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Abstract 
In this work, a Modified Vector Field Histogram (MVFH) has been developed to improve path 

planning and obstacle avoidance for a wheeled driven mobile robot. It permits the detection of 

unknown obstacle to avoid collisions by simultaneously a steering the mobile robot toward the target; 

a regular grid map representation for a work space environment is caurried out. A Neural Network 

(NN) model is used to learn many critical situations of environment during robot navigation among 

obstacles using MVFH. Also, digital filter has been utilized for improving the robustness of obstacle 

avoidance trajectory of mobile robot. The proposed MVFH-NN has been implemented and tested by 

using MobotSim program simulation and MATLAB . The developed algorithm showed good navigation 

properties and can be used in complex real world (maze-like environment), it also shows good ability 

to overcome limitations of the traditional VFH algorithm (like wide candidate valley, narrow hallway 

and target distance limitation).   
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1. Introduction 
 

Mobile robots have been successfully employed in industrial settings to improve productivity and to 

perform dangerous or monotonous tasks. More recently, attention has turned to the use of robots to aid 

humans outside the industrial environment, in places such as home or office. For example, as the 

population in the developed world ages, robots can interact with humans in a safe and friendly manner 

performing necessary home-care/daily living tasks and this would allow more seniors to maintain their 

independence. Such devices could alleviate some of the non-medical workload from health-care 

professionals, and reduce growing healthcare costs.  

Mapping is the process of generating models of a mobile robot's environment based on sensory 

information with aim to determine the location of various entities, such as landmarks or obstacles. 

Most successful navigation algorithms require the availability of dynamic and adaptable maps. An 

accurate model of the environment surrounding a robot enables it to complete complex tasks quickly, 

reliably and successfully. Without such a model, a robot neither can plan a path to a place not currently 

sensed by its sensors, nor may effectively search for an object or place [1]. 

 

2.Histogram and Certainty Grid World Model  

 

A new method for real-time building with mobile robot in motion was developed at the University 

of Michigan by Borenstein and Koren[2]. This method entitled Histogramic In-Motion Mapping. 

Algorithm uses a two-dimensional Cartesian histogram grid for obstacle representation. 

A pioneering method for probability of obstacles in a grid-type world model has been developed at 

Carnegie-Mellon University (CMU) by Moravec [3]. This world model which is called a certainty grid, 

is especially suited to the accommodation of inaccurate sensor data such as range measurements from 

ultrasonic sensors. 

In the certainty grid, the robot's work area is represented by a two-dimensional array of square 

elements, denoted as cells. Each cell contains a certainty value (CV) that indicates the measure of 
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confidence for an obstacle that exists within the cell area. With the CMU method, CVs are updated by 

a heuristic probability function [4]. 

The active grid S* is mapped onto a 1D structure known as a polar histogram H, where, the contents 

of each active cell in the histogram grid are now treated as an obstacle vector, whose direction is 

determined by the direction α. from the cell to the Vehicle Center Point (VCP). The next step of VFH 

maps the 2D Cartesian histogram grid map C onto a 1D structure. To preserve and isolate the 

information about the local obstacle information rather than using the entire grid map C, the 2D grid 

used in this step is restricted to a window of S called the active window denoted by S*. with constant 

dimensions, and centered on the Vehicle Central Point (VCP) and Consequently, it moves with the 

robot. S* represents a local map of the environment around the robot. Figure (1) illustrates the cell 

occupancy of S*, the active window around the robot, and the angular sectors considered for the 

evaluation of the 1D polar histogram. 

The active grid S* is mapped onto a 1D structure known as a polar histogram H, where the contents 

of each active cell in the histogram grid now treated as an obstacle vector whose direction is 

determined by the direction α from the cell to the Vehicle Center Point (VCP) 

 
 

 Figure (2.6). Mapping of active cells onto the polar histogram. 

 

 
Figure 1. Mapping of active cells onto the polar histogram.[ 2 ] 
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Where: 

dmax= Distance between the four farthest cell of S* and VCP. 

Cij = Certainty value of active cell (i,j). 

dij = Distance between active cell (i,j) and the VCP. 

mij =Magnitude of the obstacle vector at cell (i,j). 

xo, yo = Present coordinates of the VCP. 

xi, yj = Coordinates of active cell (i,j). 

αij= Direction from active cell (i,j) to the        VCP. 

H has an arbitrary angular resolution ξ such n=360/ ξ is an integer (e.g., ξ=5 and n=72). Each sector k 

corresponds to a discrete angle ρ quantized to multiples of ξ, such ρ=k×ξ, where k = 0, 1, 2... n-1. 

Correspondence between S* and sector k is established through. 
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For each sector k, the polar obstacle density is calculated by 
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 In order to alleviate this problem, we use the following function to smooth the polar obstacle density: 
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where hk
’
 is the smoothed polar obstacle density POD. The parameter p determines how much the 

polar histogram is smoothed, and we found that p=5 produces the best results. The POD of each sector 

represents the level of difficulty of moving in the corresponding direction. Figure (2) shows the polar 

histogram H for the momentary situation 

 

 

                                (a)                                                    (b) 

Figure (2.7).  a) 1D polar histogram of obstacle occupancy around the robot. 

                      b) Polar histogram shown in polar form overlapped with s* 

 
Figure 2. polar histogram density [2] 

 

3. VFH with NN based algorithm 
 

The VFH-NN based algorithm uses the sensor data from the environment and the classical find 

space problem in the strategy was transformed to the procedure „learning your environment‟. In any 

position in workspace the robot has information about its distances to all objects in its window (active 

window) as shown in figure (2). The algorithm uses this information in neural network that learns these 

situations and in any position gives the free segment of space for safe path as output. The neural 

network uses as inputs the data measured by the ultrasonic sensors after transformed into polar 

histogram. The output is a free segment of the robot workspace. For obstacle avoidance purposes, a 

recurrent type of neural network was used with the gradient back-propagation technique for training the 

network [5]. 

 

4. Improvement of VFH Algorithm 
 

The basic VFH algorithm is an obstacle avoidance method and is not fully target-oriented. In other 

words, it doesn‟t necessarily guarantee the robot to reach the target in all cases when it is used in a 

navigator. In this work, an improvement over the VFH algorithm has been made based on neural 

network. Many drawback of VFH has been resolved using the new technique as illustrated below. 

 

4.1. Wide Candidate Valleys 
 

The robot always moves straight toward the target unless a POD peak appears in its heading 

direction. Without losing generality, we assume that a peak occurs in the histogram when the robot is at 
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point c as shown in figure (3-a). The obstacle creates a POD peak within area scq and a wide candidate 

valley outside that area (the right border is cs and the left border is cq). 

 

 

      Figure.(3.6) Situation with a wide candidate valley and D
L
 min ≤ D

R
 min: the 

grey object is an obstacle.  The right and left borders of the valley are 

drawn in solid line and dashed line, respectively.  (a) shows the target 

vector cT , left boarder cq and right boarders cs of the valley, and the next 

movement vector cd at point c. The NN VFH based algorithm moves the 

robot in a path c→d→e→…→g→h→…T. (b), (c) and (d) depict the target 

vector, left and right boarders, and the next movement vector at positions d, 

g, and h, respectively[32]. 
 

 
Figure 3. polar histogram density [5] 

 

Applying the basic VFH algorithm to the above case, we find that cq (the left border of the valley) 

is the “near border” [30][6] of the valley at point c. The robot‟s movement vector is then offset δ from 

cq. The robot follows the path c→ d→e→…→g→h. At point h, the near border of the valley is hz. 

Therefore, the robot‟s movement vector is then offset δ from hz (figure 3-d). The robot then misses 

target T and moves to i followed by j and p. At point p, the right border becomes the near border. This 

switches the robot‟s movement direction from left to right and the robot moves backwards. 

Certainly, if target T overlaps any one of points g, h, i, j, and p (i.e., it happens to be on the robot‟s 

obstacle avoidance path), the robot could reach the target. During the obstacle avoidance maneuvering, 

the problem is resolved by forcing the robot to move straight toward its target according to the 

equation: 

=min (Abs ( - t))                           (6) 

 

Where the  is an angle of the candidate sector.  

 

4.2. Target Distance limitation. 
 

In case that a target is located very close to an obstacle, the target is unreachable by the basic VFH 

algorithm. The concept of “NEURAL NETWORK” is proposed to solve this problem. Assume that 

target T is very close to the obstacle, the PODs of sector kt (corresponding to target T) and the 

neighboring sectors are nonzero and they grow as the robot moves closer to T. This eventually 

produces a peak in the histogram and prevents the robot from reaching T. To resolve this problem, a 

cluster of sectors [kt –n , kt + n] (n=Smax/2) is constructed surrounding sector kt. The histogram 

indexes of the cells that are inside this cluster are ignored, and the robot will learn on this situation. 

This treatment then creates a wide valley in [kt – n , kt + n] , and creates a free target direction ahead 

of the robot, and thus guides the robot to the target. 

 

4.3. Narrow hallway limitation 
 

According to the basic VFH algorithm, When the robot is moving in a narrow hallway that 

generates two narrow candidate valleys (left and right ones), it moves in a trajectory a→b→…→g (in 

the center of the hallway) since the right valley is the closet one at each point and is thus selected as the 

winning valley. At point g as shown in figure(4), the right valley is still the closest one to the target 

vector gT and is therefore the winning valley. This points the robot‟s next heading direction at the 

center of the valley. In this way, the robot moves to point h and misses the target T At point h; the left 
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valley is the winning valley since it is the closest to the target vector hT at this time. The robot then 

moves back to g again. It moves back and forth between h and g and gets trapped there. This means 

that the robot may miss a target unless the target is at the center of the hallway. This problem is solved 

by applying the same scheme for the target distance limitation problem. 

 

 
Figure 4.  Narrow hallway[5] 

 

5. Low Pass Filter for Improving Obstacle Avoidance Trajectory. 
 

Because of the influence of noisy sonar data, the obstacle avoidance trajectory of  NN-VFH  

based algorithm  has some dithering as shown in figure(5-a) . For smooth operation of the NN VFH 

method, the following condition between the grid resolution s and the sampling period T must be 

satisfied: 

 

                                (7) 

    

In our case s = 0.1 m and TVmax = 0.1*0.78 = 0.078 m, therefore, the above condition is satisfied. 

Since the distance dependent polar obstacle density(POD)  is quantized to the grid resolution (10x10 

cm), rather drastic changes in the resultant histogram may occur as the robot moves from one cell to 

another (even with condition (7)  is satisfied). This results in an overly vivacious steering control, as 

the robot tries to adjust its direction to the rapidly changing direction of  the heading direction. 

To avoid this problem, a digital low-pass filter, approximated in algorithm τ = 0.4 sec, has been added 

at the steering-rate command. The resulting steering rate command is given by: 
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Where: 

 Ωi = Steering-rate command to the robot (after low-pass filtering) 

 Ωi-1= Previous steering-rate command 

 Ωi
'
 = Steering-rate command (before low-pass filtering) 

 T = Sampling time (here: T = 0.1 sec) 

τ = Time constant of the low pass filter. 

The filter smoothes the robot‟s motion when moving alongside obstacles. As shown in figure(5), the 

low pass filter is used in this work to improve the obstacle avoidance trajectory. 
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(a)                                        (b) 
   Figure.(3.10) Obstacle avoidance trajectory of MVFH method 

(left) and MVFH method (right) after digital filtering 

 
Figure 5.  a- without digital , b- with digital filter 

 

6.  Simulation and Results 
 

The NN VFH based algorithm can be shown as flowchart : at first the mobile robot  opens  a 

window 33*33cells where the robot is in the center of the window;  the ultrasonic sensor will 

transceiver  its wave (24 sensor).The histogram loop include dividing the window into 72 sectors each 

sector has specific value (Polar Obstacle Density) that indicates the measure of confidence that an 

obstacle  exists within the  sector.  In the second stage, the Polar Obstacle Density of each sector 

would be an input to Neural Network, this means that the input layer has 72 neurons. The output will 

be a 72 index. If the index is one, this means that the sector is free and if it is zero, this means that this 

sector is not free. For example, figure (6) shows the output pattern for an environment. 
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Figure 6. an environment sample 

 [676, 756, 789, 732, 680, 540, 441, 328, 232, 131, 115, 78, 70, 18, 11, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 24, 95, 

168, 257, 404, 556,] 

The angle of the sectors is from 5
◦
 to 355

◦
 steps 5

◦
. The free zone starts from 70

◦
  to  300

◦
  and 

the other angles indicate that an obstacle exists within the area.  The Neural Network learning is off-

line based on several I/O patterns. After learning is completed, the weights are fixed and the final 

values are then used during recall sessions. 

After these steps the mobile robot will select the consecutive sectors that are near the target 

according to equation (6). Figure (7) shows some obstacle layout used for learning. Figures (8,9) show 

some simulation results. 

 

7. Conclusions 
  

For the presented work, the main conclusions can be summarized as: 

1. The modified Vector Field Histogram algorithm with Neural Network based learning situation 

algorithm shows good ability to overcome limitations of the traditional VFH algorithm.(like wide 

candidate valley, narrow hallway and target distance limitation).   

2. Using Digital filter improves the robustness obstacle avoidance trajectory and smoothes the 

robots path, but it requires longer time. 

3. Complexity of environment affects the time required for the mobile robot to reach the target. 

4. The developed algorithm showed good navigation properties and can be used in complex real 

world (maze-like environment). 

 
Figure7. the histogram density at two different obstacles distances. K 
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Figure 8. Simulation results 

 

 

 

 

 

 

 

 

 

 

 

Figure 9. Behavior of the robot in maze-like environment. 
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