
CHAPTER 9

MULTILINEAR ALGEBRA

In this chapter we study multilinear algebra, functions of several variables that are linear
in each variable separately. Multilinear algebra is a generalization of linear algebra since a
linear function is also multilinear in one variable. If V1, V2, · · · , Vk and W are vector spaces,
then we wish to understand what are all the multilinear maps g : V1 × V2 × · · · × Vk →W
and notation to systematically express them. This may seem like a difficult and involved
problem. After all the reader has probably taken considerable effort to learn linear algebra
and multilinear algebra must be more complicated. The method employed is to convert g
into a linear map g̃ on a different vector space, a vector space called the tensor product of
V1, V2, · · · , Vk. Since g̃ is a linear map on a vector space, we are now in the realm of linear
algebra again. The benefit is that we know about linear maps and how to represent all of
them. The cost is that the new space is a complicated space.

Definition 9.1***. Suppose V1, V2, · · · , Vk and W are vector spaces. A function f :
V1 × V2 × · · · × Vk →W is called multilinear if it is linear in each of its variables, i.e.,

f(v1, · · · , vi−1,avi + bv′i, vi+1, · · · , vk)

= af(v1, · · · , vi−1, vi, vi+1, · · · , vk) + bf(v1, · · · , vi−1, v
′
i, vi+1, · · · , vk)

for all a, b ∈ R, vj ∈ Vj for j = 1, · · · , k and v′i ∈ Vi for i = 1, · · · , k.

Our objective is to reduce the study of multilinear maps to the study of linear maps. We
use F (V1, V2, · · · , Vk) to denote the vector space having its basis {(v1, · · · , vk) ∈ V1×· · ·×
Vk} = V1× · · · × Vk. Each element of V1× · · · × Vk is a basis element of F (V1, V2, · · · , Vk).
For example, if V = R, then F (V ) is an infinite dimesional vector space in which each
r ∈ R is a basis element. This vector space is enormous, but it is just an intermediate
stage. It has the following important property:

Lemma 9.2***. If V1, V2, · · · , Vk andW are vector spaces, then linear maps from F (V1, V2, · · · , Vk)
to W are in one to one correspondence with set maps from V1 × · · · × Vk to W .

Proof. This property follows since a linear map is exactly given by specifying where a
basis should map, and V1 × · · · × Vk is a basis of F (V1, V2, · · · , Vk). Given any set map

g : V1 × · · · × Vk →W we obtain a linear map ˜̃g : F (V1, V2, · · · , Vk)→W . �

We next improve upon the construction of F by forming a quotient of F to make a
smaller space. We can do this improvement since we are not interested in set maps from
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2 CHAPTER 9 MULTILINEAR ALGEBRA

V1 × · · · × Vk to W but only in multilinear maps. Let R ⊂ F be the vector subspace of F
spanned by the following vectors

(1***)
(v1, · · · , vi−1,avi + bv′i, vi+1, · · · , vk)

− a(v1, · · · , vi−1, vi, vi+1, · · · , vk)− b(v1, · · · , vi−1, v
′
i, vi+1, · · · , vk)

for each a, b ∈ R, vj ∈ Vj for j = 1, · · · , k and v′i ∈ Vi for i = 1, · · · , k. The vector given in
(1)*** is a single vector expressed as a sum of three basis elements, and each basis element
is an n-tuple in V1 × · · · × Vk. The subspace R has the following important property

Lemma 9.3***. If V1, V2, · · · , Vk andW are vector spaces, then linear maps from F (V1, V2, · · · , Vk)
to W which vanish on R are in one to one correspondence with multilinear maps from
V1 × · · · × Vk to W .

Proof. The correspondence is the same correspondence as is given in Lemma 9.2***. Using
the same notation as in the proof of Lemma 9.2***, we must show that g is multilinear if
and only if ˜̃g vanishes on R.

Suppose g : V1 × · · · × Vk →W is a multilinear map. Then

g(v1, · · · , vi−1,avi + bv′i, vi+1, · · · , vk)

= ag(v1, · · · , vi−1, vi, vi+1, · · · , vk) + bg(v1, · · · , vi−1, v
′
i, vi+1, · · · , vk)

which is true if and only if

˜̃g(v1, · · · , vi−1,avi + bv′i, vi+1, · · · , vk)

= a˜̃g(v1, · · · , vi−1, vi, vi+1, · · · , vk) + b˜̃g(v1, · · · , vi−1, v
′
i, vi+1, · · · , vk)

= ˜̃g(a(v1, · · · , vi−1, vi, vi+1, · · · , vk)) + ˜̃g(b(v1, · · · , vi−1, v
′
i, vi+1, · · · , vk))

which is true if and only if

˜̃g((v1, · · · , vi−1,avi + bv′i, vi+1, · · · , vk)

− a(v1, · · · , vi−1, vi, vi+1, · · · , vk)− b(v1, · · · , vi−1, v
′
i, vi+1, · · · , vk)) = 0.

In the computation above, ˜̃g is a linear map and each n-tuple is a basis vector in the
vector space. The last line states that ˜̃g vanishes on R and the first line states that g is
multilinear. Hence g is multilinear if and only if ˜̃g vanishes on R. �

We are now ready to define the vector space discussed in the beginning of the chapter.

Definition 9.4***. Suppose that V1, V2, · · · , Vk are vector spaces. Then the vector space
F (V1, · · · , Vk)/R along with the map φ : V1 × · · · × Vk → F (V1, · · · , Vk)/R is call the
tensor product of V1, V2, · · · , Vk. The vector space F/R is denoted V1 ⊗ · · · ⊗ Vk. The
image φ((v1, · · · , vk)) is denoted v1 ⊗ · · · ⊗ vk. Usually the map φ is supressed, but it is
understood to be present.

Usually the map φ is suppressed, but it is understood to be present. Although the vector
space F is infinite dimensional, we will soon show that V1 ⊗ · · · ⊗ Vk is finite dimensional
(Proposition 9.8***). We first show that
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Proposition 9.5***. The map φ in the definition of the tensor product is a multilinear
map.

Proof. We must show that

φ(v1, · · · , vi−1,avi + bv′i, vi+1, · · ·vk)

= aφ(v1, · · · , vi−1, vi, vi+1, · · · vk) + bφ(v1, · · · , vi−1, v
′
i, vi+1, · · ·vk)

or, using the notation of Definition 9.4***,

(v1 ⊗ · · · ⊗ vi−1⊗avi + bv′i ⊗ vi+1 ⊗ · · · ⊗ vk)

− a(v1 ⊗ · · · ⊗ vi−1 ⊗ vi ⊗ vi+1 · · · ⊗ vk)

− b(v1 ⊗ · · · ⊗ vi−1 ⊗ v
′
i ⊗ vi+1 ⊗ · · · ⊗ vk) = 0

This equation is equivalent to the following statement in F ,

(v1, · · · , vi−1,avi + bv′i, vi+1, · · ·vk)

− a(v1, · · · , vi−1, vi, vi+1, · · ·vk)− b(v1, · · · , vi−1, v
′
i, vi+1, · · ·vk) ∈ R

The vector on the left is in R since it is the element in expression (1)***. �

The main property of the tensor product is the universal mapping property for multi-
linear maps. It is stated in the following theorem.

Proposition 9.6***. Suppose V1, V2, · · · , Vk are vector spaces. The tensor product φ :
V1×· · ·×Vk → V1⊗· · ·⊗Vk satisfies the following property, the universal mapping property
for multilinear maps:

If W is a vector space and g : V1 × · · · × Vk → W is a multilinear map, then there is a
unique linear map g̃ : V1 ⊗ · · · ⊗ Vk →W such that g̃ ◦ φ = g.

Proof. Given the multilinear map g, there is a unique linear map ˜̃g : F (V1, · · · , Vk)→ W

by Lemma 9.2***. Since g is multilinear, the map ˜̃g vanishes on R by Lemma 9.3***.
Hence there is a unique well-defined map induce by ˜̃g, call it g̃ : F/R→W . �

The ability of the tensor product to convert multilinear maps into linear maps is an
immediate consequence of Proposition 9.6***.

Theorem 9.7***. Suppose V1, V2, · · · , Vk and W are vector spaces. Linear maps g̃ : V1⊗
· · ·⊗Vk →W are in one to one correspondence with multilinear maps g : V1×· · ·×Vk →W .

Proof. Given a multilinear map g, Proposition 9.6*** produces the unique linear map g̃.
Given a linear map g̃ let g = g̃ ◦ φ. The map g is a composition of a linear map and a
multilinear map, Proposition 9.5***. The composition of a linear map and a multilinear
map is a multilinear linear map. The reader should check this fact. �
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Theorem 9.8***. Suppose V1, V2, · · · , Vk are vector spaces and dimVi = ni. Let {eij | j =

1, · · · , ni} be a basis for Vi. Then dimV1⊗· · ·⊗Vk = n1n2 · · ·nk and {e1j1⊗e
2
j2
⊗· · ·⊗ekjk |

ji = 1, · · · , ni, i = 1, · · · , k} is a basis for the tensor product V1 ⊗ · · · ⊗ Vk.

Proof. We first show that dimV1 ⊗ · · · ⊗ Vk ≥ n1n2 · · ·nk. Let W be the vector space of
dimension n1n2 · · ·nk and label a basis Ej1,··· ,jk for ji = 1, · · · , nk. Define L : V1 × · · · ×
Vk →W by

L(

n1
∑

j1=1

a1j1e
1
j1
, · · · ,

nk
∑

jk=1

akjke
k
jk

) =

n1
∑

j1=1

· · ·

nk
∑

jk=1

a1j1 · · ·akjkEj1,··· ,jk

The map L maps onto a basis of W since L(e1j1 , · · · , e
k
jk

) = Ej1,··· ,jk .

We next observe that L is multilinear. Let vr =
∑nr

jr=1 arjre
r
jr

for r = 1, · · · , k and

v′i =
∑ni

ji=1 a
′
iji
eiji so that avi + bv′i =

∑ni

ji=1(aaiji + ba′iji)e
i
ji

and

L(v1, · · · , vi−1, avi + bv′i, vi+1 · · · , vk)

=

n1
∑

j1=1

· · ·

nk
∑

jk=1

aij1 · · ·ai−1ji−1
(aaiji + ba′iji)ai+1ji+1

· · ·akjkEj1,··· ,jk

= a

n1
∑

j1=1

· · ·

nk
∑

jk=1

aij1 · · ·ai−1ji−1
(aiji)ai+1ji+1

· · ·akjkEj1,··· ,jk

+ b

n1
∑

j1=1

· · ·

nk
∑

jk=1

aij1 · · ·ai−1ji−1
(a′iji)ai+1ji+1

· · ·akjkEj1,··· ,jk

= aL(v1, · · · , vi−1, vi, vi+1 · · · , vk) + bL(v1, · · · , vi−1, v
′
i, vi+1 · · · , vk)

By Proposition 9.6***, there is an induced linear map L̃ : V1 ⊗ · · · ⊗ Vk → W . This
map hits a basis since L maps onto a basis. Since L̃ is linear, it is onto. Therefore
dimV1 ⊗ · · · ⊗ Vk > dimW = n1n2 · · ·nk.

We show that {eij | j = 1, · · · , ni} is a spanning set. The set V1 × · · ·Vk is a basis
of F (V1, · · · , Vk) and F (V1, · · · , Vk) maps onto the tensor product V1 ⊗ · · · ⊗ Vk = F/R.
Therefore the elements of the form v1 ⊗ · · · ⊗ vk span the tensor product. Let vi =
∑ni

ji=1 aijie
i
ji

for each i = 1, · · · , k. Then

v1 ⊗ · · · ⊗ vk =

n1
∑

j1=1

a1j1e
1
j1
⊗ · · · ⊗

nk
∑

jk=1

akjie
k
jk

=

n1
∑

j1=1

· · ·

nk
∑

jk=1

a1j1 · · ·akjie
1
j1
⊗ · · · ⊗ ekjk

Since {eij | j = 1, · · · , ni} is a spanning set and its cardinality is n1n2 · · ·nk, it is
basis. �
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Example 9.9***. A multilinear map g : R3 ×R3 ×R3 → R.

Suppose that e1, e2, e3 is the standard basis for R3. The vector space R3⊗R3⊗R3 is 27
dimensional and has as a basis {ei⊗ej⊗ek | i, j, k = 1, 2, 3}This basis is usually represented
as a triple index, indexed by the basis elements of R3. The linear map g̃ : R3⊗R3⊗R3 → R

can be represented as a 1× 27 matrix, but this is not the usual way to represent tensors.
Suppose that g̃(ei ⊗ ej ⊗ ek) = aijk using the triple index to write the basis elements of
the tensor product. Then, using the ei basis for R3, we have

g̃









x1

x2

x3









y1
y2
y3









z1
z2
z3







 =
3

∑

i=1

3
∑

j=1

3
∑

k=1

aijkxiyjzk

Example 9.10***. R⊗ · · · ⊗R is isomorphic to R, R⊗W is isomorphic to W .

A basis for R ⊗ · · · ⊗ R is 1 ⊗ · · · ⊗ 1 and a1 ⊗ · · · ⊗ ak = (a1 · · ·ak)1 ⊗ · · · ⊗ 1. The
isomorphism is to multiply the entries.

Similarly, R⊗W →W by r × w 7→ rw induces the second isomorphism.
These isomorphisms are natural and standard. They are natural because R is not an

abstract 1-dimensional vector space, but R has a distinguished multiplicative unit 1. These
isomorphisms are used as an identification in these notes and in physics literature.

The following theorem defines and gives properites of induced maps between tensor
products.

Theorem 9.11***. Suppose V1, · · · , Vk and W1, · · · ,Wk are vector spaces. Further sup-
pose that fi : Vi →Wi is a linear map for each i = 1, · · · , k. Then there is an induced linear
map f1⊗ · · ·⊗ fk : V1⊗ · · ·⊗ Vk →W1⊗ · · ·⊗Wk defined by f1⊗ · · ·⊗ fk(v1⊗ · · ·⊗ vk) =
f1(v1)⊗ · · · ⊗ fk(vk). These induced maps satisfy the following two properties

(1) If Q1, · · · , Qk are another collection of vector spaces and gi : Wi → Qi is a linear
map for each i−1, · · · , k, then g1⊗· · ·⊗gk ◦f1⊗· · ·⊗fk = (g1 ◦f1)⊗· · ·⊗ (gk ◦fk)

(2) If IX denotes the identity on X, then IV1
⊗ · · · ⊗ IVk

= IV1⊗···⊗Vk

Proof. Let φ : W1×· · ·×Wk →W1⊗· · ·⊗Wk be the map from the definition of the tensor
product. It is multilinear by Proposition 9.5***. Let L : V1 × · · · × Vk → W1 ⊗ · · · ⊗Wk

be defined by L = φ ◦ (f1, · · · , fk). We show that L is multilinear since each fi is linear
and φ is multilinear.

L(v1, · · · , vi−1,avi + bv′i, vi+1, vk)

= f1(v1)⊗ · · · ⊗ fi−1(vi−1)⊗ fi(avi + bv′i)⊗ fi+1(vi+1)⊗ · · · ⊗ f(vk)

= f1(v1)⊗ · · · ⊗ fi−1(vi−1)⊗ (afi(vi) + bfi(v
′
i))⊗ fi+1(vi+1)⊗ · · · ⊗ f(vk)

= af1(v1)⊗ · · · ⊗ fi−1(vi−1)⊗ (fi(vi))⊗ fi+1(vi+1)⊗ · · · ⊗ f(vk)

+ bf1(v1)⊗ · · · ⊗ fi−1(vi−1)⊗ (fi(v
′
i))⊗ fi+1(vi+1)⊗ · · · ⊗ f(vk)

= aL(v1, · · · , vi−1, vi, vi+1, · · · , vk) + bL(v1, · · · , vi−1, v
′
i, vi+1, · · · , vk)

There is an induced linear map L̃ by Theorem 9.7*** and this map is f1 ⊗ · · · ⊗ fk.
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The first property follows from the definition of the induced map. We check the second
property,

IV1
⊗ · · · ⊗ IVk

(v1 ⊗ · · · ⊗ vk) = IV1
(v1)⊗ · · · ⊗ IVk

(vk)

= v1 ⊗ · · · ⊗ vk,

which verifies the second property. �

We have the following corollary.

Corollary 9.12***. Suppose V1, V2, · · · , Vk are vector spaces. Let {eij | j = 1, · · · , ni}

be a basis for Vi and {(eij)
∗ | j = 1, · · · , ni} the dual basis for V ∗

i . Using the isomorphism
from Example 9.10***, R⊗ · · · ⊗R ∼= R, we have that

(e1j1)
∗ ⊗ · · · ⊗ (ekjk)∗ = (e1j1 ⊗ · · · ⊗ e

k
jk

)∗,

which gives an isomorphism V ∗ ⊗ · · · ⊗ V ∗ ∼= (V ⊗ · · · ⊗ V )∗.

Proof. We check this formula on the basis given in Theorem 9.8***.

(e1j1)
∗ ⊗ · · · ⊗ (ekjk)∗(e1i1 ⊗ · · · ⊗ e

k
ik

) =

{

1 if i1 = j1, · · · , ik = jk

0 if ir 6= jrfor some r

This formula follows from the definition of the induced map in Theorem 9.11*** and
the definition of the dual basis. It shows that {e1j1)

∗ ⊗ · · · ⊗ (ekjk)∗} is the basis dual to

{e1j1 ⊗ · · · ⊗ (ekjk}. �

Example 9.13***. Hom(V,W ) = V ∗⊗W . If {ei | i = 1, · · ·n} is a basis for V , {e′i | i =
1, · · ·m} is a basis for W , and f ∈ Hom(V,W ), then f =

∑m
i=1

∑n
j=1 aije

∗
j ⊗ e

′
i where (aij)

is the matrix representing f in the given bases.

We check the formula:

(

n
∑

i=1

n
∑

j=1

aije
∗
j ⊗ e

′
i)(er) =

n
∑

i=1

n
∑

j=1

aij(e
∗
j (er))⊗ e

′
i

=
n

∑

i=1

air1⊗ e
′
i

=
n

∑

i=1

aire
′
i

Which is the r-th column vector of the matrix. Also notice the last line used the idenifi-
cation from Example 9.10***.
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Example 9.14***. Bilinear Maps

The usual dot product in Rn is a bilinear map. In fact, any bilinear map <,>: Rn ×
Rn → R induces a linear map

˜<,> : Rn ⊗Rn → R.

Now, ˜<,> ∈ Hom(Rn ⊗Rn,R) and

Hom(Rn ⊗Rn,R) = (Rn ⊗Rn)∗ by definition of the dual

= (Rn)∗ ⊗ (Rn)∗ using the isomorphism in 9.12***.

Using the standard basis {ei | i = 1, · · · , n} for Rn, we can write ˜<,> =
∑n
i=1

∑n
j=1 gije

∗
i⊗

e∗j . Readers who are familar with representing a bilinear form as a matrix should note that
(gij) is the matrix for <,>. In practice the tilde is not used and we only use it here for
clarification.

Example 9.15***. The Cross Product in R3

The vector cross product in R3 is a bilinear map and so induces a map

−×− : R3 ⊗R3 → R3.

If we use the identifications Hom(R3 ⊗ R3,R3) = (R3)∗ ⊗ (R3)∗ ⊗ R3, then the cross
product is

e∗2 ⊗ e
∗
3 ⊗ e1 − e

∗
3 ⊗ e

∗
2 ⊗ e1 + e∗3 ⊗ e

∗
1 ⊗ e2 − e

∗
1 ⊗ e

∗
3 ⊗ e2 + e∗1 ⊗ e

∗
2 ⊗ e3 − e

∗
2 ⊗ e

∗
1 ⊗ e3.

Example 9.16***. The Stress Tensor

Consider a solid object and put it in the usual coordinate system so that the origin 0 is
at an interior point. One problem is to understand and describe the stresses at a point (the
origin). Since the interior point, the origin, isn’t moving, all the forces must be in balance.
This fact is a consequece of Newton’s laws of motion. However, we can ask about the stress
(force per unit area) on a surface through the origin. There may be forces perpendicular
to the surface, e.g., from compression and forces along the surface, e.g., shearing forces
from twisting.

Given a vector u ∈ R3, let S be the square with area |u| that is perpendicular to u. Let
F (u) be the force on the square S from the side that u points so that F (u) is a vector in
R3. Define a bilinear function τ by

τ(v, w) = v ·DF (0)(w)

where DF (0) is the best linear approximation to F at the origin, i.e., the derivative and
the dot is the usual dot product. The number τ(ei, ej) is the i− th component of the force
per unit area acting on the surface perpendicular to ej . The stress tensor τ is a map

τ : R3 ⊗R3 → R.

In terms of the identification Hom(R3 ⊗R3,R) = (R3 ⊗R3)∗ = (R3)∗ ⊗ (R3)∗ we have

that τ =
∑3
i=1

∑3
j=1 τije

∗
i ⊗ e

∗
j .
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Definition 9.17***. Suppose V is a vector space. Elements of the space V ⊗ · · · ⊗ V ⊗
V ∗⊗· · ·⊗V ∗, the r-fold tensor of V and the s-fold tensor of V ∗ are tensors of type (r, s)***.

Remark 9.18***. A tensor is an object that transforms ...

Since tensors are elements of a vector space, they are vectors. However, different ter-
minology is used emphasizing a conceptual difference. The primary object of study is
usually associated to the vector space V and a tensor of type (r, s) is then an auxilary
object. This perspective is apparent when one changes coordinates. If V is an n di-
mensional vector space then the space of tensor of type (r, s) is an n(r + s)-dimensional
vector space. A change of coordinates in V is given by a map in GL(V ) ∼= GL(n,R)
and a change in coordinates in the space of tensor of type (r, s) is given by a map in
GL(V ⊗ · · · ⊗ V ∗) ∼= GL(n(r + s),R). However the only change in coordinates allowed in
the tensor product are those that are induced from a change in coordinates V via Theorem
9.11***. If f : V → V , then f∗ : V ∗ → V ∗ and

f ⊗ · · · ⊗ f ⊗ f∗ ⊗ · · · ⊗ f∗ : V ⊗ · · · ⊗ V ⊗ V ∗ ⊗ · · · ⊗ V ∗ → V ⊗ · · · ⊗ V ⊗ V ∗ ⊗ · · · ⊗ V ∗

are the induced change of coordinates.
We give the specific formula. Suppose e1, · · · , en is a basis for V and the map f is

represented by the matrix (aij). Then

f(

n
∑

i=1

xiei) =

n
∑

i=1

n
∑

j=1

aijxjei

f(
n

∑

i=1

yie∗i ) =
n

∑

i=1

∑

j=1

ajiy
je∗i

If
∑n
i1,··· ,ir,j1,··· ,js=1 T

j1,··· ,js
i1,··· ,ir

ei1 ⊗· · ·⊗ eir ⊗ e
∗
j1
⊗· · ·⊗ e∗js is a tensor of type (r, s)*** then

its image under the induced map is
(2***)

n
∑

i1, · · · , ir, j1, · · · , js

p1, · · · , pr, q1, · · · , qs = 1

T q1,··· ,qs
p1,··· ,pr

ai1p1 · · ·airpr
aq1j1 · · ·aqrjsei1 ⊗ · · · ⊗ eir ⊗ e

∗
j1
⊗ · · · ⊗ e∗js

Formula (2)*** is often expressed in physics by saying that under the linear change of
coordinates f , T q1,··· ,qs

p1,··· ,pr
transforms to

n
∑

p1,··· ,pr,q1,··· ,qs=1

T q1,··· ,qs

p1,··· ,pr
ai1p1 · · ·airpr

aq1j1 · · ·aqrjs .

Furthermore, the summation sign is often supressed.
We now turn our attention to functions that are alternating and multilinear.
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Definition 9.19***. Suppose V and W are vector spaces. A function from the k-fold
cross product to W g : V × V × · · · × V →W is called alternating if it is multilinear and
if for all v1, · · · , vk ∈ V , f(v1, · · · , vk) = 0 whenever vi = vj for some i 6= j.

There is a common equivalent definition which we give as a proposition.

Proposition 9.20***. Suppose V and W are vector spaces. A function g : V ×V ×· · ·×
V → W is alternating if and only if it is multilinear and it satisfies the following: for all
v1, · · · , vk ∈ V and permutations σ ∈ Σk,

(3***) f(v1, · · · , vk) = (−1)sign σf(vσ(1), · · · , vσ(k)).

Proof. Suppose f is an alternating function. We first show that (3)*** holds for permu-
tations. For any v1, · · · , vk ∈ V and i < j we have that

f(v1, · · · , vi + vj , · · · , vj + vi, · · · , vk) =f(v1, · · · , vi, · · · , vi, · · · , vk)

+f(v1, · · · , vj , · · · , vj , · · · , vk)

+f(v1, · · · , vi, · · · , vj, · · · , vk)

+f(v1, · · · , vj , · · · , vi, · · · , vk)

since f is multilinear. The first two terms on the right side are zero and the left side is
zero, because the function is alternating. Therefore

f(v1, · · · , vi, · · · , vj , · · · , vk) = (−1)sign τf(vτ(1), · · · , vτ(i), · · · , vτ(j), · · · , vτ(k))

for τ the permutation (i, j). Now suppose that σ is an arbitrary permutation. Then σ can
be written as a composition of transpositions

σ = τm · · · τ1

where we have written this product as a composition of functions in functional notation
(not group multiplication). Thus we have that

f(v1, · · · , vk) =(−1)sign τ1f(vτ1(1), · · · , vτ1(k))

=(−1)sign τ2(−1)sign τ1f(vτ2τ1(1), · · · , vτ2τ1(k))

...

=(−1)sign τm · · · (−1)sign τ2(−1)sign τ1f(vτm···τ2τ1(1), · · · , vτm···τ2τ1(k))

=(−1)sign σf(vσ(1), · · · , vσ(k))

Therefore, (3)*** is satisfied.
The converse is easy to show. Suppose that f is a multilinear function which satisfies

(3)***. Suppose that v1, · · · , vk ∈ V , and vi = vj for some i 6= j. Let τ be the transposition
τ = (i, j). Then vτ(i) = vτ(j) so, (v1, · · · , vk) = (vτ(1), · · · , vτ(k)) and

f(v1, · · · , vk) =− 1f(vτ(1), · · · , vτ(k))

=− f(v1, · · · , vk).

Therefore f(v1, · · · , vk) = 0 and f is alternating. �
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Example 9.21***. The determinant function using either row or column vectors.

Suppose V is an m-dimensional vector space and v1, · · · , vm are vectors in V . Let
det(v1, · · · , vm) be the determinant of the matrix whose i− th column vector is vi. Then

det : V × · · · × V → R

is an alternating map. The determinant is linear in each column vector and if two column
vectors are the same then the determinant vanishes.

We can do the same with row vectors. Let det





v1
...
vm



 be the determinant of the matrix

whose i-th row vector is vi. Then

det : V × · · · × V → R

is an alternating map. The determinant is linear in each row vector and if two row vectors
are the same then the determinant vanishes.

Example 9.22***. The cross product in R3 and Rm

The cross product in R3 is familiar as a map

−×− : R3 ⊗R3 → R3

from Calculus and Example 9.15***. It is multilinear and it is also alternating since
v × v = 0. Recall that the direction of v × w is perpendicular to the plane containing v
and w, and the direction is determined by the right hand rule.

Also recall from Calculus that the cross product v × w can be computed as

det





e1 e2 e3
v
w





which is formally interpreted as expansion in the first row and e1, e2, e3 is the standard
basis in R3 often denoted i, j, k in Calculus and physics books. The vectors v and w are

row vectors. If u is another vector in R3, then u · (v × w) = det





u
v
w





In Rm we can define the cross product of m− 1 vectors.

−× · · · × − : Rm ⊗Rm → Rm.

The cross product v1 × v2 × · · · × vm−2 × vm−1 can be formally computed as

det









e1 · · · em
v1
...

vm−1








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by expansion along the first row. If u is another vector in Rm, then

u · (v1 × v2 × · · · × vm−2 × vm−1) = det









u
v1
...

vm−1









.

To check this formula, expand the right side along the first row. Also notice that if
u ∈ span{v1, · · · , vm−1}, then the determinant vanishes. Hence v1×v2×· · ·×vm−2×vm−1

is perpendicular to the m− 1 dimensional subspace spanned by {v1, · · · , vm−1}.
The cross product is a multilinear and alternating function since the determinant is

multilinear and alternating.

Example 9.23***. vm · (v1 × · · · × vm−1) for v1, · · · , vm ∈ Rm

This function on the m-fold cross product of Rm to R is multilinear and alternating
since it was shown to be the determinant

det









vm
v1
...

vm−1









in the last example.

Example 9.24***. Signed Volume in R3

Given three linearly independent vectors v1, v2, v3 ∈ R3, we may form a parallelepiped
with these three vectors as sides. The parallelepiped is {av1 + bv2 + cv3 | a, b, c ∈ [0, 1]}.
We wish to compute the volume of the parallelepiped as a function of the three vectors
and obtain a multilinear function. Note that volume is always a positive number and the
value of a multilinear function must include negative values (since constants always pull
out). We will try to find a notion of signed volume whose absolute value gives the actual
volume. Denote the signed volume of the parallelepiped by Vol3(v1, v2, v3). The volume
of a parallelepiped is the area of the base times the height, so

|Vol3(v1, v2, v3)| = |Vol2(v1, v2)||(v3 · n)|

where |Vol2(v1, v2)| is the area of the parallelogram determined by v1, v2, and n = v1×v2
|v1×v2|

is

a unit vector perpendicular to the plane containing the parallelogram. The signed volume
is

Vol3(v1, v2, v3) = |Vol2(v1, v2)|(v3 · n).

Note that the function is clearly linear in the third variable since the dot product is linear
in its first variable. Permuting the variables keeps the correct formula up to the sign (so
you can move any variable to the third spot). To check the sign under a permutation,
one must observe that the cross product dotted with the last vector is alternating by the
previous example.
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Example 9.25***. Signed Volume in Rm.

This example is essentially the same as Example 9.24***. Given m linearly independent
vectors v1, · · · , vm ∈ Rm, we may form a parallelepiped with these m vectors as sides. The
parallelepiped is {a1v1 + · · ·+ amvm | ai ∈ [0, 1], i = 1, · · ·m}. Again we wish to compute
the volume of the parallelepiped as a function of the m vectors. We show that there is a
multilinear alternating function that gives a signed volume. Denote the signed volume of
the parallelepiped by Volm(v1, · · · , vm). The volume of a parallelepiped is the area of the
base times the height, so

|Volm(v1, · · · , vm)| = |Volm−1(v1, · · · , vm−1)||(vm · n)|

where |Volm−1(v1, · · · , vm−1)| is the m−1 dimensional volume of the parallelepiped deter-

mined by v1, · · · , vm−1, and n = v1×···×vm−1

|v1×···×vm−1|
is a unit vector perpendicular to the plane

containing the parallelepiped (Example 9.22***). The signed volume is

|Volm(v1, · · · , vm)| = |Volm−1(v1, · · · , vm−1)|(vm · n).

The linearity check is the same as in the last example. The function is clearly linear in the
last variable since the dot product is linear in its first variable. Permuting the variables
keeps the correct formula up to the sign (so you can move any variable to the last spot).
To check the sign under a permutation, one must observe that the cross product dotted
with the last vector is alternating by Example 9.23***. Notice that if two of the entries in
Volm(v1, · · · , vm) are the same then the parallelepiped is in an m−1 dimensional subspace
and so has zero volume.

Example 9.26***. Minors

Suppose that W is an m-dimensional vector space, V is an n-dimensional vector space,
f : W → V is linear, and det : V × · · · × V → R is the determinant in terms of column
vectors from the n fold product V . Then the map

F (w1, · · · , wn) = det(f(w1), · · · , f(wn)),

i.e., F = det◦(f×· · ·×f) from the n fold product ofW to R is an alternating map. Suppose
that W has e1, · · · , em as an ordered basis and m ≥ n. Fix numbers i1 < i2 < · · · < in in
{1, · · · ,m}. Let p(

∑m
i=1 aiei) =

∑n
j=1 aijeij , or p =

∑n
j=1 e

∗
ij

. Let

Mi1,··· ,in(w1, · · · , wn) = det ◦ (p× · · · × p)(w1, · · · , wn).

Now express the vector wi ∈ W in terms of the basis: wi =
∑m
j=1 wjiej . The function

Mi1,··· ,in is the minor of the matrix








w11 w12 · · · w1n

w21 w22 · · · w2n
...

...
...

wm1 wm2 · · · wmn









obtained by choosing the rows i1, · · · , in,Mi1,··· ,in(w1, · · · , wn) = det







wi11 · · · wi1n
...

...
win1 · · · winn






.

We now find the appropriate vector space in which to describe alternating multilinear
maps.
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Definition 9.27***. Suppose that V is a vector space and let A ⊂ V ⊗ · · · ⊗ V be the
subspace spanned by

{v1 ⊗ · · · ⊗ vk | v1, · · · , vk ∈ V, vi = vj for some i 6= j}.

The vector space V ⊗ · · · ⊗ V/A along with the map ψ : V × · · · × V → V ⊗ · · · ⊗ V/A
is called the exterior product. The vector space V ⊗ · · · ⊗ V/A is denote V ∧ · · · ∧ V and
ψ(v1, · · · , vn) is denoted v1 ∧ · · · ∧ vn.

Recall that there is a unique induced linear map ψ̃ : V ⊗ · · · ⊗ V → V ∧ · · · ∧ V such
that ψ̃ ◦ φ = ψ given by Proposition 9.6***.

Proposition 9.28***. The induce map ψ : V × · · · × V → V ∧ · · · ∧ V is a multilinear
alternating map.

Proof. The induced map is a composition of the multilinear map φ from Proposition 9.5***
and the linear quotient map ψ̃. Hence ψ = ψ̃ ◦ φ is multilinear. The map is alternating
since φ(v1, · · · , vn) ∈ A if vi = vj for some i 6= j.

The main property of the exterior product is the universal mapping property for multi-
linear alternating maps. It is stated in the following theorem.

Proposition 9.29***. Suppose V is vector a space. The exterior product ψ : V × · · · ×
V → V ∧ · · · ∧ V satisfies the following property, the universal mapping property for
multilinear alternating maps:

If W is a vector space and g : V × · · · × V →W is an alternating multilinear map, then
there is a unique linear map g′ : V1 ∧ · · · ∧ V →W such that g′ ◦ ψ = g.

Proof. There is a unique linear map g̃ : V ⊗ · · · ⊗ V → W . The map g is alternating so
g(v1, · · · , vk) = 0 if vi = vj for some i 6= j. From Proposition 9.6***, g = g̃ ◦ φ If vi = vj
for some i 6= j, then

0 = g̃ ◦ φ(v1, · · · , vk) = g̃(v1 ⊗ · · · ⊗ vk).

Therefore A ⊂ Ker g̃ and the unique map g̃ determines a unique map g′ : V ⊗· · ·⊗V/A→
W . �

The ability of the exterior product to convert alternating multilinear maps into linear
maps is an immediate consequence of Proposition 9.29***.

Theorem 9.30***. Suppose V andW are vector spaces. Linear maps g̃ : V ∧· · ·∧V →W
are in one to one correspondence with alternating multilinear maps g : V × · · · × V →W .

Proof. Given a multilinear map g, Proposition 9.29*** produces the unique linear map g ′.
Given a linear map g′ let g = g′ ◦ ψ. The map g′ is a composition of a linear map and an
alternating multilinear map, Proposition 9.28***. The composition of a linear map and
an alternating multilinear map is an multilinear alternating map. The reader should check
this fact. �



14 CHAPTER 9 MULTILINEAR ALGEBRA

Theorem 9.31***. Suppose V are vector spaces and dim V = n. Let {ei | i = 1, · · · , n}
be a basis for V . Then the dimension of the k-fold wedge product dimV ∧ · · · ∧ V =

(

n
k

)

and {ej1 ∧ ej2 ∧ · · · ∧ ejk | 1 ≤ j1 < j2 < · · · < jk ≤ n} is a basis for the exterior product
V ∧ · · · ∧ V .

Proof. We first show that dimV ∧ · · · ∧ V ≥
(

n
k

)

. Let W be the vector space with basis
{Ej1,··· ,jk | 1 ≤ j1 < j2 < · · · < jk ≤ n}. Let L : V × · · · × V → W be the map from the
k-fold cross product of V to W defined by

L(v1, · · · , vk) =
∑

1≤j1<j2<···<jk≤n

Mj1,··· ,jk(v1, · · · , vk)Ej1,··· ,jk

where Mj1,··· ,jk is the multilinear alternating function from Example 9.26***. The function
L is multilinear and alternating since each Mj1,··· ,jk is multilinear and alternating. The
function L hits a whole basis to W since L(ej1 , · · · , ejk) = Ej1,··· ,jk . There is an induced
linear map L′ : V ∧ · · · ∧ V → W which is onto since it hits a basis to W . Therefore
dimV ∧ · · · ∧ V ≥ dim W =

(

n
k

)

.
We next show that {ej1 ∧ ej2 ∧ · · · ∧ ejk | 1 ≤ j1 < j2 < · · · < jk ≤ n} is a spanning set

(the same size as the dimension of W ). Hence it is a basis. To observe it is a spanning set
first note that {ei1⊗· · ·⊗eik | i1, · · · , ik ∈ {1, · · · , n}} is a spanning set for the k-fold tensor
product V ⊗· · ·⊗V by Theorem 9.8***. Therefore {ei1 ∧· · ·∧eik | i1, · · · , ik ∈ {1, · · · , n}}
is a spanning set for the exterior product. Finally note that if σ is the permutation or
{1, · · · , k} so that iσ(1) < · · · < iσ(k) then ei1∧· · ·∧eik = ±eiσ(1)

∧· · ·∧eiσ(k)
= ±ej1∧· · ·∧ejk

where the last wedge product is in the desired set. See Exercise 2*** �

The reader should note that the proof of Theorem 9.31*** actually shows that v1∧· · ·∧
vk =

∑

1≤j1<j2<···<jk≤n
Mj1,··· ,jk(v1, · · · , vk)ej1 ∧ · · · ∧ ejk .

We now establish the existence of induced maps and two properties of induced maps.

Theorem 9.32***. Suppose V and W are vector spaces and f : V → W is a linear
map. Then there is an induced linear map ∧kf : V ∧ · · · ∧ V → W ∧ · · · ∧W defined by
∧kf(v1 ∧ · · · ∧ vk) = f(v1) ∧ · · · ∧ f(vk). These induced maps satisfy the following two
properties

(1) If Q is another vector space and g : W → Q is another linear map, then ∧kg◦∧kf =
∧k(g ◦ f)

(2) If IX denotes the identity on X, then IV ∧ · · · ∧ IV = IV ∧···∧V

Proof. We show that ∧kf exists and is defined by the formula in the statement of the
theorem. Let ψ : W × · · · ×W → W ∧ · · · ∧ W be the multilinear alternating map in
from Definition 9.27*** an Lemma 9.28***. The function ψ ◦ (f × · · ·× f) is a multilinear
alternating map from V × · · · × V to W ∧ · · · ∧W since ψ is multilinear alternating and f
is linear. Therefore there is a unique induced linear map by Proposition 9.29***. Call the
map ∧kf : V ∧ · · · ∧ V →W ∧ · · · ∧W . Since

ψ ◦ (f × · · · × f)(v1, · · · , vk) = ψ(f(v1), · · · , f(vk)) = f(v1) ∧ · · · ∧ f(vk),

we have that
∧kf(v1 ∧ · · · ∧ vk) = f(v1) ∧ · · · ∧ f(vk).

The two properties follow from the formula for ∧kf . �
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Theorem 9.***. Suppose V is an n dimensional vector space, e1, · · · , en is a basis for
V , and f : V → V is a linear map that has matrix A = (aij) in the basis e1, · · · , en. Let
c1, · · · , cn be the column vectors of A so that cj =

∑n
i=1 aijei. Then the induced linear

map ∧kf : V ∧ · · · ∧ V → V ∧ · · · ∧ V on the k-fold wedge product is

∧kf(ej1 ∧ · · · ∧ ejk) =
∑

1≤i1<···<ik≤n

Mj1,··· ,jk(ci1 , · · · , cik)ei1 ∧ · · · ∧ eik

where Mj1,··· ,jk(ci1 , · · · , cik) is the minor obtained from A by choosing the rows numbered
j1, · · · , jk and the columns numbered i1, · · · , ik, see Example 9.26***. The elements ej1 ∧
· · · ∧ ejk such that 1 ≤ j1 < · · · < jk ≤ n form a basis for the wedge product by Theorem
9.31***.

As a special case, if k = n, then ∧nf(e1 ∧ · · · ∧ en) = det(f)e1 ∧ · · · ∧ en.

Proof. The proof is a short computation.

∧kf(ej1 ∧ · · · ∧ ejk) =

n
∑

i1=1

ai1j1ei1 ∧ · · · ∧

n
∑

ik=1

aikjkeik

=
n

∑

j1,··· ,jk=1

ai1j1 · · ·aikjkei1 ∧ · · · ∧ eik

=
∑

1≤j1<···<jk≤n

∑

σ∈Σk

(−1)sign σaiσ(1)j1 · · ·aiσ(k)jkei1 ∧ · · · ∧ eik

The last line follows since the wedge is zero if the vectors are not distinct and by use of
Exercise 9.2***. To complete the proof, we observe that

Mj1,··· ,jk(ci1 , · · · , cik) =
∑

σ∈Σk

(−1)sign σaiσ(1)j1 · · ·aiσ(k)jk .

�

According to Theorem 9.30*** the multilinear alternating functions from V × · · · × V
to R can be interpreted as (V ∧ · · · ∧ V )∗ (See Exercise 9.7***. We wish to construct
an isomorphism between ∧k(V ∗) and (∧kV )∗ analogous to the identification for tensor
products. Unfortunately, there are two common choices in use. We discuss both. One is
used when the author is primarily interested in using both tensor and exterior products.
The other is used when the author is primarily interested in integration.

The notation used below is now given. We use ∧kV and ⊗kV for the k fold wedge and
tensor products. The symbols φ and ψ are used for the maps in Definitions 9.4*** and
9.27*** as well as the maps they induce. The subscript indicates to the reader the vector
used to produce the tensor or exterior product.

Isomorphism I. If we are required to be consistent with the maps already defined, then
there would be no choice. We already have the following maps:

(∧kV )∗
(ψV )∗

−−−−→ (⊗kV )∗




y

(∧kV ∗) ←−−−−
ψV ∗

(⊗kV ∗)
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The top map is the interesting map to observe. Take

(ψV )∗((ei1 ∧ · · · ∧ eik)∗)(ei1 ⊗ · · · ⊗ eik) = (ej1 ∧ · · · ∧ ejk)∗(ψV (ei1 ⊗ · · · ⊗ eik))

=

{

±1 if i1, · · · , ik is a permutation of j1, · · · , jk

0 otherwise

since ei1 ∧ · · · ∧ eik = (−1)signτeiτ(1)
∧ · · · ∧ eiτ(k)

.

Hence, we have (φV )∗((ei1 ∧ · · · ∧ eik)∗) = (
∑

σ∈Σk
(−1)σeiσ(1)

⊗ · · · ⊗ eiσ(k)
)∗, and the

induced isomorphism (∧kV )∗ → (∧kV ∗) is

(ei1 ∧ · · · ∧ eik )∗ 7→ (k!)e∗i1 ∧ · · · ∧ e
∗
ik

Isomorphism II. The second map is convenient for area. The second map is

(ei1 ∧ · · · ∧ eik)∗ 7→ e∗i1 ∧ · · · ∧ e
∗
ik

Note that ( ∂
∂x
∧ ∂
∂y

)∗(

(

a
b

)

,

(

c
d

)

) is the area of the parallelogram determined by

(

a
b

)

and

(

c
d

)

. If we write ( ∂
∂x

)∗ = dx and ( ∂
∂y

)∗ = dy, then under the first isomorphism

dx ∧ dy does not determine the area of the parallelogram but 1
2!

times the area, however,
the second pairing dx ∧ dy does determine the area. Since the measuring of area is the
central feature of integration, the second pairing lends itself to integration.
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Exercise 9.1***. Write out the details to demonstrate the validity of Formula (2)***

Exercise 9.2***. Show that A ⊂ V ⊗ · · · ⊗ V defined in Definition 9.*** contains the
elements

v1 ⊗ · · · ⊗ vk − (−1)sign σvσ(1) ⊗ · · · ⊗ vσ(k)

for all permutations σ ∈ Σk. Show that v1 ∧ · · · ∧ vk = (−1)sign σvσ(1) ∧ · · · ∧ vσ(k).

Exercise 9.3***. Suppose that V1, V2, and V3 are vector spaces. Show that there are
well-defined isomorphisms

f : V1 ⊗ V2 ⊗ V3 → (V1 ⊗ V2)⊗ V3

such that f(u⊗ v ⊗ w) = (u⊗ v)⊗ w and

g : V1 ⊗ V2 ⊗ V3 → V1 ⊗ (V2 ⊗ V3)

such that g(u⊗ v ⊗ w) = u⊗ (v ⊗ w).

Exercise 9.4***. Suppose that V is a vector space. Show that there are well-defined
isomorphisms

f : V ∧ V ∧ V → (V ∧ V ) ∧ V

such that f(u ∧ v ∧ w) = (u ∧ v) ∧ w and

g : V ∧ V ∧ V → V ∧ (V ∧ V )

such that g(u ∧ v ∧ w) = u ∧ (v ∧ w).

Exercise 9.5***. Suppose that f : R3 → R3 is represented by the matrix





2 1 3
−1 0 1
0 4 0





in the ordered basis e1, e2, e3 and that g : R3 → R3 is represented by the matrix




1 2 3
4 0 −2
1 0 0



 in the same ordered basis. Find the matrix for f ⊗ g in the ordered

basis e1 ⊗ e1, e2 ⊗ e1 , e3 ⊗ e1, e1 ⊗ e2, e2 ⊗ e2, e3 ⊗ e2, e1 ⊗ e3, e2 ⊗ e3, e3 ⊗ e3.

Exercise 9.6***. Suppose that V1, · · · , Vk are vector spaces and let Mult(V1×· · ·×Vk,R)
denote the multilinear functions f : V1 × · · · × Vk → R. Show that Mult(V1 × · · · × Vk,R)
is a vector space under the usual addition an multiplication in R. Show that there is a
canonical isomorphism

Mult(V1 × · · · × Vk,R) ∼= (V1 ⊗ · · · ⊗ Vk)
∗.
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Exercise 9.7***.

a. Suppose that V is a vector space and let Alt(V × · · · × V,R) denote the k variable
multilinear alternating functions f : V × · · · × V → R. Show that Alt(V × · · · × V,R)
is a vector space under the usual addition an multiplication in R. Show that there is a
canonical isomorphism

Alt(V × · · · × V,R) ∼= (V ∧ · · · ∧ V )∗.

b. If dimV = n, then show that any multilinear alternating function in n-variables
f : V × · · · × V → R is a multiple of det. Show that

Voln(v1, · · · , vn) = det(v1, · · · , vn).

Exercise 9.8***. Suppose that V1, · · · , Vk and Q are vector spaces and ρ : V1×· · ·×Vk →
Q is a multilinear function. Show that if ρ : V1 × · · · × Vk → Q satisfies the universal
property for multilinear functions (Proposition 9.6***), then there is a unique isomorphism
ι : V1 ⊗ · · · ⊗ Vk → Q such that ι ◦ ρ = φ.

Exercise 9.8***. Suppose that V and Q are vector spaces and ρ : V × · · · × V → Q

is a multilinear function in k variables. Show that if ρ : V × · · · × V → Q satisfies the
universal property for altermating multilinear functions (Proposition 9.29***), then there
is a unique isomorphism ι : V ∧ · · · ∧ V → Q such that ι ◦ ρ = ψ.


