Anti-Automation
• 42 Abuse of Functionality

CWEs

• 799 Improper Control of Interaction
 Frequency
• 837 Improper Enforcement of a Single,
 Unique Action

OWASP Attacks

• Abuse of Functionality

See Also

• OAT-006 Expediting
• OAT-013 Sniping
• OAT-015 Denial of Service
• OAT-021 Denial of Inventory

Other Names and Examples

Bulk purchase; Purchase automaton;
Purchase bot; Restaurant table/hotel
room reservation speed-booking; Queue
jumping; Sale stampede; Secondary
ticketing; Ticket resale; Ticket scalping;
Ticket touting

Description

Acquisition of goods or services using the application in a manner that a normal user
would be unable to undertake manually.

Although Scalping may include monitoring awaiting availability of the goods or
services, and then rapid action to beat normal users to obtain these, Scalping is not
a “last minute” action like OAT-013 Sniping, nor just related to automation on behalf
of the user such as in OAT-006 Expediting. This is because Scalping includes the
additional concept of limited availability of sought-after goods or services, and is
most well known in the ticketing business where the tickets acquired are then resold
later at a profit by the scalpers/touts. This can also lead to a type of user denial of
service, since the goods or services become unavailable rapidly.

Target Assest
Opportunity

Booking or
Purchase Process(es)

Acquired Asset
Identities

..

..
39v1.2

Scalping OAT-005

...

Obtain limited-availability and/or preferred goods/services by unfair methods.

Class Threat-Specific Comments
Value Consider increasing the real or apparent availability of the goods/services. Consider limiting the value
 of the good/service by tying its subsequent use specifically to one user, thus reducing its resale value.
 Consider penalising rapid and/or repeated purchase.
Requirements Document acceptable use of relevant functions (e.g. selection, ordering, booking, reserving, checkout);
 define additional requirements.
Testing Define test cases for OAT-005 Scalping that confirm the application will detect and/or prevent users
 attempting to obtain limited-availability/preferred goods by unfair methods.
Capacity Not applicable
Obfuscation Consider randomising the content and URLs of relevant functions, tying these changes to the individual
 user’s session, verifying the changes at each request, and restricting any identified automated usage.
Fingerprinting Consider identifying and restricting automated usage by fingerprinting the User Agent for its unique
 characteristics.
Reputation Consider identifying and restricting automated usage by reputation methods. In particular, consider
 using geolocation and/or IP address block lists and/or reputation services to prevent access to the
 good/service allocation functions.
Authentication Consider requiring identity authentication, re-authentication or some other increased authentication
 assurance for access to relevant functions, for all users or when there is a suspicion that Scalping is
 occurring.
Rate Consider adding random delays in responses. Consider implementing queuing systems.
Monitoring Log good/service allocation; monitor rate of depletion. Monitor availability of goods on secondary
 markets.
Instrumentation Consider blocking or delaying access or delaying access by users in a particular session, IP address/
 range or geolocation once Monitoring has identified a real Scalping attack, or other anomalous
 behaviour that has identified the user as an attacker.
Contract Define T&Cs to explicitly define acceptable use of the application and permissible re-sale/re-use of the
 good/service by another party. Use employment contracts to ban staff from leaking information about
 availability and other properties of upcoming goods/service releases.
Response Define actions to be taken in the event a Scalping attack is detected.
Sharing Participate in threat intelligence exchanges and contribute Scalping attack data to sector-wide sharing
 systems.

• High peaks of traffic for certain limited-availability goods or services
• Increased circulation of limited goods reselling on secondary market

Possible Symptoms

Suggested Threat-Specific Countermeasures

..

..

OWASP Automated Threat Handbook Web Applications

40 Open Web Application Security Project

OAT-006 Expediting

..

...

Perform actions to hasten progress of usually slow, tedious or time-consuming actions.

Automated Threat Event Reference

Sectors Targeted

Education

Entertainment

Financial

Government

Health

Retail

Technology

Social Networking

Parties Affected

Few Individual Users

Many Users

Application Owner

Third Parties

Society

Data Commonly Misused

Authentication Credentials

Payment Cardholder Data

Other Financial Data

Medical Data

Other Personal Data

Intellectual Property

Other Business Data

Public Information

CAPEC Category / Attack Pattern IDs

• 210 Abuse of Functionality

WASC Threat IDs

• 21 Insufficient Anti-Automation
• 42 Abuse of Functionality

CWEs

• 841 Improper Enforcement of
 Behavioral Workflow

OWASP Attacks

• Abuse of Functionality

See Also

• OAT-005 Scalping
• OAT-013 Sniping
• OAT-016 Skewing
• OAT-017 Spamming

Other Names and Examples

Algorithmic trading; Automated stock
trading; Betting automation; Game
automation; Gaming bot; Gold farming;
Financial instrument dealing; High
frequency trading; Last look trade;
Mining; Purchase automation; Ticketing
automation; Trading automation; Virtual
wealth generation bot

Description

Using speed to violate explicit or implicit assumptions about the application’s normal
use to achieve unfair individual gain, often associated with deceit and loss to some
other party.

In contrast to OAT-016 Skewing which affects metrics, Expediting is purely related to
faster progression through a series of application processes. And OAT-017 Spamming
is different to Expediting, since the focus of spam is to add information, and may not
involve the concept of process progression.

Process
Knowledge

Initial
Process

Intermediate
States

Objective
Final Process

..

..
41v1.2

Expediting OAT-006

...

Perform actions to hasten progress of usually slow, tedious or time-consuming actions.

Class Threat-Specific Comments
Value Consider adding penalties for hastened progress.
Requirements Document acceptable use of each process exposed by the application; define additional requirements.
Testing Define test cases for OAT-006 Expediting that confirm the application will detect and/or prevent users
 attempting to violate explicit or implicit assumptions about normal use.
Capacity Not applicable
Obfuscation Randomise the content and URLs, tying these changes to the individual user’s session, verifying the
 changes at each request, and restricting any identified automated usage.
Fingerprinting Consider identifying and restricting automated usage by fingerprinting the User Agent for its unique
 characteristics.
Reputation Consider identifying and restricting automated usage by reputation methods.
Authentication Consider requiring identity authentication, re-authentication or some other increased authentication
 assurance for access to relevant processes for all users or when there is a suspicion that Expediting is
 occurring.
Rate Consider adding random delays in responses.
Monitoring Log process step completion timestamps and rate of data entry; monitor for faster-than-average
 progress.
Instrumentation Consider blocking or delaying access or delaying access by users in a particular session, IP address/
 range or geolocation once Monitoring has identified a real Expediting attack, or other anomalous
 behaviour that has identified the user as an attacker.
Contract Define T&Cs to explicitly define acceptable use.
Response Define actions to be taken in the event an Expediting attack is detected.
Sharing Not applicable

• Uncharacteristically fast progress through multi-stage processes

Possible Symptoms

Suggested Threat-Specific Countermeasures

..

..

OWASP Automated Threat Handbook Web Applications

42 Open Web Application Security Project

OAT-007 Credential Cracking

..

...

Identify valid login credentials by trying different values for usernames and/or passwords.

Automated Threat Event Reference

Sectors Targeted

Education

Entertainment

Financial

Government

Health

Retail

Technology

Social Networking

Parties Affected

Few Individual Users

Many Users

Application Owner

Third Parties

Society

Data Commonly Misused

Authentication Credentials

Payment Cardholder Data

Other Financial Data

Medical Data

Other Personal Data

Intellectual Property

Other Business Data

Public Information

CAPEC Category / Attack Pattern IDs

• 16 Dictionary-based Password Attack
• 49 Password Brute Forcing
• 70 Try Common(default) Usernames
 and Passwords
• 112 Brute Force

WASC Threat IDs

• 11 Brute Force
• 21 Insufficient Anti-Automation
• 42 Abuse of Functionality

CWEs

• 307 Improper Restriction of Excessive
 Authentication Attempts
• 799 Improper Control of Interaction
 Frequency
• 837 Improper Enforcement of a Single,
 Unique Action

OWASP Attacks

• Abuse of Functionality
• Brute Force Attack

See Also

• OAT-002 Token Cracking
• OAT-008 Credential Stuffing
• OAT-019 Account Creation

Other Names and Examples

Brute-force attacks against sign-in; Brute
forcing log-in credentials; Brute-force
password cracking; Cracking login
credentials; Password brute-forcing;
Password cracking; Reverse brute force
attack; Username cracking; Username
enumeration

Description

Brute force, dictionary (word list) and guessing attacks used against authentication
processes of the application to identify valid account credentials. This may utilise
common usernames or passwords, or involve initial username evaluation.

The use of stolen credential sets (paired username and passwords) to authenticate at
one or more services is OAT-008 Credential Stuffing.

Credential Dictionaries,
Randoms & Brute Forcing

User Identity
Authentication

Process

Validated
Credentials

..

..
43v1.2

Credential Cracking OAT-007

Class Threat-Specific Comments
Value Not applicable
Requirements Document acceptable use of authentication functions; define additional requirements.
Testing Define test cases for OAT-007 Credential Cracking that confirm the application will detect and/or
 prevent users attempting to guess usernames and/or passwords.
Capacity Not applicable
Obfuscation Consider randomising the content and URLs of authentication form pages, tying these changes to the
 individual user’s session, verifying the changes at each authentication step, and restricting any identified
 automated usage.
Fingerprinting Consider identifying and restricting automated usage by fingerprinting the User Agent for its unique
 characteristics.
Reputation Consider identifying and restricting automated usage by reputation methods. In particular, consider
 using geolocation and/or IP address block lists to prevent access to authentication functions.
Authentication Consider preventing users from selecting either common or weak passwords. Consider performing
 incremental account lock out to accounts with suspected login attempts. Consider enhancing
 authentication by adding CAPTCHA, or adding application-specific challenge questions, or using strong
 authentication such as two factor authentication. Consider stricter measures for user accounts with
 greater permissions (e.g. staff, moderators, content administrators, system accounts). Consider pre-
 registering users and implementing strong authentication for access to any exposed authentication
 APIs.
Rate Limit the number of authentication attempts (success and failure) per session/user/IP address/device/
 fingerprint.
Monitoring Log successful and unsuccessful authentication attempts per username/IP/session across all functions
 (register, logon, password reset, password change, username change, re-authentication, etc) and
 channels (web, mobile app, call centre, etc); monitor rates. Monitor geolocation relative to previous
 logins for each user. Identify account hijacking reports from customers; monitor trends.
Instrumentation Consider blocking or delaying access by users in a particular session, IP address/range or geolocation or
 everyone once Monitoring has identified a real Credential Cracking attack, or other anomalous
 behaviour that has identified the user as an attacker.
Contract Define service limits for any authentication APIs.
Response Define actions to be taken in the event a Credential Cracking attack is detected.
Sharing Participate in threat intelligence exchanges and contribute attack data to sector-wide sharing systems.

• Relatively high number of failed login attempts
• Many requests containing variations on account name and/or password
• Elevated account lock rate
• Increased customer complaints of account hijacking through help center or social media outlets

Possible Symptoms

Suggested Threat-Specific Countermeasures

...

Identify valid login credentials by trying different values for usernames and/or passwords.

..

..

OWASP Automated Threat Handbook Web Applications

44 Open Web Application Security Project

OAT-008 Credential Stuffing

..

...

Mass log in attempts used to verify the validity of stolen username/password pairs.

Automated Threat Event Reference

Sectors Targeted

Education

Entertainment

Financial

Government

Health

Retail

Technology

Social Networking

Parties Affected

Few Individual Users

Many Users

Application Owner

Third Parties

Society

Data Commonly Misused

Authentication Credentials

Payment Cardholder Data

Other Financial Data

Medical Data

Other Personal Data

Intellectual Property

Other Business Data

Public Information

CAPEC Category / Attack Pattern IDs

• 210 Abuse of Functionality

WASC Threat IDs

• 21 Insufficient Anti-Automation
• 42 Abuse of Functionality

CWEs

• 799 Improper Control of Interaction
 Frequency
• 837 Improper Enforcement of a Single,
 Unique Action

OWASP Attacks

• Abuse of Functionality
• Credential Stuffing

See Also

• OAT-007 Credential Cracking
• OAT-019 Account Creation

Other Names and Examples

Account checker attack; Account
checking; Account takeover; Account
takeover attack; Login Stuffing; Password
list attack; Password re-use; Stolen
credentials; Use of stolen credentials

Description

Lists of authentication credentials stolen from elsewhere are tested against the
application’s authentication mechanisms to identify whether users have re-used the
same login credentials. The stolen usernames (often email addresses) and password
pairs could have been sourced directly from another application by the attacker,
purchased in a criminal marketplace, or obtained from publicly available breach data
dumps.

Unlike OAT-007 Credential Cracking, Credential Stuffing does not involve any brute-
forcing or guessing of values; instead credentials used in other applications are being
tested for validity.

Stolen Log In
Credentials

User Identity
Authentication

Process

Validated
Credentials

..

..
45v1.2

Credential Stuffing OAT-008

Class Threat-Specific Comments
Value Consider providing guidance and encouragement to users about how to select stronger and unique
 passwords, and the importance of protecting relevant password recovery mechanisms (e.g. email
 account, mobile phones).
Requirements Document acceptable use of authentication functions; define additional requirements.
Testing Define test cases for OAT-008 Credential Stuffing that confirm the application will detect and/or
 prevent users attempting to use account credentials in bulk.
Capacity Not applicable
Obfuscation Consider randomising the content and URLs of authentication form pages, tying these changes to the
 individual user’s session, verifying the changes at each authentication step, and restricting any identified
 automated usage.
Fingerprinting Consider identifying and restricting automated usage by fingerprinting the User Agent for its unique
 characteristics.
Reputation Consider identifying and restricting automated usage by reputation methods. In particular, consider
 using public breach data to identify at-risk user accounts and force a password change, or increase
 anti-fraud measures on these accounts. Consider using geolocation and/or IP address block lists to
 prevent access to authentication functions. Consider using email address reputation services, if used for
 username.
Authentication Consider not permitting social media login. Consider methods to attempt to ensure users have unique
 passwords such as expiring passwords periodically and preventing password re-use. Consider
 enhancing authentication by adding CAPTCHA, or adding application-specific challenge questions, or
 using strong authentication such as two factor authentication. Consider preventing users from utilising
 email addresses as usernames, or using application-specific usernames which are less likely to exist
 on other systems. Consider stricter measures for user accounts with greater permissions (e.g.
 staff, moderators, content administrators, system accounts). Consider pre-registering users and
 implementing strong authentication for access to any exposed authentication APIs.
Rate Limit the number of authentication attempts (success or failure) per session/user/IP address/device/
 fingerprint.
Monitoring Log successful and unsuccessful authentication attempts across all functions (register, logon, password
 reset, password change, username change, re-authentication, etc) and channels (web, mobile app,
 call centre, etc); monitor rates relative to normal activity and also relative the usage of the rest of the
 application. Identify account hijacking reports from customers; monitor absolute numbers and trends.
Instrumentation Consider blocking or delaying access by users in a particular session, IP address/range or geolocation or
 everyone once Monitoring has identified a real Credential Stuffing attack, or other anomalous behaviour
 that has identified the user as an attacker.
Contract Define service limits for any authentication APIs.
Response Define actions to be taken in the event a Credential Stuffing attack is detected.
Sharing Participate in threat intelligence exchanges and contribute Credential Stuffing attack data to sector-wide
 sharing systems.

See also OWASP’s Credential Stuffing Prevention Cheat Sheet at
https://www.owasp.org/index.php/Credential_Stuffing_Prevention_Cheat_Sheet

• Sequential login attempts with different credentials
from the same HTTP client (based on IP, User Agent,
device, fingerprint, patterns in HTTP headers, etc.)

• High number of failed login attempts

• Increased customer complaints of account hijacking
through help center or social media outlets

Possible Symptoms

Suggested Threat-Specific Countermeasures

...

Mass log in attempts used to verify the validity of stolen username/password pairs.

..

..

OWASP Automated Threat Handbook Web Applications

46 Open Web Application Security Project

OAT-009 CAPTCHA Defeat

..

...

Solve anti-automation tests.

Automated Threat Event Reference

Sectors Targeted

Education

Entertainment

Financial

Government

Health

Retail

Technology

Social Networking

Parties Affected

Few Individual Users

Many Users

Application Owner

Third Parties

Society

Data Commonly Misused

Authentication Credentials

Payment Cardholder Data

Other Financial Data

Medical Data

Other Personal Data

Intellectual Property

Other Business Data

Public Information

CAPEC Category / Attack Pattern IDs

-

WASC Threat IDs

• 21 Insufficient Anti-Automation
• 42 Abuse of Functionality

CWEs

• 804 Guessable CAPTCHA
• 841 Improper Enforcement of
 Behavioral Workflow

OWASP Attacks

-

See Also

• OAT-006 Expediting
• OAT-011 Scraping

Other Names and Examples

Breaking CAPTCHA; CAPTCHA breaker;
CAPTCHA breaking; CAPTCHA bypass;
CAPTCHA decoding; CAPTCHA solver;
CAPTCHA solving; Puzzle solving

Description

Completely Automated Public Turing test to tell Computers and Humans Apart
(CAPTCHA) challenges are used to distinguish normal users from bots. Automation
is used in an attempt to analyse and determine the answer to visual and/or aural
CAPTCHA tests and related puzzles. Apart from conventional visual and aural
CAPTCHA, puzzle solving mini games or arithmetical exercises are sometimes used.
Some of these may include context-specific challenges.

The process that determines the answer may utilise tools to perform optical character
recognition, or matching against a prepared database of pre-generated images, or
using other machine reading, or human farms.

Test Barrier Solver Solution
Validation

Protected
Action

..

..
47v1.2

CAPTCHA Defeat OAT-009

...

Solve anti-automation tests.

Class Threat-Specific Comments
Value Not applicable
Requirements Document acceptable use of CAPTCHA; define additional requirements.
Testing Define test cases for OAT-009 CAPTCHA Defeat that confirm the application will detect and/or prevent
 users attempting to automate CAPTCHA breaking/solving.
Capacity Not applicable
Obfuscation Consider randomising the content and URLs of forms including CAPTCHA elements, tying these changes
 to the individual user’s session, verifying the changes at each request, and restricting any identified
 automated usage.
Fingerprinting Consider identifying and restricting automated usage by fingerprinting the User Agent for its unique
 characteristics.
Reputation Consider identifying and restricting automated usage by reputation methods.
Authentication Consider increasing CAPTCHA complexity. Consider replacing CAPTCHA with some form of identity
 authentication or require re-authentication.
Rate Consider capping the rate of CAPTCHA verification per session/user/IP address/device/fingerprint.
Monitoring Log CAPTCHA generation and solution speed and usage; monitor rate of use relative to typical usage.
 Correlate CAPTCHA solving rate against other indicators of suspicious/fraudulent account usage.
Instrumentation Consider blocking or delaying access or delaying access by users in a particular session, IP address/
 range or geolocation once Monitoring has identified a real CAPTCHA Defeat attack, or other anomalous
 behaviour that has identified the user as an attacker.
Contract Define T&Cs to explicitly define acceptable use.
Response Define actions to be taken in the event a CAPTCHA Defeat attack is detected.
Sharing Not applicable

• High CAPTCHA solving success rate on fraudulent accounts
• Suspiciously fast or fixed CAPTCHA solving times

Possible Symptoms

Suggested Threat-Specific Countermeasures

..

..

OWASP Automated Threat Handbook Web Applications

48 Open Web Application Security Project

OAT-010 Card Cracking

..

...

Identify missing start/expiry dates and security codes for stolen payment card data by
trying different values.

Automated Threat Event Reference

Sectors Targeted

Education

Entertainment

Financial

Government

Health

Retail

Technology

Social Networking

Parties Affected

Few Individual Users

Many Users

Application Owner

Third Parties

Society

Data Commonly Misused

Authentication Credentials

Payment Cardholder Data

Other Financial Data

Medical Data

Other Personal Data

Intellectual Property

Other Business Data

Public Information

CAPEC Category / Attack Pattern IDs

• 112 Brute Force
• 210 Abuse of Functionality

WASC Threat IDs

• 11 Brute Force
• 21 Insufficient Anti-Automation
• 42 Abuse of Functionality

CWEs

• 799 Improper Control of Interaction
 Frequency
• 837 Improper Enforcement of a Single,
 Unique Action

OWASP Attacks

• Abuse of Functionality
• Brute Force Attack

See Also

• OAT-001 Carding
• OAT-012 Cashing Out

Other Names and Examples

Brute forcing credit card information;
Card brute forcing; Credit card cracking;
Distributed guessing attack

Description

Brute force attack against application payment card processes to identify the missing
values for start date, expiry date and/or card security code (CSC), also referred to in
many ways, including card validation number 2 (CVN2), card validation code (CVC),
card verification value (CV2) and card identification number (CID).

When these values are known as well as the Primary Account Number (PAN), OAT-001
Carding is used to validate the details, and OAT-012 Cashing Out to obtain goods or
cash.

Stolen Partial
Cardholder Data
& Brute Forcing

Card Payment Process Complete
Cardholder

Data

..

..
49v1.2

Card Cracking OAT-010

...

Identify missing start/expiry dates and security codes for stolen payment card data by
trying different values.

Class Threat-Specific Comments
Value Consider fully outsourcing all payment aspects to an appropriate payment services provider (PSP) that
 has its own countermeasures in place for OAT-010. Increase the minimum checkout value. Consider
 removing payment by card completely if alternatives are available and suitable.
Requirements Document acceptable use of checkout/payment functions; define additional requirements.
Testing Define test cases for OAT-010 Card Cracking that confirm the application will detect and/or prevent
 users trying to guess start/expiry dates or security codes for a single payment card primary account
 number (PAN), and users trying multiple card PANs with a single expiry date and/or security code.
Capacity Not applicable
Obfuscation Consider randomising the content and URLs of payment form and payment submission pages, tying
 these changes to the individual user’s session, verifying the changes at each payment step, and
 restricting any identified automated usage.
Fingerprinting Consider identifying and restricting automated usage by fingerprinting the User Agent for its unique
 characteristics.
Reputation Consider identifying and restricting automated usage by reputation methods. In particular, consider
 using geolocation and/or IP address block lists to prevent access to payment parts of the application.
 Consider using address and card reputation services. Consider adding delays in the checkout steps for
 new and/or infrequent customers, and for smaller checkout baskets, and for users that appear to have
 skipped directly to payment bypassing basket addition and checkout, or are using known fraudulent
 payment cards.
Authentication Consider removing guest checkout and/or requiring greater identity authentication for customers.
 Consider adding CAPTCHA step for new and/or infrequent customers, and for smaller checkout baskets,
 and for users that appear to have skipped directly to payment. Consider implementing 3D Secure
 for some or all card payments. Consider pre-registering users and implementing strong authentication
 for access to any exposed payment APIs.
Rate Consider limiting the number of failed card authorisation attempts per session/user/IP address/device/
 fingerprint.
Monitoring Log abandoned baskets; monitor rates. Log basket payment amount (and currency); monitor average
 value trends. Log successful and failed card authorisations; monitor rates relative to normal activity and
 also relative the usage of the rest of the application. Track chargeback amounts and trends.
Instrumentation Consider blocking or delaying payment function access by users in a particular session, IP address/range
 or geolocation or everyone once Monitoring has identified a real Card Cracking attack, or other
 anomalous behaviour that has identified the user as an attacker.
Contract Define T&Cs to explicitly ban users from using the payment parts of the application to undertake Card
 Cracking, and consider requiring opt-in agreement to these before the application can be used (or as
 part of the checkout process). Define service limits for any payment APIs.
Response Define actions to be taken in the event a Card Cracking attack is detected.
Sharing Use card issuers’ services that can identify distributed guessing attacks. Participate in e-commerce
 threat intelligence exchanges and contribute attack data to sector-wide sharing systems. Participate in
 any fraud detection and prevention arrangements offered by the payment service provider or merchant
 bank.

• Elevated basket abandonment
• Higher proportion of failed payment authorisations
• Disproportionate use of the payment step
• Reduced average basket price

• Increased chargebacks

Possible Symptoms

Suggested Threat-Specific Countermeasures

..

..

OWASP Automated Threat Handbook Web Applications

50 Open Web Application Security Project

OAT-011 Scraping

..

...

Collect application content and/or other data for use elsewhere.

Automated Threat Event Reference

Sectors Targeted

Education

Entertainment

Financial

Government

Health

Retail

Technology

Social Networking

Parties Affected

Few Individual Users

Many Users

Application Owner

Third Parties

Society

Data Commonly Misused

Authentication Credentials

Payment Cardholder Data

Other Financial Data

Medical Data

Other Personal Data

Intellectual Property

Other Business Data

Public Information

CAPEC Category / Attack Pattern IDs

• 167 Lifting Sensitive Data from the
 Client
• 210 Abuse of Functionality
• 281 Analyze Target

WASC Threat IDs

• 21 Insufficient Anti-Automation
• 42 Abuse of Functionality

CWEs

• 799 Improper Control of Interaction
 Frequency

OWASP Attacks

• Abuse of Functionality

See Also

• OAT-012 Cashing Out
• OAT-018 Footprinting
• OAT-020 Account Aggregation

Other Names and Examples

API provisioning; Bargain hunting;
Comparative shopping; Content
scraping; Data aggregation; Database
scraping; Farming; Harvesting; Meta
search scraper; Mining; Mirroring;
Pagejacking; Powering APIs; Ripping;
Scraper bot; Screen scraping; Search /
social media bot

Description

Collecting accessible data and/or processed output from the application. Some
scraping may use fake or compromised accounts, or the information may be
accessible without authentication. The scraper may attempt to read all accessible
paths and parameter values for web pages and APIs, collecting the responses and
extracting data from them. Scraping may occur in real time, or be more periodic in
nature. Some Scraping may be used to gain insight into how it is constructed and
operates - perhaps for cryptanalysis, reverse engineering, or session analysis.

When another application is being used as an intermediary between the user(s) and
the real application, see OAT-020 Account Aggregation. If the intent is to obtain cash
or goods, see OAT-012 Cashing Out instead.

Target URL(s)
and Parameter

Values

Processes Extracted Content
and/or Data

..

..
51v1.2

Scraping OAT-011

...

Collect application content and/or other data for use elsewhere.

Class Threat-Specific Comments
Value Consider using aggregation, and/or anonymisation and/or pseudonymisation. Consider data
 minimisation such as reducing the data fields collected and subsequently output, and/or reducing the
 retention period, permanent deletion of data no longer required. Consider outputting truncated,
 masked, abbreviated or encrypted data. Consider penalising access to data.
Requirements Document what is acceptable usage and what is unacceptable scraping; define additional requirements.
Testing Define test cases for OAT-011 Scraping that confirm the application will detect and/or prevent users
 attempting to scrape content and/or other data.
Capacity Not applicable
Obfuscation Consider randomising the content and URLs of content, tying these changes to the individual user’s
 session, verifying the changes at each request, and restricting any identified automated usage.
Fingerprinting Consider identifying and restricting automated usage by fingerprinting the User Agent for its unique
 characteristics.
Reputation Consider identifying and restricting automated usage by fingerprinting the User Agent for its unique
 characteristics.
Authentication Consider requiring greater identity authentication for access. Consider pre-registering users and
 implementing strong authentication for access to any exposed APIs.
Rate Consider adding random delays in responses. Consider capping rate of application use per session/user/
 IP address/device/fingerprint.
Monitoring Log request timestamps and rate of data access; monitor for faster-than-average access, repeated
 access, and non-normal access patterns.
Instrumentation Consider blocking or delaying access or delaying access by users in a particular session, IP address/
 range or geolocation once Monitoring has identified a real Scraping attack, or other anomalous
 behaviour that has identified the user as an attacker.
Contract Define T&Cs to explicitly define acceptable use that excludes Scraping.
Response Define actions to be taken in the event a Scraping attack is detected.
Sharing Participate in threat intelligence exchanges and contribute attack data to sector-wide sharing systems.

Note that in certain applications, some types of Scraping may be desirable, or even encouraged, rather than being threats.

• Unusual request activity for selected resources (e.g.
high rate, high number, fixed period)

• Duplicated content from multiple sources in search
engine results

• Decreased search engine ranking

• Increased network bandwidth usage with throughput
problems

• New competitors with similar service offerings

Possible Symptoms

Suggested Threat-Specific Countermeasures

..

..

OWASP Automated Threat Handbook Web Applications

52 Open Web Application Security Project

OAT-012 Cashing Out

..

...

Buy goods or obtain cash utilising validated stolen payment card or other user account
data.

Automated Threat Event Reference

Sectors Targeted

Education

Entertainment

Financial

Government

Health

Retail

Technology

Social Networking

Parties Affected

Few Individual Users

Many Users

Application Owner

Third Parties

Society

Data Commonly Misused

Authentication Credentials

Payment Cardholder Data

Other Financial Data

Medical Data

Other Personal Data

Intellectual Property

Other Business Data

Public Information

CAPEC Category / Attack Pattern IDs

• 210 Abuse of Functionality

WASC Threat IDs

• 21 Insufficient Anti-Automation
• 42 Abuse of Functionality

CWEs

• 799 Improper Control of Interaction
 Frequency
• 837 Improper Enforcement of a Single,
 Unique Action

OWASP Attacks

• Abuse of Functionality

See Also

• OAT-001 Carding
• OAT-011 Scraping
• OAT-010 Card Cracking

Other Names and Examples

Deetsing; Money laundering; Online
credit card fraud; Online payment card
fraud; Refund fraud; Stolen identity
refund fraud (SIRF)

Description

Obtaining currency or higher-value merchandise via the application using stolen,
previously validated payment cards or other account login credentials. Cashing Out
sometimes may be undertaken in conjunction with product return fraud. For financial
transactions, this is usually a transfer of funds to a mule’s account. For payment cards,
this activity may occur following OAT-001 Carding of bulk stolen data, or OAT-010
Card Cracking, and the goods are dropped at a reshipper’s address. The refunding
of payments via non-financial applications (e.g. tax refunds, claims payment) is also
included in Cashing Out.

Obtaining other information of value from the application is instead OAT-011
Scraping.

Stolen Payment
Cardholder Data

or Other User
Account Data

Card Payment Process Goods or Cash

..

..
53v1.2

Cashing Out OAT-012

...

Buy goods or obtain cash utilising validated stolen payment card or other user account
data.

Class Threat-Specific Comments
Value Decrease the number of and/or availability of higher-value items.
Requirements Document acceptable use of relevant functions (e.g. payment, refund); define additional requirements.
Testing Define test cases for OAT-012 Cashing Out that confirm the application will detect and/or prevent users
 attempting to cash out.
Capacity Not applicable
Obfuscation Consider randomising the content and URLs of relevant pages, tying these changes to the individual
 user’s session, verifying the changes at each request, and restricting any identified automated usage.
Fingerprinting Consider identifying and restricting automated usage by fingerprinting the User Agent for its unique
 characteristics.
Reputation Consider identifying and restricting automated usage by reputation methods. In particular, consider
 using geolocation and/or IP address block lists to prevent access to relevant parts of the application.
Authentication Consider removing guest checkout and/or requiring greater identity authentication for customers.
 Consider implementing 3D Secure for some or all card payments. Consider requiring increased
 verification and out-of-band confirmation of all changes to account properties (e.g. email addresses,
 telephone numbers, physical addresses, bank accounts).
Rate Consider limiting the number of payments/transactions per session/user/IP address/device/fingerprint.
Monitoring Log abandoned baskets/transactions; monitor rates. Log basket/transaction payment amount (and
 currency); monitor average value trends. Identify and log higher-value transactions. Log changes to
 asset destination (e.g. delivery addresses, recipient bank account); monitor activity related to
 transactions occurring soon after such events have occurred. Track chargeback and returns amounts
 and trends.
Instrumentation Consider blocking or delaying access or delaying access by users in a particular session, IP address/
 range or geolocation once Monitoring has identified a real Cashing Out attack, or other anomalous
 behaviour that has identified the user as an attacker.
Contract Not applicable
Response Define actions to be taken in the event a Cashing Out attack is detected.
Sharing Participate in threat intelligence exchanges and contribute attack data to sector-wide sharing systems.
 Participate in any fraud detection and prevention arrangements offered by the payment service provider
 or merchant bank.

• Increased chargebacks
• Increased usage of interlinked accounts (e.g. same

phone number, same password, same or similar
email address)

• Same or similar accounts for both “buyer” and

“seller” in sites that facilitate consumer-to-consumer
(C2C) commerce

• Increased demand for higher-value goods or services
• Increased demand for a single supplier’s goods or

services

Possible Symptoms

Suggested Threat-Specific Countermeasures

..

..

OWASP Automated Threat Handbook Web Applications

54 Open Web Application Security Project

OAT-013 Sniping

..

...

Last minute bid or offer for goods or services.

Automated Threat Event Reference

Sectors Targeted

Education

Entertainment

Financial

Government

Health

Retail

Technology

Social Networking

Parties Affected

Few Individual Users

Many Users

Application Owner

Third Parties

Society

Data Commonly Misused

Authentication Credentials

Payment Cardholder Data

Other Financial Data

Medical Data

Other Personal Data

Intellectual Property

Other Business Data

Public Information

CAPEC Category / Attack Pattern IDs

• 210 Abuse of Functionality

WASC Threat IDs

• 21 Insufficient Anti-Automation
• 42 Abuse of Functionality

CWEs

-

OWASP Attacks

• Abuse of Functionality

See Also

• OAT-005 Scalping
• OAT-006 Expediting
• OAT-015 Denial of Service
• OAT-021 Denial of Inventory

Other Names and Examples

Auction sniping; Bid sniper; Front-
running; Last look; Last minute bet;
Timing attack

Description

The defining characteristic of Sniping is an action undertaken at the latest
opportunity to achieve a particular objective, leaving insufficient time for another
user to bid/offer. Sniping can also be the automated exploitation of system latencies
in the form of timing attacks. Careful timing and prompt action are necessary parts. It
is most well known as auction sniping, but the same threat event can be used in other
types of applications. Sniping normally leads to some disbenefit for other users, and
sometimes that might be considered a form of denial of service.

In contrast, OAT-005 Scalping is the acquisition of limited availability of sought-after
goods or services, and OAT-006 Expediting is the general hastening of progress.

Monitoring
For Opportunity

Bid or O�er
Process

Acquired
Asset Identity

..

..
55v1.2

Sniping OAT-013

...

Last minute bid or offer for goods or services.

Class Threat-Specific Comments
Value Consider penalising later bets/bids/purchases, and/or encouraging earlier bets/bids/purchases.
Requirements Document acceptable use of relevant functions (e.g. bet, bid, purchase); define additional requirements.
Testing Define test cases for OAT-013 Sniping that confirm the application will detect and/or prevent users
 attempting to make last minute bids for goods or services.
Capacity Not applicable
Obfuscation Randomise the content and URLs, tying these changes to the individual user’s session, verifying the
 changes at each request, and restricting any identified automated usage.
Fingerprinting Consider identifying and restricting automated usage by fingerprinting the User Agent for its unique
 characteristics.
Reputation Consider identifying and restricting automated usage by reputation methods. In particular, consider
 using geolocation and/or IP address block lists and/or reputation services to prevent access to the
 good/service allocation functions.
Authentication Consider requiring identity authentication, re-authentication or some other increased authentication
 assurance for access to relevant processes for all users, or when there is a suspicion that Sniping is
 occurring.
Rate Consider not publishing or increasing uncertainty in the final closing time for bets/bids/purchase.
Monitoring Log process step completion timestamps and rate of data entry; monitor for bypassing of earlier steps
 and/or longer-than-usual delays in completing final step. Log successful and unsuccessful bets/bids/
 purchases; monitor for unusual trends or and higher-than-normal success rate.
Instrumentation Consider blocking or delaying access or delaying access by users in a particular session, IP address/
 range or geolocation once Monitoring has identified a real Sniping attack, or other anomalous behaviour
 that has identified the user as an attacker.
Contract Define T&Cs to explicitly define acceptable use.
Response Define actions to be taken in the event a Sniping attack is detected.
Sharing Participate in threat intelligence exchanges and contribute Sniping attack data to sector-wide sharing
 systems.

• Increasing complaints from users about being unable to obtain goods/services
• Some users having greater success rate than expected

Possible Symptoms

Suggested Threat-Specific Countermeasures

..

..

OWASP Automated Threat Handbook Web Applications

56 Open Web Application Security Project

OAT-014 Vulnerability Scanning

..

...

Crawl and fuzz application to identify weaknesses and possible vulnerabilities.

Automated Threat Event Reference

Sectors Targeted

Education

Entertainment

Financial

Government

Health

Retail

Technology

Social Networking

Parties Affected

Few Individual Users

Many Users

Application Owner

Third Parties

Society

Data Commonly Misused

Authentication Credentials

Payment Cardholder Data

Other Financial Data

Medical Data

Other Personal Data

Intellectual Property

Other Business Data

Public Information

CAPEC Category / Attack Pattern IDs

-

WASC Threat IDs

• 21 Insufficient Anti-Automation

CWEs

• 799 Improper Control of Interaction
 Frequency

OWASP Attacks

-

See Also

• OAT-004 Fingerprinting
• OAT-011 Scraping
• OAT-018 Footprinting

Other Names and Examples

Active/Passive scanning; Application-
specific vulnerability discovery;
Identifying vulnerable content
management systems (CMS) and CMS
components; Known vulnerability
scanning; Malicious crawling;
Vulnerability reconnaissance

Description

Systematic enumeration and examination of identifiable, guessable and unknown
content locations, paths, file names, parameters, in order to find weaknesses and
points where a security vulnerability might exist. Vulnerability Scanning includes both
malicious scanning and friendly scanning by an authorised vulnerability scanning
engine. It differs from OAT-011 Scraping in that its aim is to identify potential
vulnerabilities.

The exploitation of individual vulnerabilities is not included in the scope of this
ontology, but this process of scanning, along with OAT-018 Footprinting, OAT-004
Fingerprinting and OAT-011 Scraping often form part of application penetration
testing.

Target URL(s),
Parameters
& Payloads

Processes Vulnerabilities

..

..
57v1.2

Vulnerability Scanning OAT-014

...

Crawl and fuzz application to identify weaknesses and possible vulnerabilities.

Class Threat-Specific Comments
Value Develop and deploy applications securely, identify and fix security issues as soon and quickly as
 possible.
Requirements Not applicable
Testing Define test cases for OAT-014 Vulnerability Scanning that confirm the application will detect and/or
 prevent users scanning it for vulnerabilities.
Capacity Not applicable
Obfuscation Consider making the application behaviour and/or structure so that vulnerability scanners/crawlers/
 testers are seemingly unable to ever complete a full site scan and/or unable to access some parts of an
 application.
Fingerprinting Consider identifying and restricting automated usage by fingerprinting the User Agent for its unique
 characteristics.
Reputation Consider denying or restricting access from IP addresses known to be vulnerability scanners or cloud
 providers.
Authentication Consider requiring normal or strong authentication for some or all parts of the application. Consider
 requiring periodic and/or aspect-based reauthentication.
Rate Limit the number of input validation and/or authorisation failures per session/user/IP address/device/
 fingerprint.
Monitoring Log successful and failed authentications, authorisation failures, input validation failures; monitor rates
 relative to normal activity and also relative the usage of the rest of the application.
Instrumentation Implement user and system wide trend detection points together with request, input validation and
 authorisation detection points. Consider blocking users or logging them out for non-normal use of the
 application.
Contract Define T&Cs to explicitly ban users from scanning the application for vulnerabilities, and consider
 requiring opt-in agreement to these before the application can be use. Define approved methods of
 engagement for authorised vulnerability scanning.
Response Define actions to be taken in the event a Vulnerability Scanning attack is detected.
Sharing Participate in relevant threat intelligence sharing initiatives.

• Highly elevated occurrence of errors (e.g. HTTP
status code 404 not found, data validation failures,
authorisation failures)

• Extremely high application usage from a single IP
address

• Exotic value for HTTP user agent header
• High ratio of GET/POST to HEAD requests for a user/

session/IP address compared to typical users
• Low ratio of static to dynamic content requests for a

user/session/IP address compared to typical users
• Multiple misuse attempts against application entry

points
• Parameter/header fuzzing

Possible Symptoms

Suggested Threat-Specific Countermeasures

..

..

OWASP Automated Threat Handbook Web Applications

58 Open Web Application Security Project

OAT-015 Denial of Service

..

...

Target resources of the application and database servers, or individual user accounts, to
achieve denial of service (DoS).

Automated Threat Event Reference

Sectors Targeted

Education

Entertainment

Financial

Government

Health

Retail

Technology

Social Networking

Parties Affected

Few Individual Users

Many Users

Application Owner

Third Parties

Society

Data Commonly Misused

Authentication Credentials

Payment Cardholder Data

Other Financial Data

Medical Data

Other Personal Data

Intellectual Property

Other Business Data

Public Information

CAPEC Category / Attack Pattern IDs

• 2 Inducing Account Lockout
• 25 Forced Deadlock
• 119 Deplete Resources

WASC Threat IDs

• 10 Denial of Service

CWEs

• 399 Resource Management Errors
• 645 Overly Restrictive Account
 Lockout Mechanism

OWASP Attacks

• Account Lockout Attack
• Cash Overflow
• Denial of Service
• Resource Depletion

See Also

• OAT-005 Scalping
• OAT-013 Sniping
• OAT-017 Spamming
• OAT-019 Account Creation
• OAT-021 Denial of Inventory

Other Names and Examples

Account lockout; App layer DDoS;
Asymmetric resource consumption
(amplification); Business logic DDoS;
Cash overflow; Forced deadlock; Hash
DoS; Inefficient code; Indexer DoS; Large
files DoS; Resource depletion, locking or
exhaustion; Sustained client engagement

Description

Usage may resemble legitimate application usage, but leads to exhaustion of
resources such as file system, memory, processes, threads, CPU, and human or
financial resources. The resources might be related to web, application or databases
servers or other services supporting the application, such as third party APIs, included
third-party hosted content, or content delivery networks (CDNs). The application may
be affected as a whole, or the attack may be against individual users such as account
lockout.

This ontology’s scope excludes other forms of denial of service that affect web
applications, namely HTTP Flood DoS (GET, POST, Header with/without TLS), HTTP
Slow DoS, IP layer 3 DoS, and TCP layer 4 DoS. Those protocol and lower layer aspects
are covered adequately in other taxonomies and lists.

Target URL(s)
and Parameter

Values

Process(es)

..

..
59v1.2

Denial of Service OAT-015

...

Target resources of the application and database servers, or individual user accounts, to
achieve denial of service (DoS).

Class Threat-Specific Comments
Value Consider reducing and/or eliminating resource intensive functionality, or using alternatives.
Requirements Document average and peak (at different durations) usage of all functions and paths, including APIs,
 included content and third-party components and services, for all types of permitted automated
 robot activity as well as normal user usage during standard, seasonal, and other relevant scenarios.
 Define additional requirements.
Testing Define test cases for OAT-015 Denial of Service that confirm the application will detect and/or prevent
 users performing application denial of service. These test cases should include attacks against
 particularly susceptible functions, against user accounts, or against other application system resources.
Capacity Identify all capacity pinch points, for both normal and peak usage. Provide adequate greater capacity
 for system components based on risk. This may include providing specific API or data feeds for data
 provision, application configuration, SSL configuration, designing lowly-loaded systems, load balancing,
 auto-scaling, caching, content delivery networks, SSL accelerators/terminators, XML gateways, content
 switching, query caching, query optimisation, application delivery controller, denial of service (DoS)
 protection service, etc.
Obfuscation Not applicable
Fingerprinting Consider identifying and restricting automated usage by fingerprinting the User Agent for its unique
 characteristics.
Reputation Consider identifying and restricting automated usage by reputation methods.
Authentication Consider requiring authentication or enhanced authentication for high resource usage aspects of the
 application.
Rate Consider limiting availability and/or rate of usage of high resource usage aspects of the application.
Monitoring Log application site usage, account lockout, product/service availability, critical resource usage, etc;
 monitor against multiple alerting thresholds as well as changes to trends.
Instrumentation Consider blocking or delaying application access by individual users or groups of users based on
 behaviour and/or session, and/or IP address/range and/or geolocation once Monitoring has identified
 a real Denial of Service attack, or other anomalous behaviour that has identified the user(s) as an
 attacker(s). Consider disabling at resource intensive functions progressively to maintain availability of
 other aspects.
Contract Define acceptable use and service limits for the application, including any APIs and related components.
Response Define actions to be taken in the event a Denial of Service attack is detected.
Sharing Participate in threat intelligence exchanges and contribute Denial of Service attack data to sector-wide
 sharing systems.

Note that web application denial of service can often be the side effect of some other web application automated threat.
Separately, non web application denial of service such as network, HTTP and SSL/TLS may also occur.

• Spikes in CPU, memory and network utilization
• Unavailability of part or all of the application
• Rise in user account lockouts
• Rise is complaints about poor performance

• Reduced website performance and service
degradation

Possible Symptoms

Suggested Threat-Specific Countermeasures

..

..

OWASP Automated Threat Handbook Web Applications

60 Open Web Application Security Project

OAT-016 Skewing

..

...

Repeated link clicks, page requests or form submissions intended to alter some metric.

Automated Threat Event Reference

Sectors Targeted

Education

Entertainment

Financial

Government

Health

Retail

Technology

Social Networking

Parties Affected

Few Individual Users

Many Users

Application Owner

Third Parties

Society

Data Commonly Misused

Authentication Credentials

Payment Cardholder Data

Other Financial Data

Medical Data

Other Personal Data

Intellectual Property

Other Business Data

Public Information

CAPEC Category / Attack Pattern IDs

• 210 Abuse of Functionality

WASC Threat IDs

• 21 Insufficient Anti-Automation
• 42 Abuse of Functionality

CWEs

• 799 Improper Control of Interaction
 Frequency
• 837 Improper Enforcement of a Single,
 Unique Action

OWASP Attacks

• Abuse of Functionality

See Also

• OAT-003 Ad Fraud
• OAT-017 Spamming
• OAT-019 Account Creation

Other Names and Examples

Biasing KPIs; Boosting friends, visitors,
and likes; Click fraud; Dynamic pricing
hacking; Election fraud; Hit count
fraud; Market distortion; Metric and
statistic skewing; Page impression fraud;
Poll fraud; Poll skewing; Poll/voting
subversion; Rating/review skewing; SEO;
Stock manipulation; Survey skewing

Description

Automated repeated clicking or requesting or submitting content, affecting
application-based metrics such as counts and measures of frequency and/or rate.
The metric or measurement may be visible to users (e.g. betting odds, likes, market/
dynamic pricing, visitor count, poll results, reviews) or hidden (e.g. application usage
statistics, business performance indicators). Metrics may affect individuals as well as
the application owner, e.g. user reputation, influence others, gain fame, or undermine
someone else’s reputation.

For malicious alteration of digital advertisement metrics, see OAT-003 Ad Fraud
instead.

Target URL(s)
and Parameter

Values

Process(es) Modified Metric

..

..
61v1.2

Skewing OAT-016

...

Repeated link clicks, page requests or form submissions intended to alter some metric.

Class Threat-Specific Comments
Value Not applicable
Requirements Identify all metrics and ways they could be manipulated by different types of users; define additional
 requirements. Define logging requirements that capture sufficient information for thorough analysis of
 application activity contributing to each metric.
Testing Define test cases for OAT-016 Skewing that confirm the application will detect and/or prevent users
 attempting to skew metrics.
Capacity Not applicable
Obfuscation Consider randomising the content and URLs of metric-related content, tying these changes to the
 individual user’s session, verifying the changes at each request, and restricting any identified automated
 usage.
Fingerprinting Consider identifying and restricting automated usage by fingerprinting the User Agent for its unique
 characteristics. Use the information to reject related metric contributions.
Reputation Consider identifying and restricting automated usage by reputation methods. In particular, consider
 using geolocation and/or IP address block lists and/or reputation services to exclude fraudulent data
 contributing to the metrics.
Authentication Consider requiring identity authentication, re-authentication or some other increased authentication
 assurance for access to areas where metric data are collected.
Rate Consider adding delays to metric-contributing actions. Consider limiting the number of times and/or
 rate at which the activity of a session, and/or IP address, and/or account/user and/or device/fingerprint
 contributes to each metric. Consider enforcing single-use and a limited period of validity for metric-
 contributing one-time tokens/codes.
Monitoring Log all activity contributing to metrics; monitor trends and abnormal patterns. Perform analysis, near
 real-time if possible, for common patterns in users’ system fingerprints, IP addresses and HTTP headers
 (such as User Agent, cookies, etc.), especially for requests during extremes of metric values.
Instrumentation Not applicable
Contract Define end user T&Cs, employee contracts, corporate policies etc to ensure users understand that metric
 Skewing is not permissible.
Response Define actions to be taken in the event a Skewing attack is detected.
Sharing Not applicable

Note that a significant change to a metric may actually be real, and not the result of an automated threat event. Skewing
could also be the side effect of some other automated threat

• Decreased click/impression to outcome ratio (e.g.
check out, conversion)

• Unexpected or unexplained changes to a metric
• Metric significantly different to accepted sector

norms

• Increased costs/awards that are determined from an
application metric or metrics

Possible Symptoms

Suggested Threat-Specific Countermeasures

..

..

OWASP Automated Threat Handbook Web Applications

62 Open Web Application Security Project

OAT-017 Spamming

..

...

Malicious or questionable information addition that appears in public or private content,
databases or user messages.

Automated Threat Event Reference

Sectors Targeted

Education

Entertainment

Financial

Government

Health

Retail

Technology

Social Networking

Parties Affected

Few Individual Users

Many Users

Application Owner

Third Parties

Society

Data Commonly Misused

Authentication Credentials

Payment Cardholder Data

Other Financial Data

Medical Data

Other Personal Data

Intellectual Property

Other Business Data

Public Information

CAPEC Category / Attack Pattern IDs

• 210 Abuse of Functionality

WASC Threat IDs

• 21 Insufficient Anti-Automation
• 42 Abuse of Functionality

CWEs

• 506 Embedded Malicious Code
• 799 Improper Control of Interaction
 Frequency
• 837 Improper Enforcement of a Single,
 Unique Action

OWASP Attacks

• Abuse of Functionality

See Also

• OAT-015 Denial of Service
• OAT-016 Skewing
• OAT-019 Account Creation

Other Names and Examples

Blog spam; Bulletin board spam; Click-
bait; Comment spam; Content spam;
Content spoofing; Fake news; Form
spam; Forum spam; Guestbook spam;
Referrer spam; Review spam; SEO spam;
Spam crawlers; Spam 2.0; Spambot;
Twitter spam; Wiki spam

Description

Malicious content can include malware, IFRAME distribution, photographs & videos,
advertisements, referrer spam and tracking/surveillance code. The content might be
less overtly malicious but be an attempt to cause mischief, undertake search engine
optimisation (SEO) or to dilute/hide other posts.

The mass abuse of broken form-to-email and form-to-SMS functions to send
messages to unintended recipients is not included in this threat event, or any other
in this ontology, since those are considered to be the exploitation of implementation
flaws alone.

For multiple use that distorts metrics, see OAT-016 Skewing instead.

Target URL(s)
and Parameter

Values

Process(es) Stored &
Transmitted

Spam Content

..

..
63v1.2

Spamming OAT-017

...

Malicious or questionable information addition that appears in public or private content,
databases or user messages.

Class Threat-Specific Comments
Value Consider ensuring there are frequent data backups so that original information and state can be
 restored in the event of contamination by a spamming attack. Consider limiting the functionality and/
 or capacity available to newly, or recently, created accounts. Consider preventing users from adding/
 sending URLs, and/or images, and/or other files.
Requirements Identify all aspects of the application that could be used to generate spam; define additional
 requirements. Define logging requirements that capture sufficient information to assess whether
 spamming is occurring.
Testing Define test cases for OAT-017 Spamming that confirm the application will detect and/or prevent users
 attempting to generate spam.
Capacity Not applicable
Obfuscation Consider randomising the content and URLs of content, tying these changes to the individual user’s
 session, verifying the changes at each request, and restricting any identified automated usage.
Fingerprinting Consider identifying and restricting automated usage by fingerprinting the User Agent for its unique
 characteristics.
Reputation Consider denying or restricting access from IP addresses known to be vulnerability scanners, web
 crawlers or cloud providers.”
Authentication Consider requiring identity authentication, re-authentication or some other increased authentication
 assurance for access to areas where user-generated content, alerts or messages are created.
Rate Consider adding delays to actions the create user-generated content, alerts or messages.
Monitoring Consider the use of moderation for user-generated content. Log all activity related to functions that
 could be used to generate spam; monitor trends and abnormal patterns. Perform analysis, near real-
 time if possible, for common patterns in users’ system fingerprints, IP addresses and HTTP headers
 (such as User Agent, cookies, etc.). Identify spam reports from customers; monitor trends.
Instrumentation Consider blocking or delaying access or delaying access by users in a particular session, IP address/
 range or geolocation once Monitoring has identified a real Spamming attack, or other anomalous
 behaviour that has identified the user as an attacker.
Contract Define end user T&Cs, employee contracts, corporate policies etc to ensure users understand that any
 form of Spamming is not permissible.
Response Define actions to be taken in the event a Spamming attack is detected.
Sharing Participate in threat intelligence exchanges and contribute Spamming attack data to sector-wide sharing
 systems.

• Increase in the rejection rate of user-generated
content by moderation processes

• Higher rate of complaints from users about spam
content

• High appearance of typically fraudulent keyword
in user-generated content (e.g. celebrity names,
insurance, viagra)

• High hyperlink density
• Inclusion of hyperlinks to web hosts that redirect, or

with low reputation, or that host malicious content
directly

• Requests from source IP addresses, devices,
fingerprints that appear on spam lists

Possible Symptoms

Suggested Threat-Specific Countermeasures

..

..

OWASP Automated Threat Handbook Web Applications

64 Open Web Application Security Project

OAT-018 Footprinting

..

...

Probe and explore application to identify its constituents and properties.

Automated Threat Event Reference

Sectors Targeted

Education

Entertainment

Financial

Government

Health

Retail

Technology

Social Networking

Parties Affected

Few Individual Users

Many Users

Application Owner

Third Parties

Society

Data Commonly Misused

Authentication Credentials

Payment Cardholder Data

Other Financial Data

Medical Data

Other Personal Data

Intellectual Property

Other Business Data

Public Information

CAPEC Category / Attack Pattern IDs

• 169 Footprinting

WASC Threat IDs

• 45 Fingerprinting

CWEs

• 200 Information Exposure

OWASP Attacks

-

See Also

• OAT-004 Fingerprinting
• OAT-011 Scraping

Other Names and Examples

Application analysis; API discovery;
Application enumeration; Automated
scanning; CGI scanning; Crawler;
Crawling; Excavation; Forced browsing;
Forceful browsing; Fuzzing; Micro service
discovery; Scanning; Spidering; WSDL
scanning

Description

Information gathering with the objective of learning as much as possible about the
composition, configuration and security mechanisms of the application. Unlike
Scraping, Footprinting is an enumeration of the application itself, rather than the
data. It is used to identify all the URL paths, parameters and values, and process
sequences (i.e. to determine entry points, also collectively called the attack surface).
As the application is explored, additional paths will be identified which in turn need
to be examined.

Footprinting can also include brute force, dictionary and guessing of file and directory
names. Fuzzing may also be used to identify further application resources and
capabilities. However, it does not include attempts to exploit weaknesses.

Target URL(s) and
Parameters Values

Processes Enumerated
Application Details

..

..
65v1.2

Footprinting OAT-018

...

Probe and explore application to identify its constituents and properties.

Class Threat-Specific Comments
Value Not applicable
Requirements Not applicable
Testing Not applicable
Capacity Not applicable
Obfuscation Consider randomising URLs. Consider preventing indexing by search engines. Consider minimising
 information leakage through HTTP errors, error messages, URL paths, and file extensions.
Fingerprinting Consider identifying and restricting automated usage by fingerprinting the User Agent for its unique
 characteristics.
Reputation Consider denying or restricting access from IP addresses known to be vulnerability scanners, web
 crawlers or cloud providers.
Authentication Consider requiring normal or strong authentication for some or all parts of the application.
Rate Consider adding time delays in responses or returning an error code such as 503 to higher usage user
 requests.
Monitoring Not applicable
Instrumentation Consider blocking users for non-normal use of the application. Consider honeypot detection points at
 URLs no normal users would ever navigate to.
Contract Not applicable
Response Not applicable
Sharing Not applicable

• Increase in system and application error codes, such as HTTP status codes 404 and 503, in the same user session
• Users that exercise the functionality of the entire application in manner that diverges from typical user behaviour

Possible Symptoms

Suggested Threat-Specific Countermeasures

..

..

OWASP Automated Threat Handbook Web Applications

66 Open Web Application Security Project

OAT-019 Account Creation

..

...

Create multiple accounts for subsequent misuse.

Automated Threat Event Reference

Sectors Targeted

Education

Entertainment

Financial

Government

Health

Retail

Technology

Social Networking

Parties Affected

Few Individual Users

Many Users

Application Owner

Third Parties

Society

Data Commonly Misused

Authentication Credentials

Payment Cardholder Data

Other Financial Data

Medical Data

Other Personal Data

Intellectual Property

Other Business Data

Public Information

CAPEC Category / Attack Pattern IDs

• 210 Abuse of Functionality

WASC Threat IDs

• 21 Insufficient Anti-Automation
• 42 Abuse of Functionality

CWEs

• 799 Improper Control of Interaction
 Frequency
• 837 Improper Enforcement of a Single,
 Unique Action
• 841 Improper Enforcement of
 Behavioral Workflow

OWASP Attacks

• Abuse of Functionality

See Also

• OAT-007 Credential Cracking
• OAT-008 Credential Stuffing

Other Names and Examples

Account pharming; Fake account;
Fake social media account creation;
Impersonator bot; Massive account
registration; New account creation;
Registering many user accounts

Description

Bulk account creation, and sometimes profile population, by using the application’s
account sign-up processes. The accounts are subsequently misused for generating
content spam, laundering cash and goods, spreading malware, affecting reputation,
causing mischief, and skewing search engine optimisation (SEO), reviews and surveys.

Account Creation generates new accounts - see OAT-007 Credential Cracking and
OAT-008 Credential Stuffing for threat events that use existing accounts.

Identity Source Data Registration/User
Enrolment Process(es)

Created Accounts

..

..
67v1.2

Account Creation OAT-019

...

Create multiple accounts for subsequent misuse.

Class Threat-Specific Comments
Value Consider limiting the functionality and/or capacity available to newly, and/or recently created, accounts.
Requirements Document acceptable use of all possible account creation functions; define additional requirements.
Testing Define test cases for OAT-019 Account Creation that confirm the application will detect and/or prevent
 users attempting to create accounts in bulk.
Capacity Not applicable
Obfuscation Consider randomising the content and URLs of account creation form pages, tying these changes to the
 individual user’s session, verifying the changes at each request, and restricting any identified automated
 usage.
Fingerprinting Consider identifying and restricting automated usage by fingerprinting the User Agent for its unique
 characteristics.
Reputation Consider removing self-registration to existing known people (e.g. approved suppliers and/or
 customers). Consider identifying and restricting automated usage by reputation methods. In particular,
 consider using geolocation and/or IP address block lists to prevent access to registration/sign-up or
 to apply enhanced authentication requirements. Consider using reputation services (e.g. IP address,
 email address, postal address) to assist in
Authentication Consider removing self-registration. Consider not permitting social media login. Consider out-of-band
 verification (e.g. email address verification). Consider enhancing authentication by adding CAPTCHA, or
 adding application-specific challenge questions, or using strong authentication such as two factor
 authentication. Consider pre-registering users and implementing strong authentication for access to any
 exposed authentication APIs.
Rate Limit the rate of creation of accounts.
Monitoring Log application usage by function for each user; monitor rate of application use relative to typical usage.
 Log account creation dates/times; monitor period from time of account creation to first use, and also
 monitor completeness of optional account information, and whether any profile text or images are
 generic, re-used or copied from elsewhere.
Instrumentation Consider blocking or delaying access or delaying access by users in a particular session, IP address/
 range or geolocation or everyone once Monitoring has identified a real Account Creation attack, or other
 anomalous behaviour (possibly much later) that has identified the user as an attacker.
Contract Define T&Cs to explicitly define acceptable use. Define service limits for any account creation APIs.
Response Define actions to be taken in the event an Account Creation attack is detected.
Sharing Participate in threat intelligence exchanges and contribute Account Creation attack data to sector-wide
 sharing systems.

• Higher than average account creation rate compared
to average rate over time

• Accounts with incomplete information relative to the
typical account holders

• Accounts created but which are not used immediately

• Accounts created with disproportionate use, and/or
misuse, of the application’s functionalities

Possible Symptoms

Suggested Threat-Specific Countermeasures

..

..

OWASP Automated Threat Handbook Web Applications

68 Open Web Application Security Project

OAT-020 Account Aggregation

...

..

Use by an intermediary application that collects together multiple accounts and interacts
on their behalf.

Automated Threat Event Reference

Sectors Targeted

Education

Entertainment

Financial

Government

Health

Retail

Technology

Social Networking

Parties Affected

Few Individual Users

Many Users

Application Owner

Third Parties

Society

Data Commonly Misused

Authentication Credentials

Payment Cardholder Data

Other Financial Data

Medical Data

Other Personal Data

Intellectual Property

Other Business Data

Public Information

CAPEC Category / Attack Pattern IDs

• 167 Lifting Sensitive Data from the
 Client
• 210 Abuse of Functionality

WASC Threat IDs

• 21 Insufficient Anti-Automation
• 42 Abuse of Functionality

CWEs

• 799 Improper Control of Interaction
 Frequency

OWASP Attacks

• Abuse of Functionality

See Also

• OAT-006 Expediting
• OAT-011 Scraping
• OAT-0 19 Account Creation

Other Names and Terms

Aggregator; Brokering; Client
aggregator; Cloud services brokerage;
Data aggregation; Financial account
aggregator; Intermediarisation;
Intermediation

Description

Compilation of credentials and information from multiple application accounts into
another system. This aggregation application may be used by a single user to merge
information from multiple applications, or alternatively to merge information of many
users of a single application. Commonly used for aggregating social media accounts,
email accounts and financial accounts in order to obtain a consolidated overview, to
provide integrated reporting and analysis, and to simplify usage and consumption by
the user and/or their professional advisors. May include making changes to account
properties and interacting with the aggregated application’s functionality.

For other forms of data harvesting, including the distribution of content, see OAT-011
Scraping. For hastening progress, see OAT-006 Expediting instead.

Intermediary
Application
Processes

Application
Processes

Changed Data

..

..
69v1.2

Account Aggregation OAT-020

...

Use by an intermediary application that collects together multiple accounts and interacts
on their behalf.

Class Threat-Specific Comments
Value Consider providing dedicated APIs for any approved aggregators. Consider providing benefits to users
 that are using the application directly (and not via an account aggregator). Consider providing separate
 functionality for users’ approved and authenticated advisors etc so they can view either individual client
 or aggregated client access.
Requirements Identify where Account Aggregation would be a threat to the application; define additional
 requirements.
Testing Define test cases for OAT-020 Account Aggregation that confirm the application will detect and/or
 prevent users utilising some form of aggregation.
Capacity Not applicable
Obfuscation Consider randomising the content and URLs of key content, tying these changes to the individual user’s
 session, verifying the changes at each request, and restricting any identified automated usage.
Fingerprinting Consider identifying and restricting automated usage by fingerprinting the User Agent for its unique
 characteristics.
Reputation Consider identifying and restricting automated usage by reputation methods. In particular, consider
 identifying and blocking IP addresses of known aggregation services.
Authentication Consider creating and enforcing password aging controls. Consider enhancing authentication by
 adding CAPTCHA, or adding application-specific challenge questions, or using strong authentication
 such as two factor authentication. Consider pre-registering users and implementing strong
 authentication for access to any exposed APIs. Consider implementing strong authentication
 application-wide.
Rate Limit the rate of requests per session/user/IP address/device/fingerprint.
Monitoring Log application-wide activity; monitor for unusual peaks. Log click-through and conversion rates for
 links within the application; monitor individual user rates relative to average rates. Log access behaviour
 patterns (e.g. source geolocation, days/times, paths taken by user through the application); monitor
 repeated patterns for individuals and groups of users.
Instrumentation Consider blocking or delaying access by users in a particular session, IP address/range or geolocation
 once Monitoring has identified a real Account Aggregation attack, or other anomalous behaviour that
 has identified the user as an attacker.
Contract Define T&Cs to explicitly ban users from using aggregation tools, and consider requiring opt-in
 agreement to these before the application can be used. Define acceptable use and service limits for any
 APIs used by approved aggregators.
Response Define actions to be taken in the event an Account Aggregation attack is detected.
Sharing Participate in threat intelligence exchanges and contribute Account Aggregation attack data to sector-
 wide sharing systems.

Note that in certain applications, some types of Account Aggregation may be desirable, or even encouraged, rather than
being threats.

• Lack of end user engagement with the service provider
• Account information access behavior patterns (e.g. geolocation, time zones) that do not match the user profile
• Elevated activity peaks
• Account credentials identified elsewhere

Possible Symptoms

Suggested Threat-Specific Countermeasures

..

..

OWASP Automated Threat Handbook Web Applications

70 Open Web Application Security Project

OAT-021 Denial of Inventory

...

..

Deplete goods or services stock without ever completing the purchase or committing to the
transaction.

Automated Threat Event Reference

Sectors Targeted

Education

Entertainment

Financial

Government

Health

Retail

Technology

Social Networking

Parties Affected

Few Individual Users

Many Users

Application Owner

Third Parties

Society

Data Commonly Misused

Authentication Credentials

Payment Cardholder Data

Other Financial Data

Medical Data

Other Personal Data

Intellectual Property

Other Business Data

Public Information CAPEC Category / Attack Pattern IDs

• 210 Abuse of Functionality

WASC Threat IDs

• 21 Insufficient Anti-Automation
• 42 Abuse of Functionality

CWEs

• 799 Improper Control of Interaction
 Frequency
• 841 Improper Enforcement of
 Behavioral Workflow

OWASP Attacks

• Abuse of Functionality

See Also

• OAT-005 Scalping
• OAT-013 Sniping
• OAT-015 Denial of Service

Other Names and Terms

Hoarding; Hold all attack; Inventory
depletion; Inventory exhaustion; Stock
exhaustion

Description

Selection and holding of items from a limited inventory or stock, but which are never
actually bought, or paid for, or confirmed, such that other users are unable to buy/
pay/confirm the items themselves. It differs from OAT-005 Scalping in that the goods
or services are never actually acquired by the attacker.

Denial of Inventory is most commonly thought of as taking ecommerce items out
of circulation by adding many of them to a cart/basket; the attacker never actually
proceeds to checkout to buy them but contributes to a possible stock-out condition.
A variation of this automated threat event is making reservations (e.g. hotel rooms,
restaurant tables, holiday bookings, flight seats), and/or click-and-collect without
payment. But this exhaustion of inventory availability also occurs in other types of
web application such as in the assignment of non-goods like service allocations,
product rations, availability slots, queue positions, and budget apportionments.

If server resources are reduced see OAT-015 Denial of Service instead. Like OAT-005
Scalping , Denial of Inventory also reduces the availability of goods or services.

Target URL(s)
and Parameter

Values

Goods / Services
Allocation

Process(es)

Purchase /
Commitment
Process(es)

..

..
71v1.2

Denial of Inventory OAT-021

...

Deplete goods or services stock without ever completing the purchase or committing to the
transaction.

Class Threat-Specific Comments
Value Consider requiring a deposit to reserve or book the goods/services. Consider providing incentives for
 quicker progression through checkout to payment.
Requirements Document allocation/assignment policies and related settings/rules for identified applicable capacities
 and time outs. Consider how settings/limits should vary for seasonal or time-limited or low-availability
 stock.
Testing Define test cases for OAT-021 Denial of Inventory that confirm the application will detect and/or
 prevent users attempting to remove inventory/stock from availability and hold onto it without
 paying/completing.
Capacity Not applicable
Obfuscation Consider randomising the content and URLs of product/catalogue pages and addition to basket/
 assignment processes.
Fingerprinting Consider identifying and restricting automated usage by fingerprinting the User Agent for its unique
 characteristics.
Reputation Consider identifying and restricting automated usage by reputational methods.
Authentication Consider requiring greater identity authentication before goods/services can be allocated/assigned.
 Empty all items from baskets of anonymous users when their session expires.
Rate Inform users of item holding time-outs. Consider limiting individual basket capacities. Consider
 increasing basket and basket item time-outs, or making these dynamic in response to demand and/or
 expiration dates. Consider reducing the time period reservation allocations remain valid. Consider
 disabling cash purchases for goods/services at certain times. Consider moving older baskets to wish
 lists. Consider limiting addition/re-addition to basket/allocation/assignment mechanisms per user, per
 group of users, per IP address/range, per device ID/fingerprint etc.
Monitoring Log inventory allocation and de-allocation for each good/service item, log per session allocation,
 individually and in aggregate, across all channels (web, mobile app, call centre, physical retail stores,
 etc). Log drop-out rates for reservation/click & collect/pay by cash services. Identify stock issues raised
 by customers/clients/citizens; monitor trends.
Instrumentation Consider emptying or disabling baskets etc in a particular session, IP address range or geolocation once
 Monitoring has identified a real Denial of Inventory attack, or other anomalous behaviour that has
 identified the user as an attacker
Contract Define T&Cs to explicitly ban users from using the application in a way that leads to denial of inventory.
 Use contracts to prohibit employees and partners from undertaking or instigating such attacks against
 competitors.
Response Define actions to be taken in the event a Denial of Inventory attack is detected.
Sharing Participate in threat intelligence exchanges.

• Inventory balances reduce quickly
• Increased stock held in baskets or reservations
• Elevated basket abandonment
• Reduced use of payment step
• Increasing complaints from users being unable to obtain goods/services

Possible Symptoms

Suggested Threat-Specific Countermeasures

..

..

OWASP Automated Threat Handbook Web Applications

72 Open Web Application Security Project

...

OWASP Automated Threat Handbook Web Applications

This handbook is an output of the OWASP Automated Threats to Web Application Project. It is
classed as an OWASP Incubator project. The project creates information and other resources for
software architects, developers, testers and others to help defend against automated threats.

https://www.owasp.org/index.php/OWASP_Automated_Threats_to_Web_Applications

All OWASP materials are free to use. This document is licensed under the Creative Commons
Attribution-ShareAlike 3.0 license, so you can copy, distribute and transmit the work, and you
can adapt it, and use it commercially, but all provided that you attribute the work and if you alter,
transform, or build upon this work, you may distribute the resulting work only under the same or
similar license to this one.

© 2015-2018 OWASP Foundation

..

..

4270997813299

ISBN 978-1-329-42709-9
90000

