

1

Eirini Molla Theodoros Tzouramanis Stefanos Gritzalis
University of the Aegean

eirinim@aegean.gr
University of the Aegean

ttzouram@aegean.gr
University of the Aegean

sgritz@aegean.gr

Abstract

Due to the increasing demand for cloud services and the threat of privacy invasion, the user is suggested to encrypt the data before it is
outsourced to the remote server. The safe storage and efficient retrieval of d-dimensional data on an untrusted server has therefore crucial
importance. The paper proposes a new encryption model which offers spatial order-preservation for d-dimensional data (SOPE model). The paper
studies the operations for the construction of the encrypted database and suggests algorithms that exploit unique properties that this new model
offers for the efficient execution of a whole range of well-known queries over the encrypted d-dimensional data. The new model utilizes well-
known database indices, such as the B+-tree and the R-tree, as backbone structures in their traditional form, as it suggests no modifications to them
for loading the data and for the efficient execution of the supporting query algorithms. An extensive experimental study that is also presented in
the paper indicates the effectiveness and practicability of the proposed encryption model for real-life d-dimensional data applications. This paper
is an abridgment of a diploma thesis1.

 Keywords: applied cryptography; searchable encryption; order preserving encryption; seure queries; d-dimensional data;

1. Introduction

Cloud computing is a resources-delivery model, which
provides services over the internet. Users can select and
manage the available services, for example through a web
browser, while the enterprise information system; its data and
software are on servers at a remote location.

Cloud computing today plays a vital role in the
implementation and execution of effective on-demand
location-independent information systems’ services in low
cost. For this reason, cloud computing is becoming more and
more popular while this popularity grows even more faster as
more cloud services companies share valuable resources on the
internet in cost effective ways.

In addition to the cloud services models that have been
defined by NIST [1], the cloud offers also services such as the
Database-as-a-Service (DaaS) which enables organizations to
deploy new databases quickly, securely, and cheaply, thus
offers them accelerated deployment, elastic capacity, great
consolidation efficiency, and high availability in a very low
overall operational cost and complexity.

Due to the increasing demand for more cloud services there
is a growing threat of sensitive data security and privacy
disruption by deploying several available network attacks [1,
2], such as SQL injection, cross site scripting, man in the
middle, sniffing attacks, attacks against virtual machine
hypervisors, etc. Therefore, the data needs to be encrypted in
order to be protected, before stored in the cloud. By encrypting
the data with an appropriate method, it is very difficult -if not

1 This paper is an abridgment of a diploma thesis [59] submitted by Eirini Molla (MSc e-mail:icsdm13002@icsd.aegean.gr, current e-mail: eirinim@aegean.gr)

of the University Of the Aegean in partial fulfillment of requirements for the degree of Master "Technologies & Management of Information & Communication
Systems: Information and Communication Systems Security" and can be retrieved from the Hellanicus Institutional Repository (http://hellanicus.lib.aegean.gr).

impossible- for any potential attacker to gain access to the data
in its non-encrypted form. However, the disadvantage of this
solution is the communication and computational cost for
executing the client’s queries efficiently in the encrypted
database.

The methods that offer sensitive data protection from
untrustworthy cloud providers and malicious attackers and at
the same time efficient execution of the client’s queries can be
grouped in several categories based on one of the following
cryptographic primitives:

• Searchable symmetric encryption, in which every
query over the encrypted database uses keywords
and/or secure indices to retrieve the (encrypted) data
results [3, 4, 5, 6, 7].

• Fully-homomorphic encryption, in which
computations over encrypted data can be performed,
based on a mathematical property called
homomorphism that supports basic operations like
addition and multiplication on ciphertexts [8, 9, 10].

• Functional encryption, in which the data owner
encrypts the data using a public key and additionally
s/he predefines access privileges for the rest of the
users to access it. The users can then get secret keys
from a trusted server and then decrypt parts of the
encrypted data on the basis of their assigned
privileges [11, 12, 13].

SOPE: A Spatial Order Preserving Encryption
Model for Multi-dimensional Data

2

• Oblivious Ram, in which an interface between a
program and the physical RAM can hide the user’s
access patterns from an adversary [14, 15, 16, 17].

• Property preserving encryption, in which the
encrypted data can sustain some selected properties
of the original un-encrypted data [18, 19, 20].

In the latter category, among other techniques, the Order
Preserving Encryption (OPE) method is based on the principle
that the order of two plaintexts x and y will hold also for their
ciphertexts Enc(x) and Enc(y), i.e., Enc(x) > Enc(y) iff x > y.
The advantage of this method is that the order operations can
be performed on the ciphertexts in the same way as on the
plaintexts. Therefore query operations such as MIN, MAX and
COUNT can be easily executed on the encrypted data as if they
were on their original unencrypted form, while other
operations such as SUM and AVG cannot function similarly
since their output is not based on the order of the data. The
disadvantage of the OPE method is that the cloud provider is
aware of the order of the stored items. As a result, the provider
can check out if a ciphertext is greater or smaller than any other
ciphertext. Surely this is not a negligible disadvantage and
under certain circumstances can hurt the security and privacy
of the data. If for example the attacker is able to find the one-
on-one correspondence between just one plaintext to its
ciphertext, s/he may be able to approximately estimate the
range of other ciphertexts through assumptions.

However there are applications in which revealing only the
order of the data is not considered as a security leakage. As an
example, an email storage box on a server can be considered,
in which the data are encrypted with OPE on the date field or
on the alphabetical order of the name of the sender. This way,
given the OPE key, the email box owner can access the emails
with a high degree of protection for the data while at the same
time s/he can enjoy sorting and searching functionalities.

The example shows that as long as the application can
endure that the OPE scheme will reveal information about the
order of the items stored, the benefits on executing queries are
significant since the technique allows comparison operations
to be directly applied on the encrypted data, without the need
to decrypting them.

The notion of indistinguishability under the ordered
chosen-plaintext attack (IND-OCPA), [20] requires that an
adversary with access to a set of ciphertexts will learn nothing
except the order of the items. This guaranty is considered as
the ideal security for OPE schemes for single-dimensional data
and it has been shown that it is impossible for any OPE scheme
to achieve IND-OCPA if the ciphertexts are immutable and the
encryption is stateless.

[21] shows that IND-OCPA is impossible even for a stateful
OPE scheme, however the property is achievable when the
ciphertexts are mutable. The paper proposes also the mutable
order preserving encoding (mOPE) model which uses an
interactive protocol between the client and the untrusted server
to help the latter managing the ciphertexts in the encrypted
database.

This work proposes an OPE model for d-dimensional data
that is influenced by the mOPE model for single-dimensional
data proposed in [21].

To the best of the authors’ knowledge this work is the first
to provide such a spatial OPE encryption for d-dimensional
data. A whole range of traditional and other well-known spatial
queries can be supported securely and efficiently within this
new framework, as it is shown in the experimental study of the
paper. In summary, the scientific contributions of this work are
as follows:

• an interactive spatially-based mOPE scheme (SOPE)
for d-dimensional data with a security guaranty that
an adversary cannot distinguish between the
encryptions of two sequences of objects as long as the
sequences have the same spatial order relation,

• a bunch of algorithms for the secure and efficient
processing of several well-known spatial queries,
such as the point query, the range query, the k-nearest
neighbours query, the static and dynamic skyline
queries, etc.

• an extensive experimental evaluation study which
illustrates the efficiency and practicability of the
proposed scheme to support effectively high-
demanding d-dimensional applications.

The rest of the paper is organized as follows. Firstly, the
related work is discussed in Section 2. Threat models and some
assumptions and notations that are relevant to the proposed
work are discussed in Section 3. The proposed SOPE model
for spatial order preservation in d-dimensional databases and a
security analysis are presented in Section 4. The algorithms for
processing an extensive set of queries in d-dimensional data
using the new model are formally presented and discussed in
Section 5. Extensive experimental results on real and synthetic
data regarding the space and time performance of the proposed
encryption framework are surveyed in Section 6. Finally, the
conclusion of the research is provided in Section 7.

2. Related work

As it can be understood, OPE is a very popular model for
single-dimensional database applications due to its ability to
support efficient range query processing directly on the
encrypted data without the need to decrypt them. The method
was introduced in 2004 by Agrawal et al. [19] and a plethora
of relative work has been introduced since then. [19] proposes
the transformation of the plaintext database into a flat database
such that the values are uniformly distributed. This flat
database is then transformed into the cipher database such that
the data values are distributed according to the targeted
distribution. The transformation of the database is performed
by splitting it in several buckets and by using linear
interpolation inside every bucket. The drawback of this method
is that it must take as input all the plaintexts in the database in
advance which is not always practical in real-life applications.
[20] shows that IND-OCPA is unachievable by any OPE
scheme with stateless encryption and immutable ciphertexts.
The authors propose an efficient OPE scheme on the basis of a
sampling algorithm for the hypergeometric probability
distribution. As IND-OCPA is unachievable for this scheme,
they propose a security notion of a random order-preserving
function (ROPF) and related primitives asking that an OPE
scheme will look “as-random-as-possible” subject to the order

3

preserving constraint. The encryption algorithm of the scheme
in [20] behaves similarly to an algorithm that samples a ROPF
from a specified domain on-the-fly (called “Lazy Sampling” in
[22]). [23] improves the performance of the OPE scheme
presented in [20] and [24, 25] show that the security definition
of the ROPF inherently reveals at least half of the plaintext bits.
Also, [26] experimentally show that this method has quite poor
performance efficiency.

[27] proposes an OPE indexing scheme which indexes
plaintexts by using simple linear expressions of the form a * x
+ b + noise, in which x is the value for encryption, the
coefficients a and b are kept secret (not known to the untrusted
cloud server) and noise is randomly sampled from some
particular range, such that the order of the plaintexts is
preserved. [28] proposes a nonlinear indexing scheme to
address the vulnerability of linear indexing. A nonlinear
indexing expression has the form a * f (x) * x + b + noise, where
f (x) is a function over x. However [21] discusses an attack that
can break the schemes of [27, 28].

[29] weakens the security notion of IND-OCPA to IND-
OLCPA (indistinguishability under ordered and local chosen-
plaintext attack) requiring that the adversary can learn the
ciphertexts only for ‘nearby’ values. The paper also extends the
concept of OPE to generalized OPE (GOPE). Unlike OPE, the
ciphertexts of GOPE may not be numbers, however using
special comparison algorithms GOPE can still compare the
encrypted data without needing to decrypt them. [30] proposes
another generalization of OPE, called order-revealing
encryption (ORE). In contrast to OPE in which the ordering of
the underlying plaintexts is determined by numerically
comparing the ciphertexts, in ORE scheme there is a publicly
computable comparison function. The function takes two
ciphertexts and outputs the numeric ordering of the underlying
plaintexts. Although it provides IND-OCPA, the construction
of the scheme relies on multi-linear maps and is therefore too
inefficient in practice. An efficient ORE scheme is proposed
by [31] however its drawback is that it leaks some information
about the underlying plaintexts.

[32] presents a keyless IND-OCPA OPE scheme for
outsourced data. The state of the algorithm plays the role of the
key, i.e., it is secret information. Differently from a key, the
state of the algorithm is not pre-generated, but grows with the
number of encryption operations. The size of the state of the
encryption algorithm is the size of a dictionary of the database
that maps the plaintext data to ciphertext which is sent to the
server. If an update is required then potentially the entire
client’s dictionary and all the corresponding ciphertext values
at the server-side might need to be updated. However, by
keeping the dictionary at the client, the number of interactions
between client and server for data updates are reduced. An
important drawback of the method is its increased secure
storage demands on the client-side.

[21] provides ideal security, which is IND-OCPA, by using
a B+-tree and an interactive protocol to provide OPE. Many
other works have been proposed that rely on the OPE
technology [19, 20, 24, 27, 28, 33, 34, 35, 36, 37, 38].
However, most of them provide weak security definitions by
making assumptions about the possible attacks. [21], [34] and
[32] are some excellent references providing comparisons

regarding the security and efficiency of several previous
works.

All the above-mentioned work has been proposed to handle
single-dimensional data. As regards to multi-dimensional data,
a solution to compute the range query is proposed in [39]. The
method computes a secure indexing tag of the d-dimensional
data by applying bucketization (i.e., data splitting in buckets)
which prevents the server from learning the exact plaintext
values while it is still able to check if a record satisfies the d-
dimensional range query predicate. The server returns a set of
encrypted records and the client needs to perform some
additional processes to select the records that satisfy the query.
An analogous strategy with data grouping based on Voronoi
diagrams is applied in [40] for the support of the nearest
neighbour query.

[41] and [42] encrypt the database using similar data
transformations and address the problem of nearest neighbour
and skyline search respectively over the encrypted data. The
drawback of the proposed query processing models is that their
algorithms need to access every one tuple in the encrypted
database to provide the answer to the query. [43] proposes
another model to support the range query which however needs
also to scan the whole database for executing the query. [44]
focuses on location data and proposes linear coordinates
transformations on every dimension, such as that in [27, 28]
with the accompanied weaknesses of these schemes, to prevent
the disclosure of the data while supporting efficiently range
and k nearest neighbor queries. The paper proposes also an R-
tree-based solution with encrypted tree nodes (as encrypted
buckets of records) which can be decrypted only by the client.
In this solution most of the processes for data modifications
and querying are performed by the client with high
communication cost between the client and the server, while
the server simply offers storage services for the encrypted R-
tree.

Another transformation scheme [45] utilizes the Hilbert
curve mapping [46] to transform spatial data points into one-
dimensional values and then uses a one-dimensional OPE
scheme to encrypt the data. The scheme supports the execution
of range queries by decomposing them into a possibly large
number of intervals, leading to high processing and
communication costs. Also the evaluation of other spatial
queries remains to be explored.

This paper extends the single-dimensional OPE
methodology to the goal of supporting the encryption of d-
dimensional data and the efficient execution of spatial queries
on the encrypted database without the need to store any
additional information but the secret key. The new scheme is
inspired by [21] and utilizes an interactive communication
protocol between the user and the server to offer IND-SOCPA,
a security guaranty which is equivalent to IND-OCPA for
multi-dimensional data. The cloud server is not assumed
trusted and no intermediate authority such as a central trusted
party is needed for any operation. The proposed model
provides the user with the ability to access the database via any
device with some minimum power and the server with the
ability to implement its service using any existing spatial
database management system (DBMS). The encryption
procedure sustains the topology of the original data and to the
best of the authors' knowledge this work is the first to provide

4

such an encryption model offering spatial order preservation
for d-dimensional data (SOPE model).

3. Preliminaries

3.1. Threat Models

It is assumed that the communication between the client and
the server is performed without any intermediary entity (for
example, a fully trusted authority) and that the client is capable
to properly protect the secret key used for the encryption. It is
also assumed that the cloud server to be honest-but-curious,
whose goal might be to obtain full access to the plaintext of the
encrypted stored data without altering any data that is
communicated between the client and the server. The paper
does not address data integrity and availability threats which
can be handled by other mechanisms.

3.2. Assumptions and Notations

The proposal is based on the DaaS model. The two entities
in the system are the legitimate client and the cloud server that
interact between each other as the model is executed. The
architecture considers the participation of one client although
more clients can participate as well. The client owns the d-
dimensional data and outsources them to the server in an
encrypted form, wishing to not be revealed to any unauthorized
entity. The client also aims to be able to search the data while
protecting their confidentiality. The client is assumed to be
capable to properly protect the secret key for the data
decryption process. Finally, the client’s device is assumed to
have some minimum power, for example for being able to
process the encryption and decryption processes or to perform
simple calculations in order to refine the queries’ results if
needed.

The main burden of computation cost is assigned to the
cloud service, which is this assumed to have ample storage
space and power resources to store and query encrypted data
through its sharing database services for the client. All data are
assumed to be protected using existing symmetric or
asymmetric data encryption schemes, which are not the focus
of this paper, though symmetric encryption is encouraged.

Table 1 lists the most commonly used symbols in the paper.

Symbol Definition
OS The original data space
ES The ‘encoded’ data space that is

produced by the proposed SOPE model
d The number of data dimensions
P A set of d-dimensional objects
P' The encoded version of P
n The cardinality of P

p, e, r, p1, p2, .., pk d-dimensional data points
p (p1, p2, …, pd) A d-dimensional point p with coordinates

p1, p2, …, and pd
p’ (p’1, p’2,…, p’d) The encoded version of point p

Table 1: Symbols and Notations.

4. The proposed model

4.1. The new model’s overview

The new model encrypts and stores d-dimensional objects
on the basis of their spatial order. To achieve this it uses a
separate B+-tree for encoding the objects’ coordinates in every
dimension and an R-tree for finally storing the encoded objects.
The system's simplified logical diagram is illustrated in Figure
1. A design goal is that the protocol of the proposed system
should be simple enough to be implementable on top of
existing clouds and DBMSs while at the same time it will
operate with low communication and computational cost.

Client Server

Secret Key

Interaction

B+-tree

B+-tree

B+-tree

 R-tree

Figure 1: The simplified logical diagram of the proposed model.

4.2. Calculating the Encodings of the Encrypted Coordinates

For every dimension, a B+-tree indexes the encrypted
coordinate values of all the inserted database objects so far with
the order of their corresponding plaintexts. This is achieved
with the cooperation of the server and the user using a
communication protocol that is based on the single-
dimensional mOPE model proposed in [21] by adding some
necessary modifications.

 0 2 4 5 6

30 60

30 50

30 58

60 80

60 70 80

 0 2 3 4 5 6 8

30 60

30 50

30 55 58

60 70

60 65

80

70 80

80

30 80

 (a)
(b)

Figure 2: The evolution of a B+-tree and the corresponding evolution of the
encodings (in red colour under the leaves) of its stored keys.

5

Based on this strategy, an encoding is assigned to every
single encrypted coordinate value; this encoding is related to
the position of the coordinate value in the corresponding B+-
tree. To construct this encoding by following the model
proposed in [21], log2B bits are needed for every level of the
B+-tree, where B is the node’s capacity, i.e., log2B bits are
needed to represent which pointer of every index node in the
path from the root needs to be followed in order to find the
coordinate value in the leaf level of the tree, and additionally
log2B bits are needed to represent the position of this
encrypted value in the hosting leaf. For example, assuming that
the encrypted version of a coordinate value is 70, its encoding
in the B+-tree section of Figure 2a (2b) is 1-0-1 (0-1-1-0) in
binary form, which can be converted to 1*22 + 0*21 + 1*20 = 5
(0*23 + 1*22 + 1*21 + 0*20 = 6) in decimal form.

Analogous process is repeated for every dimension and thus
the coordinates of every encrypted d-dimensional object are
transformed to their corresponding encodings and the object is
then inserted in the R-tree. This R-tree finally offers encryption
with spatial order preservation since the order of the coordinate
values of the stored objects does not change, thus preserving
the corresponding spatial relations between the objects in the
transformed space (i.e., if for example an object ob1 is on the
left side of an object ob2 before the encryption, this relation
between the two objects is preserved in their encrypted version
as well).

4.3. Data Insertion

This section surveys the object insertion process in the
proposed SOPE model, with all the necessary communication
interaction between the user and the server. For simplicity the
discussion will focus on the insertion of a single-point object
since the insertion of a multi-point object (e.g., a polygon) is a
simply extension of this. The process is formally illustrated in
Algorithms 1 and 2.

 Algorithm 1: Object Insertion ()

Input: a new point object p(p1, p2, …, pd).
Output: the updated B+-trees with the OPE
 encodings for each dimension and the
 updated R-tree with the encoded objects.

1:

2:
3:

4:

5:

6:

7:

Client: informs the Server to begin the
 insertion process of the new point p;
FOR every dimension i DO
 Server/Client: find in cooperation the
 position in the i-th B+-tree in which
 the encrypted value of pi will be
 inserted, and find also as well its
 SOPE encoding p’i; (see Algorithm 2)
 Server: inserts the encrypted value of
 pi coordinate in the i-th B+-tree;
 Server: computes the range [p1’i,p2’i] of
 the affected encodings in the B+-tree
 that will be updated in the R-tree;
 Server: executes in the R-tree a range
 query [p1’i, p2’i] on the i-axis to
 update any encoded i-coordinate of
 every object in this range to its
 newer value;
Server: Inserts the new point p’(p’1, p’2,

8:

 …, p’d) in the R-tree;
END;

Algorithm 1: The object insertion process in the proposed SOPE model.

In the begining of the process (Algorithm 1, Line 1) the
client informs the server for the initiation of the insertion
process. Since the coordinates of the object which the client
wishes to insert are encrypted, the server cannot place the
object in a spatial order with regard the other objects in the
database. For this reason, for every dimension i (Algorithm 1,
Line 2), the server and the client interact (Algorithm 1, Line
3) in order to find the proper SOPE encoding pi' of the i-th
coordinate pi of the object.

More specifically, as Algorithm 2 shows in more detail, the
server sends to the client the root node of the B+-tree of the i-
th dimension (Algorithm 2, Line 1). The client then decrypts
the index keys in the root and compares them against the new
key which s/he wants to insert into the tree. When the client
finds the maximun decrypted index value that is smaller or
equal than the key which will be inserted, s/he informs the
server which pointer to follow in order to retrieve the correct
child node in the next level of the tree (Algorithm 2, Line 3).
The server receives this information and sends the
corresponding child node to the client, which node -depending
on the height of the tree- might be an index node or a leaf
(Algorithm 2, Line 4). When the leaf level of the tree has been
reached, the client (Algorithm 2, Line 5) informs the server for
the position in which the new encrypted key needs to be
inserted (if it does not already exist in the tree). The server then
calculates the SOPE encoding pi

' of the coordinate value pi
based on the path from the root of the tree to the target leaf
(Algorithm 2, Line 6). Details on the encoding calculation are
provided in [21].

Then the server inserts the new encrypted coordinate value
in the corresponding B+-tree (Algorithm 1, Line 4). The server
also computes the range [p1'i, p2'i] -if exists- of affected
encodings of pre-stored keys in the B+-tree that need to be
updated in the R-tree (Algorithm 1, Line 5) because the
position that these keys or any of their ancestors had in the B+-
tree before this insertion, has now been changed.

In the next step the server updates in the R-tree the encoded
i-coordinate of every spatial object that has value in the range
[p1'i, p2'i] it to its newer value (Algorithm 1, Line 6).

The same process (Algorithm 1, Lines 2 to 6) is repeated
for every dimension and when the new item’s coordinates
encodings for all the space dimensions have been generated
(based on the positions in which its encrypted coordinates have
been stored in the corresponding B+-trees), then the new multi-
dimensional object is inserted into the R-tree (Algorithm 1,
Line 7).

 Algorithm 2: Server/Client Interaction

 for Objects Insertion(), adapted from
 [21]

1:

2:
3:

Server: sends to the client the root node
 of the i-th B+-tree;
FOR every non-leaf level of the tree
 Client: decrypts the received node and
 compares its index keys with pi.When
 s/he finds the proper index key,s/he

6

4:

5:

6:

7:

 informs the server for its position;
 Server: according to the position
 received by the client, s/he sends
 the corresponding child node to
 the Client;
Client:decrypts the received leaf & sends
 to the Server the encrypted value of pi
 and its position in the target leaf;
Server: computes the SOPE encoding p’i of
 the encrypted value of pi based on the
 path from the root of the tree to its
 position in the target leaf;
END;

Algorithm 2: The interaction process for an object insertion in the proposed
SOPE model.

As regards the encodings in the range [p1'i, p2'i] of the i-th
dimension whose values need to be updated in the R-tree, the
following holds. If the insertion of the encrypted value of the
new coordinate pi in the i-th B+-tree has not caused any node
split to the tree, then p1'i and p2'i are the old encodings of keys
that lie both in the same leaf node with the newly inserted
encrypted value of pi. In this case, p1'i is the old encoding of
the key which is the next on the right side of the newly inserted
encrypted value of pi, and p2'i is the old encoding of the key
that is the right-most key in the same leaf, if both such keys
exist. For example, in Figure 2b, after the insertion of key 55
in the B+-tree of Figure 2a, the range [p1'i, p2'i] is [2, 2], where
2 corresponds to the old encoding value of the key 58 whose
position in the B+-tree was affected from the insertion of the
new key 55, and whose encoding value was changed from 2 to
3.

If, however, the insertion of the encrypted value of the new
coordinate pi has caused the split of a tree node in at least one
level of the B+-tree, then p1'i is the old encoding value of the
next key on the right side of pi (not neseseraly being in the same
leaf with pi) and p2'i is the right-most key in the right-most leaf
an ancestor index key of which (i.e., an ancestor index key in
any possible level) changed its possition because of the
insertion of pi. For example, in Figure 2b, after the insertion
of key 65 in the B+-tree of Figure 2a, the tare phenomenon in
which a node split in every level of the tree has appeared (with
probability (2/B)h, where h is the level of the tree), therefore
the range [p1'i, p2'i] is [5, +∞], where 5 corresponds to the old
encoding value of the key 70 which is the next key on the right
side of 65 and +∞ represents the right-most leaf-key in the tree
since the encoding of every key whose ‘greatest’ ancestor
index key is 80 (i.e., the index key 80 changed its position)
needs to update its value because of this insertion. The result
of the above strategy is that the encoding of zero keys in the
best case (with probability between 1/Β and 2/Β) and of all the
allready-stored encrypted keys in the worst case (with
probability (1/n)*(2/B)h) might need to be updated after the
insertion of a new key.

4.4. Security analysis

The proposed encoding scheme is based on the single-
dimensional mutable OPE model in [21] and extends it in the
multi-dimensional space. The new model can mutate the
encodings of the multi-dimensional objects in every

dimension. Also, by preserving the order of the encodings in
every dimension, the new multi-dimensional model manages
to preserves the spatial order of the encrypted objects in the
transformed space that is produced by these encodings.

Previous work on the field of OPE has shown that
indistinguishability against chosen plaintext attack is
unachievable by a practical OPE scheme. For this reason, a
straightforward relaxation of this standard security notion for
encryption in the single-dimensional domain is IND-OCPA
[20]. For extending the IND-OCPA guarantee in the multi-
dimensional domain, a corresponding security game is
presented. The game is between the client and an adversary and
it proceeds as follows:

1. The client chooses a random bit b.
2. The client and the adversary engage in a polynomial

number of rounds of interaction in which the adversary is
adaptive. At round i:
a. The adversary sends to the client the sequences 𝑃𝑃𝑖𝑖

0
and 𝑃𝑃𝑖𝑖

1 of multi-dimensional objects.
b. The client encrypts only the sequence 𝑃𝑃𝑖𝑖

𝑏𝑏 of objects
and by interaction with the server inserts these
objects in the R-tree, with the adversary observing
the result at the server-side.

3. The adversary outputs b′, its guess for b.

The adversary will win the game if the guess is correct (i.e.,
if b = b′), while the sequences 𝑃𝑃𝑖𝑖

0 and 𝑃𝑃𝑖𝑖
1 are comprised by

objects that have the same spatial order relation among each
other in both sequences of objects.

x

 y

Ο 100 200 300 400 500 600 700 800 900 1000

100

200

300

400

500

600

700

800

900

1000

p1

p2

p3

p4

x

 y

Ο 100 200 300 400 500 600 700 800 900 1000

100

200

300

400

500

600

700

800

900

1000

p5
p6

p7

p8

 (a) (b)

x

pa

pb

pc

pd

 y

Ο 1 2 3 4 5

1

2

3

4

5

 (c)

Figure 3: (a) and (b) two sequences of objects in the OS with the same spatial
order between their objects, and (c) the encoded version of both these objects

sequences in the ES.

An example of such sequences of objects that have the same
spatial order is depicted in Figure 3. Figures 3.(a) and 3.(b)
illustrate the sequences {p1, p2, p3, p4} and {p5, p6, p7, p8} of 2-
dimensional points in the original unencrypted space (OS). The
object p2 (p6) is in the north-east side of object p1 (p5), the
object p3 (p7) is in the south-east side of object p2 (p6), etc.

7

Figure 3.(c) illustrates the encoded version {pa, pb, pc, pd} of
one of these sequences of points in the encoded space (ES) that
is provided by the SOPE model. The adversary will win the
game if s/he can guess correctly which of the two sequences
was encrypted. Let win be the random variable indicating the
success of the adversary in the above game.

Definition 1 (IND-SOCPA – indistinguishability under a
spatial-ordered chosen-plaintext attack): A SOPE scheme is
IND-SOCPA secure if for all p.p.t. adversaries: Pr[win] ≤ ½ +
negl(.), where negl(.) is a negligible function [47].

Theorem. The proposed SOPE scheme is IND-SOCPA
secure.

Proof. The proof is a simple extension of the proof of the
corresponding theorem that the backbone mOPE scheme is
IND-OCPA secure, which provided in [21]. For this reason a
short proof intuition is only provided in this paper. Consider
any adversary and any two sequences P0 and P1 of d-
dimensional objects that the adversary asks for in the security
game. The view of the adversary consists of the information
the server receives in the security game.

Assuming that the data encryption scheme used by the client
(which is not the focus of this paper) produces computationally
indistinguishable from random values that have the same
pattern of repetitions (e.g., produced by a random oracle), the
discussion focuses on the role of the SOPE scheme in the
encoding process. For this goal, we proceed inductively in the
number of d-dimensional objects to be encrypted. Assuming
that after the insertion of i objects in which the adversary
obtains the same information in both cases of sequences P0 and
P1, it will be shown that the information the adversary will
obtain after the i+1-th insertion will be equally the same again.
Supposing that u is the i+1-th object in the P0 sequence and v
is the i+1-th object in the P1 sequence, in both cases the client
and the server in cooperation will execute Algorithm 1 to
insert the object in the R-tree. For every one of the d coordinate
values of either object u or v, since both P0 and P1 sequences
provide the same order in every dimension, the path down on
every B+-tree taken by the algorithm is the same. Either or not
the encrypted coordinate value will exist in the corresponding
B+-tree, the only information the client gives to the server is
which child tree nodes to take in this path, which is also the
same for both cases. And also in both cases the insertion into
the R-tree will be exactly in the same position in the tree since
the encodings of both u and v on all dimensions will be exactly
the same. Therefore, the adversary receives the same
information in both cases, and hence s/he cannot distinguish
between them. �

In the example of Figure 3, the encoded result in Figure 3.(c)
that is provided by the proposed SOPE model might have been
produced by any one of the two sequences of points in Figures
3.a or 3.b with the same probability ½ (for example the
encoded version of both the points p2 of the first sequence and
p6 of the second sequence is the point pb(1, 2) in the encoded
space).

5. Query processing

In this section, algorithms for the efficient execution of a
bunch of well-known queries for d-dimensional data are
presented, which are: the point query, the range query, the
(static) skyline query, the dynamic skyline query, the k-nearest
neighbours query, the constrained k-nearest neighbours query,
the constrained skyline query, the reverse k-nearest neighbour
query, the constrained skyline query, and the continuous
nearest neighbour query. An analysis on the skyline query
family can be found in [48]. For every query, an example is
presented, as well as a formal description of the proposed
algorithm to efficiently support it, using a step-by-step pseudo-
code illustration, and a theoretical proof of its correctness and
efficiency. The 2-dimensional dataset P which is used
throughout all the examples that follow is illustrated in Table
2.

Table 2: A dataset P of twenty eight 2-dimensional points with coordinates

<X, Y> and SOPE encoding values <X', Y'>.

5.1. The Point Query

Given a dataset P of d-dimensional points and a reference
query point q, the point query finds if q exists in the dataset.
The algorithm for processing the point query in the proposed
SOPE model is illustrated in Algorithm 3.
 Algorithm 3: The Point Query()

Input: a reference point q(q1, q2, …, qd).
Output: TRUE if q appears in the dataset
 and FALSE if it does not.

1:

2:
3:

4:
5:

6:

7:
8:

Client: informs the Server to begin the
 execution of the point query with regard to
the given query predicate q;
FOR every dimension i DO
 Server: sends to the client the root
 node of the i-th B+-tree;
 FOR every non-leaf level of the tree
 Client: decrypts the received node
 and compares its index keys
 with qi. When s/he finds the
 proper index key, s/he informs
 the server for its position;
 Server: according to the position
 received by the client, s/he
 sends the corresponding child
 node to the Client;
 Client: decrypts the received leaf;
 IF qi is found in the leaf THEN

object X Y X' Y'

p1 100 100 1 1
p2 250 250 4 4
p3 600 600 11 13
p4 300 400 5 7
p5 450 450 8 8
p6 100 700 1 15
p7 300 480 5 9
p8 500 900 9 19
p9 800 550 15 12
p10 350 850 6 18
p11 200 300 3 5
p12 650 150 12 2
p13 950 900 18 19
p14 600 300 11 5

object X Y X' Y'

p15 50 950 0 20
p16 900 750 17 16
p17 950 950 18 20
p18 400 50 7 0
p19 750 250 14 4
p20 850 150 16 2
p21 150 650 2 14
p22 100 200 1 3
p23 550 100 10 1
p24 700 510 13 11
P25 700 800 13 17
p26 700 350 13 6
P27 100 350 1 6
p28 100 500 1 10

8

9:

10:

11:
12:
13:

14:

 Client: sends to the Server the
 position of qi in the leaf;
 Server: computes the SOPE encoding
 q’i of qi based on the path from
 the root of the tree to the leaf;
 ELSE
 return FALSE;
Server: executes a traditional point
 query to the R-tree with regard to the
 encoded query predicate q’ and returns
 FALSE if q does not appear in the
 dataset;
return TRUE;

Algorithm 3: The point query process in the proposed SOPE model.

In the begining of the process, after in Line 1 of the
algorithm the client informs the server for the initiation of the
execution of the point query with regard to the given query
predicate q(q1, q2, …, qd), for every dimension i (Line 2) the
server and the user interact (Lines 3-12) using a
communication protocol similar to the one appearing in
Algorithm 2 for the object insertion process, in order to find if
qi exists in the corresponding i-th B+-tree. If qi is not found the
process is terminated (Line 12) since it is evident that non
object in the dataset will have coordinate on the i-th axis that
is equal to qi. Otherwise the encoding q'i of qi is calculated and
when this calculation has been succesfully performed for all
dimensions, a traditional point query is executed in the R-tree
with regard to the encoded query predicate q'(q'1, q'2, …, q'd)
to discover if q truly appears in the dataset.

5.2. The Range query

Given a dataset P of d-dimensional points and a reference
query hyper rectangle q with diagonal vertices qa and qb, the
range query retrieves the points that lie in the given rectangle.
The algorithm for processing the range query in the proposed
SOPE model is illustrated in Algorithm 4.

 Algorithm 4: The Range Query()

Input: a reference hyper rectangle q with
 diagonal vertices qa(qa1, qa2, …, qad),
 and qb(qb1, qb2, …, qbd).
Output: the data points that lie into q.

1:

2:

3:

4:

5:
6:

Client: informs the Server to begin the
 execution of the range query with regard to
the given hyper rectangle q;
Client/Server: calculate in cooperation
 the encoded version q'a and q'b of the
 points qa and qb, correspondingly;
Server: executes the traditional Range
 Query to the R-tree with regard to q’
 with diagonal vertices q'a and q'b;
Server: FOR every data point in the
 results, the B+-tree for every
 dimension is traversed to collect the
 ciphertext of its coordinates and sends
 the point to the Client;
Client: decrypts the results;
END;

Algorithm 4: The range query process in the proposed SOPE model.

In the beginning of the process (Line 2), the client and the
server interact with each other in order to calculate the
encodings q'a and q'b of the diagonal vertices qa and qb of the
given hyper rectangle q, as if q'a and q'b should be inserted in
the dataset, using a communication protocol similar to the one
appearing in Algorithm 2 for the object insertion process. Then
a traditional range query is executed in the R-tree with regard
to the encoded hyper rectangle q' with diagonal vertices q'a and
q'b (Line 3), to retrieve all point objects in P that appear to be
inside the requested region. Then for every data point in the
results, the server traverses the corresponding B+-tree in every
dimension to collect the ciphertext of the coordinates of the
point (Line 4) and then sends the point to the client for
descryption. The following proposition validates the
correctness of the algorithm.

Proposition 1: The execution of the range query over the
original (un-encrypted) as well as over the encoded dataset
using the proposed SOPE model produces the same results.

Proof: Let us assume a d-dimensional hyper rectangle q with
diagonal vertices [qa, qb] and its encoded version q' using the
SOPE model with diagonal vertices [q'a, q'b], where q'a and
q'b are correspondingly the SOPE encodings of qa and qb. Let
us also assume that the execution of the range query [qa,
qb]//[q'a, q'b] over the original//encoded dataset P//P' will
produce as result the set of points ORQ//ERQ. Let us assume
now a point p ∈ ORQ, then ∀ i ∈ {1, …, d}: qai ≤ pi ≤ qbi and
since the SOPE model does not change the order of these
values on the i-th axis, then ∀ i ∈ {1, …, d}: q'ai ≤ p'i ≤ q'bi,
where q'ai, p'i and q'bi are correspondingly the OPE encodings
of qai, pi and qbi. Therefore, p ∈ ERQ, thus ORQ ⊆ ERQ.
Similarly it can be shown that ERQ ⊆ ORQ, therefore, finally,
ORQ ≡ ERQ. �

A range query example in the 2-dimensional original space
OS as well as in the corresponding encoded space ES is
illustrated in Figure 4. As the figure shows, the range query
provides the same results in both domains. As it can also be
understood, the SOPE model does not preserve the distance
between points, therefore, point p7 in the OS is closer to the
upper side of the query rectangle, than it is in the ES.

x

p3

p22
p2

p6

p5

p1

p4

p15

p20

p7

p8

p9

p10

p11

p12

p13

p14

p16

p17

p18

p19

p21

p23

p24

p25

p26 p27

p28

 y

Ο 100 200 300 400 500 600 700 800 900 1000

100

200

300

400

500

600

700

800

900

1000

Ο 2 4 6 8 10 12 14 16 18 20

5

10

15

20

25

x

 y

p`3

p`22
p`2

p`6

p`5

p`1

p`4

p`15

p`20

p`7

p`8

p`9

p`10

p`11

p`12

p`13

p`14

p`16

p`17

p`18

p`19

p`21

p`23

p`24

p`2

p`26 p`27

p`28

 (a) (b)

Figure 4: The range query: (a) in the OS, and (b) in the ES.

5.3. The Skyline Query

The skyline operator is important for several applications
involving multi-criteria decision making. Given a dataset P of
d-dimensional points, the operator returns all data points p that

9

are not dominated by another point r in the dataset. For
simplicity, we assume that skylines are computed with respect
to min conditions on all dimensions. Using the min condition,
a point p dominates another point r if and only if the coordinate
of p on any axis is not larger than the corresponding coordinate
of r. Informally, this implies that p is preferable (or ‘more
interesting’) to r according to any preference (scoring) function
which is monotone on all attributes. The algorithm for
processing the skyline query using the proposed SOPE model
is illustrated in Algorithm 5.

 Algorithm 5: The Skyline Query()

Output: the data points that belong into
 the dataset's skyline.

1:

2:

3:

4:
5:

Client: informs the Server to begin the
 execution of the skyline query;
Server: executes the traditional skyline
 query in the R-tree;
Server: FOR every data point in the
 results, the B+-tree for every
 dimension is traversed to collect the
 ciphertext of its coordinates and
 sends the point to the Client;
Client: decrypts the results;
END;

Algorithm 5: The skyline query process in the proposed SOPE model.

The algorithm shows that the skyline query can be
processed directly on the encoded data by executing any
traditional skyline query processing algorithm for indexed data
(for example the one introduced in [49] and its results will be
valid also in the original unencrypted domain. This can be
verified by the following proposition.

Proposition 2: The execution of the skyline query over the
original (un-encrypted) as well as over the encoded dataset
using the proposed SOPE model produces the same results.

Proof: Let us assume that the execution of the skyline query
over the original//encoded d-dimensional dataset P//P' will
produce as a result the set of points OSQ//ESQ. Let us also
assume a point p ∈ OSQ and its corresponding encoded point
p' ∈ P' and that p' ∉ ESQ. Therefore, there is a point r' ∈ ESQ
such that ∀ i ∈ {1, …, d}: r'i ≤ p'i, and since the SOPE
encoding does not change the order of ri and pi, we have that ∀
i ∈ {1, …, d}: ri ≤ pi, therefore p ∉ OSQ, which is a
contradiction to the initial hypothesis that p ∈ OSQ. Thus p' ∈
ESQ, and thus OSQ ⊆ ESQ. Similarly it can be shown that ESQ
⊆ OSQ, therefore, finally, OSQ ≡ ESQ. �

A skyline query example in the 2-dimensional original
space OS as well as in the corresponding encoded space ES is
illustrated in Figure 5. As the figure shows, the skyline query
provides the same results in both domains.

p3

p22
p2

p6

p5

p1

p4

p15

p20

p7

p8

p9

p10

p11

p12

p13

p14

p16

p17

p18

p19

p21

p23

p24

p25

p26 p27

p28

 y

Ο 100 200 300 400 500 600 700 800 900 1000

100

200

300

400

500

600

700

800

900

1000

x

x

 y

Ο 2 4 6 8 10 12 14 16 18 20

5

10

15

20

25

p`3

p`22
p`2

p`6

p`5

p`1

p`4

p`15

p`20

p`7

p`8

p`9

p`10

p`11

p`12

p`13

p`14

p`16

p`17

p`18

p`19

p`21

p`23

p`24

p`25

p`26 p`27

p`28

 (a) (b)

Figure 5: The skyline query: (a) in the OS, and (b) in the ES.

5.4. The Global Skyline Query

Given a dataset P of d-dimensional points and a reference
query point q, the global skyline query with regard to q
retrieves the set GSL(q) of those data points which are not
globally dominated by another point in the dataset according to
q. The formal definition of global domination follows.

Definition 2 (Global domination [50]): a point p ∈ P globally
dominates a point r ∈ P with regard to the query point q iff:

1. ∀ i ∈ {1, ..., d}: (pi − qi)(ri − qi) > 0,
2. ∀ i ∈ {1, ..., d}: |pi − qi| ≤ |ri − qi| and
3. ∃ j ∈ {1, ..., d}: |pj − qj| < |ri − qj|.

The algorithm for processing the global skyline query using
the proposed SOPE model is illustrated in Algorithm 6. The
Line 3 of the algorithm uses the corresponding global skyline
query algorithm for processing un-encrypted data proposed in
[50].

 Algorithm 6: The Global Skyline Query()

Input: a reference point q(q1, q2, …, qd).
Output: the data points that belong to
 the global skyline of q.

1:

2:

3:

4:

5:
6:

Client: informs the Server to begin the
 execution of the global skyline query
 with regard to the query predicate q;
Client/Server: calculate in cooperation
 the encoded version q' of q;
Server: executes the traditional global
 skyline query with regard to q’, using
 the R-tree (see [50]);
Server: FOR every data point in the
 results, the B+-tree for every
 dimension is traversed to collect the
 ciphertext of its coordinates and sends
 the point to the Client;
Client: decrypts the results;
END;

Algorithm 6: The global skyline query process in the proposed SOPE model.

The above Algorithm 6 in Line 3 shows that the global
skyline query can be processed directly on the encoded data by
executing the traditional global skyline query processing
algorithm proposed in [50] and its results will be valid in the
original unencrypted domain as well. This can be verified by
the following proposition.

10

Proposition 3: The execution of the global skyline query over
the original as well as over the encoded dataset using the
proposed SOPE model produces the same results.

Proof: Let us assume that the execution of the global skyline
query over the original//encoded d-dimensional dataset P//P'
will produce as the result the set of points OSQ//ESQ. Let us
also assume a global skyline point p ∈ OSQ for which we have
that ∀ i ∈ {1, …, d}: qi ≤ pi, and that for its corresponding
encoded point p' ∈ P' we have p' ∉ ESQ. Therefore, there is a
point r' ∈ ESQ such that ∀ i ∈ {1, …, d}: ri' ≤ pi', and since the
SOPE encoding does not change the order of ri and pi, we have
that ∀ i ∈ {1, …, d}: ri ≤ pi, therefore p ∉ OSQ, which is a
contradiction to the initial hypothesis that p ∈ OSQ. Thus p' ∈
ESQ, and thus OSQ ⊆ ESQ. Similarly we can show that ESQ
⊆ OSQ, therefore, finally, ∀p ∈ OSQ for which we have that
∀ i ∈ {1, …, d}: qi ≤ pi we have that OSQ ≡ ESQ.

Similarly we can show that OSQ ≡ ESQ for all the hyper
quadrants of the data space for which q is the origin of the axes.
Figure 6 illustrates the four quadrants of the space that are
created having q' as the origin of the axes when we study this
problem in two dimensions. �

 y

6

8

10

x
Ο 1 2 3 4 5 6 7 8 9 10

2

4

q`

1

3

5

7

9

r`
p`

r`

p`

r`

r`

p`

qx < rx < px
qy < ry < py

qx > rx > px
qy < ry < py

qx > rx > px
qy > ry > py

qx < rx < px
qy > ry > py

p`

Figure 6: Global skyline query processing with regard to a point q' in the 2-

dimensional ES, and the four possible spatial relations between a global
skyline point r' and another point p' under examination.

A global skyline query example with regard to a reference
point q in the 2-dimensional OS as well as in the corresponding
ES is illustrated in Figure 7. As the figure shows, the query
provides the same results in both domains.

x

p3

p22
p2

p6

p5

p1

p4

p15

p20

p7

p8

p9

p10

p11

p12

p13

p14

p16

p17

p18

p19

p21

p23

p24

p25

p26 p27

p28

 y

Ο 100 200 300 400 500 600 700 800 900 1000

100

200

300

400

500

600

700

800

900

1000

q

x

 y

Ο 2 4 6 8 10 12 14 16 18 20

5

10

15

20

25

q`

p`3

p`22
p`2

p`6

p`5

p`1

p`4

p15

p`20

p`7

p`8

p`9

p`10

p`11

p`12

p`13

p`14

p`16

p`17

p`18

p`19

p`21

p`23

p`24

p`25

p`26 p`27

p`28

 (a) (b)

Figure 7: The global skyline query: (a) in the OS, and (b) in the ES.

5.5. The Dynamic Skyline Query

Given a dataset P of d-dimensional points and a reference
query point q, the dynamic skyline query specifies a
transformed d-dimensional space which is built based on the

original space. Every point p in P is mapped to another point
with coordinates f1(p),. . ., fd (p), where fi is a one-dimensional
function ∀ i ∈ {1, …, d}. The dynamic skyline of P with
respect to the functions f1, …, fd returns the ordinary (static)
skyline of the transformed d-dimensional space. For simplicity,
we assume that for every point p in P we have: ∀ i ∈ {1, …,
d}: fi(p) = |qi − pi|, i.e., the function fi simply refers to the
absolute distance of every point p to the query point q in the i-
th dimension. The following well-known definitions clear the
related terms that are used to this research.

Definition 3 (Dynamic Skyline): Given a data set P and a
query point q, the dynamic skyline query with regard to q
retrieves the set DSL(q) of all data points in P that are not
dynamically dominated with regard to q.

Definition 4 (Dynamic Domination): A data point p ∈ P
dynamically dominates another data point r ∈ P with regard to
q iff:

1. ∀ i ∈ {1, ..., d}: |qi – pi| ≤ |qi – ri|, and
2. ∃ j ∈ {1, ..., d}: |qj – pj| < |qj – rj|.

The example in Figure 8 shows that the execution of the
dynamic skyline query with regard to a query point q on the
original (un-encrypted) dataset does not produce the same
results with the execution of the same query on the encoded
dataset using the proposed SOPE model. For instance, although
the data point p24 belongs to dynamic skyline of q in the OS,
its corresponding encoded data point p' 24 does not belong to
dynamic skyline of the encoded version q' of q in the ES
because the data point p'' 7 dominates it.

x

 y

Ο 100 200 300 400 500 600 700 800 900 1000

100

200

300

400

500

600

700

800

900

1000

q

p``10

p``21

p``28

p``26
p``14

p``23

p3

p22
p2

p6

p5

p1

p4

p15

p20

p7

p8

p9

p10

p11

p12

p13

p14

p16

p17

p18

p19

p21

p23

p24

p25

p26 p27

p28
p``5 p``7

x

 y

Ο 2 4 6 8 10 12 14 16 18 20

5

10

15

20

25

q`

p`3

p`22
p`2

p`6

p`5

p`1

p`4

p15

p`20

p`7

p`8

p`9

p`10

p`11

p`12

p`13

p`14

p`16

p`17

p`18

p`19

p`21

p`23

p`24

p`25

p`26 p`27

p`28

p``10

p``21

p``28
p``7

p``5

p``23

p``14
p``26

 (a) (b)

Figure 8: The dynamic skyline query: (a) in the OS, and (b) in the ES.

To overcome this problem, the global skyline query can be
used to support the calculation of the dynamic skyline query in
the SOPE model. This is supported by the following
proposition.

Proposition 4: Let P be a d-dimensional dataset, q be the query
point, GSL(q) be the set of global skyline points of P with
regard to q and DSL(q) be the set of dynamic skyline points of
P with regard to q. It holds that DSL(q) ⊆ GSL(q).

Proof: Let us suppose that we have a point p ∈ DSL(q) for
which p ∉ GSL(q). Therefore, there is a point r ∈ GSL(q) that
globally dominates p. Therefore, since based on Definition 2
we have that ∀ i ∈ {1, ..., d}: |pi − qi| ≥ |ri − qi| and ∃ j ∈ {1, ...,
d}: |pj − qj| > |rj − qj|, it follows that based on Definition 4 we
have that p ∉ DSL(q), which is a contradiction to our
hypothesis. Therefore DSL(q) ⊆ GSL(q). �

11

On the basis of Propositions 4 and 3, the execution of a
dynamic skyline with regard to a query point q in the OS can
be translated to an execution of a global skyline in the ES, that
will be followed by a final refinement step to select the global
skyline points with regard to q that are also dynamic skyline
points with regard to q. The proposed algorithm for processing
the dynamic skyline in the SOPE model is therefore as
illustrated in Algorithm 7.
 Algorithm 7: The Dynamic Skyline Query()

Input: a reference point q(q1, q2, …, qd).
Output: the data points that belong to
 the dynamic skyline of q.

1:

2:

3:

Client/Server: execute in cooperation
 the Algorithm 6;
Client: executes the traditional dynamic
 skyline query to the decrypted results in
 order to select the dynamic skyline set
 with regard to q;
END;

Algorithm 7: The dynamic skyline query process in the proposed SOPE
model.

Therefore, as Figure 9 shows, in the case of the dynamic
skyline query the Server in the ES will return to the Client the
global skyline set with regard to the query predicate q (Figure
9.(a)). Then the Client will decrypt the results and will provide
the final refinement step to execute on this selected subset of
the initial dataset any well-known algorithm for processing the
dynamic skyline -with or without using an index- to retrieve
the dynamic skyline (Figure 9.(b)).

x

p3

p22
p2

p6

p5

p1

p4

p15

p20

p7

p8

p9

p10

p11

p12

p13

p14

p16

p17

p18

p19

p21

p23

p24

p25

p26 p27

p28

 y

Ο 100 200 300 400 500 600 700 800 900 1000

100

200

300

400

500

600

700

800

900

1000

q

x

 y

Ο 100 200 300 400 500 600 700 800 900 1000

100

200

300

400

500

600

700

800

900

1000

q

p``10

p``21

p``28

p``26
p``14

p``23

p3

p5
p7

p8

p9

p10
p13

p14

p16

p17

p21

p23

p24

p25

p26

p28
p``5 p``7

 (a) (b)

Figure 9: Processing the dynamic skyline query: (a) in the first step the
Server will calculate the global skyline set in the ES, and (b) in the second
step the Client in the OS will calculate the dynamic skyline of the results of

the global skyline received by the Server.

5.6. The k-Nearest Neighbour Query

Given a dataset P of d-dimensional points and a query
reference point q, the k-nearest neighbour (kNN) query
retrieves the k nearest neighbour data points of q according to
a specified distance metric (Euclidean distance is assumed as
the distance metric in this study).

However, as it can be understood, the proposed SOPE
model maintains only the order of the data in every axis, not
the order of the distance from the origin of the axes or the order
of the distances between the data points. Therefore, the
execution of a nearest neighbour query will not provide
necessarily the same results in the OS and in the ES. Figure 10

provides such an example, in which the nearest neighbour
query with regard to a reference point q in the OS will retrieve
the data point p3 while the same query with regard to the
corresponding encoded point q' in the ES will retrieve the data
point p' 24. This happens because in the OS the data point p3 is
closer to q than p24 and also than any other point, however the
opposite holds in the ES.

x

p3

p22
p2

p6

p5

p1

p4

p15

p20

p7

p8

p9

p10

p11

p12

p13

p14

p16

p17

p18

p19

p21

p23

p24

p25

p26 p27

p28

 y

Ο 100 200 300 400 500 600 700 800 900 1000

100

200

300

400

500

600

700

800

900

1000

q

x

 y

Ο 2 4 6 8 10 12 14 16 18 20

5

10

15

20

25

q`

p`3

p`22
p`2

p`6

p`5

p`1

p`4

p`15

p`20

p`7

p`8

p`9

p`10

p`11

p`12

p`13

p`14

p`16

p`17

p`18

p`19

p`21

p`23

p`24

p`25

p`26 p`27

p`28

 (a) (b)

Figure 10: The nearest neighbour query with regard to a reference point q: (a)
in the OS, and (b) in the ES.

To overcome this problem, the k-global skyline query (i.e.,
a generalization of the well-known global skyline query for k
≥ 1) can be used to support the calculation of the kNN query in
the SOPE model. This is supported by the following
observation.

Observation 1: The k-global skyline set k-GSL(q) of a dataset
P with regard to a query point q includes the k nearest
neighbour points of P to q.

Proof: In the case of k = 1, in Proposition 4 it has been proved
that the set 1-GSL(q) of the first order of global skyline of P
with regard to a reference point q is a superset of the dynamic
skyline set with regard to q. Also, in [51] it has been proved
that the dynamic skyline set of P with regard to q includes the
nearest neighbour point p of P to q. Therefore the observation
truly holds for k = 1.

In the case of k = 2, if we remove from P the set of the first
order of global skyline of P, then using [50] we can find the set
of the second order of global skyline of P with regard to q, in
which we will also have the nearest neighbour point r of the set
“P – 1-GSL(q)” to q. It is obvious now that the set 1-GSL(q)
∪ {r} includes the 2 nearest neighbour points of P to q,
therefore the observation truly holds for k = 2. Using the same
arguments it can be proved by induction that the observation
holds ∀ k ∈ N. �

The following proposition is an extension of Proposition 3
for k ≥ 1 and its proof is also analogous to that of that previous
proposition.

Proposition 5: The execution of the k-global skyline query
over the original as well as over the encoded dataset using the
proposed SOPE model produces the same results.

Algorithm 8 processes the kNN query in the proposed
SOPE model. Therefore, if the client wishes to execute the
kNN query with regard to a query point q, then in Line 3 of the
algorithm the server will execute the corresponding k-global
skyline query with regard to the encoded point q’ (the
supporting Algorithm 12 for processing of the k-global skyline
query is presented in the Appendix), and after collecting the

12

data points in the results and the ciphertext of their coordinates
(Line 4), the server will send the results to the client. The client
in Line 5 will then decrypt the results to compare the distance
from q of every point in the result set, in order to find the k
points with the minimum distance, i.e., the k nearest neighbour
points to q.
 Algorithm 8: The kNN Query()

Input: a reference point q(q1, q2, …, qd)
 and the requested value of k.
Output: the kNN data points of q

1:

2:

3:

4:

5:

6:

Client: informs the Server to begin the
 execution of the kNN query with regard
 to the query predicate q;
Client/Server: calculate in cooperation
 the encoded version q' of q;
Server: executes the k-global skyline
 query with regard to q’, using the R-tree
 (see Algorithm 12);
Server: FOR every data point in the
 results, the B+-tree for every
 dimension is traversed to collect the
 ciphertext of its coordinates and sends
 the point to the Client;
Client: decrypts the results & compares their
 distances from q to find the kNN of q;
END;

Algorithm 8: The kNN query process in the proposed SOPE model.

A k-global skyline query example with regard to a reference
point q in the 2-dimensional OS and the corresponding ES for
k=1 // k=2 is illustrated in Figure 7 // Figure 11. As the figures
show, the query provides the same results in both domains. An
interesting observation is that as Figure 11 shows, for k = 2 the
two nearest points to q in the OS are the points p3 and p24 which
both happen to be part of the 1st order of the global skyline
with regard to q.

x

p3

p22
p2

p6

p5

p1

p4

p15

p20

p7

p8

p9

p10

p11

p12

p13

p14

p16

p17

p18

p19

p21

p23

p24

p25

p26 p27

p28

 y

Ο 100 200 300 400 500 600 700 800 900 1000

100

200

300

400

500

600

700

800

900

1000

q

x

 y

Ο 2 4 6 8 10 12 14 16 18 20

5

10

15

20

25

p`3

p`22
p`2

p`6

p`5

p`1

p`4

p`15

p`20

p`7

p`8

p`9

p`10

p`11

p`12

p`13

p14

p`16

p`17

p`18

p`19

p`21

p`23

p`24

p`25

p26 p`27

p`28 q`

 (a) (b)

Figure 11: The 2-global skyline query: (a) in the OS, and (b) in the ES.

5.7. The Constrained k-Nearest Neighbour Query

Given a dataset P of d-dimensional points, a reference query
point q and a hyper rectangle r, the constrained k-nearest
neighbour (constrained kNN) query retrieves the kNN data
points of q that lie in the specified region r. Therefore, the
query targets nearest neighbour points in a region bounded by
certain spatial conditions [52].

As Algorithm 9 shows, a technique to execute the
constrained kNN on the indexed encoded data stored in the ES
is to execute a k-global skyline query on these data that belong
in the desired spatial region (Line 3). After collecting the data

points in the results and the ciphertext of their coordinates
(Line 4), the server will send the final result set to the client for
decryption and calculation of the k nearest neighbours of q in
the constrained region (Line 5). Conceptually, as in the case of
the kNN query, the calculation of the constrained kNN query
using the new SOPE model has two phases. The first phase is
a filtering phase with the execution of a global skyline query in
a set of data points that belong in a desired spatial region in the
ES. The second phase is a refinement phase with the execution
of a traditional kNN query in the OS, using the small subset of
points that has been selected by the filtering phase.
 Algorithm 9: The Constrained kNN Query()

Input: a reference d-dimensional hyper re-
 ctangle r with diagonal vertices ra(ra1,
 ra2, …, rad), and rb(rb1, rb2, …, rbd),
 a query point q(q1, q2, …, qd) and the
requested value of k.
Output: the kNN data points of q in the desired
region r.

1:

2:

3:

4:

5:

6:

Client: informs the Server to begin the
 execution of the constrained kNN query with
regard to the hyper rectangle r and
 the query point q;
Client/Server: calculate in cooperation
 the encoded version r’ (i.e., the
 encoded points r'a and r'b) of the
 rectangle r (i.e., of the points ra and
 rb, correspondingly) and the encoded
 version q' of q;
Server: executes the constrained k-global
 skyline query with regard to r’ and q’,
 using the R-tree;
Server: FOR every data point in the
 results, the B+-tree for every
 dimension is traversed to collect the
 ciphertext of its coordinates and sends
 the point to the Client;
Client: decrypts the results & compares their
 distances from q to find the kNN of q;
END;

Algorithm 9: The constrained kNN query process in the proposed SOPE
model.

The supporting Algorithm 14 for processing the
constrained k-global skyline query is presented in the
Appendix.

Two constrained kNN query examples with regard to a
reference point q in the 2-dimensional OS and the
corresponding ES with k=1 are illustrated in Figures 12 and
13. In the first figure the query point q is located inside the
constrained region while in the second figure the query point is
located outside the constrained region.

13

x

 y

Ο 100 200 300 400 500 600 700 800 900 1000

100

200

300

400

500

600

700

800

900

1000

p3

p22
p2

p6

p5

p1

p4

p15

p20

p7

p8

p9

p10

p11

p12

p13

p14

p16

p17

p18

p19

p21

p23

p24

p25

p26 p27

p28 q

x

 y

Ο 2 4 6 8 10 12 14 16 18 20

5

10

15

20

25

q`

p`3

p`22
p`2

p`6

p`5

p`1

p`4

p`15

p`20

p`7

p`8

p`9

p`10

p`11

p`12

p`13

p`14

p`16

p`17

p`18

p`19

p`21

p`23

p`24

p`2

p`26 p`27

p`28

 (a) (b)

Figure 12: The constrained 1NN query with regard to a reference point q
lying inside the constrained region: (a) in the OS, and (b) in the ES.

x

 y

Ο 100 200 300 400 500 600 700 800 900 1000

100

200

300

400

500

600

700

800

900

1000

p3

p22
p2

p6

p5

p1

p4

p15

p20

p7

p8

p9

p10

p11

p12

p13

p14

p16

p17

p18

p19

p21

p23

p24

p25

p26 p27

p28

q

x

 y

Ο 2 4 6 8 10 12 14 16 18 20

5

10

15

20

25

q`

p`3

p`22
p`2

p`6

p`5

p`1

p`4

p`15

p`20

p`7

p`8

p`9

p`10

p`11

p`12

p`13

p`14

p`16

p`17

p`18

p`19

p`21

p`23

p`24

p`25

p`26 p`27

p`28

 (a) (b)

Figure 13: The constrained 1NN query with regard to a reference point q
lying outside the constrained region: (a) in the OS, and (b) in the ES.

5.8. The Constrained Skyline Query

Given a dataset P of d-dimensional points and a set of
constraints, the constrained skyline query returns the most
interesting points in the data space defined by the constraints.
Typically, each constraint is expressed as a range along a
dimension and the conjunction of all constraints forms a hyper
rectangle (referred to as the constraint region) in the d-
dimensional attribute space [49].

The SOPE model can process such queries with some
necessary adaptation on the skyline query algorithm presented
earlier in this paper. As in the case of the constrained kNN
query, the entries not intersecting the constraint region are
pruned.

An example of the execution of the query is presented in
Figure 14. Based on Propositions 1 and 2 it is clearly
understood that the execution of the query in both the OS and
in the ES domains provide the same results.

x

 y

Ο 100 200 300 400 500 600 700 800 900 1000

100

200

300

400

500

600

700

800

900

1000

p3

p22
p2

p6

p5

p1

p4

p15

p20

p7

p8

p9

p10

p11

p12

p13

p14

p16

p17

p18

p19

p21

p23

p24

p25

p26 p27

p28

x

 y

Ο 2 4 6 8 10 12 14 16 18 20

5

10

15

20

25

p`3

p`22
p`2

p`6

p`5

p`1

p`4

p`15

p`20

p`7

p`8

p`9

p`10

p`11

p`12

p`13

p`14

p`16

p`17

p`18

p`19

p`21

p`23

p`24

p`25

p`26 p`27

p`28

 (a) (b)

Figure 14: The constrained skyline query: (a) in the OS, and (b) in the ES.

5.9. The Reverse k-Nearest Neighbour Query

Given a dataset P of d-dimensional points and a query
reference point q, it has been seen that the nearest neighbour
query retrieves the point in the dataset that is the closest to q.
Based on this, the reverse nearest neighbour (reverse 1NN)
query retrieves the points in P that have q as their nearest
neighbour. Therefore, for the set R1NN(q) of the reverse
nearest neighbours of q it holds that: R1NN(q) = {p ∈ P: ∄ r ∈
P such that distance(p, r) < distance(p, q)}, where distance() is
a specified distance metric.

The definition of the reverse 1NN query can be easily
extended to the reverse k-nearest neighbour (reverse kNN)
query. More specifically, the reverse kNN query retrieves all
the points p ∈ P that have q as one of their k nearest neighbours.
In this case, RkNN(q) = {p ∈ P: distance(p, q) ≤ distance(p, r),
where r is the k-th nearest neighbour of p}[53]. For simplicity
in the following the paper will study the algorithm for
supporting the reverse 1NN query and it will give some hints
for its straightforward extension to cover the reverse kNN
query as well.

For the processing of the reverse 1NN query in the proposed
SOPE model the following proposition needs to be proved.

Proposition 6: Let P be a d-dimensional dataset, q be the query
point, GSL(q) be the set of global skyline points of P with
regard to q and R1NN(q) be the set of reverse nearest
neighbour points of q. It holds that R1NN(q) ⊆ GSL(q).

Proof: Let us suppose that we have a point p ∈ R1NN(q) for
which p ∉ GSL(q). Therefore, there is a point r ∈ GSL(q) that
belongs in the same hyper-quadrant with p with regard to q
which dominates p in that quadrant. Therefore, since based on
Definition 2, we have that ∀ i ∈ {1, ..., d}: (ri − qi)(pi − qi) > 0
and |ri − qi| ≤ |pi − qi|, and therefore ∀ i we have: (ri – qi < 0 and
pi – qi < 0) or (ri – qi > 0 and pi – qi > 0). In the first case we
then have that ri − qi ≥ pi – qi ⇔ ri ≥ pi, and consequently ∀ i
we have: pi ≤ ri < qi. In the second case we then have that ri −
qi ≤ pi – qi ⇔ ri ≤ pi, and consequently ∀ i we have: qi < ri ≤ pi.
In both cases however we get that it is not possible that p is a
reverse nearest neighbour point of q since between p and q we
can find the data point r in all dimensions and obviously
distance(p, r) ≤ distance(p, q). However this is a contradiction
to our hypothesis that p ∈ R1NN(q). Therefore p ∈ GSL(q) and
it has been proved that R1NN(q) ⊆ GSL(q). �

Proposition 6 proves that by calculating the GSL(q) we can
get a superset of R1NN(q). Algorithm 10 uses this conclusion
in Line 3 in order to filter the initial dataset for the calculation
of the reverse 1NN query. The server in Line 4 will then
traverse the B+-trees to collect the encrypted coordinates of
every data point in GSL(q) and it will send the result to the
client. The client, by receiving and decrypting the GSL(q), can
execute a traditional reverse 1NN query with regard to q (Line
5) in order to discard the data points in GSL(q) which cannot
be a reverse 1NN of q and to consider the rest of them as
candidates to be reverse 1NN points of q. In the final process
of the algorithm in Lines 8-11, any such candidate data point p
will be used as a query predicate to execute a 1NN query in the
encrypted dataset P' – {p'} (Line 9) in order to retrieve its

14

nearest point and to compare its distance from p with the
distance between p and q (Line 10) in order to decide if p is
indeed a reverse 1NN point of q (Line 11).

It needs to be reminded here that the main principle for
every SOPE scheme is to not reveal any information to the
server but the spatial order of the items stored. However, if by
processing the reverse 1NN query, the location of the reference
point q happens to coincides to the location of a point r ∈ P,
then by informing the server (in Line 9 of the algorithm) that a
point p is a candidate reverse 1NN of q, the server can infer
that r might be the point in the dataset with the smallest
distance to point p. For this reason, if q coincides to a dataset
point r, using the Lines 6-7 of the algorithm the client will
consider as candidate reverse 1NN points of q all the points in
GSL(q), so that the server will inform nothing about the
distance between the points in the dataset. In this case, when
the client in Line 9 of the algorithm will receive the candidate
nearest points of every point in GSL(q), s/he will automatically
discard any information regarding points in GSL(q) for which
s/he already knew from Line 5 of the algorithm that they could
not be reverse 1NN points of q.
 Algorithm 10: The Reverse 1NN Query()

Input: a reference point q(q1, q2, …, qd).
Output: the Reverse 1NN data points of q

1:

2:

3:

4:

5:

6:
7:
8:
9:

10:

11:
12:

Client: informs the Server to begin the
 execution of the reverse 1NN query with
 regard to the query predicate q;
Client/Server: calculate in cooperation
 the encoded version q' of q;
Server: executes the traditional global
 skyline query with regard to q’, using
 the R-tree (see [50]);
Server: FOR every data point in the
 results set RS, the B+-tree for every
 dimension is traversed to collect the
 ciphertext of its coordinates and sends
 the point to the Client;
Client: decrypt the results and execute a
 traditional reverse 1NN query among
 them with regard to q, in order to
 select a candidate set of CS points p1,
 p2, …, pCS that will be tested if they
 belong to the reverse 1NN set of q;
IF q belongs to the dataset P THEN
 CS = RS;
FOR i = 1 to CS DO
 Client/Server: execute the kNN Query(pi,
 1) (Algorithm 8) by not considering pi
 as a possible answer to the query;

 Client: IF (distance(pi, q) ≤ distance(pi,
 the 1NN point of pi)) THEN
 Consider pi in the reverse 1NN set of q;
END;

Algorithm 10: The reverse 1NN query process in the proposed SOPE model.

The algorithm can be easily extended to cover the case of
the reverse kNN query as well, by executing the k-global
skyline query (instead of the global skyline query) in Line 3
and by comparing the distance between p and q in Line 10 with
the distance between p and the k-th nearest neighbour of p in
the encrypted dataset P’ – {p’}.

Figure 15 shows four different snapshots of the calculation
of a reverse 1NN query example with regard to a reference
point q in the 2-dimensional OS (Figure 15.(a)) and in the
corresponding ES. As Figure 15.(b) shows, Line 3 of the
algorithm will select the set of points GSL(q) ={p3, p5, p7, p8,
p10, p14, p21, p23, p24, p26, p28}. However, as Figure 15.(c)
shows, by executing in the client-side the reverse 1NN query
in the OS using as a data set the GSL(q), only the point p5 is
found to be a candidate of being a reverse 1NN of q, since all
the other points in GSL(q) have at least one other point in
GSL(q) which is closer than q to them. Finally, as Figure
15.(d) shows, in Line 7 of the algorithm, the Algorithm 8 will
be executed in the ES to find the 1NN point p7 of p5 which
however is not closer than q to p5 , therefore p5 is the reverse
1NN of q.

x

p3

p22
p2

p6

p5

p1

p4

p15

p20

p7

p8

p9

p10

p11

p12

p13

p14

p16

p17

p18

p19

p21

p23

p24

p25

p26 p27

p28

 y

Ο 100 200 300 400 500 600 700 800 900 1000

100

200

300

400

500

600

700

800

900

1000

q

x

 y

Ο 2 4 6 8 10 12 14 16 18 20

5

10

15

20

25

q`

p`3

p`22
p`2

p`6

p`5

p`1

p`4

p15

p`20

p`7

p`8

p`9

p`10

p`11

p`12

p`13

p`14

p`16

p`17

p`18

p`19

p`21

p`23

p`24

p`25

p`26 p`27

p`28

 (a) (b)

x

 y

Ο 100 200 300 400 500 600 700 800 900 1000

100

200

300

400

500

600

700

800

900

1000

q

p3

p5
p4
p7

p8
p10

p14

p21

p23

p24

p26

p28

x

 y

Ο 2 4 6 8 10 12 14 16 18 20

5

10

15

20

25

q`

p`3

p`22
p`2

p`6

p`5

p`1

p`4

p`15

p`20

p`7

p`8

p`9

p`10

p`11

p`12

p`13

p`14

p`16

p`17

p`18

p`19

p`21

p`23

p`24

p`25

p`26 p`27

p28

 (c) (d)

Figure 15: Four snapshots of the execution of Algorithm 10 in the example
dataset for answering the reverse nearest neighbour query.

5.10. The Continuous Nearest Neighbour Query

Given a dataset P of d-dimensional points and a line
segment q = [qa, qb] with qa and qb its end-points, not
necessarily belonging to the dataset, the continuous nearest
neighbour (continuous 1NN) query retrieves the nearest
neighbour of every point in the line segment q (e.g., “find all
my nearest gas stations during my route from point qa to point
qb”). In particular, the result contains a set of <p, [q1, q2]>
tuples, such that the data point p is the 1NN of all points in the
corresponding line sub-segment [q1, q2]. As an illustrative
example Figure 16.(a) can be considered, in which as Figure
16.(d) shows the answer to the query is {<p10, [qa, q2]>, <p8,
[q2, q3]>, <p25, [q3, qb]>}, meaning that point p10 is the 1NN
for the line sub-segment [qa, q2], etc. The points q2 and q3 of
the query segment, for which we have two 1NN data points (for
example the data points p10 and p8 that occur in the same
distance from q2 are both 1NN points of it) are known as split
points [54].

The definition can also be extended to the continuous kNN
query. More specifically, the continuous kNN query retrieves

15

the k nearest neighbours of every point in the line segment q
(e.g., “find all my 3-nearest gas stations during my route from
point qa to point qb”).

The algorithm for processing the continuous 1NN query in
the proposed SOPE model is illustrated in Algorithm 11. The
algorithm is adapted by a corresponding process that is
introduced in [54] with the main difference that in the current
OPE environment it needs to be executed with the cooperation
of both the client and the server. Initially a SOPE-based 1NN
query is performed at the two end-points qa and qb of q to
retrieve their 1NN points (Lines 3-4). In Line 5, if qa and qb
share a 1NN point then all the points of q share the same 1NN
(this has been proved and named as continuity property in
[54]). Otherwise, if qa and qb do not share a 1NN, assuming
that nnqa is the 1NN point of qa and nnqb is the 1NN of qb
then there is a point qc ∈ q for which the point nnqa is closer
that nnqb to all the points in the segment [qa, qc] and at the
same time the point nnqb is closer that nnqa to all the points in
the segment [qc, qb]. This candidate spit point qc in q is
calculated in Line 8 as the intersection between the query
segment q and the perpendicular bisect-plane (which in the 2-
dimensional space is converted into a perpendicular bisector)
of segment [nnqa, nnqb], denoted as ⊥(nnqa, nnqb).

Since qc cuts up the initial line segment into two new
fragments [qa, qc] and [qc, qb] the process presented in the
previous paragraph is repeated retroactively for these two
smaller line segments. The algorithm terminates until both the
end-points q1 and q2 of every smaller fragment [q1, q2] in which
the initial segment q has been cut up share the same 1NN point
p. In this case, as Line 6 of the algorithm indicates, the 1NN
point p for all the points on this segment of q is added in the
list SL in the form <p, [q1, q2]>. At the end of the process the
SL list will contain the set of tuples for the output of the
continuous 1NN query with regard to q, however if SL contains
continuous line segments of the form <p, [q1, q2]> and <p, [q2,
q3]> that share the same 1NN point, the segments will finally
be merged into the form <p, [q1, q3]>.

The algorithm can be extended to cover the case of the
continuous kNN query as well. The reader is forwarded to [54]
for the changes that need to be performed to the algorithm,
considering that the continuity property does not hold in this
case.
 Algorithm 11: The Continuous 1NN Query()

Input: a reference line segment q
 with end-points qa(qa1, qa2, …, qad),
 and qb(qb1, qb2, …, qbd).
Output: the list SL of <p, [q1, q2]>
 tuples, such that the data point p
 is the 1NN of all points in the cor-
 responding line sub-segment [q1,q2].

1:
2:

3:

4:

5:

SL = ∅;
Let NNqa = NNqb = ∅ be the lists of the
nearest data points to qa end qb,
respectively;
Client/Server: execute the kNN Que-
 ry(qa, 1) (Algorithm 8) and store
 the output in the NNqa list;
Client/Server: execute the kNN Que-
 ry(qb, 1) (Algorithm 8) and store
 the output in the NNqb list;

6:

7:
8:

9:

10:

11:

12:

IF (NNqa ∩ NNqb ≠ ∅) THEN
 Client: Add <nnqab, [qa, qb]> tuple
 in list SL, where

 nnqab ∈ NNqa ∩ NNqb;
ELSE
 Let qc be the intersection between q

 and the ⊥(nnqa, nnqb), where
 nnqa ∈ NNqa and nnqb ∈ NNqb;
 Client/Server: execute the Continuous
 1NN Query (qa, qc) (Algorithm 11);
 Client/Server: execute the Continuous
 1NN Query (qc, qb) (Algorithm 11);
Client: IF SL holds continuous seg-
 ments of q that share the same 1NN
 point, the line segments are merged;
END;

Algorithm 11: The continuous 1NN query process in the proposed SOPE
model.

Figure 16 illustrates some snapshots of an example
execution of the above continuous 1NN query algorithm for a
line segment q. For simplicity the figure shows the data only in
the OS. Figure 16.(a) shows that in the beginning of the
execution the 1NN points p10 and p25 of the end-points qa and
qb, respectively, are retrieved from the encrypted dataset.
Then, using the perpendicular bisector ⊥(p10, p25) of segment
[p10, p25], the candidate split point q1 ∈ q is calculated which
cuts up q into the line segments [qa, q1] and [q1, qb]. The
process is now repeated retroactively for these two line
segments. In the beginning of the examination of the [qa, q1]
segment, the 1NN points p10 and p8 of the end-points qa and q1,
respectively, are retrieved from the dataset. Then, as Figure
16.(b) shows, using the perpendicular bisector ⊥(p10, p8) of
segment [p10, p8], the split point q2 ∈ q is calculated which cuts
up the segment into the line segments [qa, q2] and [q2, q1].
Respectively, Figure 16(c) shows the examination of the [q1,
qb]. In Line 5 of the algorithm, all points in the segment [qa,
q2] are discovered to share the same 1NN point p10 and
therefore the tuple <p10, [qa, q2]> is added to the output of the
continuous 1NN query. Finally SL = {<p10, [qa, q2]>, <p8, [q2,
q1]>, <p8, [q1, q3]>, <p25, [q3, qb]>} and in the final step of the
algorithm (Line 11) the tuples <p8, [q2, q1]> and <p8, [q1, q3]>
will be merged to <p8, [q2, q3]>, as Figure 16.(d) shows.

x

 y

Ο 100 200 300 400 500 600 700 800 900 1000

100

200

300

400

500

600

700

800

900

1000

p3

p22
p2

p6

p5

p1

p4

p15

p20

p7

p8

p9

p10

p11

p12

p13

p14

p16

p17

p18

p19

p21

p23

p24

p25

p26 p27

p28

qa

qb

q1

x

 y

Ο 100 200 300 400 500 600 700 800 900 1000

100

200

300

400

500

600

700

800

900

1000

p3

p22
p2

p6

p5

p1

p4

p15

p20

p7

p8

p9

p10

p11

p12

p13

p14

p16

p17

p18

p19

p21

p23

p24

p25

p26 p27

p28

qa

qb

q2
q1

 (a) (b)

16

x

 y

Ο 100 200 300 400 500 600 700 800 900 1000

100

200

300

400

500

600

700

800

900

1000

p3

p22
p2

p6

p5

p1

p4

p15

p20

p7

p8

p9

p10

p11

p12

p13

p14

p16

p17

p18

p19

p21

p23

p24

p25

p26 p27

p28

qa

qb

q2
q3 q1

x

 y

Ο 100 200 300 400 500 600 700 800 900 1000

100

200

300

400

500

600

700

800

900

1000

p3

p22
p2

p6

p5

p1

p4

p15

p20

p7

p8

p9

p10

p11

p12

p13

p14

p16

p17

p18

p19

p21

p23

p24

p25

p26 p27

p28

qa

qb

q2

q3

 (c) (d)

Figure 16: Snapshots of the execution of Algorithm 11 in the example dataset
for answering the continuous nearest neighbour query.

6. Experimental study

6.1. Experimentation Setup

The proposed SOPE model has been implemented in Java
edition 1.8 and NetBeans edition 8.1. The implementation
includes the B+-tree and the R-tree in their traditional form with
no modification to their operations. As for the R-tree, the R*-
tree implementation in Java that can be downloaded from the
ChoroChronos portal2 has been utilised.

According to the proposed SOPE model, two entities
participate in all the operations: the client and the server. Since
only the client encrypts and decrypts the data, the symmetric
key encryption has been considered for the model, although an
asymmetric -public key- encryption scheme can be used as
well. The particular encryption method that was used is the
AES algorithm, already implemented and integrated in Java, in
CBC mode and the appropriate padding (PKCS5Paddng). A
256-bits key is used which is stored on the client-side. Since
Oracle Java does not support the choice of key higher than 128
out of the box, the Java Cryptography Extension (JCE)
Unlimited Strength Jurisdiction Policy Files3 has been
employed.

The implementation of the encryption is as follows. When
the client wishes to encrypt a value s/he firstly converts it to a
string of characters, i.e., to the string representation of this
value. Then this string is encrypted using the AES algorithm
with the prerequisites that were chosen earlier. The result is the
so-called ciphertext. The length of the ciphertext was set to be
16 bytes.

For all experiments was used as hardware DELL laptop
with Intel Core i7-4500U CPU running at 1,8GHz, with 16GB
RAM and Windows 8.1 Professional 64-bit OS.

The experiments were conducted using a synthetic and a
real dataset. The synthetic dataset contains 250,000 uniformly
distributed 2-dimensional points that was produced by the
Spatial Data Generator which can be downloaded from the
Chorochronos portal. The real dataset, which was created
within the AMINESS project [56], [57] and provided by the
AMINESS Database [55], is also comprised by 250,000 2-
dimensional points that correspond to positions of ship vessels
on the Aegean Sea in several timestamps in different dates (the
timestamps and the vessels’ IDs were removed from the

2 http://www.chorochronos.org/?q=node/43
3 http://www.oracle.com/technetwork/java/javase/downloads/jce8-download-2133166.html

original dataset, and a set of 0.25M different 2-dimensional
point locations with no duplicates was finally selected for the
experimentation).

Datasets with data in higher than 2 dimensions have not
been considered in this study since as it will be shown in the
sequel, the performance behavior of the proposed model is
expected to be burden proportionally to the number of
dimensions. Using several higher-dimensional datasets for
simulation, nothing unexpected which has not been already
studied in the literature with regard to the performance of the
R*-tree and the query processing on it (such as the curse of
dimensionality and the limited applicability of the skyline
query in high-dimensional spaces in which most of the objects
in a dataset belong to the skyline) was to be identified in our
study by increasing the number of dimensions.

The disk page size was set to be 4 Kbytes and every B+-tree
and R*-tree node is stored in a single disk page. To get a
crystal-clear view on the model’s performance, no buffer was
used to hold any node of the indices in main memory for faster
potential future usage, as for example with their most-
frequently-used (MFU) or their least-recently-used (LRU)
nodes. Every experiment studying the algorithms for
constructing the model was repeated 10 times and at every run
the objects to be inserted were shuffled and the average value
of every measured parameter was calculated. An analogous
strategy was followed for the query processing, some findings
of which are also presented in the sequel. At every run of a
query processing experiment, a different randomly selected
query predicate (i.e., point or/and region) was used.

In the experiments that measure the time cost performance
of the proposed model for building the index and for answering
queries, this cost includes also the communication cost that is
spend for the interaction between the client and the server,
however it does not include the cost for encrypting and
decrypting the data on the client-side since the selection of the
key encryption method and its performance are independent of
the proposed model.

6.2. Data Insertion

The graph of the first experiment in Figure 17 demonstrates
the total time cost in seconds for inserting each dataset in the
index, calculated as the sum of the time that is spend in the two
B+-trees and in the R*-tree. During the data insertion process
the time cost was measured at 5 intervals, i.e., every 20%
percent of the data being inserted. The figure shows a linear
growth of the time cost as the data is inserted in the index. Due
to its importance, it needs to be reminded that this time cost
includes also the communication cost that is spend for the
interaction between the client and the server. It is also
interesting to note that in a real world application the processes
in the B+-trees can be performed in paralel, indepentendly of
how many these are (i.e., indepentendly on how many the
dimensions are), thus substantialy reducing the total time cost
that is now illustrated.

17

Figure 174: The total time cost for building the encrypted index, calculated as
the sum of the time that is spend in the two B+-trees and in the R*-tree.

Figure 18 shows the total I/O cost in disk page accesses on

the server-side for the insertion of the two different datasets.
As the figure shows, this cost also follows a linear increase for
both datasets. Based on this experiment, Figure 19 illustrates
the average I/O cost per data object insertion and per tree (i.e.,
the two B+-trees and the R*-tree) for the AMINESS dataset.
The I/O cost as it is calculated for the two B+-trees and for the
R*-tree is higher than in a traditional application with non-
encrypted data, since before every data insertion the encodings
of the coordinates of some other already inserted data might
need to be re-calculated (by accessing some nodes on the
corresponding B+-trees, as it is stated in Line 5 of Algorithm
1) and updated (in the R*-tree, as it is stated in Line 6 of
Algorithm 1).

Figure 18: The total I/O cost for building the encrypted index, calculated as
the sum of the I/O cost in the two B+-trees and in the R*-tree.

Figure 19: The average I/O cost per data object insertion for the AMINESS

dataset.

The next graph in Figure 20 studies the index size as a
number of tree nodes (i.e., disk pages), including the size of the
two B+-trees hosting the encrypted coordinates and the size of
the R*-tree hosting the encoded data objects. A more detailed
tracing of the index size growth, seperately for the two B+-trees
and the R*-tree for the AMINESS dataset is illustrated in
Figure 21. The graph confirms the expected traditional O(n/B)
linear growth of the size of every separate index as the data are
inserted. It needs to be noted that for every d-dimensional
object the proposed SOPE model stores the ciphertexts (every
one of which is 16 bytes long) of its d coordinates in the
corresponding B+-trees and only the OPE encodings of its
coordinates are stored in the R*-tree.

Figure 20: The size of the encrypted index, including the two B+-trees and the

R*-tree.

18

Figure 21: The size of the two B+-trees and of the R*-tree for the AMINESS
dataset.

6.3. Query Processing

In the first experiment on studying the performance
efficiency of the proposed model in query processing, the
graph in Figure 22 shows the time cost in milliseconds for
supporting the point query. The results demonstrate that the
time cost for both the real and the synthetic dataset are almost
identical.

Figure 22: The time cost performance of the point query algorithm.

Next, Figure 23, shows the average I/O cost for answering
the point query, separately for every B+-tree and for the R*-tree.
As expected the I/O cost in that query depends only on tree
height.

Figure 235: The Ι/Ο cost performance of the point query algorithm.

In the next experiment on studying the performance
efficiency of the proposed model in query processing, the
graph in Figure 24 shows the time cost in seconds for
supporting the range query with respect to a rectangular query
window of three different sizes, i.e., 1%, 3% and 5% of the area
of the square workspace. The results demonstrate a linear
growth of the time cost in relation to the window size growth.
It is reminded that the time cost (for this as well as for every
query that is studied in the sequel) includes also the
communication cost that is spend in the steps of the Algorithm
4 for the interaction between the client and the server.

Figure 246: The time cost performance of the range query algorithm.

For the same experiment, Figure 25 shows the I/O cost in
page accesses for answering the range query, separately for
every B+-tree and for the R*-tree for the uniformly distributed
synthetic dataset (Chorocronos). The figure demonstrates that
as the query window increases, so does the number of accessed
nodes (i.e., disk pages). To understand however the high I/O
cost on accessing the B+-trees, we need to focus on how the
range query is processed in Algorithm 4 and on the role that
can be taken by an MFU or LRU buffer on reducing this cost,
if such buffer can be provided. As the algorithm shows, every
B+-tree is traversed multiple times in every execution of the
range query, while the R*-tree is accessed only once. In Line 2
of the algorithm it is indicated that every B+-tree is traversed
twice to get the encoded versions of the diagonal vertices of the
query hyper rectangle q. Also in Line 4 of the algorithm, it is
indicated that every B+-tree is traversed one more time for
every data point in the results, in order to retrieve the
corresponding ciphertexts of its coordinates. Therefore, for the
uniformly distributed dataset into consideration, a query
predicate q covering the 1% of the workspace is expected to
return about the 1% of the data points in the set, i.e., 2,500
points. This means that every B+-tree is traversed about 2,500
times, summing up 3*2,500 page accesses, considering a tree
height of 3 pages. However, if we can keep in main memory
the internal nodes of each B+-tree plus one or a few of its LRU
leaves (or if we can keep in main mamory just the LRU node
in every level of the tree) we will greatly reduce the query
processing I/O cost at least 3 times (at least 1.5 times,
respectively).

It is also notable that the total time and I/O cost for
processing the range query will be further reduced (more
specifically, as Figure 25 also shows, in our 2-dimensional

19

experiments this cost will be almost halved) if the server has
the power to process the two B+-trees in a paraller fasion.

Figure 257: The I/O cost performance of the range query algorithm for the

Chorocronos dataset.

The next experiment studies the performance efficiency of
the (static) skyline query algorithm. Figure 26 (Figure 27)
demonstrates the time cost in milliseconds (the I/O cost in page
accesses) for supporting the query. Both figures show a quite
lower processing cost for the synthetic dataset than this of the
real dataset. This result has its roots on the non-uniform
distribution of the points in the real dataset that form more
sparse and dense areas on the workspace than the uniformly
distributed points in the synthetic dataset.

Figure 27 shows also the much higher I/O cost for
accessing the B+-trees with regard to the R*-tree, for the same
reasons discussed in the case of the range query. As will be
shown in the sequel, the same phenomenon is also apparent in
the rest of the queries that are studied in this paper and the
solution that was put forward in the case of the range query can
be suggested to all these cases as well.

Figure 26: The time cost performance of the skyline query algorithm.

Figure 278: The Ι/Ο cost performance of the skyline query algorithm.

The next experiment studies the performance efficiency of
the dynamic skyline query algorithm. Figure 28 shows that the
time cost in milliseconds for executing the query processing
algorithm using the real dataset is quite smaller than that for
the case of the synthetic dataset, which is the opposite
conclusion than that drawn in Figure 26 for the static skyline
query. This result has its roots on the differences between the
distributions of the two datasets.

Figure 289: The time cost performance of the dynamic skyline query

algorithm.

Figure 29 demonstrates the I/O cost in page accesses for
executing the dynamic skyline query algorithm as it is
separately measured for every B+-tree and for the R*-tree.

Figure 29: The I/O cost performance of the dynamic skyline query algorithm.

20

The next experiment studies the performance of the kNN
query algorithm. Figure 30 (Figure 31) demonstrates the time
cost in milliseconds (the I/O cost in page accesses) for
supporting the query for three different k values, i.e., for k equal
to 1, 2, and 3, for both the real and the synthetic datasets (for
the synthetic dataset, respectively). As expected the linear
growth of the parameter k increases linearly the cost for
processing the query.

Figure 30: The impact of the parameter k on the time cost performance of the

kNN query algorithm.

Figure 31 shows also the I/O cost separately for every B+-
tree and for the R*-tree. An interesting conclusion is that the
number of disk page accesses in the R*-tree does not increase
much from one k value to the next. This happens because
retrieving the k-th and the k+1-th global skyline often means
retrieving spatially adjacent data points which are stored on the
same R*-tree nodes. Thus the number of pages for retrieving
the first k global skyline sets or the first k+1 global skyline sets
does not differ much when -as Algorithm 12 in the Appendix
shows- this retrieval operation is performed in a single R*-tree
traversal.

Figure 31: The impact of the parameter k on the Ι/Ο cost performance of the

kNN query algorithm for the ChoroChronos dataset.

The next experiment investigates the performance of the
proposed model in processing the constrained kNN query.
Figure 32 (Figure 33) demonstrates the time cost in
milliseconds (the I/O cost in page accesses) for supporting the
query for the ChoroChronos synthetic dataset, using three
different values for the parameter k and two different sizes for
the constrained area. The figures again show the proportional

growth of the query processing cost with respect to these two
input parameters. By comparing the results in Figures 32 and
33 with the corresponding results in Figures 30 and 31 for the
(un-constrained) kNN query algorithm, we can apprehend the
time and I/O costs reduction that is introduced by the
computation of the kNN query in a constrained region. It is
notable that with regard to the R*-tree this cost reduction
cannot be exactly proportional to the percentage of the
workspace that the constrained region represents due to the
overlapping of this region with the MBRs of a higher
percentage of tree nodes.

Figure 32: The impact of the constrained area size and of the parameter k on
the time cost performance of the constrained kNN query algorithm for the

ChoroChronos dataset.

Figure 33: The impact of constrained area size and of the parameter k on the

I/O cost performance of the constrained kNN query algorithm for the
ChoroChronos dataset.

The study on the performance efficiency of the constrained
skyline query algorithm is omitted because it draws similar
conclusions to the ones in the case of the constrained kNN
query algorithm.

The next experiment studies the performance efficiency of
the reverse kNN query algorithm. Figure 34 (Figure 35)
demonstrates the time cost in milliseconds (the I/O cost in page
accesses) for supporting the query for three different k values,
i.e., for k equal to 1, 2, and 3, for both the real and the synthetic
datasets (for the synthetic dataset). As expected, the linear
growth of the parameter k increases linearly the cost for

21

processing the query. Another interesting conclusion that is
drawn by comparing the Figures 34 and 35 to the Figures 30
and 31 is that the execution time and I/O costs when processing
the reverse kNN query are about 4 times higher than when
processing the kNN query for the same datasets. The root of
this difference is in the Lines 8-11 in the reverse kNN query
algorithm (Algorithm 10) that do not exist in the kNN query
algorithm (Algorithm 8). The ‘FOR’ loop in these lines of the
algorithm executes the kNN query algorithm for every
candidate reverse kNN of q, and the findings show that on
average 3 such candidate points exist in every case. This
findings come in harmony with [58] which comes to the
conclusion that for k = 1 in the 2-dimensional space there are 6
candidate reverse nearest neighbour points at the most to any
query predicate point q. Therefore the Lines 8-11 in the reverse
1NN query algorithm cannot be executed more than 6 times at
the most (it needs to be noted here that in our study no reference
point q happened to coincide to the location of any point r in
the dataset).

Figure 3410: The impact of the parameter k on the time cost performance of

the reverse kNN query algorithm.

Figure 35: The impact of the parameter k on the Ι/Ο cost performance of the

reverse kNN query algorithm for the ChoroChronos dataset.

The final experiment studies the performance efficiency of
the continuous 1NN query algorithm. Figure 36 (Figure 37)
demonstrates the time cost in milliseconds (the I/O cost in page
accesses) for supporting the query using three different lengths
of the query line, i.e., 1%, 3% and 5% of the length of the side
of the square workspace. The figures again show the

proportional growth of the query processing cost with respect
to the query length.

Figure 36: The impact of query length on the time cost performance of the

continuous 1NN query algorithm.

Figure 37: The impact of line length on the I/O cost performance of the

continuous nearest neighbour query algorithm for the ChoroChronos dataset.

7. Conclusion

The paper introduces the Spatially-based Order-Preserving
Encryption (SOPE) model for d-dimensional data. The new
model is inspired and extends the well-known OPE model in
d-dimensional databases; therefore, it supports the safe storage
and efficient retrieval of d-dimensional data to a remote
untrusted server by revealing to the server nothing else but the
spatial order of the data objects.

The paper proposes algorithms for constructing the model
and for efficiently processing a large set of 10 or more popular
queries for d-dimensional data, such as the point query, the
range query, the (static, dynamic, and global) skyline query,
the k-nearest neighbour query, the reverse k-nearest neighbour
query, the continuous nearest neighbour query, etc. [59].

The prototype implementation and experimental evaluation
of the proposed model based on synthetic and real data
indicates that the new model is able to provide searchable
encryption for d-dimensional cloud databases in modern
applications in which there is no need to keep secret the
corresponding spatial relations between these objects.

As regard to future plans of research, the building and
querying operations algorithms of the proposed model will

22

need to be examined for possible optimizations, towards
improving the speed of the efficiency of the model. Such
optimizations might be to use buffers in the trees when
executing the query processing algorithms, or to store the
ciphertexts of the coordinates of the data objects directly into
the R-tree instead of the corresponding B+-trees, so that the
server will not need to traverse every B+-tree to retrieve these
ciphertexts before s/he will return the output of a query to the
user.

Also, although several other known spatial queries can be
easily supported by the proposed model (for example the
reverse skyline query can be easily implemented using the
global query processing Algorithm 6 proposed in this paper in
combination with heuristics proposed in [58, 50] that are still
valid under the SOPE model), there are spatial queries that
need to be further studied (for example the closest-pair query
[60], etc.).

Acknowledgments

We would like to thank Mr. Kalyvas Christos
(chkalyvas@aegean.gr) and Mr. Kokkos Athanasios
(ath.kokkos@aegean.gr), the AMINESS Database
administrators / creators, for providing us the AMINESS
dataset.

References

[1] V. Ashktorab, S. R. Taghizadeh, Security threats and
countermeasures in cloud computing, International Journal of
Application or Innovation in Engineering & Management
(IJAIEM) 1 (2) (2012) 234–245.

[2] G. Gupta, P. R. Laxmi, S. Sharma, A survey on cloud security
issues and techniques, International Journal on Computational
Sciences & Applications (IJCSA) 4 (2014) 125–132.

[3] E.-J. Goh, et al., Secure indexes., IACR Cryptology ePrint
Archive 2003 (2003) 216.

[4] R. Curtmola, J. Garay, S. Kamara, R. Ostrovsky, Searchable
symmetric encryption: improved definitions and efficient
constructions, Journal of Computer Security 19 (5) (2011) 895–
934.

[5] P. Van Liesdonk, S. Sedghi, J. Doumen, P. Hartel, W. Jonker,
Computationally efficient searchable symmetric encryption, in:
Workshop on Secure Data Management, Springer, 2010, pp.
87–100.

[6] S. Kamara, C. Papamanthou, T. Roeder, Dynamic searchable
symmetric encryption, in: Proceedings of the 2012 ACM
conference on Computer and communications security, ACM,
2012, pp. 965–976.

[7] S. Kamara, C. Papamanthou, Parallel and dynamic searchable
symmetric encryption, in: International Conference on
Financial Cryptography and Data Security, Springer, 2013, pp.
258–274.

[8] C. Gentry, A fully homomorphic encryption scheme, Ph.D.
thesis, Stanford University (2009).

[9] D. Boneh, C. Gentry, S. Halevi, F. Wang, D. J. Wu, Private
database queries using somewhat homomorphic encryption, in:
International Conference on Applied Cryptography and
Network Security, Springer, 2013, pp. 102–118.

[10] M. Van Dijk, C. Gentry, S. Halevi, V. Vaikuntanathan, Fully
homomorphic encryption over the integers, in: Annual
International Conference on the Theory and Applications of
Cryptographic Techniques, Springer, 2010, pp. 24–43.

[11] D. Boneh, A. Sahai, B. Waters, Functional encryption:
Definitions and challenges, in: Theory of Cryptography
Conference, Springer, 2011, pp. 253–273.

[12] D. Boneh, G. Di Crescenzo, R. Ostrovsky, G. Persiano, Public
key encryption with keyword search, in: International
Conference on the Theory and Applications of Cryptographic
Techniques, Springer, 2004, pp. 506–522.

[13] A. Lewko, T. Okamoto, A. Sahai, K. Takashima, B. Waters,
Fully secure functional encryption: Attribute-based encryption
and (hierarchical) inner product encryption, in: Annual
International Conference on the Theory and Applications of
Cryptographic Techniques, Springer, 2010, pp. 62–91.

[14] O. Goldreich, R. Ostrovsky, Software protection and
simulation on oblivious rams, Journal of the ACM (JACM)
43 (3) (1996) 431–473.

[15] E. Stefanov, E. Shi, D. Song, Towards practical oblivious ram,
arXiv preprint arXiv:1106.3652.

[16] E. Kushilevitz, S. Lu, R. Ostrovsky, On the (in) security of
hash-based oblivious ram and a new balancing scheme, in:
Proceedings of the twenty-third annual ACM-SIAM
symposium on Discrete Algorithms, SIAM, 2012, pp. 143–156.

[17] M. T. Goodrich, M. Mitzenmacher, Privacy-preserving access
of outsourced data via oblivious ram simulation, in:
International Colloquium on Automata, Languages, and
Programming, Springer, 2011, pp. 576–587.

[18] M. Bellare, A. Boldyreva, A. O’Neill, Deterministic and
efficiently searchable encryption, in: Annual International
Cryptology Conference, Springer, 2007, pp. 535–552.

[19] R. Agrawal, J. Kiernan, R. Srikant, Y. Xu, Order preserving
encryption for numeric data, in: Proceedings of the 2004 ACM
SIGMOD international conference on Management of data,
ACM, 2004, pp. 563–574.

[20] A. Boldyreva, N. Chenette, Y. Lee, A. O’neill, Order-
preserving symmetric encryption, in: Annual International
Conference on the Theory and Applications of Cryptographic
Techniques, Springer, 2009, pp. 224–241.

[21] R. A. Popa, F. H. Li, N. Zeldovich, An ideal-security protocol
for order-preserving encoding, in: Security and Privacy (SP),
2013 IEEE Symposium on, IEEE, 2013, pp. 463–477.

[22] M. Bellare, P. Rogaway, The security of triple encryption and a
framework for code-based game-playing proofs, in: Annual
International Conference on the Theory and Applications of
Cryptographic Techniques, Springer, 2006, pp. 409–426.

[23] D. H. Yum, D. S. Kim, J. S. Kim, P. J. Lee, S. J. Hong, Order-
preserving encryption for non-uniformly distributed plaintexts,
in: International Workshop on Information Security
Applications, Springer, 2011, pp. 84–97.

[24] A. Boldyreva, N. Chenette, A. Oβ€™Neill, Order-preserving
encryption revisited: Improved security analysis and alternative
solutions, in: Annual Cryptology Conference, Springer, 2011,
pp. 578–595.

[25] L. Xiao, I.-L. Yen, Security analysis for order preserving
encryption schemes, in: Information Sciences and Systems
(CISS), 2012 46th Annual Conference on, IEEE, 2012, pp. 1–
6.

[26] R. A. Popa, C. Redfield, N. Zeldovich, H. Balakrishnan,
Cryptdb: protecting confidentiality with encrypted query
processing, in: Proceedings of the Twenty-Third ACM
Symposium on Operating Systems Principles, ACM, 2011, pp.
85–100.

[27] D. Liu, S. Wang, Programmable order-preserving secure index
for encrypted database query, in: Cloud Computing (CLOUD),
2012 IEEE 5th International Conference on, IEEE, 2012, pp.
502–509.

[28] D. Liu, S. Wang, Nonlinear order preserving index for
encrypted database query in service cloud environments,

23

Concurrency and Computation: Practice and Experience
25 (13) (2013) 1967–1984.

[29] L. Xiao, I.-L. Yen, D. Huynh, A note for the ideal order-
preserving encryption object and generalized order-preserving
encryption., IACR Cryptology ePrint Archive 2012 (2012) 350.

[30] D. Boneh, K. Lewi, M. Raykova, A. Sahai, M. Zhandry,
J. Zimmerman, Semantically secure order-revealing
encryption: Multi-input functional encryption without
obfuscation, in: Annual International Conference on the Theory
and Applications of Cryptographic Techniques, Springer, 2015,
pp. 563–594.

[31] N. Chenette, K. Lewi, S. A. Weis, D. J. Wu, Practical order-
revealing encryption with limited leakage, in: Proceedings of
the 23rd International Conference on Fast Software Encryption
(IACR-FSE), 2016.

[32] F. Kerschbaum, A. Schroepfer, Optimal average-complexity
ideal-security order-preserving encryption, in: Proceedings of
the 2014 ACM SIGSAC Conference on Computer and
Communications Security, ACM, 2014, pp. 275–286.

[33] H. Wang, L. V. Lakshmanan, Efficient secure query evaluation
over encrypted xml databases, in: Proceedings of the 32nd
international conference on Very large data bases, VLDB
Endowment, 2006, pp. 127–138.

[34] Z. Liu, X. Chen, J. Yang, C. Jia, I. You, New order preserving
encryption model for outsourced databases in cloud
environments, Journal of Network and Computer Applications
59 (2016) 198–207.

[35] H. Kadhem, T. Amagasa, H. Kitagawa, Mv-opes: Multivalued-
order preserving encryption scheme: A novel scheme for
encrypting integer value to many different values, IEICE
TRANSACTIONS on Information and Systems 93 (9) (2010)
2520–2533.

[36] H. Kadhem, T. Amagasa, H. Kitagawa, A secure and efficient
order preserving encryption scheme for relational databases.,
in: KMIS, 2010, pp. 25–35.

[37] L. Seungmin, P. Tae-Jun, L. Donghyeok, N. Taekyong,
K. Sehun, Chaotic order preserving encryption for efficient and
secure queries on databases, IEICE transactions on information
and systems 92 (11) (2009) 2207–2217.

[38] L. Xiao, I.-L. Yen, D. T. Huynh, Extending order preserving
encryption for multi-user systems., IACR Cryptology ePrint
Archive 2012 (2012) 192.

[39] B. Hore, S. Mehrotra, M. Canim, M. Kantarcioglu, Secure
multidimensional range queries over outsourced data, The
VLDB Journalβ€”The International Journal on Very Large
Data Bases 21 (3) (2012) 333–358.

[40] B. Yao, F. Li, X. Xiao, Secure nearest neighbor revisited, in:
Data Engineering (ICDE), 2013 IEEE 29th International
Conference on, IEEE, 2013, pp. 733–744.

[41] W. K. Wong, D. W.-l. Cheung, B. Kao, N. Mamoulis, Secure
knn computation on encrypted databases, in: Proceedings of the
2009 ACM SIGMOD International Conference on
Management of data, ACM, 2009, pp. 139–152.

[42] S. Bothe, P. Karras, A. Vlachou, eskyline: processing skyline
queries over encrypted data, Proceedings of the VLDB
Endowment 6 (12) (2013) 1338–1341.

[43] E. Shi, J. Bethencourt, T. H. Chan, D. Song, A. Perrig, Multi-
dimensional range query over encrypted data, in: 2007 IEEE
Symposium on Security and Privacy (SP’07), IEEE, 2007, pp.
350–364.

[44] M. L. Yiu, G. Ghinita, C. S. Jensen, P. Kalnis, Enabling search
services on outsourced private spatial data, The VLDB Journal
19 (3) (2010) 363–384.

[45] A. M. Talha, I. Kamel, Z. Al Aghbari, Enhancing
confidentiality and privacy of outsourced spatial data, in: Cyber

Security and Cloud Computing (CSCloud), 2015 IEEE 2nd
International Conference on, IEEE, 2015, pp. 13–18.

[46] A. R. Butz, Alternative algorithm for hilbert’s space-filling
curve, IEEE Transactions on Computers 100 (4) (1971) 424–
426.

[47] M. Bellare, A note on negligible functions, Journal of
Cryptology 15 (4) (2002) 271–284.

[48] C. Kalyvas, T. Tzouramanis, A survey of skyline query
processing, arXiv preprint arXiv:1704.01788.

[49] D. Papadias, Y. Tao, G. Fu, B. Seeger, Progressive skyline
computation in database systems, ACM Transactions on
Database Systems (TODS) 30 (1) (2005) 41–82.

[50] E. Dellis, B. Seeger, Efficient computation of reverse skyline
queries, in: Proceedings of the 33rd international conference on
Very large data bases, VLDB Endowment, 2007, pp. 291–302.

[51] D. Kossmann, F. Ramsak, S. Rost, Shooting stars in the sky: An
online algorithm for skyline queries, in: Proceedings of the 28th
international conference on Very Large Data Bases, VLDB
Endowment, 2002, pp. 275–286.

[52] H. Ferhatosmanoglu, I. Stanoi, D. Agrawal, A. El Abbadi,
Constrained nearest neighbor queries, in: International
Symposium on Spatial and Temporal Databases, Springer,
2001, pp. 257–276.

[53] D. Papadias, Y. Tao, Reverse nearest neighbor query, in:
Encyclopedia of Database Systems, Springer, 2009, pp. 2434–
2438.

[54] Y. Tao, D. Papadias, Q. Shen, Continuous nearest neighbor
search, in: Proceedings of the 28th international conference on
Very Large Data Bases, VLDB Endowment, 2002, pp. 287–
298.

[55] C. Kalyvas, A. Kokkos, T. Tzouramanis, AMINESS Database:
Information Site, http://aminess.aegean.gr, accessed
2017.10.04 (2016).

[56] T. Giannakopoulos, I. A. Vetsikas, I. Koromila, V. Karkaletsis,
S. Perantonis, Aminess: a platform for environmentally safe
shipping, in: Proceedings of the 7th International Conference
on PErvasive Technologies Related to Assistive Environments,
ACM, 2014, p. 45.

[57] aminess.eu, AMINESS: Analysis of marine INformation for
Environmental Safe Shipping, http://aminess.eu/, accessed
2017.10.04 (2016).

[58] I. Stanoi, D. Agrawal, A. El Abbadi, Reverse nearest neighbor
queries for dynamic databases., in: ACM SIGMOD workshop
on research issues in data mining and knowledge discovery,
2000, pp. 44–53.

[59] E. Moλλά, Ένα νέo μoντέλο κρυπτoγράφησης πoυ διατηρεί την
τoπoλoγική διάταξη των δεδoμένων [A New Model for
Topologically-based Order-preserving Encryption], Hellanicus
Institutional Repository, http://hdl.handle.net/11610/12438.

[60] A. Corral, Y. Manolopoulos, Y. Theodoridis,
M. Vassilakopoulos, Closest pair queries in spatial databases,
in: ACM SIGMOD Record, Vol. 29, ACM, 2000, pp. 189–200.

24

Appendix
The algorithm for processing the k-global skyline query [50]

using an R-tree, which is based on the traditional (1-)global
skyline algorithm that is described in Algorithm 6. follows in
Algorithm 12. For the sake of completeness, the formal
presentation of the supporting GloballyDominated function for
finding if a d-dimensional object is globally dominated by
some point from a set of points is presented in Algorithm 13.

 Algorithm 12: The k-Global Skyline

 Query()
Input: a reference point q(q1, q2, …, qd)
 and the requested value of k.
Output: a list GSL[0..k-1] of data points
 organised in k different sets, every
 one of which represents the correspon-
 ding i-th global skyline with regard

 to q, ∀ i ∈ {1, …, k}.
1:
2:
3:

4:
5:

6:

7:
8:
9:
10:

11:

12:
13:
14:

15:
16:

GSL[0..k-1] = ∅;
Let H = ∅ be a heap of records;
Insert all entries of the root of the
 R-tree in H and sort the entries in H
 in an ascending order according to
 their distance from q;
WHILE H is not empty DO
 Remove the first entry e of H for
 examination;
 IF GloballyDominated(e, GSL[0..k-1],q)
 THEN
 //i.e., if e is k-globally dominated
 // by some point in GSL w.r.t. q
 Discard e;
 ELSE IF e is an intermediate entry THEN
 FOR each child record ei of e DO
 IF !GloballyDominated(ei,
 GSL[0..k-1], q) THEN
 //i.e.,if ei is not k-globally domi-
 //nated by some point in GSL w.r.t. q
 Insert ei into H by keeping H
 sorted;
 ELSE
 FOR i=0 TO i=k-1 DO
 IF !GloballyDominated(e,GSL[i],q)
 THEN
 Insert e into GSL[i]; Break;
return GSL[];

 Algorithm 13: The GloballyDominated

 Function()
Input: a query point q(q1, q2, …, qd) and
 a d-dimensional point e(e1, e2, …,
 ed) or a hyper rectangle er
 with its vertex e that is closer to q
 having coordinates e(e1, e2, …, ed),
 a list GSL() of data points.
Output: TRUE if e, or er, respectively, is
 globally dominated by some point in
 GSL w.r.t. q, and FALSE otherwise.

1:
2:
3:
4:
5:
6:

Integer first, second; Boolean third;
FOR every data entry i in GSL() list DO
 Set first = second = 0; third = false;
 FOR every dimension j DO
 IF (GSL(i)j - qj)(ej - qj)> 0 THEN
 first++;

7:
8:
9:
10:
11:

12:
13:

 IF |GSL(i)j - qj| ≤ |ej - qj| THEN
 second++
 IF |GSL(i)j - qj| < |ej - qj| THEN
 third = true;
 IF (first == d) AND (second = d)
 AND third THEN
 return TRUE;
return FALSE;

The algorithm for processing the constrained k-global skyline
query using an R-tree follows.

 Algorithm 14: The Constrained k-Global

 Skyline Query()
Input: a reference d-dimensional hyper
 rectangle r with diagonal vertices
 ra(ra1, …, rad), and rb(rb1, …, rbd),
 a query point q(q1, …, qd) and the
 requested value of k.
Output: a list GSL[0..k-1] of data points
 organised in k different sets, every
 one of which represents the correspon-
 ding constrained i-th global skyline

 with regard to q, ∀ i ∈ {1, …, k}.
1:
2:
3:

4:
5:

6:

7:
8:
9:
10:

11:

12:
13:
14:

15:
16:

GSL[0..k-1] = ∅;
Let H = ∅ be a heap of records;
Insert in H all the entries of the root
 of the R-tree that intersect the region r
and sort the entries in H in
 an ascending order according to their
 distance from q;
WHILE H is not empty DO
 Remove the first entry e of H for
 examination;
 IF GloballyDominated(e, GSL[0..k-1], q)
 THEN
 //i.e., if e is k-globally dominated
 // by some point in GSL w.r.t. q
 Discard e;
 ELSE IF e is an intermediate entry THEN
 FOR each child record ei of e DO
 IF ((ei intersects r) AND
 !GloballyDominated(ei,
 GSL[0..k-1], q)) THEN
 //i.e.,if ei is not k-globally domi-
 //nated by some point in GSL w.r.t. q
 Insert ei into H by keeping H
 sorted;
 ELSE
 FOR i=0 TO i=k-1 DO
 IF !GloballyDominated(e, GSL[i], q)
 THEN
 Insert e into GSL[i]; Break;
return GSL[];

	1. Introduction
	2. Related work
	3. Preliminaries
	4. The proposed model
	5. Query processing
	6. Experimental study
	7. Conclusion
	Acknowledgments
	References
	Appendix

