
Beginner’s essential

PHP Cheat Sheet

Fast, flexible and pragmatic scripting language.

#################

http://www.websitesetup.org
http://www.websitesetup.org

TABLE OF CONTENTS

PHP Basics 3

Variables and Constants 3

PHP Arrays – Grouped Values 8

PHP Strings 13

PHP Operators 20

Loops in PHP 22

Conditional Statements 23

Working with Forms in PHP 24

PHP Filters 25

HTTP Functions in PHP 27

Working with MySQL 28

Date and Time 32

PHP Errors 36

 of 2 38

PHP BASICS

Including PHP in a File

<?php

 // place PHP code here

?>

Writing Comments

// — Denotes comments that only span one line

— Another way of producing single-line comments

/*...*/ — Everything between /* and */ is not executed, also works
 across several lines

Outputting Data

<?php

 echo "<h1>PHP Cheat Sheet</h1>";

?>

Writing PHP Functions

function NameOfTheFunction() {

 //place PHP code here

}

VARIABLES AND CONSTANTS

Defining Variables

<?php

 $BlogPostTitle = "PHP Cheat Sheet";

?>

 of 3 38

Types of Data

Integers  
Integers are non-decimal numbers between -2,147,483,648 and ,
147,483,647. They must have at least one digit and no decimal point.
Can be in decimal, hexadecimal or octal.

Floats  
This is the name for numbers with a decimal point or in exponential
form.

Strings  
This simply means text, we will talk about it in detail further
below.

Boolean values  
Meaning true/false statements.

Arrays  
Arrays are variables that store several values. We will talk about
them in detail further below.

Objects  
Objects store both data and information on how to process it.

Resources  
These are references to functions and resources outside of PHP.

NULL  
A variable that is NULL doesn’t have any value.

Variable Scope

function myFunction() {

 global $a, $b;

 $b = $a - $b;

}

Predefined Variables

$GLOBALS  
Used to access global variables from anywhere inside a PHP script

 of 4 38

$_SERVER  
Contains information about the locations of headers, paths and
scripts

$_GET  
Can collect data that was sent in the URL or submitted in an HTML
form

$_POST  
Used to gather data from an HTML form and to pass variables

$_REQUEST  
Also collects data after submitting an HTML form

Variable-handling Functions

boolval  
Used to retrieve the boolean value of a variable

debug_zval_dump  
Outputs a string representation of an internal zend value

empty  
Checks whether a variable is empty or not

floatval  
Get the float value of a variable (doubleval is another possibility)

get_defined_vars  
Returns an array of all defined variables

get_resource_type  
Returns the resource type

gettype  
Retrieves the variable type

import_request_variables  
Import GET/POST/Cookie variables into the global scope

intval  
Find the integer value of a variable

is_array  
Checks whether a variable is an array

is_bool  
Finds out if a variable is a boolean

 of 5 38

is_callable  
Verify whether you can call the contents of a variable as a function

is_countable  
Check whether the contents of a variable are countable

is_float  
Find out if the type of a variable is float, alternatives: is_double
and is_real

is_int  
Check if the type of a variable is an
integer, is_integer and is_long also works

is_iterable  
Verify that a variable’s content is an iterable value

is_null  
Checks whether a variable’s value is NULL

is_numeric  
Find out if a variable is a number or a numeric string

is_object  
Determines whether a variable is an object

is_resource  
Check if a variable is a resource

is_scalar  
Tests if a variable is a scalar

is_string  
Find out whether the type of a variable is a string

isset  
Determine if a variable has been set and is not NULL

print_r  
Provides human-readable information about a variable

serialize  
Generates a representation of a value that is storable

settype  
Sets a variable’s type

strval  
Retrieves the string value of a variable

 of 6 38

unserialize  
Creates a PHP value from a stored representation

unset  
Unsets a variable

var_dump  
Dumps information about a variable

var_export  
Outputs or returns a string representation of a variable that can be
parsed

Constants

define(name, value, true/false)

Aside from user-defined constants, there also a number of default PHP
constants:

__LINE__  
Denotes the number of the current line in a file

__FILE__  
Is the full path and filename of the file

__DIR__  
The directory of the file

__FUNCTION__  
Name of the function

__CLASS__  
Class name, includes the namespace it was declared in

__TRAIT__  
The trait name, also includes the namespace

__METHOD__  
The class method name

__NAMESPACE__  
Name of the current namespace

 of 7 38

PHP ARRAYS – GROUPED VALUES
Indexed arrays  
Arrays that have a numeric index

Associative arrays  
Arrays where the keys are named

Multidimensional arrays  
Arrays that contain one or more other arrays

Declaring an Array in PHP

<?php

 $cms = array("WordPress", "Joomla", "Drupal");

 echo "What is your favorite CMS? Is it " . $cms[0] . ", " .
 $cms[1] . " or " . $cms[2] . "?";

?>

Array Functions

array_change_key_case  
Changes all keys in an array to uppercase or lowercase

array_chunk  
Splits an array into chunks

array_column  
Retrieves the values from a single column in an array

array_combine  
Merges the keys from one array and the values from another into a new
array

array_count_values  
Counts all values in an array

array_diff  
Compares arrays, returns the difference (values only)

array_diff_assoc  
Compares arrays, returns the difference (values and keys)

array_diff_key  
Compares arrays, returns the difference (keys only)

 of 8 38

array_diff_uassoc  
Compares arrays (keys and values) through a user callback function

array_diff_ukey  
Compares arrays (keys only) through a user callback function

array_fill  
Fills an array with values

array_fill_keys  
Fills an array with values, specifying keys

array_filter  
Filters the elements of an array via a callback function

array_flip  
Exchanges all keys in an array with their associated values

array_intersect  
Compare arrays and return their matches (values only)

array_intersect_assoc  
Compare arrays and return their matches (keys and values)

array_intersect_key  
Compare arrays and return their matches (keys only)

array_intersect_uassoc  
Compare arrays via a user-defined callback function (keys and values)

array_intersect_ukey  
Compare arrays via a user-defined callback function (keys only)

array_key_exists  
Checks if a specified key exists in an array, alternative: key_exists

array_keys  
Returns all keys or a subset of keys in an array

array_map  
Applies a callback to the elements of a given array

array_merge  
Merge one or several arrays

array_merge_recursive  
Merge one or more arrays recursively

array_multisort  
Sorts multiple or multi-dimensional arrays

 of 9 38

array_pad  
Inserts a specified number of items (with a specified value) into an
array

array_pop  
Deletes an element from the end of an array

array_product  
Calculate the product of all values in an array

array_push  
Push one or several elements to the end of the array

array_rand  
Pick one or more random entries out of an array

array_reduce  
Reduce the array to a single string using a user-defined function

array_replace  
Replaces elements in the first array with values from following
arrays

array_replace_recursive  
Recursively replaces elements from later arrays into the first array

array_reverse  
Returns an array in reverse order

array_search  
Searches the array for a given value and returns the first key if
successful

array_shift  
Shifts an element from the beginning of an array

array_slice  
Extracts a slice of an array

array_splice  
Removes a portion of the array and replaces it

array_sum  
Calculate the sum of the values in an array

array_udiff  
Compare arrays and return the difference using a user function
(values only)

 of 10 38

array_udiff_assoc  
Compare arrays and return the difference using a default and a user
function (keys and values)

array_udiff_uassoc  
Compare arrays and return the difference using two user functions
(values and keys)

array_uintersect  
Compare arrays and return the matches via user function (values only)

array_uintersect_assoc  
Compare arrays and return the matches via a default user function
(keys and values)

array_uintersect_uassoc  
Compare arrays and return the matches via two user functions (keys
and values)

array_unique  
Removes duplicate values from an array

array_unshift  
Adds one or more elements to the beginning of an array

array_values  
Returns all values of an array

array_walk  
Applies a user function to every element in an array

array_walk_recursive  
Recursively applies a user function to every element of an array

arsort  
Sorts an associative array in descending order according to the value

asort  
Sorts an associative array in ascending order according to the value

compact  
Create an array containing variables and their values

count  
Count all elements in an array, alternatively use sizeof

current  
Returns the current element in an array, an alternative is pos

 of 11 38

each  
Return the current key and value pair from an array

end  
Set the internal pointer to the last element of an array

extract  
Import variables from an array into the current symbol table

in_array  
Checks if a value exists in an array

key  
Fetches a key from an array

krsort  
Sorts an associative array by key in reverse order

ksort  
Sorts an associative array by key

list  
Assigns variables as if they were an array

natcasesort  
Sorts an array using a “natural order” algorithm independent of case

natsort  
Sorts an array using a “natural order” algorithm

next  
Advance the internal pointer of an array

prev  
Move the internal array pointer backwards

range  
Creates an array from a range of elements

reset  
Set the internal array pointer to its first element

rsort  
Sort an array in reverse order

shuffle  
Shuffle an array

sort  
Sorts an indexed array in ascending order

 of 12 38

uasort  
Sorts an array with a user-defined comparison function

uksort  
Arrange an array by keys using a user-defined comparison function

usort  
Categorize an array by values using a comparison function defined by
the user

PHP STRINGS

Defining Strings

Single quotes  
This is the simplest way. Just wrap your text in ' markers and PHP
will handle it as a string.

Double quotes  
As an alternative you can use ". When you do, it’s possible to use
the escape characters below to display special characters.

heredoc  
Begin a string with <<< and an identifier, then put the string in a
new line. Close it in another line by repeating the
identifier. heredoc behaves like double-quoted strings.

nowdoc  
Is what heredoc is for double-quoted strings but for single quotes.
It works the same way and eliminates the need for escape characters.

Escape Characters

\n — Linefeed

\r — Carriage return

\t — Horizontal tab

\v — Vertical tab

\e — Escape

\f — Form feed

\\ — Backslash

 of 13 38

\$ — Dollar sign

\’ — Single quote

\" — Double quote

\[0-7]{1,3} — Character in octal notation

\x[0-9A-Fa-f]{1,2} — Character in hexadecimal notation

\u{[0-9A-Fa-f]+} — String as UTF-8 representation

String Functions

addcslashes()  
Returns a string with backslashes in front of specified characters

addslashes()  
Returns a string with backslashes in front of characters that need to
be escaped

bin2hex()  
Converts a string of ASCII characters to hexadecimal values

chop()  
Removes space or other characters from the right end of a string

chr()  
Returns a character from a specified ASCII value

chunk_split()  
Splits a string into a series of smaller chunks

convert_cyr_string()  
Converts a string from a Cyrillic character set to another

convert_uudecode()  
Decodes a uuencoded string

convert_uuencode()  
Encodes a string using uuencode

count_chars()  
Returns information about the characters in a string

crc32()  
Calculates a 32-bit CRC for a string

crypt()  
Returns a hashed string

 of 14 38

echo()  
Outputs one or several strings

explode()  
Breaks down a string into an array

fprintf()  
Writes a formatted string to a specified output stream

get_html_translation_table()  
Returns the translation table used
by htmlspecialchars() and htmlentities()

hebrev()  
Transforms Hebrew text to visual text

hebrevc()  
Converts Hebrew text to visual text and implements HTML line breaks

hex2bin()  
Translate hexadecimal values to ASCII characters

html_entity_decode()  
Turns HTML entities to characters

htmlentities()  
Converts characters to HTML entities

htmlspecialchars_decode()  
Transforms special HTML entities to characters

htmlspecialchars()  
Switches predefined characters to HTML entities

implode()  
Retrieves a string from the elements of an array, same as join()

lcfirst()  
Changes a string’s first character to lowercase

levenshtein()  
Calculates the Levenshtein distance between two strings

localeconv()  
Returns information about numeric and monetary formatting for the
locale

ltrim()  
Removes spaces or other characters from the left side of a string

 of 15 38

md5()  
Calculates the MD5 hash of a string and returns it

md5_file()  
Calculates the MD5 hash of a file

metaphone()  
Provides the metaphone key of a string

money_format()  
Returns a string as a currency string

nl_langinfo()  
Gives specific locale information

nl2br()  
Inserts HTML line breaks for each new line in a string

number_format()  
Formats a number including grouped thousands

ord()  
Returns the ASCII value of a string’s first character

parse_str()  
Parses a string into variables

print()  
Outputs one or several strings

printf()  
Outputs a formatted string

quoted_printable_decode()  
Converts a quoted-printable string to 8-bit binary

quoted_printable_encode()  
Goes from 8-bit string to a quoted-printable string

quotemeta()  
Returns a string with a backslash before metacharacters

rtrim()  
Strips whitespace or other characters from the right side of a string

setlocale()  
Sets locale information

sha1()  
Calculates a string’s SHA-1 hash

 of 16 38

sha1_file()  
Does the same for a file

similar_text()  
Determines the similarity between two strings

soundex()  
Calculates the soundex key of a string

sprintf()  
Returns a formatted string

sscanf()  
Parses input from a string according to a specified format

str_getcsv()  
Parses a CSV string into an array

str_ireplace()  
Replaces specified characters in a string with specified replacements
(case-insensitive)

str_pad()  
Pads a string to a specified length

str_repeat()  
Repeats a string a preset number of times

str_replace()  
Replaces specified characters in a string (case-sensitive)

str_rot13()  
Performs ROT13 encoding on a string

str_shuffle()  
Randomly shuffles the characters in a string

str_split()  
Splits strings into arrays

str_word_count()  
Returns the number of words in a string

strcasecmp()  
Case-insensitive comparison of two strings

strcmp()  
Binary safe string comparison (case sensitive)

 of 17 38

strcoll()  
Compares two strings based on locale

strcspn()  
Returns the number of characters found in a string before the
occurrence of specified characters

strip_tags()  
Removes HTML and PHP tags from a string

stripcslashes()  
Opposite of addcslashes()

stripslashes()  
Opposite of addslashes()

stripos()  
Finds the position of the first occurrence of a substring within a
string (case insensitive)

stristr()  
Case-insensitive version of strstr()

strlen()  
Returns the length of a string

strnatcasecmp()  
Case-insensitive comparison of two strings using a “natural order”
algorithm

strnatcmp()  
Same as the aforementioned but case sensitive

strncasecmp()  
String comparison of a defined number of characters (case
insensitive)

strncmp()  
Same as above but case-sensitive

strpbrk()  
Searches a string for any number of characters

strpos()  
Returns the position of the first occurrence of a substring in a
string (case sensitive)

strrchr()  
Finds the last occurrence of a string within another string

 of 18 38

strrev()  
Reverses a string

strripos()  
Finds the position of the last occurrence of a string’s substring
(case insensitive)

strrpos()  
Same as strripos() but case sensitive

strspn()  
The number of characters in a string with only characters from a
specified list

strstr()  
Case-sensitive search for the first occurrence of a string inside
another string

strtok()  
Splits a string into smaller chunks

strtolower()  
Converts all characters in a string to lowercase

strtoupper()  
Same but for uppercase letters

strtr()  
Translates certain characters in a string, alternative: strchr()

substr()  
Returns a specified part of a string

substr_compare()  
Compares two strings from a specified start position up to a certain
length, optionally case sensitive

substr_count()  
Counts the number of times a substring occurs within a string

substr_replace()  
Replaces a substring with something else

trim()  
Removes space or other characters from both sides of a string

ucfirst()  
Transforms the first character of a string to uppercase

 of 19 38

ucwords()  
Converts the first character of every word in a string to uppercase

vfprintf()  
Writes a formatted string to a specified output stream

vprintf()  
Outputs a formatted string

vsprintf()  
Writes a formatted string to a variable

wordwrap()  
Shortens a string to a given number of characters

PHP OPERATORS

Arithmetic Operators

+ — Addition

- — Subtraction

* — Multiplication

/ — Division

% — Modulo (the remainder of value divided by another)

** — Exponentiation

Assignment Operators

+= — a += b is the same as a = a + b

-= — a -= b is the same as a = a – b

*= — a *= b is the same as a = a * b

/= — a /= b is the same as a = a / b

%= — a %= b is the same as a = a % b

Comparison Operators

== — Equal

 of 20 38

=== — Identical

!= — Not equal

<> — Not equal

!== — Not identical

< — Less than

> — Greater than

<= — Less than or equal to

>= — Greater than or equal to

<=> — Less than, equal to, or greater than

Logical Operators

and — And

or — Or

xor — Exclusive or

! — Not

&& — And

|| — Or

Bitwise Operators

& — And

| — Or (inclusive or)

^ — Xor (exclusive or)

~ — Not

<< — Shift left

>> — Shift right

 of 21 38

Error Control Operator

You can use the @ sign to prevent expressions from generating error
messages. This is often important for security reasons, for example
to keep confidential information safe.

Execution Operator

PHP supports one execution operator, which is `` (backticks). These
are not single-quotes! PHP will attempt to execute the contents of
the backticks as a shell command.

Increment/Decrement Operators

++$v — Increments a variable by one, then returns it

$v++ — Returns a variable, then increments it by one

--$v — Decrements the variable by one, returns it afterward

$v-- — Returns the variable then decrements it by one

String Operators

. — Used to concatenate (mean combine) arguments

.= — Used to append the argument on the right to the left-side
argument

LOOPS IN PHP

For Loop

for (starting counter value; ending counter value; increment by which
to increase) {

 // code to execute goes here

}

Foreach Loop

foreach ($InsertYourArrayName as $value) {

 // code to execute goes here

 of 22 38

}

While Loop

while (condition that must apply) {

 // code to execute goes here

}

Do..While Loop

do {

 // code to execute goes here;

} while (condition that must apply);

CONDITIONAL STATEMENTS

If Statement

if (condition) {

 // code to execute if condition is met

}

If..Else

if (condition) {

 // code to execute if condition is met

} else {

 // code to execute if condition is not met

}

If..Elseif..Else

if (condition) {

 // code to execute if condition is met

 of 23 38

} elseif (condition) {

 // code to execute if this condition is met

} else {

 // code to execute if none of the conditions are met

}

Switch Statement

switch (n) {

 case x:

 code to execute if n=x;

 break;

 case y:

 code to execute if n=y;

 break;

 case z:

 code to execute if n=z;

 break;

 // add more cases as needed

 default:

 code to execute if n is neither of the above;

}

WORKING WITH FORMS IN PHP

Using GET vs POST

GET collects data via URL parameters. That means all variable names
and their values are contained in the page address.

 of 24 38

The advantage of this is that you’re able to bookmark the
information. Keep in mind that it also means that the information is
visible to everyone. For that reason, GET is not suitable for
sensitive information such as passwords. It also limits the amount of
data that can be sent in ca 2000 characters.

POST, on the other hand, uses the HTTP POST method to pass on
variables. This makes the data invisible to third parties, as it is
sent in the HTTP body. You are not able to bookmark it.

With POST, there are no limits to the amount of information you can
send. Aside from that, it also has advanced functionality and is
therefore preferred by developers.

Form Security

PHP offers tools to thwart those attacks, namely:

htmlspecialchars()

trim()

stripslashes()

Required Fields, Error Messages and Data Validation

Aside from that, PHP is able to define required fields (you can’t
submit the form without filling them out), display error messages if
some information is missing and to validate data. We have already
talked about the necessary tools to do so.

For example, you can simply define variables for your form fields and
use the empty() function to check if they have values. After that,
create a simple if/else statement to either send the submitted data
or output an error message.

The next step is to check submitted data for validity. For that, PHP
offers a number of filters such as FILTER_VALIDATE_EMAIL to make sure
a submitted email address has the right format.

PHP FILTERS

Filter Functions

filter_has_var()  
Checks if a variable of the specified type exists

 of 25 38

filter_id()  
Returns the ID belonging to a named filter

filter_input()  
Retrieves a specified external variable by name and optionally
filters it

filter_input_array()  
Pulls external variables and optionally filters them

filter_list()  
Returns a list of all supported filters

filter_var_array()  
Gets multiple variables and optionally filters them

filter_var()  
Filters a variable with a specified filter

Filter Constants

FILTER_VALIDATE_BOOLEAN  
Validates a boolean

FILTER_VALIDATE_EMAIL  
Certifies an e-mail address

FILTER_VALIDATE_FLOAT  
Confirms a float

FILTER_VALIDATE_INT  
Verifies an integer

FILTER_VALIDATE_IP  
Validates an IP address

FILTER_VALIDATE_REGEXP  
Confirms a regular expression

FILTER_VALIDATE_URL  
Validates a URL

FILTER_SANITIZE_EMAIL  
Removes all illegal characters from an e-mail address

FILTER_SANITIZE_ENCODED  
Removes/Encodes special characters

 of 26 38

FILTER_SANITIZE_MAGIC_QUOTES  
Applies addslashes()

FILTER_SANITIZE_NUMBER_FLOAT  
Removes all characters, except digits, +- and .,eE

FILTER_SANITIZE_NUMBER_INT  
Gets rid of all characters except digits and + –

FILTER_SANITIZE_SPECIAL_CHARS  
Removes special characters

FILTER_SANITIZE_FULL_SPECIAL_CHARS  
Converts special characters to HTML entities

FILTER_SANITIZE_STRING  
Removes tags/special characters from a string,
alternative: FILTER_SANITIZE_STRIPPED

FILTER_SANITIZE_URL  
Rids all illegal characters from a URL

FILTER_UNSAFE_RAW  
Do nothing, optionally strip/encode special characters

FILTER_CALLBACK  
Call a user-defined function to filter data

HTTP FUNCTIONS IN PHP

HTTP Functions

header()  
Sends a raw HTTP header to the browser

headers_list()  
A list of response headers ready to send (or already sent)

headers_sent()  
Checks if and where the HTTP headers have been sent

setcookie()  
Defines a cookie to be sent along with the rest of the HTTP headers

setrawcookie()  
Defines a cookie (without URL encoding) to be sent along

 of 27 38

WORKING WITH MYSQL

MySQL Functions

mysqli_affected_rows()  
The number of affected rows in the previous MySQL operation

mysqli_autocommit()  
Turn auto-committing database modifications on or off

mysqli_change_user()  
Changes the user of the specified database connection

mysqli_character_set_name()  
The default character set for the database connection

mysqli_close()  
Closes an open database connection

mysqli_commit()  
Commits the current transaction

mysqli_connect_errno()  
The error code from the last connection error

mysqli_connect_error()  
The error description from the last connection error

mysqli_connect()  
Opens a new connection to the MySQL server

mysqli_data_seek()  
Moves the result pointer to an arbitrary row in the result set

mysqli_debug()  
Performs debugging operations

mysqli_dump_debug_info()  
Dumps debugging information into a log

mysqli_errno()  
The last error code for the most recent function call

mysqli_error_list()  
A list of errors for the most recent function call

mysqli_error()  
The last error description for the most recent function call

 of 28 38

mysqli_fetch_all()  
Fetches all result rows as an array

mysqli_fetch_array()  
Fetches a result row as an associative, a numeric array, or both

mysqli_fetch_assoc()  
Fetches a result row as an associative array

mysqli_fetch_field_direct()  
Metadata for a single field as an object

mysqli_fetch_field()  
The next field in the result set as an object

mysqli_fetch_fields()  
An array of objects that represent the fields in a result set

mysqli_fetch_lengths()  
The lengths of the columns of the current row in the result set

mysqli_fetch_object()  
The current row of a result set as an object

mysqli_fetch_row()  
Fetches one row from a result set and returns it as an enumerated
array

mysqli_field_count()  
The number of columns for the most recent query

mysqli_field_seek()  
Sets the field cursor to the given field offset

mysqli_field_tell()  
The position of the field cursor

mysqli_free_result()  
Frees the memory associated with a result

mysqli_get_charset()  
A character set object

mysqli_get_client_info()  
The MySQL client library version

mysqli_get_client_stats()  
Returns client per-process statistics

 of 29 38

mysqli_get_client_version()  
The MySQL client library version as an integer

mysqli_get_connection_stats()  
Statistics about the client connection

mysqli_get_host_info()  
The MySQL server hostname and the connection type

mysqli_get_proto_info()  
The MySQL protocol version

mysqli_get_server_info()  
Returns the MySQL server version

mysqli_get_server_version()  
The MySQL server version as an integer

mysqli_info()  
Returns information about the most recently executed query

mysqli_init()  
Initializes MySQLi and returns a resource for use
with mysqli_real_connect()

mysqli_insert_id()  
Returns the auto-generated ID used in the last query

mysqli_kill()  
Asks the server to kill a MySQL thread

mysqli_more_results()  
Checks if there are more results from a multi query

mysqli_multi_query()  
Performs one or more queries on the database

mysqli_next_result()  
Prepares the next result set from mysqli_multi_query()

mysqli_num_fields()  
The number of fields in a result set

mysqli_num_rows()  
The number of rows in a result set

mysqli_options()  
Sets extra connect options and affect behavior for a connection

 of 30 38

mysqli_ping()  
Pings a server connection or tries to reconnect if it has gone down

mysqli_prepare()  
Prepares an SQL statement for execution

mysqli_query()  
Performs a query against the database

mysqli_real_connect()  
Opens a new connection to the MySQL server

mysqli_real_escape_string()  
Escapes special characters in a string for use in an SQL statement

mysqli_real_query()  
Executes an SQL query

mysqli_reap_async_query()  
Returns the result from async query

mysqli_refresh()  
Refreshes tables or caches or resets the replication server
information

mysqli_rollback()  
Rolls back the current transaction for the database

mysqli_select_db()  
Changes the default database for the connection

mysqli_set_charset()  
Sets the default client character set

mysqli_set_local_infile_default()  
Unsets a user-defined handler for the LOAD LOCAL INFILE command

mysqli_set_local_infile_handler()  
Sets a callback function for the LOAD DATA LOCAL INFILE command

mysqli_sqlstate()  
Returns the SQLSTATE error code for the last MySQL operation

mysqli_ssl_set()  
Establishes secure connections using SSL

mysqli_stat()  
The current system status

 of 31 38

mysqli_stmt_init()  
Initializes a statement and returns an object for use
with mysqli_stmt_prepare()

mysqli_store_result()  
Transfers a result set from the last query

mysqli_thread_id()  
The thread ID for the current connection

mysqli_thread_safe()  
Returns if the client library is compiled as thread-safe

mysqli_use_result()  
Initiates the retrieval of a result set from the last query executed
using the mysqli_real_query()

mysqli_warning_count()  
The number of warnings from the last query in the connection

DATE AND TIME

Date/Time Functions

checkdate()  
Checks the validity of a Gregorian date

date_add()  
Adds a number of days, months, years, hours, minutes and seconds to a
date object

date_create_from_format()  
Returns a formatted DateTime object

date_create()  
Creates a new DateTime object

date_date_set()  
Sets a new date

date_default_timezone_get()  
Returns the default timezone used by all functions

date_default_timezone_set()  
Sets the default timezone

date_diff()  
Calculates the difference between two dates

 of 32 38

date_format()  
Returns a date formatted according to a specific format

date_get_last_errors()  
Returns warnings or errors found in a date string

date_interval_create_from_date_string()  
Sets up a DateInterval from relative parts of a string

date_interval_format()  
Formats an interval

date_isodate_set()  
Sets a date according to ISO 8601 standards

date_modify()  
Modifies the timestamp

date_offset_get()  
Returns the offset of the timezone

date_parse_from_format()  
Returns an array with detailed information about a specified date,
according to a specified format

date_parse()  
Returns an array with detailed information about a specified date

date_sub()  
Subtracts days, months, years, hours, minutes and seconds from a date

date_sun_info()  
Returns an array containing information about sunset/sunrise and
twilight begin/end for a specified day and location

date_sunrise()  
The sunrise time for a specified day and location

date_sunset()  
The sunset time for a specified day and location

date_time_set()  
Sets the time

date_timestamp_get()  
Returns the Unix timestamp

date_timestamp_set()  
Sets the date and time based on a Unix timestamp

 of 33 38

date_timezone_get()  
Returns the time zone of a given DateTime object

date_timezone_set()  
Sets the time zone for a DateTime object

date()  
Formats a local date and time

getdate()  
Date/time information of a timestamp or the current local date/time

gettimeofday()  
The current time

gmdate()  
Formats a GMT/UTC date and time

gmmktime()  
The Unix timestamp for a GMT date

gmstrftime()  
Formats a GMT/UTC date and time according to locale settings

idate()  
Formats a local time/date as an integer

localtime()  
The local time

microtime()  
The current Unix timestamp with microseconds

mktime()  
The Unix timestamp for a date

strftime()  
Formats a local time and/or date according to locale settings

strptime()  
Parses a time/date generated with strftime()

strtotime()  
Transforms an English textual DateTime into a Unix timestamp

time()  
The current time as a Unix timestamp

timezone_abbreviations_list()  
Returns an array containing dst, offset, and the timezone name

 of 34 38

timezone_identifiers_list()  
An indexed array with all timezone identifiers

timezone_location_get()  
Location information for a specified timezone

timezone_name_from_abbr()  
Returns the timezone name from an abbreviation

timezone_name_get()  
The name of the timezone

timezone_offset_get()  
The timezone offset from GMT

timezone_open()  
Creates a new DateTimeZone object

timezone_transitions_get()  
Returns all transitions for the timezone

timezone_version_get()  
Returns the version of the timezonedb

Date and Time Formatting

d — 01 to 31

j — 1 to 31

D — Mon through Sun

l — Sunday through Saturday

N — 1 (for Mon) through 7 (for Sat)

w — 0 (for Sun) through 6 (for Sat)

m — Months, 01 through 12

n — Months, 1 through 12

F — January through December

M — Jan through Dec

Y — Four digits year (e.g. 2018)

y — Two digits year (e.g. 18)

 of 35 38

L — Defines whether it’s a leap year (1 or 0)

a — am and pm

A — AM and PM

g — Hours 1 through 12

h — Hours 01 through 12

G — Hours 0 through 23

H — Hours 00 through 23

i — Minutes 00 to 59

s — Seconds 00 to 59

PHP ERRORS

Error Functions

debug_backtrace()  
Used to generate a backtrace

debug_print_backtrace()  
Prints a backtrace

error_get_last()  
Gets the last error that occurred

error_log()  
Sends an error message to the web server’s log, a file or a mail
account

error_reporting()  
Specifies which PHP errors are reported

restore_error_handler()  
Reverts to the previous error handler function

restore_exception_handler()  
Goes back to the previous exception handler

set_error_handler()  
Sets a user-defined function to handle script errors

 of 36 38

set_exception_handler()  
Sets an exception handler function defined by the user

trigger_error()  
Generates a user-level error message, you can also use user_error()

Error Constants

E_ERROR  
Fatal run-time errors that cause the halting of the script and can’t
be recovered from

E_WARNING  
Non-fatal run-time errors, execution of the script continues

E_PARSE  
Compile-time parse errors, should only be generated by the parser

E_NOTICE  
Run-time notices that indicate a possible error

E_CORE_ERROR  
Fatal errors at PHP initialization, like an E_ERROR in PHP core

E_CORE_WARNING  
Non-fatal errors at PHP startup, similar to E_WARNING but in PHP core

E_COMPILE_ERROR  
Fatal compile-time errors generated by the Zend Scripting Engine

E_COMPILE_WARNING  
Non-fatal compile-time errors by the Zend Scripting Engine

E_USER_ERROR  
Fatal user-generated error, set by the programmer
using trigger_error()

E_USER_WARNING  
Non-fatal user-generated warning

E_USER_NOTICE  
User-generated notice by trigger_error()

E_STRICT  
Suggestions by PHP to improve your code (needs to be enabled)

E_RECOVERABLE_ERROR  
Catchable fatal error caught by a user-defined handle

 of 37 38

E_DEPRECATED  
Enable this to receive warnings about a code which is not future-
proof

E_USER_DEPRECATED  
User-generated warning for deprecated code

E_ALL  
All errors and warnings except E_STRICT

 of 38 38

