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Abstract 

Due to the increasing demand for cloud services and the threat of privacy invasion, the user is suggested to encrypt the data before it is 
outsourced to the remote server. The safe storage and efficient retrieval of d-dimensional data on an untrusted server has therefore crucial 
importance. The paper proposes a new encryption model which offers spatial order-preservation for d-dimensional data (SOPE model). The paper 
studies the operations for the construction of the encrypted database and suggests algorithms that exploit unique properties that this new model 
offers for the efficient execution of a whole range of well-known queries over the encrypted d-dimensional data. The new model utilizes well-
known database indices, such as the B+-tree and the R-tree, as backbone structures in their traditional form, as it suggests no modifications to them 
for loading the data and for the efficient execution of the supporting query algorithms. An extensive experimental study that is also presented in 
the paper indicates the effectiveness and practicability of the proposed encryption model for real-life d-dimensional data applications. This paper 
is an abridgment of a diploma thesis1.  
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1. Introduction 

Cloud computing is a resources-delivery model, which 
provides services over the internet. Users can select and 
manage the available services, for example through a web 
browser, while the enterprise information system; its data and 
software are on servers at a remote location.  

Cloud computing today plays a vital role in the 
implementation and execution of effective on-demand 
location-independent information systems’ services in low 
cost. For this reason, cloud computing is becoming more and 
more popular while this popularity grows even more faster as 
more cloud services companies share valuable resources on the 
internet in cost effective ways.  

In addition to the cloud services models that have been 
defined by NIST [1], the cloud offers also services such as the 
Database-as-a-Service (DaaS) which enables organizations to 
deploy new databases quickly, securely, and cheaply, thus 
offers them accelerated deployment, elastic capacity, great 
consolidation efficiency, and high availability in a very low 
overall operational cost and complexity.  

Due to the increasing demand for more cloud services there 
is a growing threat of sensitive data security and privacy 
disruption by deploying several available network attacks [1, 
2], such as SQL injection, cross site scripting, man in the 
middle, sniffing attacks, attacks against virtual machine 
hypervisors, etc. Therefore, the data needs to be encrypted in 
order to be protected, before stored in the cloud. By encrypting 
the data with an appropriate method, it is very difficult -if not 
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impossible- for any potential attacker to gain access to the data 
in its non-encrypted form. However, the disadvantage of this 
solution is the communication and computational cost for 
executing the client’s queries efficiently in the encrypted 
database.  

The methods that offer sensitive data protection from 
untrustworthy cloud providers and malicious attackers and at 
the same time efficient execution of the client’s queries can be 
grouped in several categories based on one of the following 
cryptographic primitives:   

• Searchable symmetric encryption, in which every 
query over the encrypted database uses keywords 
and/or secure indices to retrieve the (encrypted) data 
results [3, 4, 5, 6, 7]. 

• Fully-homomorphic encryption, in which 
computations over encrypted data can be performed, 
based on a mathematical property called 
homomorphism that supports basic operations like 
addition and multiplication on ciphertexts [8, 9, 10]. 

• Functional encryption, in which the data owner 
encrypts the data using a public key and additionally 
s/he predefines access privileges for the rest of the 
users to access it. The users can then get secret keys 
from a trusted server and then decrypt parts of the 
encrypted data on the basis of their assigned 
privileges [11, 12, 13]. 

SOPE: A Spatial Order Preserving Encryption 
Model for Multi-dimensional Data 
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• Oblivious Ram, in which an interface between a 
program and the physical RAM can hide the user’s 
access patterns from an adversary [14, 15, 16, 17]. 

• Property preserving encryption, in which the 
encrypted data can sustain some selected properties 
of the original un-encrypted data [18, 19, 20].  

In the latter category, among other techniques, the Order 
Preserving Encryption (OPE) method is based on the principle 
that the order of two plaintexts x and y will hold also for their 
ciphertexts Enc(x) and Enc(y), i.e., Enc(x) > Enc(y) iff x > y. 
The advantage of this method is that the order operations can 
be performed on the ciphertexts in the same way as on the 
plaintexts. Therefore query operations such as MIN, MAX and 
COUNT can be easily executed on the encrypted data as if they 
were on their original unencrypted form, while other 
operations such as SUM and AVG cannot function similarly 
since their output is not based on the order of the data. The 
disadvantage of the OPE method is that the cloud provider is 
aware of the order of the stored items. As a result, the provider 
can check out if a ciphertext is greater or smaller than any other 
ciphertext. Surely this is not a negligible disadvantage and 
under certain circumstances can hurt the security and privacy 
of the data. If for example the attacker is able to find the one-
on-one correspondence between just one plaintext to its 
ciphertext, s/he may be able to approximately estimate the 
range of other ciphertexts through assumptions.  

However there are applications in which revealing only the 
order of the data is not considered as a security leakage. As an 
example, an email storage box on a server can be considered, 
in which the data are encrypted with OPE on the date field or 
on the alphabetical order of the name of the sender. This way, 
given the OPE key, the email box owner can access the emails 
with a high degree of protection for the data while at the same 
time s/he can enjoy sorting and searching functionalities. 

The example shows that as long as the application can 
endure that the OPE scheme will reveal information about the 
order of the items stored, the benefits on executing queries are 
significant since the technique allows comparison operations 
to be directly applied on the encrypted data, without the need 
to decrypting them.  

The notion of indistinguishability under the ordered 
chosen-plaintext attack (IND-OCPA), [20] requires that an 
adversary with access to a set of ciphertexts will learn nothing 
except the order of the items. This guaranty is considered as 
the ideal security for OPE schemes for single-dimensional data 
and it has been shown that it is impossible for any OPE scheme 
to achieve IND-OCPA if the ciphertexts are immutable and the 
encryption is stateless. 

[21] shows that IND-OCPA is impossible even for a stateful 
OPE scheme, however the property is achievable when the 
ciphertexts are mutable. The paper proposes also the mutable 
order preserving encoding (mOPE) model which uses an 
interactive protocol between the client and the untrusted server 
to help the latter managing the ciphertexts in the encrypted 
database. 

This work proposes an OPE model for d-dimensional data 
that is influenced by the mOPE model for single-dimensional 
data proposed in [21].  

To the best of the authors’ knowledge this work is the first 
to provide such a spatial OPE encryption for d-dimensional 
data. A whole range of traditional and other well-known spatial 
queries can be supported securely and efficiently within this 
new framework, as it is shown in the experimental study of the 
paper. In summary, the scientific contributions of this work are 
as follows: 

• an interactive spatially-based mOPE scheme (SOPE) 
for d-dimensional data with a security guaranty that 
an adversary cannot distinguish between the 
encryptions of two sequences of objects as long as the 
sequences have the same spatial order relation, 

• a bunch of algorithms for the secure and efficient 
processing of several well-known spatial queries, 
such as the point query, the range query, the k-nearest 
neighbours query, the static and dynamic skyline 
queries, etc. 

• an extensive experimental evaluation study which 
illustrates the efficiency and practicability of the 
proposed scheme to support effectively high-
demanding d-dimensional applications.  

The rest of the paper is organized as follows. Firstly, the 
related work is discussed in Section 2. Threat models and some 
assumptions and notations that are relevant to the proposed 
work are discussed in Section 3. The proposed SOPE model 
for spatial order preservation in d-dimensional databases and a 
security analysis are presented in Section 4. The algorithms for 
processing an extensive set of queries in d-dimensional data 
using the new model are formally presented and discussed in 
Section 5. Extensive experimental results on real and synthetic 
data regarding the space and time performance of the proposed 
encryption framework are surveyed in Section 6. Finally, the 
conclusion of the research is provided in Section 7.  

2. Related work 

As it can be understood, OPE is a very popular model for 
single-dimensional database applications due to its ability to 
support efficient range query processing directly on the 
encrypted data without the need to decrypt them. The method 
was introduced in 2004 by Agrawal et al. [19] and a plethora 
of relative work has been introduced since then. [19] proposes 
the transformation of the plaintext database into a flat database 
such that the values are uniformly distributed. This flat 
database is then transformed into the cipher database such that 
the data values are distributed according to the targeted 
distribution. The transformation of the database is performed 
by splitting it in several buckets and by using linear 
interpolation inside every bucket. The drawback of this method 
is that it must take as input all the plaintexts in the database in 
advance which is not always practical in real-life applications. 
[20] shows that IND-OCPA is unachievable by any OPE 
scheme with stateless encryption and immutable ciphertexts. 
The authors propose an efficient OPE scheme on the basis of a 
sampling algorithm for the hypergeometric probability 
distribution. As IND-OCPA is unachievable for this scheme, 
they propose a security notion of a random order-preserving 
function (ROPF) and related primitives asking that an OPE 
scheme will look “as-random-as-possible” subject to the order 
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preserving constraint. The encryption algorithm of the scheme 
in [20] behaves similarly to an algorithm that samples a ROPF 
from a specified domain on-the-fly (called “Lazy Sampling” in 
[22]). [23] improves the performance of the OPE scheme 
presented in [20] and [24, 25] show that the security definition 
of the ROPF inherently reveals at least half of the plaintext bits. 
Also, [26] experimentally show that this method has quite poor 
performance efficiency. 

[27] proposes an OPE indexing scheme which indexes 
plaintexts by using simple linear expressions of the form a * x 
+ b + noise, in which x is the value for encryption, the 
coefficients a and b are kept secret (not known to the untrusted 
cloud server) and noise is randomly sampled from some 
particular range, such that the order of the plaintexts is 
preserved. [28] proposes a nonlinear indexing scheme to 
address the vulnerability of linear indexing. A nonlinear 
indexing expression has the form a * f (x) * x + b + noise, where 
f (x) is a function over x. However [21] discusses an attack that 
can break the schemes of [27, 28].  

[29] weakens the security notion of IND-OCPA to IND-
OLCPA (indistinguishability under ordered and local chosen-
plaintext attack) requiring that the adversary can learn the 
ciphertexts only for ‘nearby’ values. The paper also extends the 
concept of OPE to generalized OPE (GOPE). Unlike OPE, the 
ciphertexts of GOPE may not be numbers, however using 
special comparison algorithms GOPE can still compare the 
encrypted data without needing to decrypt them. [30] proposes 
another generalization of OPE, called order-revealing 
encryption (ORE). In contrast to OPE in which the ordering of 
the underlying plaintexts is determined by numerically 
comparing the ciphertexts, in ORE scheme there is a publicly 
computable comparison function. The function takes two 
ciphertexts and outputs the numeric ordering of the underlying 
plaintexts. Although it provides IND-OCPA, the construction 
of the scheme relies on multi-linear maps and is therefore too 
inefficient in practice. An efficient ORE scheme is proposed 
by [31] however its drawback is that it leaks some information 
about the underlying plaintexts. 

[32] presents a keyless IND-OCPA OPE scheme for 
outsourced data. The state of the algorithm plays the role of the 
key, i.e., it is secret information. Differently from a key, the 
state of the algorithm is not pre-generated, but grows with the 
number of encryption operations. The size of the state of the 
encryption algorithm is the size of a dictionary of the database 
that maps the plaintext data to ciphertext which is sent to the 
server. If an update is required then potentially the entire 
client’s dictionary and all the corresponding ciphertext values 
at the server-side might need to be updated. However, by 
keeping the dictionary at the client, the number of interactions 
between client and server for data updates are reduced. An 
important drawback of the method is its increased secure 
storage demands on the client-side. 

[21] provides ideal security, which is IND-OCPA, by using 
a B+-tree and an interactive protocol to provide OPE. Many 
other works have been proposed that rely on the OPE 
technology [19, 20, 24, 27, 28, 33, 34, 35, 36, 37, 38]. 
However, most of them provide weak security definitions by 
making assumptions about the possible attacks. [21], [34] and 
[32] are some excellent references providing comparisons 

regarding the security and efficiency of several previous 
works.  

All the above-mentioned work has been proposed to handle 
single-dimensional data. As regards to multi-dimensional data, 
a solution to compute the range query is proposed in [39]. The 
method computes a secure indexing tag of the d-dimensional 
data by applying bucketization (i.e., data splitting in buckets) 
which prevents the server from learning the exact plaintext 
values while it is still able to check if a record satisfies the d-
dimensional range query predicate. The server returns a set of 
encrypted records and the client needs to perform some 
additional processes to select the records that satisfy the query. 
An analogous strategy with data grouping based on Voronoi 
diagrams is applied in [40] for the support of the nearest 
neighbour query.  

[41] and [42] encrypt the database using similar data 
transformations and address the problem of nearest neighbour 
and skyline search respectively over the encrypted data. The 
drawback of the proposed query processing models is that their 
algorithms need to access every one tuple in the encrypted 
database to provide the answer to the query. [43] proposes 
another model to support the range query which however needs 
also to scan the whole database for executing the query. [44] 
focuses on location data and proposes linear coordinates 
transformations on every dimension, such as that in [27, 28] 
with the accompanied weaknesses of these schemes, to prevent 
the disclosure of the data while supporting efficiently range 
and k nearest neighbor queries. The paper proposes also an R-
tree-based solution with encrypted tree nodes (as encrypted 
buckets of records) which can be decrypted only by the client. 
In this solution most of the processes for data modifications 
and querying are performed by the client with high 
communication cost between the client and the server, while 
the server simply offers storage services for the encrypted R-
tree.  

Another transformation scheme [45] utilizes the Hilbert 
curve mapping [46] to transform spatial data points into one-
dimensional values and then uses a one-dimensional OPE 
scheme to encrypt the data. The scheme supports the execution 
of range queries by decomposing them into a possibly large 
number of intervals, leading to high processing and 
communication costs. Also the evaluation of other spatial 
queries remains to be explored.  

This paper extends the single-dimensional OPE 
methodology to the goal of supporting the encryption of d-
dimensional data and the efficient execution of spatial queries 
on the encrypted database without the need to store any 
additional information but the secret key. The new scheme is 
inspired by [21] and utilizes an interactive communication 
protocol between the user and the server to offer IND-SOCPA, 
a security guaranty which is equivalent to IND-OCPA for 
multi-dimensional data. The cloud server is not assumed 
trusted and no intermediate authority such as a central trusted 
party is needed for any operation. The proposed model 
provides the user with the ability to access the database via any 
device with some minimum power and the server with the 
ability to implement its service using any existing spatial 
database management system (DBMS). The encryption 
procedure sustains the topology of the original data and to the 
best of the authors' knowledge this work is the first to provide 
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such an encryption model offering spatial order preservation 
for d-dimensional data (SOPE model). 

3. Preliminaries 

3.1. Threat Models 

It is assumed that the communication between the client and 
the server is performed without any intermediary entity (for 
example, a fully trusted authority) and that the client is capable 
to properly protect the secret key used for the encryption. It is 
also assumed that the cloud server to be honest-but-curious, 
whose goal might be to obtain full access to the plaintext of the 
encrypted stored data without altering any data that is 
communicated between the client and the server. The paper 
does not address data integrity and availability threats which 
can be handled by other mechanisms. 

3.2. Assumptions and Notations 

The proposal is based on the DaaS model. The two entities 
in the system are the legitimate client and the cloud server that 
interact between each other as the model is executed. The 
architecture considers the participation of one client although 
more clients can participate as well. The client owns the d-
dimensional data and outsources them to the server in an 
encrypted form, wishing to not be revealed to any unauthorized 
entity. The client also aims to be able to search the data while 
protecting their confidentiality. The client is assumed to be 
capable to properly protect the secret key for the data 
decryption process. Finally, the client’s device is assumed to 
have some minimum power, for example for being able to 
process the encryption and decryption processes or to perform 
simple calculations in order to refine the queries’ results if 
needed.  

The main burden of computation cost is assigned to the 
cloud service, which is this assumed to have ample storage 
space and power resources to store and query encrypted data 
through its sharing database services for the client. All data are 
assumed to be protected using existing symmetric or 
asymmetric data encryption schemes, which are not the focus 
of this paper, though symmetric encryption is encouraged. 

Table 1 lists the most commonly used symbols in the paper. 
 

Symbol Definition 
OS The original data space 
ES The ‘encoded’ data space that is 

produced by the proposed SOPE model 
d The number of data dimensions  
P A set of d-dimensional objects 
P' The encoded version of P  
n The cardinality of P 

p, e, r, p1, p2, .., pk d-dimensional data points 
p (p1, p2, …, pd) A d-dimensional point p with coordinates 

p1, p2, …, and pd 
p’ (p’1, p’2,…, p’d) The encoded version of point p  

Table 1: Symbols and Notations. 

4. The proposed model 

4.1. The new model’s overview 

The new model encrypts and stores d-dimensional objects 
on the basis of their spatial order. To achieve this it uses a 
separate B+-tree for encoding the objects’ coordinates in every 
dimension and an R-tree for finally storing the encoded objects. 
The system's simplified logical diagram is illustrated in Figure 
1. A design goal is that the protocol of the proposed system 
should be simple enough to be implementable on top of 
existing clouds and DBMSs while at the same time it will 
operate with low communication and computational cost. 

 

 

 
Client Server 

Secret Key 

Interaction 

B+-tree 

B+-tree 

B+-tree 

 R-tree 

 
Figure 1: The simplified logical diagram of the proposed model. 

4.2. Calculating the Encodings of the Encrypted Coordinates 

For every dimension, a B+-tree indexes the encrypted 
coordinate values of all the inserted database objects so far with 
the order of their corresponding plaintexts. This is achieved 
with the cooperation of the server and the user using a 
communication protocol that is based on the single-
dimensional mOPE model proposed in [21] by adding some 
necessary modifications. 
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Figure 2: The evolution of a B+-tree and the corresponding evolution of the 
encodings (in red colour under the leaves) of its stored keys.  
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Based on this strategy, an encoding is assigned to every 
single encrypted coordinate value; this encoding is related to 
the position of the coordinate value in the corresponding B+-
tree. To construct this encoding by following the model 
proposed in [21], log2B bits are needed for every level of the 
B+-tree, where B is the node’s capacity, i.e., log2B bits are 
needed to represent which pointer of every index node in the 
path from the root needs to be followed in order to find the 
coordinate value in the leaf level of the tree, and additionally 
log2B bits are needed to represent the position of this 
encrypted value in the hosting leaf. For example, assuming that 
the encrypted version of a coordinate value is 70, its encoding 
in the B+-tree section of Figure 2a (2b) is 1-0-1 (0-1-1-0) in 
binary form, which can be converted to 1*22 + 0*21 + 1*20 = 5  
(0*23 + 1*22 + 1*21 + 0*20 = 6) in decimal form. 

Analogous process is repeated for every dimension and thus 
the coordinates of every encrypted d-dimensional object are 
transformed to their corresponding encodings and the object is 
then inserted in the R-tree. This R-tree finally offers encryption 
with spatial order preservation since the order of the coordinate 
values of the stored objects does not change, thus preserving 
the corresponding spatial relations between the objects in the 
transformed space (i.e., if for example an object ob1 is on the 
left side of an object ob2 before the encryption, this relation 
between the two objects is preserved in their encrypted version 
as well). 

4.3. Data Insertion 

This section surveys the object insertion process in the 
proposed SOPE model, with all the necessary communication 
interaction between the user and the server. For simplicity the 
discussion will focus on the insertion of a single-point object 
since the insertion of a multi-point object (e.g., a polygon) is a 
simply extension of this. The process is formally illustrated in 
Algorithms 1 and 2.  

 
 Algorithm 1: Object Insertion () 

Input: a new point object p(p1, p2, …, pd). 
Output: the updated B+-trees with the OPE  
 encodings for each dimension and the  
 updated R-tree with the encoded objects. 

1: 
 
2: 
3: 
 
 
 
 
4: 
 
5: 
 
 
6: 
 
 
 
 
7: 

Client: informs the Server to begin the 
 insertion process of the new point p; 
FOR every dimension i DO 
 Server/Client: find in cooperation the  
  position in the i-th B+-tree in which 
  the encrypted value of pi will be 
  inserted, and find also as well its 
  SOPE encoding p’i; (see Algorithm 2) 
 Server: inserts the encrypted value of  
  pi coordinate in the i-th B+-tree; 
 Server: computes the range [p1’i,p2’i] of 
  the affected encodings in the B+-tree 
  that will be updated in the R-tree; 
 Server: executes in the R-tree a range 
  query [p1’i, p2’i] on the i-axis to  
  update any encoded i-coordinate of  
  every object in this range to its  
  newer value; 
Server: Inserts the new point p’(p’1, p’2,  

 
8: 

 …, p’d) in the R-tree; 
END; 

Algorithm 1: The object insertion process in the proposed SOPE model.  

In the begining of the process (Algorithm 1, Line 1) the 
client informs the server for the initiation of the insertion 
process. Since the coordinates of the object which the client 
wishes to insert are encrypted, the server cannot place the 
object in a spatial order with regard the other objects in the 
database. For this reason, for every dimension i (Algorithm 1, 
Line 2), the server and the client interact (Algorithm 1, Line 
3) in order to find the proper SOPE encoding pi' of the i-th 
coordinate pi of the object.  

More specifically, as Algorithm 2 shows in more detail, the 
server sends to the client the root node of the B+-tree of the i-
th dimension (Algorithm 2, Line 1). The client then decrypts 
the index keys in the root and compares them against the new 
key which s/he wants to insert into the tree. When the client 
finds the maximun decrypted index value that is smaller or 
equal than the key which will be inserted, s/he informs the 
server which pointer to follow in order to retrieve the correct 
child node in the next level of the tree (Algorithm 2, Line 3). 
The server receives this information and sends the 
corresponding child node to the client, which node -depending 
on the height of the tree- might be an index node or a leaf 
(Algorithm 2, Line 4). When the leaf level of the tree has been 
reached, the client (Algorithm 2, Line 5) informs the server for 
the position in which the new encrypted key needs to be 
inserted (if it does not already exist in the tree). The server then 
calculates the SOPE encoding pi

' of the coordinate value pi 
based on the path from the root of the tree to the target leaf 
(Algorithm 2, Line 6). Details on the encoding calculation are 
provided in [21].  

Then the server inserts the new encrypted coordinate value 
in the corresponding B+-tree (Algorithm 1, Line 4). The server 
also computes the range [p1'i, p2'i] -if exists- of affected 
encodings of pre-stored keys in the B+-tree that need to be 
updated in the R-tree (Algorithm 1, Line 5) because the 
position that these keys or any of their ancestors had in the B+-
tree before this insertion, has now been changed.  

In the next step the server updates in the R-tree the encoded 
i-coordinate of every spatial object that has value in the range 
[p1'i, p2'i] it to its newer value (Algorithm 1, Line 6).  

The same process (Algorithm 1, Lines 2 to 6) is repeated 
for every dimension and when the new item’s coordinates 
encodings for all the space dimensions have been generated 
(based on the positions in which its encrypted coordinates have 
been stored in the corresponding B+-trees), then the new multi-
dimensional object is inserted into the R-tree (Algorithm 1, 
Line 7).  
 
 Algorithm 2: Server/Client Interaction  

 for Objects Insertion(), adapted from  
 [21] 

1: 
 
2: 
3: 
 
 

Server: sends to the client the root node 
 of the i-th B+-tree; 
FOR every non-leaf level of the tree 
 Client: decrypts the received node and 
  compares its index keys with pi.When 
  s/he finds the proper index key,s/he 
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4: 
 
 
 
5: 
 
 
6: 
 
 
 
7: 

  informs the server for its position; 
 Server: according to the position  
  received by the client, s/he sends 
  the corresponding child node to 
  the Client; 
Client:decrypts the received leaf & sends 
 to the Server the encrypted value of pi 
 and its position in the target leaf; 
Server: computes the SOPE encoding p’i of  
 the encrypted value of pi based on the  
 path from the root of the tree to its  
 position in the target leaf; 
END; 

Algorithm 2: The interaction process for an object insertion in the proposed 
SOPE model.  

As regards the encodings in the range [p1'i, p2'i] of the i-th 
dimension whose values need to be updated in the R-tree, the 
following holds. If the insertion of the encrypted value of the 
new coordinate pi in the i-th B+-tree has not caused any node 
split to the tree, then p1'i and p2'i are the old encodings of keys 
that lie both in the same leaf node with the newly inserted 
encrypted value of pi. In this case, p1'i is the old encoding of 
the key which is the next on the right side of the newly inserted 
encrypted value of pi, and p2'i is the old encoding of the key 
that is the right-most key in the same leaf, if both such keys 
exist. For example, in Figure 2b, after the insertion of key 55 
in the B+-tree of Figure 2a, the range [p1'i, p2'i] is [2, 2], where 
2 corresponds to the old encoding value of the key 58 whose 
position in the B+-tree was affected from the insertion of the 
new key 55, and whose encoding value was changed from 2 to 
3.  

If, however, the insertion of the encrypted value of the new 
coordinate pi has caused the split of a tree node in at least one 
level of the B+-tree, then p1'i is the old encoding value of the 
next key on the right side of pi (not neseseraly being in the same 
leaf with pi) and p2'i is the right-most key in the right-most leaf 
an ancestor index key of which (i.e., an ancestor index key in 
any possible level) changed its possition because of the 
insertion of pi. For example, in Figure 2b, after the insertion 
of key 65 in the B+-tree of Figure 2a, the tare phenomenon in 
which a node split in every level of the tree has appeared (with 
probability (2/B)h, where h is the level of the tree), therefore 
the range [p1'i, p2'i] is [5, +∞], where 5 corresponds to the old 
encoding value of the key 70 which is the next key on the right 
side of 65 and +∞ represents the right-most leaf-key in the tree 
since the encoding of every key whose ‘greatest’ ancestor 
index key is 80 (i.e., the index key 80 changed its position) 
needs to update its value because of this insertion. The result 
of the above strategy is that the encoding of zero keys in the 
best case (with probability between 1/Β and 2/Β) and of all the 
allready-stored encrypted keys in the worst case (with 
probability (1/n)*(2/B)h) might need to be updated after the 
insertion of a new key.  

4.4. Security analysis 

The proposed encoding scheme is based on the single-
dimensional mutable OPE model in [21] and extends it in the 
multi-dimensional space. The new model can mutate the 
encodings of the multi-dimensional objects in every 

dimension. Also, by preserving the order of the encodings in 
every dimension, the new multi-dimensional model manages 
to preserves the spatial order of the encrypted objects in the 
transformed space that is produced by these encodings.  

Previous work on the field of OPE has shown that 
indistinguishability against chosen plaintext attack is 
unachievable by a practical OPE scheme. For this reason, a 
straightforward relaxation of this standard security notion for 
encryption in the single-dimensional domain is IND-OCPA 
[20]. For extending the IND-OCPA guarantee in the multi-
dimensional domain, a corresponding security game is 
presented. The game is between the client and an adversary and 
it proceeds as follows:  

1. The client chooses a random bit b.  
2. The client and the adversary engage in a polynomial 

number of rounds of interaction in which the adversary is 
adaptive. At round i:  
a. The adversary sends to the client the sequences 𝑃𝑃𝑖𝑖

0 
and 𝑃𝑃𝑖𝑖

1 of multi-dimensional objects. 
b. The client encrypts only the sequence 𝑃𝑃𝑖𝑖

𝑏𝑏  of objects 
and by interaction with the server inserts these 
objects in the R-tree, with the adversary observing 
the result at the server-side. 

3. The adversary outputs b′, its guess for b.  

The adversary will win the game if the guess is correct (i.e., 
if b = b′), while the sequences 𝑃𝑃𝑖𝑖

0 and 𝑃𝑃𝑖𝑖
1 are comprised by 

objects that have the same spatial order relation among each 
other in both sequences of objects.  
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Figure 3: (a) and (b) two sequences of objects in the OS with the same spatial 
order between their objects, and (c) the encoded version of both these objects 

sequences in the ES.  

An example of such sequences of objects that have the same 
spatial order is depicted in Figure 3. Figures 3.(a) and 3.(b) 
illustrate the sequences {p1, p2, p3, p4} and {p5, p6, p7, p8} of 2-
dimensional points in the original unencrypted space (OS). The 
object p2 (p6) is in the north-east side of object p1 (p5), the 
object p3 (p7) is in the south-east side of object p2 (p6), etc. 
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Figure 3.(c) illustrates the encoded version {pa, pb, pc, pd} of 
one of these sequences of points in the encoded space (ES) that 
is provided by the SOPE model. The adversary will win the 
game if s/he can guess correctly which of the two sequences 
was encrypted. Let win be the random variable indicating the 
success of the adversary in the above game. 

Definition 1 (IND-SOCPA – indistinguishability under a 
spatial-ordered chosen-plaintext attack): A SOPE scheme is 
IND-SOCPA secure if for all p.p.t. adversaries: Pr[win] ≤ ½ + 
negl(.), where negl(.) is a negligible function [47].  

Theorem. The proposed SOPE scheme is IND-SOCPA 
secure.  

Proof. The proof is a simple extension of the proof of the 
corresponding theorem that the backbone mOPE scheme is 
IND-OCPA secure, which provided in [21]. For this reason a 
short proof intuition is only provided in this paper. Consider 
any adversary and any two sequences P0 and P1 of d-
dimensional objects that the adversary asks for in the security 
game. The view of the adversary consists of the information 
the server receives in the security game.  

Assuming that the data encryption scheme used by the client 
(which is not the focus of this paper) produces computationally 
indistinguishable from random values that have the same 
pattern of repetitions (e.g., produced by a random oracle), the 
discussion focuses on the role of the SOPE scheme in the 
encoding process. For this goal, we proceed inductively in the 
number of d-dimensional objects to be encrypted. Assuming 
that after the insertion of i objects in which the adversary 
obtains the same information in both cases of sequences P0 and 
P1, it will be shown that the information the adversary will 
obtain after the i+1-th insertion will be equally the same again. 
Supposing that u is the i+1-th object in the P0 sequence and v 
is the i+1-th object in the P1 sequence, in both cases the client 
and the server in cooperation will execute Algorithm 1 to 
insert the object in the R-tree. For every one of the d coordinate 
values of either object u or v, since both P0 and P1 sequences 
provide the same order in every dimension, the path down on 
every B+-tree taken by the algorithm is the same. Either or not 
the encrypted coordinate value will exist in the corresponding 
B+-tree, the only information the client gives to the server is 
which child tree nodes to take in this path, which is also the 
same for both cases. And also in both cases the insertion into 
the R-tree will be exactly in the same position in the tree since 
the encodings of both u and v on all dimensions will be exactly 
the same. Therefore, the adversary receives the same 
information in both cases, and hence s/he cannot distinguish 
between them.  � 

In the example of Figure 3, the encoded result in Figure 3.(c) 
that is provided by the proposed SOPE model might have been 
produced by any one of the two sequences of points in Figures 
3.a or 3.b with the same probability ½ (for example the 
encoded version of both the points p2 of the first sequence and 
p6 of the second sequence is the point pb(1, 2) in the encoded 
space).  

5. Query processing 

In this section, algorithms for the efficient execution of a 
bunch of well-known queries for d-dimensional data are 
presented, which are: the point query, the range query, the 
(static) skyline query, the dynamic skyline query, the k-nearest 
neighbours query, the constrained k-nearest neighbours query, 
the constrained skyline query, the reverse k-nearest neighbour 
query, the constrained skyline query, and the continuous 
nearest neighbour query. An analysis on the skyline query 
family can be found in [48]. For every query, an example is 
presented, as well as a formal description of the proposed 
algorithm to efficiently support it, using a step-by-step pseudo-
code illustration, and a theoretical proof of its correctness and 
efficiency. The 2-dimensional dataset P which is used 
throughout all the examples that follow is illustrated in Table 
2. 

       
Table 2: A dataset P of twenty eight 2-dimensional points with coordinates 

<X, Y> and SOPE encoding values <X', Y'>. 

5.1. The Point Query 

Given a dataset P of d-dimensional points and a reference 
query point q, the point query finds if q exists in the dataset. 
The algorithm for processing the point query in the proposed 
SOPE model is illustrated in Algorithm 3. 
 Algorithm 3: The Point Query() 

Input: a reference point q(q1, q2, …, qd). 
Output: TRUE if q appears in the dataset  
 and FALSE if it does not. 

1: 
 
 
2: 
3: 
 
4: 
5: 
 
 
 
 
6: 
 
 
 
7: 
8: 

Client: informs the Server to begin the 
 execution of the point query with  regard to 
the given query predicate q; 
FOR every dimension i DO 
 Server: sends to the client the root  
  node of the i-th B+-tree; 
  FOR every non-leaf level of the tree 
   Client: decrypts the received node  
    and compares its index keys  
    with qi. When s/he finds the  
    proper index key, s/he informs  
    the server for its position; 
   Server: according to the position  
    received by the client, s/he  
    sends the corresponding child  
    node to the Client; 
 Client: decrypts the received leaf; 
 IF qi is found in the leaf THEN 

 

 
object X Y X' Y' 

p1 100 100 1 1 
p2 250 250 4 4 
p3 600 600 11 13 
p4 300 400 5 7 
p5 450 450 8 8 
p6 100 700 1 15 
p7 300 480 5 9 
p8 500 900 9 19 
p9 800 550 15 12 
p10 350 850 6 18 
p11 200 300 3 5 
p12 650 150 12 2 
p13 950 900 18 19 
p14 600 300 11 5 

 

 
object X Y X' Y' 

p15 50 950 0 20 
p16 900 750 17 16 
p17 950 950 18 20 
p18 400 50 7 0 
p19 750 250 14 4 
p20 850 150 16 2 
p21 150 650 2 14 
p22 100 200 1 3 
p23 550 100 10 1 
p24 700 510 13 11 
P25 700 800 13 17 
p26 700 350 13 6 
P27 100 350 1 6 
p28 100 500 1 10 
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9: 
 
10: 
 
 
11: 
12: 
13: 
 
 
 
 
14: 

  Client: sends to the Server the     
   position of qi in the leaf; 
  Server: computes the SOPE encoding  
   q’i of qi based on the path from  
   the root of the tree to the leaf; 
 ELSE 
  return FALSE; 
Server: executes a traditional point  
 query to the R-tree with regard to the  
 encoded query predicate q’ and returns  
 FALSE if q does not appear in the  
 dataset; 
return TRUE; 

Algorithm 3: The point query process in the proposed SOPE model.  

In the begining of the process, after in Line 1 of the 
algorithm the client informs the server for the initiation of the 
execution of the point query with regard to the given query 
predicate q(q1, q2, …, qd), for every dimension i (Line 2) the 
server and the user interact (Lines 3-12) using a 
communication protocol similar to the one appearing in 
Algorithm 2 for the object insertion process, in order to find if 
qi exists in the corresponding i-th B+-tree. If qi is not found the 
process is terminated (Line 12) since it is evident that non 
object in the dataset will have coordinate on the i-th axis that 
is equal to qi. Otherwise the encoding q'i of qi is calculated and 
when this calculation has been succesfully performed for all 
dimensions, a traditional point query is executed in the R-tree 
with regard to the encoded query predicate q'(q'1, q'2, …, q'd) 
to discover if q truly appears in the dataset. 

5.2. The Range query 

Given a dataset P of d-dimensional points and a reference 
query hyper rectangle q with diagonal vertices qa and qb, the 
range query retrieves the points that lie in the given rectangle. 
The algorithm for processing the range query in the proposed 
SOPE model is illustrated in Algorithm 4. 
 
 Algorithm 4: The Range Query() 

Input: a reference hyper rectangle q with  
 diagonal vertices qa(qa1, qa2, …, qad),  
 and qb(qb1, qb2, …, qbd). 
Output: the data points that lie into q. 

1: 
 
 
2: 
 
 
3: 
 
 
4: 
 
 
 
 
5: 
6: 

Client: informs the Server to begin the 
 execution of the range query with  regard to 
the given hyper rectangle q; 
Client/Server: calculate in cooperation  
 the encoded version q'a and q'b of the  
 points qa and qb, correspondingly; 
Server: executes the traditional Range  
 Query to the R-tree with regard to q’  
 with diagonal vertices q'a and q'b;  
Server: FOR every data point in the  
 results, the B+-tree for every  
 dimension is traversed to collect the  
 ciphertext of its coordinates and sends 
 the point to the Client;  
Client: decrypts the results;  
END; 

Algorithm 4: The range query process in the proposed SOPE model.  

In the beginning of the process (Line 2), the client and the 
server interact with each other in order to calculate the 
encodings q'a and q'b of the diagonal vertices qa and qb of the 
given hyper rectangle q, as if q'a and q'b should be inserted in 
the dataset, using a communication protocol similar to the one 
appearing in Algorithm 2 for the object insertion process. Then 
a traditional range query is executed in the R-tree with regard 
to the encoded hyper rectangle q' with diagonal vertices q'a and 
q'b (Line 3), to retrieve all point objects in P that appear to be 
inside the requested region. Then for every data point in the 
results, the server traverses the corresponding B+-tree in every 
dimension to collect the ciphertext of the coordinates of the 
point (Line 4) and then sends the point to the client for 
descryption. The following proposition validates the 
correctness of the algorithm. 

Proposition 1: The execution of the range query over the 
original (un-encrypted) as well as over the encoded dataset 
using the proposed SOPE model produces the same results.  

Proof: Let us assume a d-dimensional hyper rectangle q with 
diagonal vertices [qa, qb] and its encoded version q' using the 
SOPE model with diagonal vertices [q'a, q'b], where q'a and 
q'b are correspondingly the SOPE encodings of qa and qb. Let 
us also assume that the execution of the range query [qa, 
qb]//[q'a, q'b] over the original//encoded dataset P//P' will 
produce as result the set of points ORQ//ERQ. Let us assume 
now a point p ∈ ORQ, then ∀ i ∈ {1, …, d}: qai ≤ pi ≤ qbi and 
since the SOPE model does not change the order of these 
values on the i-th axis, then ∀ i ∈ {1, …, d}: q'ai ≤ p'i ≤ q'bi, 
where q'ai, p'i and q'bi are correspondingly the OPE encodings 
of qai, pi and qbi. Therefore, p ∈ ERQ, thus ORQ ⊆ ERQ. 
Similarly it can be shown that ERQ ⊆ ORQ, therefore, finally, 
ORQ ≡ ERQ. � 

A range query example in the 2-dimensional original space 
OS as well as in the corresponding encoded space ES is 
illustrated in Figure 4. As the figure shows, the range query 
provides the same results in both domains. As it can also be 
understood, the SOPE model does not preserve the distance 
between points, therefore, point p7 in the OS is closer to the 
upper side of the query rectangle, than it is in the ES. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

x 

p3 

p22 
p2 

p6 

p5 

p1

 

p4 

p15 

p20 

p7 

p8 

p9 

p10 

p11 

p12 

p13 

p14 

p16 

p17 

p18 

p19 

p21 

p23 

p24 

p25 

p26 p27 

p28 

   
   

   
   

   
   

 y
 

Ο 100 200 300 400 500 600 700 800 900 1000 

100 

200 

300 

400 

500 

600 

700 

800 

900 

1000 

  

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Ο 2 4 6 8 10 12 14 16 18 20 

5 

10 

15 

20 

25 

x 

   
   

   
   

   
   

 y
 

p`3 

p`22 
p`2 

p`6 

p`5 

p`1

 

p`4 

p`15 

p`20 

p`7 

p`8 

p`9 

p`10 

p`11 

p`12 

p`13 

p`14 

p`16 

p`17 

p`18 

p`19 

p`21 

p`23 

p`24 

p`2

 

p`26 p`27 

p`28 
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Figure 4: The range query: (a) in the OS, and (b) in the ES. 

5.3. The Skyline Query 

The skyline operator is important for several applications 
involving multi-criteria decision making. Given a dataset P of 
d-dimensional points, the operator returns all data points p that 
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are not dominated by another point r in the dataset.  For 
simplicity, we assume that skylines are computed with respect 
to min conditions on all dimensions. Using the min condition, 
a point p dominates another point r if and only if the coordinate 
of p on any axis is not larger than the corresponding coordinate 
of r. Informally, this implies that p is preferable (or ‘more 
interesting’) to r according to any preference (scoring) function 
which is monotone on all attributes. The algorithm for 
processing the skyline query using the proposed SOPE model 
is illustrated in Algorithm 5. 

 
 Algorithm 5: The Skyline Query() 

Output: the data points that belong into  
 the dataset's skyline. 

1: 
 
2: 
 
3: 
 
 
 
 
4: 
5: 

Client: informs the Server to begin the 
 execution of the skyline query; 
Server: executes the traditional skyline 
 query in the R-tree; 
Server: FOR every data point in the  
 results, the B+-tree for every  
 dimension is traversed to collect the  
 ciphertext of its coordinates and  
 sends the point to the Client;  
Client: decrypts the results;  
END; 

Algorithm 5: The skyline query process in the proposed SOPE model.  

The algorithm shows that the skyline query can be 
processed directly on the encoded data by executing any 
traditional skyline query processing algorithm for indexed data 
(for example the one introduced in [49] and its results will be 
valid also in the original unencrypted domain. This can be 
verified by the following proposition. 

Proposition 2: The execution of the skyline query over the 
original (un-encrypted) as well as over the encoded dataset 
using the proposed SOPE model produces the same results.  

Proof: Let us assume that the execution of the skyline query 
over the original//encoded d-dimensional dataset P//P' will 
produce as a result the set of points OSQ//ESQ. Let us also 
assume a point p ∈ OSQ and its corresponding encoded point 
p' ∈ P' and that p' ∉ ESQ. Therefore, there is a point r' ∈ ESQ 
such that ∀ i ∈ {1, …, d}: r'i ≤ p'i, and since the SOPE 
encoding does not change the order of ri and pi, we have that ∀ 
i ∈ {1, …, d}: ri ≤ pi, therefore p ∉ OSQ, which is a 
contradiction to the initial hypothesis that p ∈ OSQ. Thus p' ∈ 
ESQ, and thus OSQ ⊆ ESQ. Similarly it can be shown that ESQ 
⊆ OSQ, therefore, finally, OSQ ≡ ESQ. � 

A skyline query example in the 2-dimensional original 
space OS as well as in the corresponding encoded space ES is 
illustrated in Figure 5. As the figure shows, the skyline query 
provides the same results in both domains.  
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Figure 5: The skyline query: (a) in the OS, and (b) in the ES. 

5.4. The Global Skyline Query 

Given a dataset P of d-dimensional points and a reference 
query point q, the global skyline query with regard to q 
retrieves the set GSL(q) of those data points which are not 
globally dominated by another point in the dataset according to 
q. The formal definition of global domination follows. 

Definition 2 (Global domination [50]): a point p ∈ P globally 
dominates a point r ∈ P with regard to the query point q iff: 

1. ∀ i ∈ {1, ..., d}: (pi − qi)(ri − qi) > 0,  
2. ∀ i ∈ {1, ..., d}: |pi − qi| ≤ |ri − qi| and  
3. ∃ j ∈ {1, ..., d}: |pj − qj| < |ri − qj|.  

The algorithm for processing the global skyline query using 
the proposed SOPE model is illustrated in Algorithm 6. The 
Line 3 of the algorithm uses the corresponding global skyline 
query algorithm for processing un-encrypted data proposed in 
[50]. 

 
 Algorithm 6: The Global Skyline Query() 

Input: a reference point q(q1, q2, …, qd). 
Output: the data points that belong to  
 the global skyline of q. 

1: 
 
 
2: 
 
3: 
 
 
4: 
 
 
 
 
5: 
6: 

Client: informs the Server to begin the 
 execution of the global skyline query  
 with regard to the query predicate q; 
Client/Server: calculate in cooperation  
 the encoded version q' of q; 
Server: executes the traditional global  
 skyline query with regard to q’, using  
 the R-tree (see [50]);  
Server: FOR every data point in the  
 results, the B+-tree for every  
 dimension is traversed to collect the  
 ciphertext of its coordinates and sends 
 the point to the Client;  
Client: decrypts the results;  
END; 

Algorithm 6: The global skyline query process in the proposed SOPE model.  

The above Algorithm 6 in Line 3 shows that the global 
skyline query can be processed directly on the encoded data by 
executing the traditional global skyline query processing 
algorithm proposed in [50] and its results will be valid in the 
original unencrypted domain as well. This can be verified by 
the following proposition. 
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Proposition 3: The execution of the global skyline query over 
the original as well as over the encoded dataset using the 
proposed SOPE model produces the same results.  

Proof: Let us assume that the execution of the global skyline 
query over the original//encoded d-dimensional dataset P//P' 
will produce as the result the set of points OSQ//ESQ. Let us 
also assume a global skyline point p ∈ OSQ for which we have 
that ∀ i ∈ {1, …, d}: qi ≤ pi, and that for its corresponding 
encoded point p' ∈ P' we have p' ∉ ESQ. Therefore, there is a 
point r' ∈ ESQ such that ∀ i ∈ {1, …, d}: ri' ≤ pi', and since the 
SOPE encoding does not change the order of ri and pi, we have 
that ∀ i ∈ {1, …, d}: ri ≤ pi, therefore p ∉ OSQ, which is a 
contradiction to the initial hypothesis that p ∈ OSQ. Thus p' ∈ 
ESQ, and thus OSQ ⊆ ESQ. Similarly we can show that ESQ 
⊆ OSQ, therefore, finally, ∀p ∈ OSQ for which we have that 
∀ i ∈ {1, …, d}: qi  ≤  pi we have that OSQ ≡ ESQ.  

Similarly we can show that OSQ ≡ ESQ for all the hyper 
quadrants of the data space for which q is the origin of the axes. 
Figure 6 illustrates the four quadrants of the space that are 
created having q' as the origin of the axes when we study this 
problem in two dimensions. � 
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Figure 6: Global skyline query processing with regard to a point q' in the 2-

dimensional ES, and the four possible spatial relations between a global 
skyline point r' and another point p' under examination.  

A global skyline query example with regard to a reference 
point q in the 2-dimensional OS as well as in the corresponding 
ES is illustrated in Figure 7. As the figure shows, the query 
provides the same results in both domains.  
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Figure 7: The global skyline query: (a) in the OS, and (b) in the ES. 

5.5. The Dynamic Skyline Query 

Given a dataset P of d-dimensional points and a reference 
query point q, the dynamic skyline query specifies a 
transformed d-dimensional space which is built based on the 

original space. Every point p in P is mapped to another point 
with coordinates f1(p),. . ., fd (p), where fi is a one-dimensional 
function ∀ i ∈ {1, …, d}. The dynamic skyline of P with 
respect to the functions f1, …, fd returns the ordinary (static) 
skyline of the transformed d-dimensional space. For simplicity, 
we assume that for every point p in P we have: ∀ i ∈ {1, …, 
d}: fi(p) = |qi − pi|, i.e., the function fi simply refers to the 
absolute distance of every point p to the query point q in the i-
th dimension. The following well-known definitions clear the 
related terms that are used to this research. 

Definition 3 (Dynamic Skyline): Given a data set P and a 
query point q, the dynamic skyline query with regard to q 
retrieves the set DSL(q) of all data points in P that are not 
dynamically dominated with regard to q.  

Definition 4 (Dynamic Domination): A data point p ∈ P 
dynamically dominates another data point r ∈ P with regard to 
q iff: 

1. ∀ i ∈ {1, ..., d}: |qi – pi| ≤ |qi – ri|, and  
2. ∃ j ∈ {1, ..., d}: |qj – pj| < |qj –  rj|. 

The example in Figure 8 shows that the execution of the 
dynamic skyline query with regard to a query point q on the 
original (un-encrypted) dataset does not produce the same 
results with the execution of the same query on the encoded 
dataset using the proposed SOPE model. For instance, although 
the data point p24 belongs to dynamic skyline of q in the OS, 
its corresponding encoded data point p' 24 does not belong to 
dynamic skyline of the encoded version q' of q in the ES 
because the data point p'' 7 dominates it.  
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Figure 8: The dynamic skyline query: (a) in the OS, and (b) in the ES. 

To overcome this problem, the global skyline query can be 
used to support the calculation of the dynamic skyline query in 
the SOPE model. This is supported by the following 
proposition. 

Proposition 4: Let P be a d-dimensional dataset, q be the query 
point, GSL(q) be the set of global skyline points of P with 
regard to q and DSL(q) be the set of dynamic skyline points of 
P with regard to q. It holds that DSL(q) ⊆ GSL(q). 

Proof: Let us suppose that we have a point p  ∈ DSL(q) for 
which p ∉ GSL(q). Therefore, there is a point r ∈ GSL(q) that 
globally dominates p. Therefore, since based on Definition 2 
we have that ∀ i ∈ {1, ..., d}: |pi − qi| ≥ |ri − qi| and ∃ j ∈ {1, ..., 
d}: |pj − qj| > |rj − qj|, it follows that based on Definition 4 we 
have that p ∉ DSL(q), which is a contradiction to our 
hypothesis. Therefore DSL(q) ⊆ GSL(q). � 
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On the basis of Propositions 4 and 3, the execution of a 
dynamic skyline with regard to a query point q in the OS can 
be translated to an execution of a global skyline in the ES, that 
will be followed by a final refinement step to select the global 
skyline points with regard to q that are also dynamic skyline 
points with regard to q. The proposed algorithm for processing 
the dynamic skyline in the SOPE model is therefore as 
illustrated in Algorithm 7. 
 Algorithm 7: The Dynamic Skyline Query() 

Input: a reference point q(q1, q2, …, qd). 
Output: the data points that belong to  
 the dynamic skyline of q. 

1: 
 
2: 
 
 
 
3: 

Client/Server: execute in cooperation  
 the Algorithm 6; 
Client: executes the traditional dynamic  
 skyline query to the decrypted results in  
 order to select the dynamic skyline set  
 with regard to q; 
END; 

Algorithm 7: The dynamic skyline query process in the proposed SOPE 
model.  

Therefore, as Figure 9 shows, in the case of the dynamic 
skyline query the Server in the ES will return to the Client the 
global skyline set with regard to the query predicate q (Figure 
9.(a)). Then the Client will decrypt the results and will provide 
the final refinement step to execute on this selected subset of 
the initial dataset any well-known algorithm for processing the 
dynamic skyline -with or without using an index- to retrieve 
the dynamic skyline (Figure 9.(b)). 
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Figure 9: Processing the dynamic skyline query: (a) in the first step the 
Server will calculate the global skyline set in the ES, and (b) in the second 
step the Client in the OS will calculate the dynamic skyline of the results of 

the global skyline received by the Server. 

5.6. The k-Nearest Neighbour Query 

Given a dataset P of d-dimensional points and a query 
reference point q, the k-nearest neighbour (kNN) query 
retrieves the k nearest neighbour data points of q according to 
a specified distance metric (Euclidean distance is assumed as 
the distance metric in this study).  

However, as it can be understood, the proposed SOPE 
model maintains only the order of the data in every axis, not 
the order of the distance from the origin of the axes or the order 
of the distances between the data points.  Therefore, the 
execution of a nearest neighbour query will not provide 
necessarily the same results in the OS and in the ES. Figure 10 

provides such an example, in which the nearest neighbour 
query with regard to a reference point q in the OS will retrieve 
the data point p3 while the same query with regard to the 
corresponding encoded point q' in the ES will retrieve the data 
point p' 24. This happens because in the OS the data point p3 is 
closer to q than p24 and also than any other point, however the 
opposite holds in the ES. 
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Figure 10: The nearest neighbour query with regard to a reference point q: (a) 
in the OS, and (b) in the ES. 

To overcome this problem, the k-global skyline query (i.e., 
a generalization of the well-known global skyline query for k 
≥ 1) can be used to support the calculation of the kNN query in 
the SOPE model. This is supported by the following 
observation. 

Observation 1: The k-global skyline set k-GSL(q) of a dataset 
P with regard to a query point q includes the k nearest 
neighbour points of P to q.  

Proof: In the case of k = 1, in Proposition 4 it has been proved 
that the set 1-GSL(q) of the first order of global skyline of P 
with regard to a reference point q is a superset of the dynamic 
skyline set with regard to q. Also, in [51] it has been proved 
that the dynamic skyline set of P with regard to q includes the 
nearest neighbour point p of P to q. Therefore the observation 
truly holds for k  = 1.  

In the case of k = 2, if we remove from P the set of the first 
order of global skyline of P, then using [50] we can find the set 
of the second order of global skyline of P with regard to q, in 
which we will also have the nearest neighbour point r of the set 
“P – 1-GSL(q)” to q. It is obvious now that the set 1-GSL(q) 
∪ {r} includes the 2 nearest neighbour points of P to q, 
therefore the observation truly holds for k  = 2. Using the same 
arguments it can be proved by induction that the observation 
holds ∀ k ∈ N.  � 

The following proposition is an extension of Proposition 3 
for k ≥ 1 and its proof is also analogous to that of that previous 
proposition. 

Proposition 5: The execution of the k-global skyline query 
over the original as well as over the encoded dataset using the 
proposed SOPE model produces the same results.  

Algorithm 8 processes the kNN query in the proposed 
SOPE model. Therefore, if the client wishes to execute the 
kNN query with regard to a query point q, then in Line 3 of the 
algorithm the server will execute the corresponding k-global 
skyline query with regard to the encoded point q’ (the 
supporting Algorithm 12 for processing of the k-global skyline 
query is presented in the Appendix), and after collecting the 
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data points in the results and the ciphertext of their coordinates 
(Line 4), the server will send the results to the client. The client 
in Line 5 will then decrypt the results to compare the distance 
from q of every point in the result set, in order to find the k 
points with the minimum distance, i.e., the k nearest neighbour 
points to q.   
 Algorithm 8: The kNN Query() 

Input: a reference point q(q1, q2, …, qd) 
 and the requested value of k. 
Output: the kNN data points of q 

1: 
 
 
2: 
 
3: 
 
 
4: 
 
 
 
 
5: 
 
6: 

Client: informs the Server to begin the 
 execution of the kNN query  with regard  
 to the query predicate q; 
Client/Server: calculate in cooperation  
 the encoded version q' of q; 
Server: executes the k-global skyline  
 query with regard to q’, using the R-tree  
 (see Algorithm 12); 
Server: FOR every data point in the  
 results, the B+-tree for every  
 dimension is traversed to collect the  
 ciphertext of its coordinates and sends 
 the point to the Client;  
Client: decrypts the results & compares their 
 distances from q to find the kNN of q; 
END; 

Algorithm 8: The kNN query process in the proposed SOPE model.  

A k-global skyline query example with regard to a reference 
point q in the 2-dimensional OS and the corresponding ES for 
k=1 // k=2 is illustrated in Figure 7 // Figure 11. As the figures 
show, the query provides the same results in both domains. An 
interesting observation is that as Figure 11 shows, for k = 2 the 
two nearest points to q in the OS are the points p3 and p24 which 
both happen to be part of the 1st order of the global skyline 
with regard to q. 
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Figure 11: The 2-global skyline query: (a) in the OS, and (b) in the ES. 

5.7. The Constrained k-Nearest Neighbour Query 

Given a dataset P of d-dimensional points, a reference query 
point q and a hyper rectangle r, the constrained k-nearest 
neighbour (constrained kNN) query retrieves the kNN data 
points of q that lie in the specified region r. Therefore, the 
query targets nearest neighbour points in a region bounded by 
certain spatial conditions [52]. 

As Algorithm 9 shows, a technique to execute the 
constrained kNN on the indexed encoded data stored in the ES 
is to execute a k-global skyline query on these data that belong 
in the desired spatial region (Line 3). After collecting the data 

points in the results and the ciphertext of their coordinates 
(Line 4), the server will send the final result set to the client for 
decryption and calculation of the k nearest neighbours of q in 
the constrained region (Line 5). Conceptually, as in the case of 
the kNN query, the calculation of the constrained kNN query 
using the new SOPE model has two phases. The first phase is 
a filtering phase with the execution of a global skyline query in 
a set of data points that belong in a desired spatial region in the 
ES. The second phase is a refinement phase with the execution 
of a traditional kNN query in the OS, using the small subset of 
points that has been selected by the filtering phase. 
 Algorithm 9: The Constrained kNN Query() 

Input: a reference d-dimensional hyper re- 
 ctangle r with diagonal vertices ra(ra1,  
 ra2, …, rad), and rb(rb1, rb2, …, rbd),  
 a query point q(q1, q2, …, qd) and the 
requested value of k. 
Output: the kNN data points of q in the desired 
region r. 

1: 
 
 
 
2: 
 
 
 
 
 
3: 
 
 
4: 
 
 
 
 
5: 
 
6: 

Client: informs the Server to begin the 
 execution of the constrained kNN query with 
regard to the hyper rectangle r and  
 the query point q; 
Client/Server: calculate in cooperation  
 the encoded version r’ (i.e., the  
 encoded points r'a and r'b) of the  
 rectangle r (i.e., of the points ra and  
 rb, correspondingly) and the encoded  
 version q' of q; 
Server: executes the constrained k-global  
 skyline query with regard to r’ and q’,  
 using the R-tree;  
Server: FOR every data point in the  
 results, the B+-tree for every  
 dimension is traversed to collect the  
 ciphertext of its coordinates and sends 
 the point to the Client;  
Client: decrypts the results & compares their 
 distances from q to find the kNN of q; 
END; 

Algorithm 9: The constrained kNN query process in the proposed SOPE 
model.  

The supporting Algorithm 14 for processing the 
constrained k-global skyline query is presented in the 
Appendix.  

Two constrained kNN query examples with regard to a 
reference point q in the 2-dimensional OS and the 
corresponding ES with k=1 are illustrated in Figures 12 and 
13. In the first figure the query point q is located inside the 
constrained region while in the second figure the query point is 
located outside the constrained region. 
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Figure 12: The constrained 1NN query with regard to a reference point q 
lying inside the constrained region: (a) in the OS, and (b) in the ES. 
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Figure 13: The constrained 1NN query with regard to a reference point q 
lying outside the constrained region: (a) in the OS, and (b) in the ES. 

5.8. The Constrained Skyline Query 

Given a dataset P of d-dimensional points and a set of 
constraints, the constrained skyline query returns the most 
interesting points in the data space defined by the constraints. 
Typically, each constraint is expressed as a range along a 
dimension and the conjunction of all constraints forms a hyper 
rectangle (referred to as the constraint region) in the d-
dimensional attribute space [49]. 

The SOPE model can process such queries with some 
necessary adaptation on the skyline query algorithm presented 
earlier in this paper. As in the case of the constrained kNN 
query, the entries not intersecting the constraint region are 
pruned.  

An example of the execution of the query is presented in 
Figure 14. Based on Propositions 1 and 2 it is clearly 
understood that the execution of the query in both the OS and 
in the ES domains provide the same results. 
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Figure 14: The constrained skyline query: (a) in the OS, and (b) in the ES. 

5.9. The Reverse k-Nearest Neighbour Query 

Given a dataset P of d-dimensional points and a query 
reference point q, it has been seen that the nearest neighbour 
query retrieves the point in the dataset that is the closest to q. 
Based on this, the reverse nearest neighbour (reverse 1NN) 
query retrieves the points in P that have q as their nearest 
neighbour. Therefore, for the set R1NN(q) of the reverse 
nearest neighbours of q it holds that: R1NN(q) = {p ∈ P: ∄ r ∈ 
P such that distance(p, r) < distance(p, q)}, where distance() is 
a specified distance metric.  

The definition of the reverse 1NN query can be easily 
extended to the reverse k-nearest neighbour (reverse kNN) 
query. More specifically, the reverse kNN query retrieves all 
the points p ∈ P that have q as one of their k nearest neighbours. 
In this case, RkNN(q) = {p ∈ P: distance(p, q) ≤ distance(p, r), 
where r is the k-th nearest neighbour of p}[53]. For simplicity 
in the following the paper will study the algorithm for 
supporting the reverse 1NN query and it will give some hints 
for its straightforward extension to cover the reverse kNN 
query as well.  

For the processing of the reverse 1NN query in the proposed 
SOPE model the following proposition needs to be proved.  

Proposition 6: Let P be a d-dimensional dataset, q be the query 
point, GSL(q) be the set of global skyline points of P with 
regard to q and R1NN(q) be the set of reverse nearest 
neighbour points of q. It holds that R1NN(q) ⊆ GSL(q). 

Proof: Let us suppose that we have a point p ∈ R1NN(q) for 
which p ∉ GSL(q). Therefore, there is a point r ∈ GSL(q) that 
belongs in the same hyper-quadrant with p with regard to q 
which dominates p in that quadrant. Therefore, since based on 
Definition 2, we have that ∀ i ∈ {1, ..., d}: (ri − qi)(pi − qi) > 0 
and |ri − qi| ≤ |pi − qi|, and therefore ∀ i we have: (ri – qi < 0 and 
pi – qi < 0) or (ri – qi > 0 and pi – qi > 0). In the first case we 
then have that ri − qi ≥ pi – qi ⇔ ri ≥ pi, and consequently ∀ i 
we have: pi ≤ ri < qi. In the second case we then have that ri − 
qi ≤ pi – qi ⇔ ri ≤ pi, and consequently ∀ i we have: qi < ri ≤ pi. 
In both cases however we get that it is not possible that p is a 
reverse nearest neighbour point of q since between p and q we 
can find the data point r in all dimensions and obviously 
distance(p, r) ≤ distance(p, q). However this is a contradiction 
to our hypothesis that p ∈ R1NN(q). Therefore p ∈ GSL(q) and 
it has been proved that R1NN(q) ⊆ GSL(q).  � 

Proposition 6 proves that by calculating the GSL(q) we can 
get a superset of R1NN(q). Algorithm 10 uses this conclusion 
in Line 3 in order to filter the initial dataset for the calculation 
of the reverse 1NN query. The server in Line 4 will then 
traverse the B+-trees to collect the encrypted coordinates of 
every data point in GSL(q) and it will send the result to the 
client. The client, by receiving and decrypting the GSL(q), can 
execute a traditional reverse 1NN query with regard to q (Line 
5) in order to discard the data points in GSL(q) which cannot 
be a reverse 1NN of q and to consider the rest of them as 
candidates to be reverse 1NN points of q. In the final process 
of the algorithm in Lines 8-11, any such candidate data point p 
will be used as a query predicate to execute a 1NN query in the 
encrypted dataset P' – {p'} (Line 9) in order to retrieve its 
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nearest point and to compare its distance from p with the 
distance between p and q (Line 10) in order to decide if p is 
indeed a reverse 1NN point of q (Line 11).  

It needs to be reminded here that the main principle for 
every SOPE scheme is to not reveal any information to the 
server but the spatial order of the items stored. However, if by 
processing the reverse 1NN query, the location of the reference 
point q happens to coincides to the location of a point r ∈ P, 
then by informing the server (in Line 9 of the algorithm) that a 
point p is a candidate reverse 1NN of q, the server can infer 
that r might be the point in the dataset with the smallest 
distance to point p. For this reason, if q coincides to a dataset 
point r, using the Lines 6-7 of the algorithm the client will 
consider as candidate reverse 1NN points of q all the points in 
GSL(q), so that the server will inform nothing about the 
distance between the points in the dataset. In this case, when 
the client in Line 9 of the algorithm will receive the candidate 
nearest points of every point in GSL(q), s/he will automatically 
discard any information regarding points in GSL(q) for which 
s/he already knew from Line 5 of the algorithm that they could 
not be reverse 1NN points of q. 
 Algorithm 10: The Reverse 1NN Query() 

Input: a reference point q(q1, q2, …, qd). 
Output: the Reverse 1NN data points of q 

1: 
 
 
2: 
 
3: 
 
 
4: 
 
 
 
 
5: 
 
 
 
 
 
6: 
7: 
8: 
9: 
 
 
10: 
 
11: 
12: 

Client: informs the Server to begin the 
 execution of the reverse 1NN query with  
 regard to the query predicate q; 
Client/Server: calculate in cooperation  
 the encoded version q' of q; 
Server: executes the traditional global  
 skyline query with regard to q’, using  
 the R-tree (see [50]); 
Server: FOR every data point in the  
 results set RS, the B+-tree for every  
 dimension is traversed to collect the  
 ciphertext of its coordinates and sends 
 the point to the Client;  
Client: decrypt the results and execute a 
 traditional reverse 1NN query among  
 them with regard to q, in order to  
 select a candidate set of CS points p1,  
 p2, …, pCS that will be tested if they  
 belong to the reverse 1NN set of q; 
IF q belongs to the dataset P THEN 
 CS = RS; 
FOR i = 1 to CS DO 
 Client/Server: execute the kNN Query(pi,  
  1) (Algorithm 8) by not considering pi  
  as a possible answer to the query; 

 Client: IF ( distance(pi, q) ≤ distance(pi,  
  the 1NN point of pi) ) THEN  
  Consider pi in the reverse 1NN set of q; 
END; 

Algorithm 10: The reverse 1NN query process in the proposed SOPE model.  

The algorithm can be easily extended to cover the case of 
the reverse kNN query as well, by executing the k-global 
skyline query (instead of the global skyline query) in Line 3 
and by comparing the distance between p and q in Line 10 with 
the distance between p and the k-th nearest neighbour of p in 
the encrypted dataset P’ – {p’}.  

Figure 15 shows four different snapshots of the calculation 
of a reverse 1NN query example with regard to a reference 
point q in the 2-dimensional OS (Figure 15.(a)) and in the 
corresponding ES. As Figure 15.(b) shows, Line 3 of the 
algorithm will select the set of points GSL(q) ={p3, p5, p7, p8, 
p10, p14, p21, p23, p24, p26, p28}. However, as Figure 15.(c) 
shows, by executing in the client-side the reverse 1NN query 
in the OS using as a data set the GSL(q), only the point p5 is 
found to be a candidate of being a reverse 1NN of q, since all 
the other points in GSL(q) have at least one other point in 
GSL(q) which is closer than q to them. Finally, as Figure 
15.(d) shows, in Line 7 of the algorithm, the Algorithm 8 will 
be executed in the ES to find the 1NN point p7 of p5 which 
however is not closer than q to p5 , therefore p5 is the reverse 
1NN of q. 
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Figure 15: Four snapshots of the execution of Algorithm 10 in the example 
dataset for answering the reverse nearest neighbour query. 

5.10. The Continuous Nearest Neighbour Query 

Given a dataset P of d-dimensional points and a line 
segment q = [qa, qb] with qa and qb its end-points, not 
necessarily belonging to the dataset, the continuous nearest 
neighbour (continuous 1NN) query retrieves the nearest 
neighbour of every point in the line segment q (e.g., “find all 
my nearest gas stations during my route from point qa to point 
qb”). In particular, the result contains a set of <p, [q1, q2]> 
tuples, such that the data point p is the 1NN of all points in the 
corresponding line sub-segment [q1, q2]. As an illustrative 
example Figure 16.(a) can be considered, in which as Figure 
16.(d) shows the answer to the query is {<p10, [qa, q2]>, <p8, 
[q2, q3]>, <p25, [q3, qb]>}, meaning that point p10 is the 1NN 
for the line sub-segment [qa, q2], etc. The points q2 and q3 of 
the query segment, for which we have two 1NN data points (for 
example the data points p10 and p8 that occur in the same 
distance from q2 are both 1NN points of it) are known as split 
points [54]. 

The definition can also be extended to the continuous kNN 
query. More specifically, the continuous kNN query retrieves 
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the k nearest neighbours of every point in the line segment q 
(e.g., “find all my 3-nearest gas stations during my route from 
point qa to point qb”).  

The algorithm for processing the continuous 1NN query in 
the proposed SOPE model is illustrated in Algorithm 11. The 
algorithm is adapted by a corresponding process that is 
introduced in [54] with the main difference that in the current 
OPE environment it needs to be executed with the cooperation 
of both the client and the server. Initially a SOPE-based 1NN 
query is performed at the two end-points qa and qb of q to 
retrieve their 1NN points (Lines 3-4). In Line 5, if qa and qb 
share a 1NN point then all the points of q share the same 1NN 
(this has been proved and named as continuity property in 
[54]).  Otherwise, if qa and qb do not share a 1NN, assuming 
that nnqa is the 1NN point of qa and nnqb is the 1NN of qb 
then there is a point qc ∈ q for which the point nnqa is closer 
that nnqb to all the points in the segment [qa, qc] and at the 
same time the point nnqb is closer that nnqa to all the points in 
the segment [qc, qb]. This candidate spit point qc in q is 
calculated in Line 8 as the intersection between the query 
segment q and the perpendicular bisect-plane (which in the 2-
dimensional space is converted into a perpendicular bisector) 
of segment [nnqa, nnqb], denoted as ⊥(nnqa, nnqb).  

Since qc cuts up the initial line segment into two new 
fragments [qa, qc] and [qc, qb] the process presented in the 
previous paragraph is repeated retroactively for these two 
smaller line segments. The algorithm terminates until both the 
end-points q1 and q2 of every smaller fragment [q1, q2] in which 
the initial segment q has been cut up share the same 1NN point 
p. In this case, as Line 6 of the algorithm indicates, the 1NN 
point p for all the points on this segment of q is added in the 
list SL in the form <p, [q1, q2]>.  At the end of the process the 
SL list will contain the set of tuples for the output of the 
continuous 1NN query with regard to q, however if SL contains 
continuous line segments of the form <p, [q1, q2]> and <p, [q2, 
q3]> that share the same 1NN point, the segments will finally 
be merged into the form <p, [q1, q3]>. 

The algorithm can be extended to cover the case of the 
continuous kNN query as well. The reader is forwarded to [54] 
for the changes that need to be performed to the algorithm, 
considering that the continuity property does not hold in this 
case. 
 Algorithm 11: The Continuous 1NN Query() 

Input: a reference line segment q  
 with end-points qa(qa1, qa2, …, qad),  
 and qb(qb1, qb2, …, qbd). 
Output: the list SL of <p, [q1, q2]>  
 tuples, such that the data point p  
 is the 1NN of all points in the cor- 
 responding line sub-segment [q1,q2].  

1: 
2: 
 
 
3: 
 
 
4: 
 
 
5: 

SL = ∅;  
Let NNqa = NNqb = ∅ be the lists of  the 
nearest data points to qa end  qb, 
respectively; 
Client/Server: execute the kNN Que- 
 ry(qa, 1) (Algorithm 8) and store  
 the output in the NNqa list; 
Client/Server: execute the kNN Que- 
 ry(qb, 1) (Algorithm 8) and store  
 the output in the NNqb list; 

6: 
 
 
7: 
8: 
 
 
9: 
 
10: 
 
11: 
 
 
12: 

IF (NNqa ∩ NNqb ≠ ∅) THEN 
 Client: Add <nnqab, [qa, qb]> tuple  
  in list SL, where  

  nnqab ∈ NNqa ∩ NNqb; 
ELSE 
 Let qc be the intersection between q  

  and the ⊥(nnqa, nnqb), where  
  nnqa ∈ NNqa and nnqb ∈ NNqb;  
 Client/Server: execute the Continuous 
  1NN Query (qa, qc) (Algorithm 11); 
 Client/Server: execute the Continuous  
  1NN Query (qc, qb) (Algorithm 11); 
Client: IF SL holds continuous seg- 
 ments of q that share the same 1NN  
 point, the line segments are merged; 
END; 

Algorithm 11: The continuous 1NN query process in the proposed SOPE 
model.  

Figure 16 illustrates some snapshots of an example 
execution of the above continuous 1NN query algorithm for a 
line segment q. For simplicity the figure shows the data only in 
the OS. Figure 16.(a) shows that in the beginning of the 
execution the 1NN points p10 and p25 of the end-points qa and 
qb, respectively, are retrieved from the encrypted dataset. 
Then, using the perpendicular bisector ⊥(p10, p25) of segment 
[p10, p25], the candidate split point q1 ∈ q is calculated which 
cuts up q into the line segments [qa, q1] and [q1, qb]. The 
process is now repeated retroactively for these two line 
segments. In the beginning of the examination of the [qa, q1] 
segment, the 1NN points p10 and p8 of the end-points qa and q1, 
respectively, are retrieved from the dataset. Then, as Figure 
16.(b) shows, using the perpendicular bisector ⊥(p10, p8) of 
segment [p10, p8], the split point q2 ∈ q is calculated which cuts 
up the segment into the line segments [qa, q2] and [q2, q1]. 
Respectively, Figure 16(c) shows the examination of the [q1, 
qb]. In Line 5 of the algorithm, all points in the segment [qa, 
q2] are discovered to share the same 1NN point p10 and 
therefore the tuple <p10, [qa, q2]> is added to the output of the 
continuous 1NN query. Finally SL = {<p10, [qa, q2]>, <p8, [q2, 
q1]>, <p8, [q1, q3]>, <p25, [q3, qb]>} and in the final step of the 
algorithm (Line 11) the tuples <p8, [q2, q1]> and <p8, [q1, q3]> 
will be merged to <p8, [q2, q3]>, as Figure 16.(d) shows. 
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Figure 16: Snapshots of the execution of Algorithm 11 in the example dataset 
for answering the continuous nearest neighbour query. 

6. Experimental study 

6.1. Experimentation Setup 

The proposed SOPE model has been implemented in Java 
edition 1.8 and NetBeans edition 8.1. The implementation 
includes the B+-tree and the R-tree in their traditional form with 
no modification to their operations. As for the R-tree, the R*-
tree implementation in Java that can be downloaded from the 
ChoroChronos portal2 has been utilised. 

According to the proposed SOPE model, two entities 
participate in all the operations: the client and the server. Since 
only the client encrypts and decrypts the data, the symmetric 
key encryption has been considered for the model, although an 
asymmetric -public key- encryption scheme can be used as 
well. The particular encryption method that was used is the 
AES algorithm, already implemented and integrated in Java, in 
CBC mode and the appropriate padding (PKCS5Paddng). A 
256-bits key is used which is stored on the client-side. Since 
Oracle Java does not support the choice of key higher than 128 
out of the box, the Java Cryptography Extension (JCE) 
Unlimited Strength Jurisdiction Policy Files3 has been 
employed.  

The implementation of the encryption is as follows. When 
the client wishes to encrypt a value s/he firstly converts it to a 
string of characters, i.e., to the string representation of this 
value. Then this string is encrypted using the AES algorithm 
with the prerequisites that were chosen earlier. The result is the 
so-called ciphertext. The length of the ciphertext was set to be 
16 bytes.  

For all experiments was used as hardware DELL laptop 
with Intel Core i7-4500U CPU running at 1,8GHz, with 16GB 
RAM and Windows 8.1 Professional 64-bit OS.  

The experiments were conducted using a synthetic and a 
real dataset. The synthetic dataset contains 250,000 uniformly 
distributed 2-dimensional points that was produced by the 
Spatial Data Generator which can be downloaded from the 
Chorochronos portal. The real dataset, which was created 
within the AMINESS project [56], [57] and provided by the 
AMINESS Database [55], is also comprised by 250,000 2-
dimensional points that correspond to positions of ship vessels 
on the Aegean Sea in several timestamps in different dates (the 
timestamps and the vessels’ IDs were removed from the 

 
2 http://www.chorochronos.org/?q=node/43 
3 http://www.oracle.com/technetwork/java/javase/downloads/jce8-download-2133166.html 

original dataset, and a set of 0.25M different 2-dimensional 
point locations with no duplicates was finally selected for the 
experimentation).  

Datasets with data in higher than 2 dimensions have not 
been considered in this study since as it will be shown in the 
sequel, the performance behavior of the proposed model is 
expected to be burden proportionally to the number of 
dimensions. Using several higher-dimensional datasets for 
simulation, nothing unexpected which has not been already 
studied in the literature with regard to the performance of the 
R*-tree and the query processing on it (such as the curse of 
dimensionality and the limited applicability of the skyline 
query in high-dimensional spaces in which most of the objects 
in a dataset belong to the skyline) was to be identified in our 
study by increasing the number of dimensions. 

The disk page size was set to be 4 Kbytes and every B+-tree 
and R*-tree node is stored in a single disk page. To get a 
crystal-clear view on the model’s performance, no buffer was 
used to hold any node of the indices in main memory for faster 
potential future usage, as for example with their most-
frequently-used (MFU) or their least-recently-used (LRU) 
nodes. Every experiment studying the algorithms for 
constructing the model was repeated 10 times and at every run 
the objects to be inserted were shuffled and the average value 
of every measured parameter was calculated. An analogous 
strategy was followed for the query processing, some findings 
of which are also presented in the sequel. At every run of a 
query processing experiment, a different randomly selected 
query predicate (i.e., point or/and region) was used. 

In the experiments that measure the time cost performance 
of the proposed model for building the index and for answering 
queries, this cost includes also the communication cost that is 
spend for the interaction between the client and the server, 
however it does not include the cost for encrypting and 
decrypting the data on the client-side since the selection of the 
key encryption method and its performance are independent of 
the proposed model. 

6.2.  Data Insertion 

The graph of the first experiment in Figure 17 demonstrates 
the total time cost in seconds for inserting each dataset in the 
index, calculated as the sum of the time that is spend in the two 
B+-trees and in the R*-tree. During the data insertion process 
the time cost was measured at 5 intervals, i.e., every 20% 
percent of the data being inserted. The figure shows a linear 
growth of the time cost as the data is inserted in the index. Due 
to its importance, it needs to be reminded that this time cost 
includes also the communication cost that is spend for the 
interaction between the client and the server. It is also 
interesting to note that in a real world application the processes 
in the B+-trees can be performed in paralel, indepentendly of 
how many these are (i.e., indepentendly on how many the 
dimensions are), thus substantialy reducing the total time cost 
that is now illustrated.  
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Figure 174: The total time cost for building the encrypted index, calculated as 
the sum of the time that is spend in the two B+-trees and in the R*-tree. 

 
Figure 18 shows the total I/O cost in disk page accesses on 

the server-side for the insertion of the two different datasets. 
As the figure shows, this cost also follows a linear increase for 
both datasets. Based on this experiment, Figure 19 illustrates 
the average I/O cost per data object insertion and per tree (i.e., 
the two B+-trees and the R*-tree) for the AMINESS dataset. 
The I/O cost as it is calculated for the two B+-trees and for the 
R*-tree is higher than in a traditional application with non-
encrypted data, since before every data insertion the encodings 
of the coordinates of some other already inserted data might 
need to be re-calculated (by accessing some nodes on the 
corresponding B+-trees, as it is stated in Line 5 of Algorithm 
1) and updated (in the R*-tree, as it is stated in Line 6 of 
Algorithm 1). 

 

Figure 18: The total I/O cost for building the encrypted index, calculated as 
the sum of the I/O cost in the two B+-trees and in the R*-tree. 

 
Figure 19: The average I/O cost per data object insertion for the AMINESS 

dataset. 

The next graph in Figure 20 studies the index size as a 
number of tree nodes (i.e., disk pages), including the size of the 
two B+-trees hosting the encrypted coordinates and the size of 
the R*-tree hosting the encoded data objects. A more detailed 
tracing of the index size growth, seperately for the two B+-trees 
and the R*-tree for the AMINESS dataset is illustrated in 
Figure 21. The graph confirms the expected traditional O(n/B) 
linear growth of the size of every separate index as the data are 
inserted. It needs to be noted that for every d-dimensional 
object the proposed SOPE model stores the ciphertexts (every 
one of which is 16 bytes long) of its d coordinates in the 
corresponding B+-trees and only the OPE encodings of its 
coordinates are stored in the R*-tree.  
 

 
Figure 20: The size of the encrypted index, including the two B+-trees and the 

R*-tree.  
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Figure 21: The size of the two B+-trees and of the R*-tree for the AMINESS 
dataset.  

6.3.  Query Processing 

In the first experiment on studying the performance 
efficiency of the proposed model in query processing, the 
graph in Figure 22 shows the time cost in milliseconds for 
supporting the point query. The results demonstrate that the 
time cost for both the real and the synthetic dataset are almost 
identical.  

 
Figure 22: The time cost performance of the point query algorithm. 

Next, Figure 23, shows the average I/O cost for answering 
the point query, separately for every B+-tree and for the R*-tree. 
As expected the I/O cost in that query depends only on tree 
height.  

Figure 235: The Ι/Ο cost performance of the point query algorithm. 

In the next experiment on studying the performance 
efficiency of the proposed model in query processing, the 
graph in Figure 24 shows the time cost in seconds for 
supporting the range query with respect to a rectangular query 
window of three different sizes, i.e., 1%, 3% and 5% of the area 
of the square workspace. The results demonstrate a linear 
growth of the time cost in relation to the window size growth. 
It is reminded that the time cost (for this as well as for every 
query that is studied in the sequel) includes also the 
communication cost that is spend in the steps of the Algorithm 
4 for the interaction between the client and the server. 

 
Figure 246: The time cost performance of the range query algorithm. 

For the same experiment, Figure 25 shows the I/O cost in 
page accesses for answering the range query, separately for 
every B+-tree and for the R*-tree for the uniformly distributed 
synthetic dataset (Chorocronos). The figure demonstrates that 
as the query window increases, so does the number of accessed 
nodes (i.e., disk pages). To understand however the high I/O 
cost on accessing the B+-trees, we need to focus on how the 
range query is processed in Algorithm 4 and on the role that 
can be taken by an MFU or LRU buffer on reducing this cost, 
if such buffer can be provided. As the algorithm shows, every 
B+-tree is traversed multiple times in every execution of the 
range query, while the R*-tree is accessed only once. In Line 2 
of the algorithm it is indicated that every B+-tree is traversed 
twice to get the encoded versions of the diagonal vertices of the 
query hyper rectangle q. Also in Line 4 of the algorithm, it is 
indicated that every B+-tree is traversed one more time for 
every data point in the results, in order to retrieve the 
corresponding ciphertexts of its coordinates. Therefore, for the 
uniformly distributed dataset into consideration, a query 
predicate q covering the 1% of the workspace is expected to 
return about the 1% of the data points in the set, i.e., 2,500 
points. This means that every B+-tree is traversed about 2,500 
times, summing up 3*2,500 page accesses, considering a tree 
height of 3 pages. However, if we can keep in main memory 
the internal nodes of each B+-tree plus one or a few of its LRU 
leaves (or if we can keep in main mamory just the LRU node 
in every level of the tree) we will greatly reduce the query 
processing I/O cost at least 3 times (at least 1.5 times, 
respectively).  

It is also notable that the total time and I/O cost for 
processing the range query will be further reduced (more 
specifically, as Figure 25 also shows, in our 2-dimensional 
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experiments this cost will be almost halved) if the server has 
the power to process the two B+-trees in a paraller fasion. 

 
Figure 257: The I/O cost performance of the range query algorithm for the 

Chorocronos dataset. 

The next experiment studies the performance efficiency of 
the (static) skyline query algorithm. Figure 26 (Figure 27) 
demonstrates the time cost in milliseconds (the I/O cost in page 
accesses) for supporting the query. Both figures show a quite 
lower processing cost for the synthetic dataset than this of the 
real dataset. This result has its roots on the non-uniform 
distribution of the points in the real dataset that form more 
sparse and dense areas on the workspace than the uniformly 
distributed points in the synthetic dataset. 

Figure 27 shows also the much higher I/O cost for 
accessing the B+-trees with regard to the R*-tree, for the same 
reasons discussed in the case of the range query. As will be 
shown in the sequel, the same phenomenon is also apparent in 
the rest of the queries that are studied in this paper and the 
solution that was put forward in the case of the range query can 
be suggested to all these cases as well.  

 
Figure 26: The time cost performance of the skyline query algorithm. 

 
Figure 278: The Ι/Ο cost performance of the skyline query algorithm. 

The next experiment studies the performance efficiency of 
the dynamic skyline query algorithm. Figure 28 shows that the 
time cost in milliseconds for executing the query processing 
algorithm using the real dataset is quite smaller than that for 
the case of the synthetic dataset, which is the opposite 
conclusion than that drawn in Figure 26 for the static skyline 
query. This result has its roots on the differences between the 
distributions of the two datasets. 

 
Figure 289: The time cost performance of the dynamic skyline query 

algorithm. 

Figure 29 demonstrates the I/O cost in page accesses for 
executing the dynamic skyline query algorithm as it is 
separately measured for every B+-tree and for the R*-tree.  

 
Figure 29: The I/O cost performance of the dynamic skyline query algorithm. 
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The next experiment studies the performance of the kNN 
query algorithm. Figure 30 (Figure 31) demonstrates the time 
cost in milliseconds (the I/O cost in page accesses) for 
supporting the query for three different k values, i.e., for k equal 
to 1, 2, and 3, for both the real and the synthetic datasets (for 
the synthetic dataset, respectively). As expected the linear 
growth of the parameter k increases linearly the cost for 
processing the query. 

 
Figure 30: The impact of the parameter k on the time cost performance of the 

kNN query algorithm. 

Figure 31 shows also the I/O cost separately for every B+-
tree and for the R*-tree. An interesting conclusion is that the 
number of disk page accesses in the R*-tree does not increase 
much from one k value to the next. This happens because 
retrieving the k-th and the k+1-th global skyline often means 
retrieving spatially adjacent data points which are stored on the 
same R*-tree nodes. Thus the number of pages for retrieving 
the first k global skyline sets or the first k+1 global skyline sets 
does not differ much when -as Algorithm 12 in the Appendix 
shows- this retrieval operation is performed in a single R*-tree 
traversal.  

 
Figure 31: The impact of the parameter k on the Ι/Ο cost performance of the 

kNN query algorithm for the ChoroChronos dataset. 

The next experiment investigates the performance of the 
proposed model in processing the constrained kNN query. 
Figure 32 (Figure 33) demonstrates the time cost in 
milliseconds (the I/O cost in page accesses) for supporting the 
query for the ChoroChronos synthetic dataset, using three 
different values for the parameter k and two different sizes for 
the constrained area. The figures again show the proportional 

growth of the query processing cost with respect to these two 
input parameters. By comparing the results in Figures 32 and 
33 with the corresponding results in Figures 30 and 31 for the 
(un-constrained) kNN query algorithm, we can apprehend the 
time and I/O costs reduction that is introduced by the 
computation of the kNN query in a constrained region. It is 
notable that with regard to the R*-tree this cost reduction 
cannot be exactly proportional to the percentage of the 
workspace that the constrained region represents due to the 
overlapping of this region with the MBRs of a higher 
percentage of tree nodes. 

 
Figure 32: The impact of the constrained area size and of the parameter k on 
the time cost performance of the constrained kNN query algorithm for the 

ChoroChronos dataset. 

 
Figure 33: The impact of constrained area size and of the parameter k on the 

I/O cost performance of the constrained kNN query algorithm for the 
ChoroChronos dataset. 

The study on the performance efficiency of the constrained 
skyline query algorithm is omitted because it draws similar 
conclusions to the ones in the case of the constrained kNN 
query algorithm. 

The next experiment studies the performance efficiency of 
the reverse kNN query algorithm. Figure 34 (Figure 35) 
demonstrates the time cost in milliseconds (the I/O cost in page 
accesses) for supporting the query for three different k values, 
i.e., for k equal to 1, 2, and 3, for both the real and the synthetic 
datasets (for the synthetic dataset). As expected, the linear 
growth of the parameter k increases linearly the cost for 
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processing the query. Another interesting conclusion that is 
drawn by comparing the Figures 34 and 35 to the Figures 30 
and 31 is that the execution time and I/O costs when processing 
the reverse kNN query are about 4 times higher than when 
processing the kNN query for the same datasets. The root of 
this difference is in the Lines 8-11 in the reverse kNN query 
algorithm (Algorithm 10) that do not exist in the kNN query 
algorithm (Algorithm 8). The ‘FOR’ loop in these lines of the 
algorithm executes the kNN query algorithm for every 
candidate reverse kNN of q, and the findings show that on 
average 3 such candidate points exist in every case. This 
findings come in harmony with [58] which comes to the 
conclusion that for k = 1 in the 2-dimensional space there are 6 
candidate reverse nearest neighbour points at the most to any 
query predicate point q. Therefore the Lines 8-11 in the reverse 
1NN query algorithm cannot be executed more than 6 times at 
the most (it needs to be noted here that in our study no reference 
point q happened to coincide to the location of any point r in 
the dataset).  

 
Figure 3410: The impact of the parameter k on the time cost performance of 

the reverse kNN query algorithm. 

 
Figure 35: The impact of the parameter k on the Ι/Ο cost performance of the 

reverse kNN query algorithm for the ChoroChronos dataset. 

The final experiment studies the performance efficiency of 
the continuous 1NN query algorithm. Figure 36 (Figure 37) 
demonstrates the time cost in milliseconds (the I/O cost in page 
accesses) for supporting the query using three different lengths 
of the query line, i.e., 1%, 3% and 5% of the length of the side 
of the square workspace. The figures again show the 

proportional growth of the query processing cost with respect 
to the query length.  

 
Figure 36: The impact of query length on the time cost performance of the 

continuous 1NN query algorithm.  

 
Figure 37: The impact of line length on the I/O cost performance of the 

continuous nearest neighbour query algorithm for the ChoroChronos dataset. 

7. Conclusion 

The paper introduces the Spatially-based Order-Preserving 
Encryption (SOPE) model for d-dimensional data. The new 
model is inspired and extends the well-known OPE model in 
d-dimensional databases; therefore, it supports the safe storage 
and efficient retrieval of d-dimensional data to a remote 
untrusted server by revealing to the server nothing else but the 
spatial order of the data objects. 

The paper proposes algorithms for constructing the model 
and for efficiently processing a large set of 10 or more popular 
queries for d-dimensional data, such as the point query, the 
range query, the (static, dynamic, and global) skyline query, 
the k-nearest neighbour query, the reverse k-nearest neighbour 
query, the continuous nearest neighbour query, etc. [59]. 

The prototype implementation and experimental evaluation 
of the proposed model based on synthetic and real data 
indicates that the new model is able to provide searchable 
encryption for d-dimensional cloud databases in modern 
applications in which there is no need to keep secret the 
corresponding spatial relations between these objects.  

As regard to future plans of research, the building and 
querying operations algorithms of the proposed model will 
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need to be examined for possible optimizations, towards 
improving the speed of the efficiency of the model. Such 
optimizations might be to use buffers in the trees when 
executing the query processing algorithms, or to store the 
ciphertexts of the coordinates of the data objects directly into 
the R-tree instead of the corresponding B+-trees, so that the 
server will not need to traverse every B+-tree to retrieve these 
ciphertexts before s/he will return the output of a query to the 
user.  

Also, although several other known spatial queries can be 
easily supported by the proposed model (for example the 
reverse skyline query can be easily implemented using the 
global query processing Algorithm 6 proposed in this paper in 
combination with heuristics proposed in [58, 50] that are still 
valid under the SOPE model), there are spatial queries that 
need to be further studied (for example the closest-pair query 
[60], etc.). 
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Appendix 
The algorithm for processing the k-global skyline query [50] 

using an R-tree, which is based on the traditional (1-)global 
skyline algorithm that is described in Algorithm 6. follows in 
Algorithm 12. For the sake of completeness, the formal 
presentation of the supporting GloballyDominated function for 
finding if a d-dimensional object is globally dominated by 
some point from a set of points is presented in Algorithm 13. 

 
 Algorithm 12: The k-Global Skyline  

 Query() 
Input: a reference point q(q1, q2, …, qd) 
 and the requested value of k. 
Output: a list GSL[0..k-1] of data points  
 organised in k different sets,  every  
 one of which represents the correspon- 
 ding i-th global skyline with regard  

 to q, ∀ i ∈ {1, …, k}. 
1: 
2: 
3: 
 
 
 
4: 
5: 
 
6: 
 
 
 
7: 
8: 
9: 
10: 
 
 
 
11: 
 
12: 
13: 
14: 
 
15: 
16: 

GSL[0..k-1] = ∅; 
Let H = ∅ be a heap of records; 
Insert all entries of the root of the  
 R-tree in H and sort the entries in H  
 in an ascending order according to  
 their distance from q; 
WHILE H is not empty DO 
 Remove the first entry e of H for 
  examination; 
 IF GloballyDominated(e, GSL[0..k-1],q) 
  THEN  
  //i.e., if e is k-globally dominated 
  // by some point in GSL w.r.t. q 
  Discard e; 
 ELSE IF e is an intermediate entry THEN 
  FOR each child record ei of e DO  
   IF !GloballyDominated(ei,  
    GSL[0..k-1], q) THEN  
  //i.e.,if ei is not k-globally domi- 
  //nated by some point in GSL w.r.t. q 
    Insert ei into H by keeping H 
     sorted; 
 ELSE 
  FOR i=0 TO i=k-1 DO 
   IF !GloballyDominated(e,GSL[i],q)  
    THEN 
    Insert e into GSL[i]; Break; 
return GSL[]; 

 
 Algorithm 13: The GloballyDominated  

 Function() 
Input: a query point q(q1, q2, …, qd) and  
 a d-dimensional point e(e1, e2, …,  
 ed) or a hyper rectangle er  
 with its vertex e that is closer to q  
 having coordinates e(e1, e2, …, ed),  
 a list GSL() of data points. 
Output: TRUE if e, or er, respectively, is  
 globally dominated by some point in  
 GSL w.r.t. q, and FALSE otherwise. 

1: 
2: 
3: 
4: 
5: 
6: 

Integer first, second; Boolean third; 
FOR every data entry i in GSL() list DO 
 Set first = second = 0; third = false; 
 FOR every dimension j DO 
  IF (GSL(i)j - qj)(ej - qj)> 0 THEN  
   first++; 

7: 
8: 
9: 
10: 
11: 
 
12: 
13: 

  IF |GSL(i)j - qj| ≤ |ej - qj| THEN  
   second++ 
  IF |GSL(i)j - qj| < |ej - qj| THEN 
   third = true; 
 IF (first == d) AND (second = d)  
  AND third THEN 
  return TRUE; 
return FALSE; 

 
The algorithm for processing the constrained k-global skyline 
query using an R-tree follows. 

 
 Algorithm 14: The Constrained k-Global  

 Skyline Query() 
Input: a reference d-dimensional hyper  
 rectangle r with diagonal vertices  
 ra(ra1, …, rad), and rb(rb1, …, rbd),  
 a query point q(q1, …, qd) and the  
 requested value of k. 
Output: a list GSL[0..k-1] of data points  
 organised in k different sets,  every  
 one of which represents the correspon- 
 ding constrained i-th global skyline  

 with regard to q, ∀ i ∈ {1, …, k}. 
1: 
2: 
3: 
 
 
 
 
4: 
5: 
 
6: 
 
 
 
7: 
8: 
9: 
10: 
 
 
 
 
11: 
 
12: 
13: 
14: 
 
15: 
16: 

GSL[0..k-1] = ∅; 
Let H = ∅ be a heap of records; 
Insert in H all the entries of the root  
 of the R-tree that intersect the  region r 
and sort the entries in H in  
 an ascending order according to their  
 distance from q; 
WHILE H is not empty DO 
 Remove the first entry e of H for 
  examination; 
 IF GloballyDominated(e, GSL[0..k-1], q) 
  THEN 
  //i.e., if e is k-globally dominated 
  // by some point in GSL w.r.t. q 
  Discard e; 
 ELSE IF e is an intermediate entry THEN 
  FOR each child record ei of e DO  
   IF ((ei intersects r) AND 
    !GloballyDominated(ei,  
     GSL[0..k-1], q)) THEN 
  //i.e.,if ei is not k-globally domi- 
  //nated by some point in GSL w.r.t. q 
    Insert ei into H by keeping H  
     sorted; 
 ELSE 
  FOR i=0 TO i=k-1 DO 
   IF !GloballyDominated(e, GSL[i], q)  
    THEN  
    Insert e into GSL[i]; Break; 
return GSL[]; 
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