Chapter 1

Introduction of Node.js
and its web frameworks

Kuan-Lin Chiu

Node,js, created by Ryan Dahl, is aimed for "providing an
easy way to build scalable network programs.” In a short
time since its initial release in 2009, it has quickly gathered
much attention in the area of web application development
and captured the interest of thousands of experienced de-
velopers. A package manager (Node Packaged Modules,
NPM) was soon established and thousands of modules and
interesting applications have been created. Even a number
of innovative startups were spawned from this heat. Some
people deem node as the next generation revolution of web
technology.

What is new in this technology that attracts developer’s
eyes? How it fits into current growing need of web appli-
cations? What's the different between node and other long
existing server-side JavaScript? This article will introduce
its features, and then discuss where it excels other tradi-
tional approaches on certain application domain, and what
kind of application it fits in. Later in the article will talk
about some web frameworks of Node.js, introduce the in-
novative ideas and key aspects which benefit from the de-
sign of Node js.



1 Introduction of Node.js and its web frameworks

One of the features
that attract
developers is it
allows you to use
one language,
JavaScript, from
browser to backend.
Code can be reused
on both side.

1.1 Node.js

1.1.1 What is Node.js?

Node.js, or just “node”, is a Server-side JavaScript plat-
form, which allows you to run JavaScript programs, with-
out the browser, to do IO and system works on the server.
Powered by Google V8 JavaScript engine, it’s a set of li-
braries and bindings to the V8 virtual machine. The V8 en-
gine itself and the core of node are implemented in C/C++,
whereas the standard libraries and APIs on top are written
in JavaScript. For extensibility, node follows Common]JS
standard so that modules can be shared between other
JavaScript platforms. It even allows developer to write
C/C++ add-ons for performance critical component.

Node uses an event-driven, non-blocking I/O model,
which makes it good at handling high concurrency, data IO
intensive and real-time applications. The lightweight and
efficient design is focus on performance and low memory
consumption to support long-running, scalable network
programs.

1.1.2 Server-Side JavaScript

One of the features that attract developers is that it allows
you to use one language, JavaScript, from browser to back-
end.

JavaScript is on its way to become a universal language and
even dominate the frontend development. Frontend devel-
oper can easily get used to node without much learning
curve since the API of node is designed to be familiar to
client-side JS programmers. Node is a candy for frontend
developers to set foot in the server-side. For the backend
developers, no matter you use PHP/Ruby/Java as back-
end, you will probably pick up some JavaScript code to deal
with your client. Modules and features such as Ajax or data
validation are common in both sides. Code and module can
be reuse for both browser and Server-side is obvious bene-



1.1 Node.js

fits.

Server-Side JavaScript (SSJS) is not actually a novel technol-
ogy. It was introduced by Netscape since 1994. There are
several long existing SSJS solutions based on Rhino, Spider-
MonkeyiKetc, but none of them makes SSJS so well-known
and acknowledged until node.js.

One of the reasons is timing. JavaScript was once treated as
not a serious language but nowadays it’s popular than ever.
Since early 2000’s, AJAX technology arising has changed
the trend of web applications. Later JavaScript technolo-
gies such as jQuery further extend the use of JavaScript in
frontend development. They allow developers to build rich
UI and provide user experience mimic desktop rich client.

Another reason is performance. The high demand on
speed of these JS front-end technologies exploded the new
browser wars on their JavaScript engine. Google Chrome,
one of the best competitors in this speed race, outper-
formed others on its release in 2008. Its V8 JavaScript en-
gine is famous as one of chrome’s feature but it’s actually a
standalone open source project. Ryan thus decided to build
node on top of it. The V8 engine is constantly pushing the
boundaries in being one of the fastest dynamic language in-
terpreters on the planet. No other language is being pushed
for speed as aggressively as JavaScript is right now. Com-
pared to the interpreters for other server-side dynamic lan-
guages like Ruby, Python, PHP and Perl, JavaScript has in-
credibly fast runtimes.

The key difference that makes node success but other SSJS
remain silent is that node focus on building a different
kind of application. While other SSJS can do well on most
dynamic web application, there’re already lots of well-
proofed and matured platform such as Python, Java, Ruby,
PHP out there and solved the problems even better. On
comparison, node is design to use an evented, non-blocking
IO model to handle high concurrency applications, which
traditional approaches may suffered. Choosing JavaScript
is because it fits perfectly in this design. We will elaborate
this point in the following section.



1 Introduction of Node.js and its web frameworks

The design of node
is all about evented
asynchronous,
non-blocking 10
model. Hence it's
perfect for most
10-bound web
applications.

1.1.3 Evented, Asynchronous, Non-blocking IO
model

The design of node is all about evented asynchronous, non-
blocking 10 model. Node is fast. But not only because of
the superb performance of google V8 engine, it’s fast in na-
ture of its design. Most web applications are IO bound. The
bottleneck of speed is the latency of 10. Accessing L1, L2,
RAM are non-blocking. Disk and Network IO are definitely
blocking. In most traditional synchronized programming,
the code is written like:

var result = db.query("select.."); //wait
doSomething (result);
nextTask () ;

Here the query blocks the program from doing anything
else until the query is returned. For an asynchronous, non-
blocking design such as Node, the code is as following:

db.query ("select..", function (result) {
doSomething (result);
}) g

nextTask () ;

The query takes an anonymous function as a Callback. The
program doesn’t wait for the query to be finished. It just
executes nextTask() directly. When the query is done, node
will then fire an event. The main thread then executes the
callback function to deal with the result.

In comparison, in a single thread blocking program, to ex-
ecute A, B, C, three IO operations, the executing time will
be Sum(opA, opB, opC). But in a non-blocking design, it’s
Max(opA, opB, opC).

To achieve this design, node runs an evented model. The
core of event system is implement using libev in Unix-like
system and IOCP in windows. The life cycle is as follow-
ing: The event loop first Initialize as an empty event loop.
Executes non-IO code and add every 1/0 call to the event
loop until reach the end of source code. Then the event
loop starts iterating over a list of events and callbacks. Per-
form IO using non-blocking kernel facilities. Kernel noti?es



1.1 Node.js

the Event Loop when done. Event Loop executes and re-
moves a callback. Finally, program exits when Event Loop
is empty. In this manner, we can use single thread to deal
with high concurrency, IO intensive applications.

It’s worth noticed that how JavaScript fits into this design.
First, all the IO needs to be non-blocking. JavaScript at first
can’t actually do IO itself since it's not necessary its job
in the browser. Ryan doesn’t choose any other language
which already has built-in blocking IO. Since IO is not a
fundamental part of JavaScript, nothing had to be taken
away or to add. He chose JavaScript and start from scratch
with an all non-blocking IO system and libraries based on
event loops. Second, JavaScript well supports callbacks. It’s
like functional language which has first-order function and
lambda. It’s easy to pass around anonymous callbacks. Fi-
nally, JavaScript is in nature single thread.

1.1.4 Eventloop and single thread

The design of single thread with event loop is very efficient
with massive concurrency.

Traditional programming designs that block on IO usually
try to deal with these problems by spawning new process
or thread. By using multi-tasking, other threads of execu-
tion can run while waiting. For example, Apache uses one
thread per connection. But obviously this does not scale
well for massive concurrency. Hundreds of concurrent con-
nections mean Hundreds of threads. It costs huge mem-
ory and context switch overhead. In additional, locks, dead
locks and race problem increase the complexity of program.

Of course there’s other programing language can use
event and asynchronous IO libraries to achieve the simi-
lar design, such as Twisted for Python, EventMachine for
RubyiKetc. They provide very good event loop platform
and can create efficient servers. The problem is, most of
the programming language itself, pretty much entire origi-
nal libraries are mostly synchronous and blocking. In the
event loop, one blocked then everything halts thus you
can’t make any blocking code. Therefore great care must be

Compare to
multi-threading, the
design of single
thread with event
loop is very efficient
with massive
concurrency.



1 Introduction of Node.js and its web frameworks

taken when using a not native evented, non-blocking plat-
form. Users must be very careful of every method they call
and libraries they use to avoid blocking IO.

There’s a good comparison between multi-thread approach
and event loop, single thread approach. Apache use multi-
threading while nginx runs an event loop thus it needs only
small memory allocation.

regs/sec
nginx

10000 apache
8000
6000
4000

2000

0
500 1000 1500 2000 2500 3000 3500 concurrent
connections

Figure 1.1: Performance reqs/sec

memory in MB
nginx
apache

30

20

500 1000 1500 2000 2500 3000 3500 concurren
connections

Figure 1.2: Memory consumption

1.1.5 Summary of Node.js

Although there’re many interesting features in Node.js,
there’re still many criticisms and concerns remain to be
clear.



1.1 Node.js

1. It’s still young, not mature yet.

Some might say it’s not battle tested yet. But actually
there’re already many companies include node in their
pioneer product. For example, LinkedIn (Mobile Web
App), Yahoo! (Manhattan), Ebay (Data retrieval gateway),
GitHub (for Downloads) and Palm/HP (in WebOS). And
the popularity and community of node is rapidly increas-
ing. The number of modules in Node Packaged Mod-
ules (NPM) is now reached more than 13000. The node in
GitHub is also the second most popular Starred project, be-
low bootstrap but above jQuery and Rails.

2. The design is not suitable for CPU intensive work.

3. The support to multi-core processor

There’s a module cluster add the support of multi-tasking
for node. Cluster is included since version 0.6 but still in the
experimental phase. But in the latest 0.8 version it basically
get completely rewrite and has large improvement.

4. Asynchronous programming

5. Difficult to debug

Most developers are used to synchronous programming
style. When there’re lots of 10s in order, it results deeply
nested callbacks as callback hell. For some developers, the
logic and flow control are somehow complex and confused
thus hard to debug. This is not necessary true if you're
familiar with functional programming and recursive calls.
But it can still be solved by naming the callback and divid-
ing functions into modules. There’re also some modules
support to arrange the control flow.



1 Introduction of Node.js and its web frameworks

1.2 Web frameworks of Node.js

1.2.1 Express

Express is the most popular framework of node. (GitHub
starred more than 7000.) It’s already version 3.0 thus rather
mature than most of frameworks of Node. Inspired by
Ruby Sinatra, it is a minimal and flexible framework builds
on top of Connect middleware. Connect is itself a frame-
work of many middlewares wrapped together. Express ex-
pose them as its build-in functions for convenience.

Features include: routing, HTTP helpers, view (support
many template engines, by default, jade) and Content ne-
gotiation. There’s no model included in Express. You will
have to build that yourself such as using Mongoose. It’s
not necessary MVC but can easily be combined with any
known MVC library. It’s also RESTful.

Express provides only basic foundation and tools you need
but give you the utmost control over your application. It
lacks of built in support for many things but is very extensi-
ble as it is so popular that most modules support it. So you
can build almost everything based on it but would have to
spend a lot of time to find appropriate packages and set
them up to work with Express.

1.2.2 MVC frameworks
Geddy

Geddy is a modular, full-service MVC framework similar
to Merb, Rails, Pylons, or Django. Compared to Express, it
targets the same domain of Express but more robust with
MVC. It’s in incompatible with Express and can’t use Con-
nect middleware. Good for a yet still minimal basic MVC
framework.



1.2 Web frameworks of Node.js

Tower]S

Tower is a Full Stack MVC framework for node.js and the
browser. It’s similar to Ruby on Rails and build on top of
Express and Connect. Components includes: MongoDB
(database), Redis (background jobs), CoffeeScript, Stylus
(or LESS), Jasmine (tests), jQuery and Mocha. Noticed that
it even include client side component, which is good for
unified code on both side. Almost everything included, it
might save you a lot of time.

1.2.3 Real-time synchronized models frameworks

Node.js makes building real-time web application easier
than most other platforms. Some take the benefit of it and
build innovative real-time frameworks which consist of
features such as: Model/view bindings on the client, syn-
chronized model state, subscription to database changes
from the server and JavaScript code sharing on both client
and the server. Meteor and Derby are the most popular
frameworks of this sort.

The common features of them include:
1. JavaScript code sharing on both client and the server

Meteor can even access database on client side using the
same API on server side.

2. Full development framework

All the core packages are included and integrated for you.
They pretty much include all you need to build a real-time
synchronization application between client and server.

3. Model/view bindings on the client

HTML generated from template. Variable bound to model.
View updates automatically as the model changed.

Clients, Servers, and
database all share a
common model state
and synchronize the
changes. Thus the
model-bound view
can update itself in
real-time.



10

1 Introduction of Node.js and its web frameworks

4. Synchronized Model State

Clients, Servers, and database all share a common state and
synchronize the changes. Subscriptions manage what data
to publish where.

5. Live Rendering Update in real-time based on the syn-
chronized model.

On the client side, view is binding with models. Models are
synchronized across client, server and database. Subscrip-
tions decide filter which models publish to where. Model-
bound views recognize changes in their models. Thus the
view is updated in real-time with the model changed any-
where.

Traditional way to write a real-time synchronized web ap-
plication across multiple clients, server and database may
take days even weeks. With the power of Meteor or Derby,
it could be done within hours.

Meteor

Meteor is the most popular frameworks of its kind. It re-
cently received 11M+ dollars in funding which somehow
promising that it will remain supported and probably faster
to become a stable framework. Meteor is an end-to-end
framework which include everything you need. Meteor
doesn’t really follow Node.js community standards thus
has more limitations. It doesn’t use NPM. It has its full
build environment and only uses node and node packages
internally. It allows you to bundle the whole application al-
together easily and even provide a hosting service. Meteor
has same API across server and client, even access database
on the client using the same API. Latency compensation al-
lows client side to react immediately then later patched up
if the server rejects the result. Hot Code Pushes allows you
to hot update application while users connected to it. Me-
teor works closely to MongoDB and use the same API as
mongoDB on both server and client side. Client side code



1.3 Summary

11

can have direct access database. One of its biggest prob-
lem of Meteor is: Unlike Derby, it doesn’t support server-
side rendering, instead it pushes view generating code into
client, resulting search engine optimizing (SEO) problem.
Thus search engine can’t index your content and also no
REST applications.

Derby

Derby uses Express thus REST is possible. It has server-side
rendering so that no search engine issue and works with
JavaScript disabled. Derby is now rather unstable and has
fewer followings, publicity and contributors.

1.3 Summary

Given the fact that JavaScript is the common language of
web applications, it’s expected that Node will attract more
and more developers and become one of the most rapid
growing server-side platform. Node.JS not even reaches its
1.0 version yet. There're still promising potentials inside
wait to be discovered. We can see the prototype of next gen-
eration web applications from novel web framework such
as Meteor and Derby. In the trend of growing number of
mobile devices, Node, with its nature to support real-time,
high concurrency application while remain lightweight and
high performance, will definitely affect the way how web
can take part in our life.






13

Bibliography






Typeset August 20, 2012



	Introduction of Node.js and its web frameworks
	Node.js
	What is Node.js?
	Server-Side JavaScript
	Evented, Asynchronous, Non-blocking IO model
	Event loop and single thread
	Summary of Node.js

	Web frameworks of Node.js
	Express
	MVC frameworks
	Geddy
	TowerJS

	Real-time synchronized models frameworks
	Meteor
	Derby


	Summary

	Bibliography

