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1 The Cauchy Integral Theorem can be established by proving it
for a triangle, and then realizing that the interior of a general
curve can be triangulated to any accuracy. Since the integral
is zero in each triangle it is zero on the closed curve. So we
may decompose a triangle into four similar subtriangles, and
the integral around the triangle is equal to the sum of the
integrals around the subtriangles because of cancellation on
the internal edges. The absolute value of of the integral around
the triangle is less than four times the absolute value of the
largest absolute value of the four subtriangles. We choose this
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1 Properties of Complex Numbers

Let us review the idea of complex numbers. Recall that the square root of
−1 is represented with the letter i. So by definition

i =
√
−1,

and therefore
i2 = −1.

Sometimes in electrical engineering j is used in place of i, so as not to
conflict with the traditional use of i for electrical current. Real multiples of i
are called imaginary numbers. A complex number is a sum of a real number
and an imaginary number. For example

2 + 5i,

is a complex number, where 2 is called the real part, and 5 the imaginary
part of this complex number. Complex numbers z = x + iy are represented
in the two dimensional xy plane, which is called the complex plane, where
the real number part is plotted horizontally in the x axis direction, and the
imaginary number part plotted vertically in the y axis direction. So the point
representing

2 + 5i,

is plotted two units to to the right of the vertical y axis, and 5 units above
the horizontal x axis.

Complex numbers are added and multiplied using the usual laws of alge-
bra, so for addition we have

(x1 + y1i) + (x2 + y2i) = (x1 + x2) + (y1 + y2)i,

and for multiplication

(x1+y1i)(x2+y2i) = x1x2+x1y2i+y1x2i+y1y2i
2 = (x1x2−y1y2)+(x1y2+y1x2)i.

The magnitude or absolute value of a complex number

z = x+ iy,

is the distance to the origin, written as

|z| =
√

x2 + y2.
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The conjugate of a complex number

z = x+ iy,

is obtained by changing the sign of the complex part, and written with an
over-line.

z = x− yi.

We also write the conjugate of a complex expression with an over-line.
Exercise, Show that

z1 + z2 = z1 + z2,

z1z2 = z̄1z̄2,

and
zz̄ = |z|2.

Thus to divide two complex numbers

w =
z1
z2
,

multiply numerator and denominator by the conjugate of z2, getting

w =
z1z̄2
|z2|2

.

Complex numbers also have a polar representation

z = |z|(cos(θ) + i sin(θ)) = |z|eiθ.
The number |z| is called the modulus, and angle θ the argument. We have

z1z2 = |z1|eiθ1 |z2|eiθ2 = |z1||z2|ei(θ1+θ2).

The product of two complex numbers has modulus (or magnitude) equal to
the product of the moduli, and argument equal to the sum of the arguments.
Now the argument function arg(z) is any angle θ such that

|z|(cos(θ) + i sin(θ)) = |z|eiθ = z,

which can be any angle
θ + n2π,

for any natural number n. So the function arg(z) is multiple valued, a feature
of complex analysis, which contradicts the usual definition of a function. This
difficulty leads to the need to extend the complex plane to larger domains
known as Riemann Surfaces. This historically lead to the advanced mathe-
matical idea of a manifold, which now is a fundamental part of differential
geometry and advanced physics, including string theory.
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2 Roots of Complex Numbers

We shall see that every complex number a has n roots

a1, a2, ..., an,

so that
ank = a.

If the magnitude of a is |a| and the argument of a is 0 ≤ θ < 2π then

ak = |a|1/n exp(i(θ + 2πk)/n),

is a distinct nth root of a for each k = 0, 1, ..., n − 1. To show that these
numbers are distinct suppose j and k are in the set {0, 1, ..., n − 1} with
j 6= k, then the difference of the arguments of aj and ak is

(θ + 2πj)/n− (θ + 2πk)/n = 2π(j − k)/n,

and
0 < |(j − k)/n| < 1.

So the two numbers aj and ak have arguments, whose difference is not a
multiple of 2π, and so must be distinct.

Equivalently, every polynomial of the form

p(z) = zn − a = 0,

has n roots. If a1 is a root of this polynomial, we can divide by z − a1 and
get a quotient polynomial q(z) and a remainder r.

p(z) = q(z)(z − a1) + r.

But r must be zero. Indeed p(a1) = 0 because a1 is a root, and from the
division p(a1) = r. Therefore r = 0, and we have

p(z) = q(z)(z − a1).

Then continuing by dividing again by z − ak, for k = 2, 3, ..., n, we arrive at
the factorization

zn − a = (z − a1)(z − a2)...(z − an).

So clearly there can be no more than n roots, because the degree of the
polynomial is n.
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3 Open and Closed Sets

An open disk of radius r and center zc is the set

Dr(zc) = {z : |z − zc| < r},

which is the interior points of a circle of radius r.
An open set U is a set such that if z ∈ U , then there exists a number

r > 0, and an open disk Dr(z) so that Dr(z) ⊂ U .
A closed set is the compliment of an open set, an open set does not contain

its boundary points, a closed set does.

4 The Heine-Borel Theorem

The Heine-Borel Theorem and the related Bolzano-Weierstrass Theorem are
tied up with the topological concepts of, closed sets, bounded sets, com-
pactness, and completeness. We supply here a little information about these
things, which is not at all intended to be sufficient for anyone who has not
had previous contact with these things.

There are various ways to define a compact set. (1) A set S is compact if
for every family of open sets that cover S, there is a finite subset of the family
that also covers S. Equivalently, (2) a space is compact if every sequence in
the space has a convergent subsequence.

A space is complete if every Cauchy sequence in the space converges to
a point in the space. A set is closed if every convergent sequence in the set
converges to a point in the set.

The original Heine-Borel Theorem pertained to the real numbers and the
complex numbers, and was stated for complex numbers in a form equivalent
to the following:
Heine-Borel Theorem. Every bounded closed set of complex numbers is
compact.

Heine, E. "Die Elemente der Functionenlehre."

J. reine angew. Math. 74, 172-188, 1871.

Completeness Theorem. The Complex Numbers form a Complete Space.
These are tangential topics, which we don’t want to divert attention to here.
See books on topology, metric spaces, real and complex analysis, for the
details.
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From these ideas it follows that a sequence of nested closed sets

{An : n = 1, 2, 3, ...},

whose diameters converge to zero, have an intersection containing a single
limit point z0. This will be used in the proof of the Cauchy Integral Theorem
given below.

Also relevant is the following theorem.
Bolzano-Weierstrass Theorem Every bounded infinite sequence {zn}∞n=1

of complex numbers has a cluster point, a point ζ such that every open
neighborhood of ζ contains points of {zn}∞n=1.

5 A Complex Function of a Complex Vari-

able

We write a complex function as

f(z) = w,

where z and w are complex numbers

z = x+ iy

w = u+ iv.

f(x+ yi) = u(x+ iy) + v(x+ iy)i = u(x, y) + iv(x, y)

where u(x, y) and v(x, y) can be considered real valued functions.

6 The Complex Derivative

The derivative is defined as

df

dz
= lim

z→z0

f(z)− f(z0)

z − z0
.

Notice that for the derivative to exist the limits must be equal as z approaches
z0 from all directions.
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So if the derivative exists, then holding y = y0, we have

df

dz
= lim

x→x0

f(z)− f(z0)

z − z0

= lim
x→x0

u(x, y0)− u(x0, y0)

x− x0
+ i lim

x→x0

v(x, y0)− v(x0, y0)

x− x0

=
∂u

∂x
+ i

∂v

∂x

Similarly holding x = x0, we have

df

dz
= lim

y→y0

f(z)− f(z0)

z − z0

= lim
y→y0

u(x0, y)− u(x0, y0)

i(y − y0)
+ i lim

y→y0

v(x0, y)− v(x0, y0)

i(y − y0)

=
1

i

[

∂u

∂y
+ i

∂v

∂y

]

=
∂v

∂y
− i

∂u

∂y

Equating these two derivative representations we get the Cauchy-Riemann
Equations, which characterize an analytic function.

7 The Cauchy-Riemann Equations

If the derivative of
f(x+ yi) = u(x, y) + iv(x, y)

exists, by considering limits as z = x + iy0 goes to z0, and z = x0 + iy goes
to z0, as we did in the previous section, and by equating the two expressions
for the derivative, we find that

∂u

∂x
=

∂v

∂y
,

and
∂v

∂x
= −∂u

∂y
.
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8 Both the Real Part and the Imaginary Part

of an Analytic Function, Are Solutions to

Laplace’s Equation in Two Dimensions.

Indeed, by differentiating the Cauchy-Riemann equations partially we find
that

∂2u

∂x2
+

∂2u

∂y2
= 0

and
∂2v

∂x2
+

∂2v

∂y2
= 0.

9 Analytic Functions and Entire Functions

Functions that have a derivative everywhere in an open region are called
analytic functions, (sometimes called regular functions or holomorphic func-
tions). Then one can show that such functions have derivatives of all orders
in that region, and thus they have convergent Taylor power series expansions
at each point of that open region, with a radius of convergence equal to the
distance to the closest singular point. Some functions are analytic everywhere
in the complex plane, and so they have a power series representation with
an infinite radius of convergence. An example is the complex exponential
function defined by

exp(z) = ez =
∞
∑

k=0

zk

k!
.

This function is called the exponential function because is satisfies the law
of exponents

exp(z1 + z2) = ez1+z2 = ez1e
z
2.

This property can be proven by multiplying power series together to get a
new power series.

Definition Entire Functions. An entire function is a function that is an-
alytic in the whole complex plane.

The exponential function is an entire function.
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10 The Complex Logarithm

The complex logarithm is defined as the inverse function of the exponential
function, as it is in the real variable case. Consider the function

f(z) = ln(|z|) + arg(z)i,

where ln(|z|) is the real natural logarithm of the magnitude of z. Let θ =
arg(z) Then

ef(z) = eln(|z|)+θi = eln(|z|)eθi = |z|(cos(θ) + sin(θ)i) = z.

Therefore by the definition of an inverse function, f(z) is the inverse of ez.
So we define the complex logarithm as

ln(z) = ln(|z|) + arg(z)i.

11 Analytic Continuation

The logarithm function of the previous section is meant to be an analytic
function. However it is not defined at zero, so is not an entire function. Also
near the positive real axis if we take the standard value for the argument
between 0 and 2π there is a jump in the argument as we cross from just
below the positive real axis to the upper half plane, from a value near 2π
to 0. So the function can not be analytic at a point of the real line. When
such a thing happens we can extend the definition of an analytic function by
using its power series representation to construct a new power series about
a new point to get a new power series with a new radius of convergence to
extend the function. In this case we generate a new sheet or copy of the
complex plane lying above the old complex plane with a transition or cut at
the positive real axis. If we continue this continuation everywhere we get an
extended domain of definition of the logarithm consisting of a series of spiral
sheets called a Riemann Surface for the logarithm. This discussion is rather
vague, because in general the subject is rather complex, no pun intended.

12 Complex Integration

A complex integral is defined as a limit of sums similar to the definition of
the real Riemann integral
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∫

C
f(z)dz = lim

n→∞,∆zi→0

n
∑

i=1

f(ζi)∆zi,

where the ∆z comes from a subdivision of points on the curve C, and where ζi
is an arbitrary point between the pair of points zk, zk+1, where ∆z = zk+1−zk.
If the curve in the complex plane is a function of a real parameter t this is
equivalent to the integral along the curve C, from starting point C(a) to
ending point C(b),

∫ b

a
f(z)

dz

dt
dt,

Example. We integrate the function f(z) = 1/z around a circle with center
at the origin, of radius r = 1. The curve C is described by C(t) = z(t) =
cos(t) + i sin(t) = exp(it). We have

∫

C
f(z)dz =

∫

C

1

z
dz =

∫ 2π

0

1

z

dz

dt
dt.

We have
dC

dt
=

dz

dt
= i exp(it)

and

f(z) =
1

z
=

1

exp(it)
.

So
∫

C

1

z
dz =

∫

C

i exp(it)

exp(it)
dt = i

∫ 2π

0
dt = 2πi.

For later reference this integral is 2πi times the residue, which is 1, at the
first order pole located at z = 0.

13 A Simply Connected Region

A simply connected region is a region where any closed curve can be shrunk
to a point without leaving the region. Thus a region consisting of a disk with
a smaller interior disk subtracted from it, is not simply connected, because
a circle around the smaller disk when shrunk to a point must penetrate the
smaller disk.
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14 Cauchy’s Integral Theorem

Theorem. If a function f(z) is analytic in a simply connected region Υ then
for a closed curve C in Υ

∫

C
f(z)dz = 0.

This implies that the integral between two points is independent of the
path joining the points.
Proof.

This can be proved by first showing than this is true around a triangle.
One can do this by subdividing the triangle into four triangles, and repeating
this subdivision n times, showing that after the nth stage the original integral
is less than 4n times the integral of an nth stage triangle. The triangle
subdivisions are nested, so that as n goes to infinity they will contain a
common limit point z0 by the Heini-Borel theorem. At this point z0, because
the function has a derivative there, given ǫ > 0, there exist a δ so that if
|z − z0| < δ, then

∣

∣

∣

∣

∣

f(z)− f(z0)

z − z0
− f ′(z0)

∣

∣

∣

∣

∣

< ǫ

or
|f(z)− f(z0)− (z − z0)f

′(z0)| < ǫ|z − z0|.
Let η(z) be defined by

f(z) = f(z0)− zf ′(z0) + z0f
′(z0) + η(z)(z − z0).

We claim that for every z such that |z − z0| < δ we have

|η(z)| < ǫ.

For assume there is a z so that

|η(z)| ≥ ǫ.

Then

|f(z)− f(z0)− (z − z0)f
′(z0)| = |η(z)||(z − z0)| ≥ ǫ|z − z0|.

If we integrate

f(z) = f(z0)− zf ′(z0) + z0f
′(z0) + η(z)(z − z0).
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Figure 1: The Cauchy Integral Theorem can be established by proving it
for a triangle, and then realizing that the interior of a general curve can
be triangulated to any accuracy. Since the integral is zero in each triangle
it is zero on the closed curve. So we may decompose a triangle into four
similar subtriangles, and the integral around the triangle is equal to the
sum of the integrals around the subtriangles because of cancellation on the
internal edges. The absolute value of of the integral around the triangle is
less than four times the absolute value of the largest absolute value of the
four subtriangles. We choose this subtriangle and subdivide it. And then
continue this process, getting an infinite set of nested triangles of smaller and
smaller size.
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we get
∫

Tn

f(z)dz = 0 + 0 + 0 +
∫

Tn

η(z)(z − z0)dz,

because the integrals of the first three terms are zero. Then considering
bounds on the size of the perimeter of triangle Tn, and the relation to the
original triangle perimeter, and on the |z − z0| the integral of the original
triangle is less than

ǫ

2
s2,

where s is the perimeter of the original triangle. It follows that the integral
around the original triangle is zero.

For the general case, the interior of a curve bounding a region can be
approximated by triangles. Thus the result follows.

See Konrad Knopp, The Theory of Functions, Volume I, p49, for
details.

15 Cauchy’s Integral Formula

A plane closed curve C is said to have the counterclockwise orientation when
traversing the curve in the forward direction, the direction is opposite to the
direction of the motion of a clock hand on the clock face. For a curve such
as a circle or an ellipse, this is pretty obvious. However, one can stretch
and distort a circle with twists and turns in such a way that this idea is not
quite so obvious. However, in all cases such a curve will enclose an interior
region, and the points of the interior near the curve will always lie to the
left of the curve direction. So this is what is meant by a counterclockwise
oriented closed curve. Similarly a clockwise oriented closed curve has near
interior points to the right of the curve direction. Theorem. Let a closed
curve C, be inside an open region where f(z) is analytic, C has a clockwise
orientation, and C encloses an interior point z0, then

1

2πi

∫

C

f(ζ)

ζ − z0
dζ = f(z0).

That is, every value of an analytic function is determined by the values
of the function on a bounding curve of a region containing the point.
Proof. We have

1

2πi

∫

C

f(ζ)

ζ − z0
dζ =

1

2πi

∫

C

f(ζ0)

ζ − z0
dζ +

1

2πi

∫

C

f(ζ)− f(ζ0)

ζ − z0
dζ.

16



By Cauchy’s Integral Theorem the integrals on the right can be replaced by
integrals on a circle Cr of radius r about center z0,

1

2πi

∫

Cr

f(ζ0)

ζ − z0
dζ

and
1

2πi

∫

Cr

f(ζ)− f(ζ0)

ζ − z0
dζ.

The first is equal to f(z0). For the second, because f(z) is analytic at z0
and thus continuous, for any ǫ there exists a circle of radius r where |f(ζ)−
f(ζ0)| < ǫ, and so where

∣

∣

∣

∣

∣

f(ζ)− f(ζ0)

ζ − z0

∣

∣

∣

∣

∣

<
ǫ

r

Then
∣

∣

∣

∣

∣

1

2πi

∫

Cr

f(ζ)− f(ζ0)

ζ − z0
dζ

∣

∣

∣

∣

∣

<
ǫ2πr

2πr
= ǫ,

where 2πr is the length of the circle Cr. Therefore this second integral is
zero, and the result follows.

16 Cauchy’s Integral Formulas for Derivatives

Theorem Let a closed curve C with counterclockwise orientation, be inside
an open region where f(z) is analytic, and let it contain the point z0, then
the nth derivative of f at z0 is

f (n)(z0) =
n!

2πi

∫

C

f(ζ)

(ζ − z0)n+1
dζ.

Proof. Let us first prove this for the first derivative and then apply mathe-
matical induction to prove it for all n.

The derivative at z is

df(z0)

dz
= lim

z′→z0

f(z′)− f(z0)

z′ − z0
.

So if we can show that the following limit is zero,
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lim
z′→z0

[

f(z′)− f(z0)

z′ − z0
− 1

2πi

∫

C

f(ζ)

(ζ − z0)2
dζ

]

= 0,

then we will have proved the integral formula for the first derivative. So
using the Cauchy Integral formula we have

f(z′)− f(z0) =
1

2πi

[

∫

C

f(ζ)(z′ − z0)

(ζ − z′)(ζ − z0)
dζ

]

.

So
f(z′)− f(z0)

(z′ − z0)
=

1

2πi

[

∫

C

f(ζ)

(ζ − z′)(ζ − z0)
dζ

]

.

So
[

f(z′)− f(z0)

z′ − z0
− 1

2πi

∫

C

f(ζ)

(ζ − z0)2
dζ

]

=

[

1

2πi

∫

C

f(ζ)

(ζ − z′)(ζ − z0)
dζ − 1

2πi

∫

C

f(ζ)

(ζ − z0)2
dζ

]

=

[

1

2πi

∫

C
f(ζ)

(

1

(ζ − z′)(ζ − z0)
− 1

(ζ − z0)2

)

dζ

]

=

[

1

2πi

∫

C
f(ζ)

(ζ − z0)− (ζ − z′)

(ζ − z′)(ζ − z0)2
dζ

]

=

[

(z′ − z0)

2πi

∫

C
f(ζ)

1

(ζ − z′)(ζ − z0)2
dζ

]

Let r be the minimum distance from z0 to the curve C, then

|ζ − z0| ≥ r,

so
1

|ζ − z0|
≤ 1

r
.

Given 0 < ǫ < r/2, there exists a disk D centered at z0 of radius less than
epsilon such that if z′ ∈ D then |ζ − z′| > r/2 , for otherwise there exists a
ζ ∈ C such that

|z0 − ζ | ≤ |z0 − z′|+ |z′ − ζ | < r/2 + r/2 < r

18



which contradicts that r is the minimum distance from z0 to C. Hence if
z′ ∈ D, then

| 1

ζ − z′
| < r/2.

Let M be an upper bound on |f(ζ)| on curve C and let λ be the length of
curve C (We assume that C is a compact rectifiable curve). Then

∣

∣

∣

∣

∣

(z′ − z0)

2πi

∫

C
f(ζ)

1

(ζ − z′)(ζ − z0)2
dζ

∣

∣

∣

∣

∣

<
2ǫMλ

r3
.

Since ǫ can be made arbitrarily small, we conclude that

limz′→z0

∣

∣

∣

∣

∣

f(z′)− f(z0)

z′ − z0
− 1

2πi

∫

C

f(ζ)

(ζ − z0)2
dζ

∣

∣

∣

∣

∣

= limz′→z0

∣

∣

∣

∣

∣

(z′ − z0)

2πi

∫

C
f(ζ)

1

(ζ − z′)(ζ − z0)2
dζ

∣

∣

∣

∣

∣

= 0.

This completes the proof.
Using a very similar argument, by using mathematical induction, we can

prove the formula for all n.

17 Taylor Series Expansion

The stategy in proving the following theorem is to start with Cauchy’s inte-
gral theorem, then manipulate

1

ζ − z

to get it in the form of the sum of a finite geometric series. Then write it as
a sum and an error term. Multiply by

1

2πi
f(ζ)

and integrate. The sum becomes the nth partial sum of the Taylor Se-
ries, with the derivatives given by the Cauchy integral formulas. Using the
fact that the function f(ζ) is bounded on the contour path and some other
bounds, show that the error term goes to zero as n goes to ∞.
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Taylor’s Theorem Let f(z) be an analytic function in an open circle C0

with center z0 and radius r0, then at all points z in the circle the following
series converges and

f(z) =
∞
∑

k=0

f (k)(z0)

k!
(z − z0)

k.

Proof. Let z be any point inside of C0, and let r = |z − z0|. Let C1 be a
circle of radius r1 with center z0, with

r < r1 < r0,

By Cauchy’s integral theorem

f(z) =
1

2πi

∫

C1

f(ζ)

ζ − z
dζ.

We have
1

ζ − z
=

1

(ζ − z0)− (z − z0)

=
1

ζ − z0

[

1

1− (z − z0)/(ζ − z0)

]

.

Let

a =
z − z0
ζ − z0

.

then

s = 1 + a+ a2 + ...+ an−1

sa = a+ a2 + ... + an

s(1− a) = 1− an

s =
1

1− a
− an

1− a

So
1

1− a
= s+

an

1− a

=
n−1
∑

k=0

ak +
an

1− a
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So
1

(ζ − z)
=

1

(ζ − z0)

1

1− a

=
n−1
∑

k=0

ak

(ζ − z0)
+

1

(ζ − z0)

an

(1− a)

=
n−1
∑

k=0

(z − z0)
k

(ζ − z0)k+1
+

an

(ζ − z)

=
n−1
∑

k=0

(z − z0)
k

(ζ − z0)k+1
+

(z − z0)
n

(ζ − z)(ζ − z0)n
.

multiplying through by
f(ζ)

2πi
,

and integrating with respect to ζ we get

f(z) =
1

2πi

∫

C1

f(ζ)

(ζ − z)
dζ

=
n−1
∑

k=0

[

1

2πi

∫

C1

f(ζ)

(ζ − z0)k+1
dz

]

(z− z0)
k+(z− z0)

n 1

2πi

∫

C1

f(ζ)

(ζ − z)(ζ − z0)n
dζ

=
n−1
∑

k=0

f (k)(z0)

k!
(z − z0)

k + (z − z0)
n 1

2πi

∫

C1

f(ζ)

(ζ − z)(ζ − z0)n
dζ.

In the remainder term

Rn = (z − z0)
n 1

2πi

∫

C1

f(ζ)

(ζ − z)(ζ − z0)n
dζ,

α =
|z − z0|
|ζ − z0|

< 1,

so αn goes to zero as n goes to ∞. |f(ζ)| is bounded by some constant M > 0
on the curve C1, the length of the curve is C1 is 2πr1, and if d is the minimum
distance from z to C1 then

1

|ζ − z| < 1/d,
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then the absolute value of Rn is less than some fixed number times αn and
so goes to zero as n goes to infinity. Therefore

f(z) =
∞
∑

k=0

f (k)(z0)

k!
(z − z0)

k,

for any z inside the circle C0.
Corollary In the previous theorem, the circle can be expanded about z0, un-
til its boundary meets a singular point. The theorem holds in this expanded
circle. If there is no singularity, then the function f(z) is equal to the Taylor
power series in the entire complex plane. So an entire function is defined
everywhere by its Taylor power series.

18 The Elementary Functions

Define sin(z) , cos(z), sinh(z) , cosh(z) and exp(z) by the usual Taylor series:

sin(z) = z − 1

3!
z3 +

1

5!
z5 − ... =

∞
∑

k=0

(−1)k
z2k+1

(2k + 1)!
.

cos(z) = 1− 1

2!
z2 +

1

4!
z4 − ... =

∞
∑

k=0

(−1)k
z2k

(2k)!
.

sinh(z) = z +
1

3!
z3 +

1

5!
z5 + ...

cosh(z) = 1 +
1

2!
z2 +

1

4!
z4 + ...

exp(z) = 1 +
1

1!
z1 +

1

2!
z2 +

1

3!
z3 + ...

Then

exp(iz) = 1 + i
1

1!
z − 1

2!
z2 − i

1

3!
z3 + ...

= cos(z) + i sin(z).

This is the famous Euler’s Formula.
We also have

sin(iz) = i sinh(z)
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sinh(iz) = i sin(z)

cos(iz) = cosh(z)

cosh(iz) = cos(z).

If z = x+ iy then

sin(z) = sin(x+ iy) = sin(x) cos(iy) + cos(x) sin(iy)

= sin(x) cosh(y) + i cos(x) sinh(y).

cos(z) = (cos(x+ iy) = cos(x) cos(iy)− sin(x) sin(iy)

= cos(x) cosh(y)− i sin(x) sinh(y).

19 Singular Points

Singular points of a function are points where a function is not analytic. The
simple singular points x0 are called poles and take the form

1

(z − z0)k
, k = 1, 2, 3, ...

They are called poles because the magnitude of the function goes to infinity
as z → z0, and a plot shows infinite peaks at z0. An isolated singularity is a
point z0 where the function is analytic at any point in an open neighborhood
of z0 not including z0 itself. An open set is a set not including its boundary.

20 The Laurent Expansion

Theorem. If f is analytic in an open region containing r2 < |z − z0| < r1
then

f(z) =
∞
∑

n=−∞

An(z − z0)
n

=
∞
∑

n=1

A−n

(z − z0)n
+ A0 +

∞
∑

n=1

An(z − z0)
n,

where

An =
1

2πi

∫

C

f(ζ)

(ζ − z0)n+1
dζ,
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and C is any counterclockwise curve in the annular region enclosing the small
circle of radius r2.
Proof. Consider a path consisting of a counterclockwise circle C1 or radius
r1 and center z0 together with a second counterclockwise circle C2 of radius
r2 and center z0 and a straight line joining the two circles. The complete path
consists of the two circles and the line traced twice in opposite directions,
see the figure. By Cauchy’s Integral theorem, with z in the annulus between
the two circles we have

f(z) =
1

2πi

∫

C1

f(ζ)

(ζ − z)
dζ − 1

2πi

∫

C2

f(ζ)

(ζ − z)
dζ.

=
1

2πi

∫

C1

f(ζ)

(ζ − z)
dζ +

1

2πi

∫

−C2

f(ζ)

(ζ − z)
dζ,

where by −C2 we mean the curve C2 having opposite direction.
Our strategy is to expand a term like

1

ζ − z

by adding and subtracting z0 as a geometric power series, and using uniform
convergence, to integrate term by term, thereby obtaining the formula.

Hence
1

ζ − z
=

1

(ζ − z0)− (z − z0)

=
1

(ζ − z0)[1− (z − z0)/(ζ − z0)]

=
1

(ζ − z0)

∞
∑

k=0

[

(z − z0)

(ζ − z0)

]k

.

=
∞
∑

k=0

(z − z0)
k

(ζ − z0)k+1
.

This series converges for ζ on the curve C1 because

∣

∣

∣

∣

∣

(z − z0)
k

(ζ − z0)k

∣

∣

∣

∣

∣

< 1

there.
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So by the Weierstrass M-test, the series

∞
∑

k=0

f(ζ)
(z − z0)

k

(ζ − z0)k+1
,

converges uniformly, so can be integrated term by term. We get

1

2πi

∫

C1

f(ζ)

(ζ − z)
dζ

=
∞
∑

k=0

[

1

2πi

∫

C1

f(ζ)

(ζ − z0)k+1
dζ

]

(z − z0)
k

=
∞
∑

k=0

Ak(z − z0)
k,

where

Ak =
1

2πi

∫

C1

f(ζ)

(ζ − z0)k+1
dζ, (k = 0, 1, 2, 3, ...).

Similarly (fill in the details)

1

2πi

∫

C2

f(ζ)

(ζ − z)
dζ

=
∞
∑

k=1

A−k
1

(z − z0)k
,

where

A−k =
1

2πi

∫

C2

f(ζ)(ζ − z0)
k−1dζ, (k = 1, 2, 3, ...).

Because the integrands are analytic in the annular region, the integrals
defining Ak and A−k may be over any annular counterclockwise curve C.

21 Laurent Expansion and Singular Point Ex-

amples

(a)
e2z

(z − 1)3
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(b)
(z − 3) sin(1/(z + 2))

(c)
z − sin(z)

z3

(d)
z

(z + 1)(z + 2)

(e)
1

z2(z − 3)

22 Residues

Let an analytic function be analytic in an open region except for a set of
isolated singular points. The residue at one of these singular points zk is the
coefficient a−1 of the term

1

(z − zk)

in the unique Laurent expansion of f(z) about the point zk.

23 The Residue Theorem

Theorem Let C be a closed counterclockwise contour in an open region
where a function f(z) is analytic, except at n isolated singular points inside
of C, where the residues are α1, α2, ..., αn . Then

∫

C
f(z)dz = 2πi(α1 + α2 + ...+ αn).

Proof.

Consider the integration of the function f(z) = 1/z around a circle C with
center at the origin. The curve C is described by z(t) = cos(t) + i sin(t) =
exp(it), with t in the closed interval [0, 2π]. We have

∫

C
f(z)dz =

∫

C

1

z
dz =

∫ 2π

0

1

z

dz

dt
dt.
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On the contour C we have

dz

dt
= i exp(it)

and

f(z) =
1

z
=

1

exp(it)
.

So
∫

C

1

z
dz =

∫

C

i exp(it)

exp(it)
dt = i

∫ 2π

0
dt = 2πi.

Now onsider the integration of the function f(z) = 1/zn, where n is an
integer n > 1, around the circle C with center at the origin. The curve C is
described by z(t) = cos(t) + i sin(t) = exp(it). We have

∫

C
f(z)dz =

∫

C

1

zn
dz =

∫ 2π

0

1

zn
dz

dt
dt.

We have
dz

dt
= i exp(it)

and
1

zn
=

1

(exp(it))n
=

1

(exp(int))
.

So because n− 1 is greater than 0, we have

∫

C

1

zn
dz =

∫ 2π

0

i exp(it)

exp(int)
dt

= i
∫ 2π

0

1

exp(i(n− 1)t)
dt

= i
∫ 2π

0

1

cos((n− 1)t) + i sin((n− 1)t)
dt

= i
∫ 2π

0
(cos((n− 1)t)− i sin((n− 1)t))dt = 0

We get zero for this integral because integrating both cos((n − 1)t) and
sin((n− 1)t) from 0 to 2π by the nature of these functions the positive areas
equal the negative areas.

This zero result is true for any contour surrounding a single pole because
the function is analytic except at the pole. The result also holds in exactly
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the same way for an isolated singularity a not at the origin by considering
a unit circle surrounding a, and the finction 1/(z − a)n. So considering the
Laurent expansion of f(z) about an isolated singular point a, the integral
of a contour curve surrounding a single such point has value 2πi times the
residue, which is the coefficient of the term 1/(z−a) in the Laurent expansion
of f(z). Further if there are multiple such isolated singular points, the value
of the integral of f(z) around a contour curve C containing these points, the
value is 2πi times the sum of the residues at all of the singular points. This
proves the theorem.

24 Calculating Residues

We can find the residues without computing the Laurent expansions. Indeed
let f(z) have a simple pole of order n at the isolated singular point z0. Then

φ(z) = (z − z0)
nf(z),

is analytic in a neighborhood of z0. Then the n− 1 coefficient of the Taylor
expansion of φ(z) gives the residue a−1 of f(z),

a−1 = lim
z→z0

1

(n− 1)!

dn−1φ(z)

dzn−1
.

For example suppose a function f(z) had a pole of order 3 at z = 0, so

f(z) =
a−3

z3
+

a−2

z2
+

a−1

z
+

∞
∑

k=0

akz
k

then

z3f(z) = a−3 + a−2z + a−1z
2 +

∞
∑

k=3

ak−3z
k.

So differentiating two times and evaluating we get 2!a−1, so dividing by 2!
we obtain the residue of f(z) at z = 0.

25 Evaluating Contour Integrals and Real In-

tegrals Using the Residue Theorem

Problem 1. Calculate the value of the integral
∫

C

e−z

(z − 1)2
dz,
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where C is the circle of radius 2, about the center z = 1.
Solution. There is an isolated singular point at z = 1. The Taylor series
for e−z about z = 1 is

e−z =
∞
∑

k=0

e−1(−1)k
(z − 1)k

k!
.

Dividing by (z − 1)2, we have the unique Laurent expansion, about the sin-
gular point z = 1, of our function

f(z) =
e−z

(z − 1)2
.

This is

f(z) =
1

(z − 1)2

[

∞
∑

k=0

e−1(−1)k
(z − 1)k

k!

]

=
e−1

(z − 1)2
− e−1

(z − 1)
+

[

∞
∑

k=2

e−1(−1)k
(z − 1)k

k!

]

.

By definition, the residue at the singularity z = 1, is the coefficient of the
term 1/(z − 1) in the unique Laurent expansion, which is here −e−1. The
residue theorem says that the integral of the function is 2πi times the sum
of the residues, at all of the isolated singularities enclosed by the curve C.
In our case there is only one such isolated singularity. Thus our integral is

∫

C

e−z

(z − 1)2
dz = 2πi(−e−1) = −2πi

e
.

For a little added amusement, let us use a computer program to try to
approximate this result numerically.
The output of our numerical calculation:

pi= 3.141592653589793

e= 2.718281828459045

i =(0.000000000000000E+000,1.000000000000000)

z=exp(i * pi/3.)= (1.000000000000000,1.732050807568877)

z conjugate= (1.000000000000000,-1.732050807568877)

magnitude of z = 2.000000000000000

real part of z = 1.000000000000000

imaginary part of z = 1.732050807568877
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Figure 2: This figure shows a common case of evaluating a real integral from
−∞ to ∞, by integrating around a semicircle of radius R, and then letting
R go to infinity. This contour integral from point −R on the real axis to R
on the real axis, and then around the semicircle of radius R is determined by
the sum of the residues at the isolated singular points inside the contour, two
shown here. Now if the integrand f(z) is bounded by 1/Rn, where n ≥ 2,
the integral around the semicircle will go to zero as R goes to infinity, so the
real integral is equal to 2πi times the sum of the residues.
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steps= 10000

center= (1.000000000000000,0.000000000000000E+000)

actual integral= -2.311454699581844 i

numerical calculation= (-8.068545779847255E-016,-2.311454775625656)

= 0. -2.311455 i

So there is agreement to about seven decimal places.

Listing of the Fortran Program:

c contourint.ftn,

c Integration of f(z)= e^{-z}/(z-1)^2, about

c a circle, with center(1,0) and radius=2

implicit real*8(a-h,o-z)

complex*16 z,z1,z2,i,c,s,f

external f

one=1.

c1=0.d0

pi=4.*atan(one)

write(*,*)’ pi= ’,pi

e=exp(one)

write(*,*)’ e= ’,e

i=(0.d0,1.d0)

i=cmplx(zero,one)

write(*,*)’ i = ’,i

c The next six lines are not part of the calculation. They are

c just to illustrate some complex number functions in Fortran.

z=2.*exp(i * pi/3.)

write(*,*)’ z=exp(i * pi/3.)= ’,z

write(*,*)’ z conjugate=’,conjg(z)

write(*,*)’ magnitude of z =’,abs(z)

write(*,*)’ real part of z =’,real(z)

write(*,*)’ imaginary part of z =’,aimag(z)

c

n=10000

write(*,*)’ steps= ’,n

c=1.d0
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write(*,*)’ center= ’,c

r=2.

angle=2.*pi

do k=1,n

t1=(k-1)*angle/n

z1=c+r*exp(i*t1)

t2=k*angle/n

z2=c+r*exp(i*t2)

z=(z1+z2)/2.

s=s+f(z)*(z2-z1)

enddo

w=-2.*pi/e

write(*,*)’ actual integral= ’,w,’ i’

write(*,*)’ numerical calculation= ’,s

write(*,’(a,f5.0,f10.6,a)’)’ =’,real(s),aimag(s),’ i’

end

c

complex*16 function f(z)

implicit real*8(a-h,o-z)

complex*16 z

f=exp(-z)/(z-1.)**2

return

end

Problem 2. Evaluate
∫ ∞

0

cos(x)

x2 + 1
dx.

This equals
1

2

∫ ∞

−∞

cos(x)

x2 + 1
dx,

because cos(x) is an even function.
We have

eiz = ei(x+yi) = eix−y = eixe−y =
(cos(x) + i sin(x))

ey
,

So in the upper half plane, y > 0, so

|eiz| = 1

ey
≤ 1.
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The real part of eiz on the x axis, where y = 0 is cos(x). So we replace
our integrand by

eiz

z2 + 1
.

So we shall integrate this on the contour consisting of the line on the x
axis from −R to R and then on the half circle in the upper half plane of
radius R. Then we shall take the limit as R goes to infinity.

On the half circle the magnitude is less than

1

ey(R2 + 1)
<

1

R2

and the length of the half circle is πR, so the integral on the half circle is
less than

π/R

which goes to zero as R goes to infinity. Hence the real part of the contour
integral as R goes to ∞ is

1

2

∫ ∞

−∞

cos(x)

x2 + 1
dx.

Now

f(z) =
eiz

z2 + 1

has isolated singularities at z = i and z = −i, only z = i inside our contour.
So by the residue theorem our contour integral equals 2πi times the residue
at that singularity. This is a first order pole, so the residue is

lim
z→i

(z − i)f(z) = lim
z→i

eiz

z + i

=
e−1

2i
So the value of the contour integral is

2πi

2ei
=

π

e

The value of our original integral is one half of this, so finally we find
∫ ∞

0

cos(x)

x2 + 1
dx =

π

2e
.
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26 The Inversion of the Laplace Transform

We define the Fourier transform as

f̂(ω) =
∫ ∞

−∞
f(t)e−iωtdt.

The Fourier inversion theorem is

f(ω) =
1

2π

∫ ∞

−∞
f̂(ω)eiωtdω.

The double sided Laplace transform is

F (s) =
∫ ∞

−∞
f(t)e−stdt.

Let s = φ+ iω. Then F (s) is the Fourier transform of gφ(t) = f(t)e−φt, that
is

F (s) =
∫ ∞

−∞
f(t)e−φte−iωtdt

= ĝφ(ω).

Formally applying the Fourier inversion theorem, we have

f(t)e−φt =
1

2π

∫ ∞

−∞
ĝφ(ω)e

iωtdω.

=
1

2π

∫ ∞

−∞
F (s)eiωtdω.

Then

f(t) =
1

2π

∫ ∞

−∞
F (s)eφteiωtdω.

=
1

2πi

∫

Cφ

F (s)estds,

where Cφ is the Bromwich contour defined by

{φ+ iω : −∞ < ω < ∞}.

Note that i appears in the expression 2πi because

ds = idω.
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In general we will find that if we define a closed curve consisting of a finite
line of length 2R on the bromwich contour, and a semicircle of radius R to
the left, then as R goes to infinity, the integral over the semicircle goes to
zero, so that the total integral over the curve is equal to the integral on the
Bromwich line, which is thus equal to 2πi times the residues of F (s)est in the
left halfspace bounded by the contour. Our inversion expression is therefore
equal to the sum of the residues themselves. We get the single sided Laplace
transform from the double when f(t) is equal to zero for t ≤ 0.
Example: Consider

F (s) =
1

s− 1
,

for ℜ(s) > 1. The residue of F (s)est is

lim
s→1

(s− 1)F (s)est = et.

Therefore
f(t) = et.

Example: Consider

F (s) =
1

s2 + 1
=

1

(s− i)(s + i)
,

for ℜ(s) > 0. The residues of F (s)est are

lim
s→i

(s− i)F (s)est =
eit

2i
,

and

lim
s→−i

(s+ i)F (s)est =
e−it

−2i
,

Therefore

f(t) =
eit − e−it

2i
= sin(t).

27 Properties of the Elementary Functions

f(z) = itan(iz/2)
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28 Conformal Mapping

A conformal mapping is a mapping that preserves angles between intersecting
lines. Analytic functions serve as solutions to the Laplace partial differential
equation in two dimensions in an analytic region. It is sometimes possible to
map such a region into a new region with boundaries that match a required
Laplace boundary value problem, thereby solving the problem.

29 Riemann Surfaces

See the Alfors books.

30 Partial Fractions

See Knopp, Theory of Functions.

31 The Special Functions

E. T. Whittaker and G. N. Watson, A Course of Modern Analysis, has
a very long history, but is still a primary source on this subject.

32 Cauchy’s Inequality

Given a power series representation for an analytic function f(z), the nth
coefficient is given by

an =
f (n)(zo)

n!
=

1

n!2πi

∫

C

f(z)

(z − z0)n+1
dz,

where C is a circle about Z0 contained in the region of regularity of f . Let
ρ be the radius of the circle, and let M be the maximum value of |f(z)| on
C. Then

|an| ≤
M2π

n!2πρn+1
≤ M

n!ρn+1
.
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33 Liouville’s Theorem. A Bounded Entire Func-

tion is a Constant.

Theorem. A bounded entire function is a constant.
Proof. Let the entire function have a power series representation

f(z) =
∞
∑

k=0

ak(z − z0)
k.

Suppose f(z) is bounded by a number M > 0. Then using Cauchy’s inequal-
ity

|ak| ≤
M

k!ρn+1
.

But because f is an entire function, the radius ρ may be taken arbitrarily
large, so the right side can be made arbitrarily small. Therefore ak is zero
for k > 0, so

f(z) = a0,

a constant.

34 A Polynomial is Unbounded

Given a polynomial

p(z) = a0 + a1z + a2z
2 + ...+ anz

n,

we have
p(z)− (a0 + a1z + a2z

2 + ...+ an−1z
n−1) = anz

n.

Thus
|p(z)|+ |a0|+ |a1||z|+ ...+ |an−1||zn−1| ≥ |an||zn|.

Let r = |z|, then

|p(z)| ≥ |an|rn − (|a0|+ |a1|rn + ...+ |an−1|rn−1).

So

|p(z)| ≥ rn(|an| − (
|a0|
rn

+
|a1|
rn−1

+ ... +
|an−1|
r

)).
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Clearly
|a0|
rn

+
|a1|
rn−1

+ ... +
|an−1|
r

goes to zero as r goes to infinity. So there is some R > 1 so that if r > R
then

|an| − (
|a0|
rn

+
|a1|
rn−1

+ ... +
|an−1|
r

) > |an|/2.

So if r > R, then
|p(z)| ≥ rn(|an|/2.

Then given an arbitrarily large M , an r > R can be chosen so that

rn|an|/2 > M.

Hence given any M > 0, there exists a circle with center at the origin with
radius r so that for all z outside of this circle.

p(z) > M.

Theorem. Given a polynomial p(z) and a number M > 0 there exists a
circle about the origin so that ∀z outside of this circle.

|p(z)| > M.

35 A Proof of the Fundamental Theorem of

Algebra

A bounded entire function is a constant. Given a non-constant polynomial
p(z). Suppose p(z) does not have a root. Then

1

p(z)

is an entire function. But because p(z) is a polynomial, 1/|p(z)| is say less
than 1 for all points outside of some circle. That is it is bounded, and
so a bounded entire function, and so a constant. This is a contradiction.
Therefore p(z) has a root.
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36 The Winding Number

The winding number measures how many times a curve winds around a
point. Reference Alfors. See geometry.tex, and subroutines and functions in
my mathlib.ftn and mathlib.c
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37 Appendix A: Complex Numbers in Elec-

trical Engineering

37.1 Steady State Alternating Currents And The Con-

cept of Impedance

Consider the RLC circuit with a voltage source. The equation for this circuit
consisting of, a resistance R, an inductance L, and a capacitance C in series
with an alternating current voltage source v, is

L
di

dt
+Ri+

q

C
= v,

where i is the current in the circuit. Differentiating this equation we get a
second order differential equation

L
d2i

dt2
+R

di

dt
+

i

C
=

dv

dt
.

Let
i = I0 exp jωt = I0(cos(ωt) + sin(ωt)j),

and
v = V0 exp jωt = V0(cos(ωt) + sin(ωt)j).

We let I0 and V0 be complex numbers to allow i and v to be out of phase.
Then

[−ω2L+Rjω +
1

C
]I0 exp jωt = V0jω exp jωt.

Then

[−ω2L+Rjω +
1

C
]I0 = V0jω.

Dividing by jω

[−ω2L

jω
+R +

1

Cjω
]I0 = V0.

Then

[R + (ωL− 1

ωC
)j]I0 = V0.

Then

I0 =
V0

Z
,
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where

Z = R + (ωL− 1

ωC
)j = R +Xj

is the impedance. The imaginary part of the impedance X is called the
reactance. The inductive reactance is

XL = ωL,

and the capacitive reactance is

XC = − 1

ωC
.

If
I0 = |I0| exp(jθI),
V0 = |V0| exp(jθV ),

and
Z = |Z| exp(jθZ , )

then
i = |I0| exp(j(ωt+ θI)),

and
v = |V0| exp(j(ωt+ θV )).

Dropping the subscript, we can write complex numbers in boldface and
so

I = I exp((ωt+ θI)j),

where I is the complex current, and I is the magnitude of I. And we can
write similar expressions for V and Z. The complex current I can be thought
of as a vector rotating around at angular velocity ω, and the physical current
i the projection of I to the real axis, that is

i = I cos(ωt+ θI).

I =
V

Z
.

If we are only interested in phase differences between the various rotating
complex vectors, and not the actual time dependence, we can omit the ωt in
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the expression for I and V, and retain only the magnitudes and the phase
angles. So because the vectors rotate at the same frequency, the phase and
magnitude relation between them is the same for each time. That is we could
let t be some constant say t = 0. Because as t varies the same magnitudes
and phase relationships are maintained.

So for example consider the voltage across an inductor. We might specify
the current to have magnitude 10 and phase angle say 0 degrees. We would
specify this phaser in polar notation as a magnitude and an angle

I = 10 6 0.

Now suppose the inductive reactance is 5, so that the impedance is

5j,

which in terms of magnitude and angle is

Z = 5 6 90.

Then the voltage across the inductor is

V = IZ = (10 6 0)(5 6 90) = (10)(5) 6 (0 + 90) = 50 6 90.

So the voltage leads the current by 90 degrees. This makes sense because
when an alternating current passes through zero, the rate of change of current
is a maximum and so the inductive voltage is a maximum. Similarly we can
show that for a capacitor the voltage across the capacitor lags the current by
90 degrees.

If the peak value of the current i is I, then the average power dissipated
in a resistor R is

P =
1

T

∫ T

0
i2Rdt =

I2R

T

∫ T

0
cos(ωt)2dt

=
I2R

2
= I2effR,

where

I2effR =
I2R

2
.

So

Ieff =
I√
2
.
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38 Appendix B: The Laplace Transform

38.1 The Laplace Transform

One of the primary uses of the Laplace Transform is in the solution of differ-
ential equations. So differential equations are mapped to algebraic equations,
and often these algebraic equations are often easier to solve than the original
equations.

The Laplace transform maps a function f(t) of a real variable t to a
function Lf(s) of a complex variable s. The transform is given by

Lf(s) =
∫ ∞

0
f( t ) e(−s t ) dt

Sometimes we write the transform of a function f by capitalizing. So we
write

F (s) = Lf(s).

The Laplace transform of f in the symbolic computer algebra program Maple
is specified as

laplace( f( t ), t, s ).

f(t) is a function of a real variable, but s is a complex variable, so Lf is
a complex valued function of a complex variable. Here are a few Laplace
transforms.

∫ ∞

0
sin( t ) e(−s t ) dt =

1

s2 + 1
∫ ∞

0
cos( t ) e(−s t ) dt =

s

s2 + 1
∫ ∞

0
ta e(−s t ) dt =

Γ( a+ 1 )

s( a+1 )

Γ(x) is the Gamma function:

Γ(x) =
∫ ∞

0
e−ttx−1dt.

lim
x→0

Γ(x) = ∞.

Γ(x) =
1

x
Γ(x+ 1).
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If n is an integer then
Γ(n+ 1) = n!.

So if n is an integer,
∫ ∞

0
tne−stdt =

n!

sn+1
.

The Laplace transform of the derivative of a function f is obtained by
integrating by parts. We find

Lf ′(s) =
∫ ∞

0

(

d

dt
f( t )

)

e(−s t ) dt = s
∫ ∞

0
f( t ) e(−s t ) dt− f( 0 ) = sLf − f( 0 )

So the transform of a second derivative is

Lf
′′

= sLf ′ − f ′(0) = s(sLf − f(0))− f ′(0) = s2Lf − sf(0)− f ′(0)

and so on for higher derivatives.
If f(t) = A is constant then

Lf(s) =
∫ ∞

0
Ae−stdt =

[

−A

s
e−st

]∞

0
=

A

s
.

Suppose f(t) = e−at then

Lf(s) =
∫ ∞

0
e−ate−stdt =

∫ ∞

0
e−(s+a)tdt =

1

s+ a
.

Suppose

f(t) =
∫ t

0
g(x)dx.

Then f ′(t) = g(t), so integrating by parts we have

Lf(s) =
∫ ∞

0
f(t)e−stdt

=

[

−f(t)
e−st

s

]∞

0

− 1

s

∫ ∞

0
−e−stf ′(t)dt

=
1

s

∫ ∞

0
e−stg(t)dt

=
Lg(s)

s
.
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We have used
u = f(t)

dv = e−stdt

and
udv = d(uv)− vdu.

Let us compute L sin(s). Integrating by parts we have

L sin(s) =
∫ ∞

0
sin(t)e−stdt

=

[

−sin(t)e−st

s

]∞

0

+
1

s

∫ ∞

0
cos(t)e−stdt

=
1

s

∫ ∞

0
cos(t)e−stdt

=
1

s
L cos(s).

Similarly we compute L cos(s)

L cos(s) =
∫ ∞

0
cos(t)e−stdt

=

[

−cos(t)e−st

s

]∞

0

− 1

s

∫ ∞

0
sin(t)e−stdt

=
1− L sin(s)

s
.

From above we have

L sin(s) =
1

s
L cos(s) =

1

s

[

1− L sin(s)

s

]

=
1− L sin(s)

s2
.

Solving for L sin(s), we find

L sin(s) =
1

s2 + 1
,

and
L cos(s) = sL sin(s) =

s

s2 + 1
.
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Let U(t) be the unit step function with step at t = 0. The unit step
function at t0 is

Ut0(t) = U(t− t0).

Proposition

L(Ut0(t)f(t− t0)) = e−st0L(f(t)).

Proof.

L(U(t − t0)f(t− t0)) =
∫ ∞

0
e−stU(t− t0)f(t− t0)dt

=
∫ ∞

t0
e−stf(t− t0)dt

=
∫ ∞

0
e−s(t+t0)f(t)dt

= e−st0L(f(t)).

Example. Suppose the forcing function on the right side of the following
equation is an impulse function at the point t0. Then

x′′ + k2x = δ(t− t0)

Lx(s)(s2 + k2) = e−t0s

Lx(s) =
e−t0s

s2 + k2
= e−t0sL(sin(t))

= L(U(t − t0) sin(t− t0))

So the solution to the differential equation is

x(t) = Ut0 sin(t− t0),

assuming the initial conditions are x(0) = 0, x′(0) = 0.
Example.

y′′′(t)− y′′(t) + y′(t)− y(t) = F (t), y(0) = y′(0) = y′′(0) = 0.

Applying the Laplace transform, we have

L(y(t))(s3 − s2 + s− 1) = L(y(t))(s− 1)(s2 + 1) = L(F (t)).

So

L(y(t)) = L(F (t))
1

(s− 1)(s2 + 1)
.
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Using partial fractions

2
1

(s− 1)(s2 + 1)
=

1

s− 1
− s

s2 + 1
− 1

s2 + 1

So

2L−1 1

(s− 1)(s2 + 1)
= et − cos(t)− sin(t).

Let
g(t) = et − cos(t)− sin(t).

Then we have
2L(y(t)) = L(F (t))L(g(t)).

The Laplace transform of the convolution of two functions is the product of
the transforms. Thus

2L(y(t)) = L(F ∗ g(t)).
So

2y(t) = F ∗ g(t) =
∫ t

0
F (t− τ)g(τ)dτ =

∫ t

0
F (t− τ)(eτ − cos(τ)− sin(τ)dτ.

38.2 Bessel Functions

The Bessel function of the first kind of order ν is

Jν(t) =
∞
∑

m=0

(−1)mtν+2m

2ν+2mm!Γ(ν +m+ 1)
.

This may also be written as

Jν(t) =
(

t

2

)ν ∞
∑

k=0

(−t2/4)k

k!Γ(ν + k + 1)
.

38.3 Relation to the Fourier Transform

We define the Fourier transform as

f̂(ω) =
∫ ∞

−∞
f(t)e−iωtdt.
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Some authors define it with a constant multiplier in front. The Fourier
inversion theorem is

f(ω) =
1

2π

∫ ∞

−∞
f̂(ω)eiωtdω.

The double sided Laplace transform is

F (s) =
∫ ∞

−∞
f(t)e−stdt.

The single sided definition follows from this if f(t) is zero for t ≤ 0. Let
s = φ+ iω. Then F (s) is the Fourier transform of gφ(t) = f(t)e−φt, that is

F (s) =
∫ ∞

−∞
f(t)e−φte−iωtdt

= ĝφ(ω).

For more on this see the section on the inversion of the transform.

38.4 Laplace Transform Table

http://www.vibrationdata.com/math/Laplace_Transforms.pdf

or local file:

c:/je/pdf/Laplace_Transforms.pdf

38.5 The Laplace Transform in Maple

See my documents maple.tex and mapletwelve.tex, titled Quintessen-

tial Maple V and Quintessential Maple XII. The computer Algebra
program Maple, like many software programs changes a bit from time to
time, so new documentation is required.

38.6 Solving a Differential Equation With The Laplace

Transform Using Maple

This section has been made compatible with Maple 12. We read the following
file into Maple:

48



% cat mlaplace

with(invtrans)

de:=diff(y(x),x,x)+2*diff(y(x),x)+y(x) = sin(2*x);

dsolve({de,y(0)=1,D(y)(0)=1},y(x));

laplace(de,x,s);

subs(laplace(y(x),x,s)=G,%);

solve(",G);

subs({D(y)(0)=1,y(0)=1},%);

invlaplace(%,s,x);

The above code was pasted into Maple 12. The laplace transform would-
not work, until I blundered onto some information that the laplace transform
and inverse laplace transform are in the inttrans package that must be loaded.
Also the previous expression representation had to be changed to per cent
sign from the double quote sign. Maple 12 gives equivalent though different
forms for the results calculated by Maple 5, and which are listed here. The
session is as follows:

> de:=diff(y(x),x,x)+2*diff(y(x),x)+y(x) = sin(2*x);

de :=

(

∂2

∂x2
y( x )

)

+ 2

(

∂

∂x
y( x )

)

+ y( x ) = sin( 2 x )

> dsolve({de,y(0)=1,D(y)(0)=1},y(x));

y( x ) = − 4

25
cos( 2 x )− 3

25
sin( 2 x ) +

29

25
e(−x ) +

12

5
e(−x ) x

> laplace(de,x,s);

( laplace( y( x ), x, s ) s− y( 0 ) ) s−D( y )( 0 ) + 2 laplace( y( x ), x, s ) s

− 2 y( 0 ) + laplace( y( x ), x, s ) = 2
1

s2 + 4

> subs(laplace(y(x),x,s)=G,%);
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(Gs− y( 0 ) ) s− D( y )( 0 ) + 2Gs− 2 y( 0 ) +G = 2
1

s2 + 4

> solve(%,G);

−
−s y( 0 )− D( y )( 0 )− 2 y( 0 )− 2

1

s2 + 4
s2 + 2 s+ 1

> subs({D(y)(0)=1,y(0)=1},%);

−
−s− 3− 2

1

s2 + 4
s2 + 2 s+ 1

> invlaplace(%,s,x);

− 4

25
cos( 2 x )− 3

25
sin( 2 x ) +

29

25
e(−x ) +

12

5
e(−x ) x

The solution using dsolve, and the solution using the Laplace transform
method are the same.

38.7 Solving Circuit Problems With the Laplace Trans-

form

Resistor Capacitor Circuit Let a circuit consist of a constant voltage
source V be in series with a Resistor R and a capacitor C. The voltage loop
equation is

Ri(t) +
1

C

∫ t

0
i(τ)dτ +

q0
C

= V,

where i(t) is the current, and q0 is the initial charge on the capacitor. We
have

i(t) +
1

RC

∫ t

0
i(τ)dτ +

q0
RC

=
V

R
.
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Taking the Laplace Transform

Li(s) +
1

RC

Li(s)

s
+

q0
RC

1

s
=

V

R

1

s
.

Then

Li(s)
(

1 +
1

RCs

)

=
CV − q0
RCs

and so

Li(s) =
CV − q0
RCs+ 1

=
CV/(RC)− q0/(RC)

s+ 1/(RC)

Then

Li(s) = (V/R− q0/(RC))
1

s+ 1/(RC)
.

So taking the inverse transform

i(t) = (V/R− q0/(RC))e−t/(RC).

To find the charge we integrate

q(t) = (V/R− q0/(RC))
∫

e−t/(RC)

= (V/R− q0/(RC))(−RC)e−t/(RC) +K,

where K is a constant. So

q(t) = (q0 − V C)e−t/(RC) +K

At zero
q0 = q(0) = (q0 − V C) +K,

so K = V C. Finally

q(t) = q0e
−t/(RC) + V C(1− e−t/(RC)).
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