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Abstract

Production systems have been widely used as ex-
pert system building tools and recognize-and-act
models in cognitive science. This paper is in-
tended to introduce parallel/distributed/multi-
agent production systems, and to reveal their
possibilities as research foundations for dis-
tributed artificial intelligence: a parallel produc-
tion system as an agent reactive architecture,
a distributed production system as an adaptive
agent organization, and a multi-agent production
system for organizational learning. Production
systems already have been equipped with clear
syntax/semantics and efficient pattern match-
ing algorithms. Their functions can be further
strengthened with recent algorithms such as real-
time search and reinforcement learning.

Introduction

Production systems have been studied as a cognitive
model for humans or intelligent agents. Since the
input-output relation in each rule is clearly described,
production systems attract people who need a language
for describing non-deterministic decision making pro-
ceases. Once Forgy implemented a high speed pattern
matching algorithm [Forgy, 1982], production systems
became the most popular expert system building tool.

With the success of expert systems (eg. XCON),
researchers started working on parallel processing to
improve the performance of production systems. Be-
cause 90% of the processing time is consumed by pat-
tern matching, parallel matching was studied first. The
author is, however, more interested in executing rules
concurrently. Concurrent production systems can be
classified into three categories:

1. Synchronous parallel production systems or parallel
rule firing [Ishida and Stolfo, 1985; Ishida, 1991],
where rules are fired in parallel to reduce the total
number of sequential production cycles, while rule
firings are globally synchronized in each production
cycle.

2. Asynchronous parallel production systems or dis-
tributed production systems [Ishida et aL, 1990; 1992;

Gasser and Ishida, 1991], where rules are distributed
among multiple processes, and fired in parallel with-
out global synchronization.

3. Multiagent production systems [lshida, 1992b],
where multiple production system programs com-
pete or cooperate to solve a single problem or mul-
tiple problems.

Since production systems have been utilized for de-
scribing static knowledge, people feel that production
systems are not suited to dynamically handle real-
world problems. The aim of this paper is to show the
possibilities of concurrent production systems as a re-
search foundation for distributed artificial intelligence.
Our intuition is that a collection of production systems
could be a model of a dynamic human society, since
each production system can represent the recognize-
and-act cycle of an individual human. The remainder
of this paper reveals their potential abilities for solv-
ing dynamic real-world problems: a parallel production
system as an agent reactive architecture, a distributed
production system as an adaptive agent organization,
and a multi-agent production system for organizational
learning.

Production Systems Revisited

It was probably unfortunate that the first success-
ful production systems was the XCON expert system,
which can create an optimal configuration of fairly
complex computer systems [Soloway et al., 1987]. The
success resulted in the unreasonable expectation that
"production systems can solve complex problems with-
out describing procedures." However, this was mislead-
ing. Unlike Prolog, production systems have no back-
tracking mechanism. A production system refers to
a working memory which represents an actual world,
finds rules which can be fired, and selects one rule to
change the working memory. When backtracking is
needed, reverse actions have to be executed. If no re-
verse action is available, there is no way to recover the
situation. Recall the famous "monkey and bananas"
example. This example shows how difficult it is for
a production system to create a sequence of actions
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Ru~: (P ruleA (classl)

(make class2)
(remove clasal))

(P ruleB (classl)

Plan-l: (dotSmos (i 100) (? ruleA))

Pla.-~: (loop (select ((? ruleA))
((? ruleB))
((? ruleC))
(othor.ise (retarA))))

Figure 1: Controlling Rule Firings

(i.e., plans). Production systems are inherently suited
to execute stimulus-response type rules, but ate not
powerful enough to produce complex procedures.

Then, how to constrain selfish rule firings? One way
is to introduce procedural control description [Ishida
et al., 1991; 1995]. The key idea is to view production
systems as a collection of independent rule processes,
each of which monitors a working memory and per-
forms actions when its conditions are satisfied by the
working memory. Procedural control macros, which
are based on Hoare’s CSP [Hoare, 1978], can then be
introduced to establish communication links between
the meta-level control processes and the collection of
rule processes.

Figure 1 represents a coding example. Since rules
can .be viewed as independent processes, the ~.-macro,
which is based on the CSP input command, is intro-
duced to invoke a single rule. This macro executes the
specified rule, when the conditions of the rule are sat-
isfied. Otherwise the .~-macro monitors the working
memory and waits for data changes until the condi-
tions of the rule are satisfied. Plan-1 shown in Figure
1 is written using the ?-macro and the dotimes macro
of Lisp.

The production system interpreter tests the left
hand sides of multiple rules simultaneously and selects
one executable rule through conflict resolution. For
viewing control plans as a natural extension of con-
ventional production system interpreters, the rnle se-
lection macro (select-macro) is created, which is influ-
enced by the CSP guarded command and alternative
command. The interpreter for three rules can be ex-
pressed as Plan-~ in Figure 1 by using select-macro.
This control plan repeatedly executes the three rules
until no rule can be fired. Since control macros can ap-
pear at any place in Lisp programs, conventional pro-
duction system interpreters can be easily extended and
can invoke them from anywhere in the control plans.

There is another way to constrain rule firings: intro-
duce a learning mechanism into production systems.
Holland proposed a reinforcement learning mechanism
called becket brigade [Holland, 1986], which distributes

a success award not only to the latest rule but also to
the rules executed before. It strengthens the sequence
of rules that leads to success. From the problem solving
point of view, however, the work does not provide any
concrete result: we do not know what class of problems
can be solved by this mechanism. Q-learning [Watkins,
1989] is similar, but can guarantee convergence to the
best policy that maximizes expected rewards. Real-
time search [Koff, 1990; Ishida and Korf 1991; Ishida
1992a] is also capable of learning the best plan through
repeatedly solving the given problem. The relation-
ship between Q-learning and realtime search was clar-
ified by [Burro et al., 1993]. Surprising enough, even
though the backgrounds of these researchers are to-
tally different, both algorithms are based on the same
mechanism, dynamic programming, and solve problems
in only slightly different ways.

For example, suppose we have a robot in a large
maze. The robot can move right, left, back and forth.
If the robot can identify its state (eg. zy-axis), these
algorithms incrementally learn the optimal action se-
quences to escape from the maze. Q-learning is ap-
plicable when the probabilities of state transitions are
unknown. Otherwise, realtime search is more efficient.
Production systems can provide logic level description
of states to these learning algorithms.

Parallel Production Systems for
Reactive Behavior

A production system can be seen as a set of rules,
each of which monitors the working memory. Once the
precondition is satisfied, each rule tries to fire itself. In
sequential production systems, however, the conflict
resolution mechanism selects just one of the rules, so
that rules are fired sequentially. On the other hand, in
parallel production systems, we concurrently execute
as many rules as possible [Ishida and Stolfo, 1985]. The
fundamental problem in parallel rule firing is how to
guarantee the serializability of rule firings. Interference
analysis is introduced to detect cases where a parallel
firing result differs from the result of sequential firings
of the same rules in any order.

To analyze the interference among multiple rule in-
stantiations of production rules, a data dependency
graph of production systems is introduced, which is
constructed from the following primitives: a production
node Ca P-node showy, as a circle in the figures), which
represents a set of instantiations, a working memory
node (a W-node shot#n as a square), which represents
a set of working memory elements, a directed edge from
a P-node to a W-node, which represents the fact that
a P-node modifies a W-node, and a directed edge from
a W-node to a P-node, which represents the fact that
a P-node refers to a W-node.

For example, in Figure 2(a), suppose two work-
ing memory elements initially exist: (classl) and
(class2). If rules are fired sequentially, there remains
(class1) when ruleA is first executed, or (class2)
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Figure 2: Interferences among Rules

when ruleB is first executed. However, if the two rules
are fired in parallel, there remains no working memory
element. Figure 2(b) considers the case where there 
no working memory element before execution. If the
rules are fired sequentially, there remains no working
memory element when ruleA is first executed, or there
remains two working memory elements, (class1) and
(class2), when ruleB is executed first. If the rules
are fired in parallel, however, there are four possibil-
ities, i.e., (class1) and (class2) remain, Cclassl)
remains, (c2ass2) remains, or no working memory el-
ement remains.

Based on a data dependency graph of produc-
tion systems, general techniques applicable to both
compile- and run-time analyses are provided. Two al-
gorithms are then proposed to realize the parallel rule
firings on actual multiple processor systems: An effi-
cient selection algorithm is provided to select multiple
rules to be fired in parallel by combining the compile-
and run-time interference analysis techniques. The de-
composition algorithm partitions the given production
system program and applies the partitions to paral-
lel processes. A parallel programming language is also
provided to allow programmers to make full use of the
potential parallelism without considering the internal
parallel mechanism.

Let us compare the architectures of parallel produc-
tion systems and a subsumption architecture [Brooks,
1986]. Figure 3(a) illustrates parallel production sys-
tems, while Figure 3(b) represents the subsumption ar-
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Figure 3: Reactive Architectures

chitecture considered. The difference between them is
the role of mediators. In parallel production systems,
the centralized mediator detects and avoids interfer-
ences among rules. In the subsumption architecture,
the distributed mediator inhibits the lower level ac-
tivities. Since, the mediator could be distributed in
parallel production systems [Ishida, 1991], there is no
serious difference among them. By generalizing the
mediator’s process, a parallel production system can
represent systems based on a subsumption architec-
ture.

Distributed Production Systems for

Organizational Adaptation

For the asynchronous execution of production systems:
parallel rule firing, with global control, is extended to
distributed rule firing; problems are solved by a soci-
ety of production system agents using distributed con-
trol. Organization self-design is then introduced into
the distributed production systems to provide adap-
tive work allocation. In our model, problem-solving
requests issued from the environment arrive at the or-
ganization continuously, and at variable rates. To re-
spond, the organization must supply meaningful re-
suits within specified time limits. Two reorganization
primitives, composition and decomposition, are newly
introduced. These primitives change the number of
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Figure 4: Organization Adaptation

production systems and the distribution of rules in an
organization.

Organization self-design is useful when real-time
constraints exist and production systerm have to adapt
to changing environmental requirements. When over-
loaded, individual agents decompose themselves to in-
crease parallelism, and when the load lightens the
agents combine with each other to free extra hardware
resources. Figure 4 shows the behavior of organiza-
tional adaptation.

No single organization can adequately handle all
problems and environmental conditions. For example,
suppose there are three agents in an organization, each
of which fires one production rule for solving each prob-
lem request, the three agents work in a pipelined fash-
ion (because their rules are sequentially dependent),
and the communication delay among agents is equal
to one production cycle. Thus, the total throughput
cycle time for satisfying a single request is 5. In this
case, however, a single agent organization would per-
form better because of reduced communication over-
head; it would take only 3 cycles for satisfying a single
request. On the other hand, if there were ten problem-
solving requests, the response time of the last request
would be 14 cycles in the three agent organization,
while it would be 30 in the single agent case.

A production system agent is a production system ca-
pable of interacting with other agents. As illustrated
in Figure 5, the production system agent consists of a
production system interpreter and domain knowledge,
which includes domain rules and domain data. Note
that each agent contains a part of the domain knowl-
edge. To perform domain problem solving in a dis-
tributed fashion, the agents need organizational knowl-
edge, which represents both the necessary interactions
among agents and their organization. Organizational
knowledge is initially obtained by analyzing domain
knowledge at compile time, and are dynamically main-
rained during the process of organization self-design.

/~t ...... :--::- ":-:::::~ ............ ~ ..... ~ ......
.......... ::-:-::-::::,~:::-~’"-~ O~mtv.aN~mlKnowledge ..................... ....:::::-~

......... ;::;;;; ....... ,,..................--,

Figure 5: Production System Agent

Since agents asynchrononsly perform reorganization,
organizational knowledge can be temporarily inconsis-
tent across agents.

Organizational knowledge is further classified into
several categories. Agent-agent relationships can be
seen as the aggregation of two more primitive types
of relationships: knowledge-knowledge relationships,
which represent interactions within domain knowl-
edge, and knowledge-agent relationships which rep-
resent how domain knowledge is distributed among
agents. Knowledge-knowledge relationships consist of
data dependencies and interferences among domain
rules. An agent that has such a knowledge-knowledge
relationship with a particular agent is called that
agent’s neighbor. Figure 6 illustrates agent-agent re-
lationships.

For appropriate reorganization, the organizational
knowledge includes agent-organization relationships,
which represent how agents’ local decisions affect or-
ganizational behavior. In our case, agent-organization
relationships consist of local statistics, organizational
statistics and reorganization rules. Since the reorga-
nization rules are also production rules, organization
self-design and domain problem solving are arbitrar-
ily interleaved. Since multiple agents asynchronously
fire rules and perform reorganization, knowing the ex-
act status of the entire organization is difficult. Under
the policy of obtaining better decisions with maximal
locality, local and organizational statistics, which can
be easily obtained, are first introduced, and then re-
organization rules using those statistics are provided
to select an appropriate reorganization primitive when
necessary.

Figure 7 shows the evaluation results. In this figure,
communication and reorganization overheads are ig-
nored. The line chart indicates response times normal-
ized by production cycles. The step chart represents
the number of agents in the organization. The time
limit is set at 20 production cycles, while the measure-
ment period is set at 10 production cycles. In Figure
7, problem solving requests a~rive at constant inter-
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Figure 6: Organizational Knowledge

vals. Around time 100, the response time far exceeds
the time limit. Thus the organization starts decom-
position. Around time 200, the number of agents has
increased to 26, the response time drops below the time
limit, and the organization starts composition. After
fluctuating slightly, the organization finally reaches a
stable state with the number of agents settling at 6.
Since composition and decomposition have been in-
terleaved, the firing ratios of the resulting agents are
almost equal. This chart show that the society of
agents has gradually adapted to the situation through
repeated reorganization.

Multi-Agent Production Systems for
Organizational Learning

Multiagent production systems are interacting multi-
ple independent production systems, and thus are dif-
ferent from parallel or distributed production systems.
A transaction modelwas thus introduced to achieve ar-
bitrary interleaved rule firings of multiple production
system agents [Ishida, 1992b]. As a result of allow-
ing interleaved rule firings, however, ensuring serializ-
ability is no longer sufficient to guarantee the consis-
tency of the shared working memory information. A

Problem ooMng [

roqu~

Figure 7: Performance Evaluation

logical dependencll model and its maintenance mecha-
nisms such as DTMS (Distributed Truth Maintenance
System) [Huhns and Bridgeland, 1991] or distributed
constraint satisfaction algorithms [Yokoo et al., 1992]
have been introduced to overcome this problem.

The issue of control becomes more and more seri-
ous in multiagent production systems. Because various
events occur asynchronously in a multiagent network,
the agents must cooperatively control their rule execu-
tion processes. A meta-level control architecture was
then required to prioritize rule firing, to focus the at-
tention of multiple agents on the most urgent tasks.
This architecture has been applied to construct a mul-
tiagent system called CoCo [Ishida, 1989], which con-
currently performs cooperative operations such as pub-
lic switched telephone network control.

From the above research, we realized the impor-
tance of describing inter-agent protocols. Conven-
tional telecommunication protocols have been studied
to guarantee the performance and transparency of data
communications. The protocols developed so far are
mainly for lower layers (lower than the transport layer),
and thus users have not been required to design and
verify protocols they used. However, what we need
now is an inter-agent protocol to integrate various ap-
plication programs independently designed by differ-
ent users. Kuwabara has been developing a language
called AgenTalk for describing coordination protocols
for multi~gent systems [Kuwabara, 1995; Kuwabara et
al., 1995].

In AgenTalk, inter-agent protocols are defined by
finite state auton~ta. Using AgenTalk, Kuwabara de-
scribes the behavior of the manager following the con-
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Figure 8: AgenTalk [Kuwabara eta/., 1995]

tract net protocol. Task allocation in the contract net
protocol is performed as follows: First, a manager with
a task to be executed broadcasts a Tcsk Announce-
ment message. A contractor that is willing to execute
the announced task sends a Bid message. The man-
ager selects a contractor to which the task is to be
allocated and sends an Awardmessage to it. The man-
ager script arise-manager is shown in Figure 8. The
crier-manager script is supposed to be invoked when
the task to be allocated is generated.

Though the finite state automata approach for de-
scribing protocols is common in a distributed com-
puting community, realtime artificial intelligence peo-
ple pointed out the similarity of AgenTalk and PRS
(Procedural Reasoning System) [Georgeff and Lan-
sky, 1987]. In our view, both systems are based on
the same state transition framework: PRS describes
the interaction between an agent and an environment,
while AgenTalk describes the protocol among multiple
agents.

AgenTalk is designed to describe various inter-agent
protocols. The key feature of AgenTalk is the in-
heritance mechanism of protocol description. Using
AgunTalk, we have described the multistage negotia-
tion protocol [Conry at al., 1991] as an extension of the
contract net protocol [Smith, 1980]. Many application-
specific coordination protocols are expected to appear
soon as software agents are built. AgenTalk is designed
to allow various protocols to be defined incrementally
and to be easily customized to application domains
by incorporating an inheritance mechanism. However,

introducing inheritance mechanisms into protocol de-
scription generates new technical problems: for exam-
ple, how to verify the customized protocol, when the
original protocol has been verified.

A more interesting approach is to introduce machine
learning techniques into inter-agent protocols. Some
classes of distributed algorithms can be represented by
state transition diagram. Let us start with the famous
"dining philosophers," based on Chandy and Misra’s
algorithm [Chandy and Misra, 1988]. Figure 9 illus-
trates the state transition diagram of a hungry philoso-
pher. Each box represents a philosopher’s state. Upper
line indicates whether a philosopher possesses L(left)
and R(right) forks, and whether each fork is e(clean)
or d(dirty). Lower line indicates whether a philosopher
receives a request from L(left) and R(right) neigh-
bors. There are two kinds of state transitions: active
and passive. The former is triggered by the philoso-
pher himself. However, the latter is triggered by
neighboring philosophers, and thus the probabilities
of state transitions are not known at the beginning.
In Figure 9, solid edges represent active transitions,
and dashed edges represent passive transitions. The
state transitions allowed by Chandy and Misra’s algo-
rithm are represented by thick edges. The challenge
here is to learn the state transitions represented by
thick edges through repeatedly interacting with other
philosophers. Reinforcement learning algorithms such
as Q-learning can be basis for solving this problem.

Conclusion
Though concurrent production systems were first in-
vestigated for performance improvement, they can pro-
vide fruitful research basis for distributed artificial in-
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telligence. A parallel production system can describe
reactive architectures through generalizing its media-
tor. A distributed production system can be a research
testbed for an adaptive agent organization. A multi-
agent production system also provides a clear foun-
dation for organizational learning. Protocols are first
represented by a set of reactive rules, and then gradu-
ally fitted to their execution environments. Introduc-
ing protocol learning offers us an avenue towards flex-
ible distributed systems.
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