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Quantum computers are available to use over
the cloud, but the recent explosion of quan-
tum software platforms can be overwhelming for
those deciding on which to use. In this pa-
per, we provide a current picture of the rapidly
evolving quantum computing landscape by com-
paring four software platforms—Forest (pyQuil),
Qiskit, ProjectQ, and the Quantum Developer
Kit (Q#)—that enable researchers to use real
and simulated quantum devices. Our analysis
covers requirements and installation, language
syntax through example programs, library sup-
port, and quantum simulator capabilities for
each platform. For platforms that have quantum
computer support, we compare hardware, quan-
tum assembly languages, and quantum compil-
ers. We conclude by covering features of each
and briefly mentioning other quantum comput-
ing software packages.
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1 Introduction

Quantum programming languages have been thought
of at least two decades ago [1, 2, 3, 4, 5, 6], but these
were largely theoretical and without existing hardware.
Quantum computers are now a reality, and there are
real quantum programming languages that let anyone
with internet access use them. A critical mass of ef-
fort from researchers in industry and academia alike has
produced small quantum devices that operate on the
circuit model of quantum computing. These comput-
ers are small, noisy, and not nearly as powerful as cur-
rent classical computers. But they are nascent, steadily
growing, and heralding a future of vast computational
power for problems in chemistry [7, 8], machine learn-
ing [9, 10], optimization [11], finance [12], and more
[13]. These devices are a testbed for preparing the next
generation of quantum software engineers to tackle cur-
rent classically intractable computational problems. In-
deed, cloud quantum computing has already been used
to calculate the deuteron binding energy [14] and test
subroutines in machine learning algorithms [15, 16].
Recently, there has been an explosion of quantum
computing software over a wide range of classical com-
puting languages. A list of open-source projects, num-
bering well over fifty, is available at [17], and a list of
quantum computer simulators is available at [18]. This
sheer number of programs, while positively reflecting
the growth of the field, makes it difficult for students
and researchers to decide on which software platform
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to use, getting lost in documentation or being too over-
whelmed to know where to start.

In this paper, we hope to provide a succinct overview
and comparison of major general-purpose gate-level
quantum computing software platforms. From the long
list, we have selected four in total: three that provide
the user with the ability to connect to real quantum
devices— Forest from Rigetti [19], Qiskit from IBM [20],
and ProjectQ from ETH Zurich [21, 22]—and one with
similar functionality but no current capability to con-
nect to a quantum computer—the Quantum Develop-
ment Kit from Microsoft [23]. The ability to connect
to a real quantum device has guided our selection of
these platforms. Because of this, and for the sake of
succinctness, we are intentionally omitting a number of
respectable platforms and languages. We briefly men-
tion a few of these in Appendix A and Appendix B.

For now, our major goal is to provide a picture of
the quantum computing landscape governed by these
four platforms. In Section 2, we cover each platform
in turn, discussing requirements and installation, docu-
mentation and tutorials, language syntax, and quantum
hardware. In Section 3, we provide a detailed compari-
son of the platforms. This includes quantum algorithm
library support in 3.1, quantum hardware support in
3.2, quantum circuit compilers in 3.3, and quantum
computer simulators in 3.4. We conclude in Section
4 with discussion and some subjective remarks about
each platform. Appendix A and Appendix B discuss
other quantum software, Appendix C includes details on
testing the quantum circuit simulators, and Appendix
D shows code for the quantum teleportation circuit in
each of the four languages for a side by side comparison.

2 The Software Platforms

An overview of various quantum computers and the
software needed to connect to them is shown in Fig-
ure 1. At the time of writing, these four software plat-
forms allow one to connect to four different quantum
computers—one by Rigetti, an 8 qubit quantum com-
puter which can be connected to via pyQuil; and three
by IBM, the largest openly available being 16 qubits,
which can be connected to via Qiskit or ProjectQ. There
is also a fourth 20 qubit quantum computer by IBM, but
this device is only available to members of the IBM Q
Network, a collection of companies, universities, and na-
tional laboratories interested in and investing in quan-
tum computing’. Also shown in Figure 1 are quantum

"Members of the IBMQ network include those announced in
December 2017—JP Morgan Chase, Daimler, Samsung, Honda,
Oak Ridge National Lab, and others—and those announced in
April 2018-Zapata Computing, Strangeworks, QxBranch, Quan-

computers by companies like Google, IBM, and Intel
which have been announced but are not currently avail-
able.

The technology of quantum hardware is rapidly
changing. It is very likely that new computers will be
available by the end of the year, and in two or three
years this list may be completely outdated. What will
remain, however, is the software used for connecting to
this technology. It will be very simple to use these new
quantum computers by changing just a few lines of code
without changing the actual syntax used for generating
or running the quantum circuit. For example, in Qiskit,
one could just change the name of the backend when ex-
ecuting the circuit:

execute (quantum_circuit , backend=...)

Listing 1: The backend specifies which computer (real or
simulated) to run quantum programs on using Qiskit. As future
quantum computers get released, running on new hardware will
be as easy as changing the backend.

Although the software is changing as well with new ver-
sion releases®, these are, for the most part, relatively
minor syntactical changes that do not alter significantly
the software functionality.

At the lowest level of the quantum computing stack,
a language must instruct the computer which physical
operations to perform on which qubits. We refer to
these languages, such as Quil in Forest and OpenQASM
in Qiskit, as quantum assembly/instruction languages,
or occasionally as quantum languages for brevity®. On
top of quantum languages sit quantum programming
languages, which are used to manipulate quantum lan-
guages in a more natural and readable way for program-
mers. Examples of quantum programming languages
include pyQuil, which is embedded into the classical
“host” Python programming language, or Q#, a stan-
dalone quantum programming language resembling the
classical C# language. We refer to the collection of a
quantum programming language with other tools such
as compilers and simulators as a quantum software plat-
form, or simply a platform. In this paper, we focus
on gate level quantum software platforms which are de-

tum Benchmark, QC Ware, Q-CTRL, Cambridge Quantum Com-
puting (CQC), and 1QBit. North Carolina State University
is the first American university to be a member of the IBM
Q Hub, which also includes the University of Oxford and the
University of Melbourne. For a complete and updated list, see
https://www.research.ibm.com/ibm-q/network/.

2The programs included in this paper can be found at
https://github.com/rmlarose/qsoftware-code for the most recent
version of each platform.

9To avoid bias towards IBM (which uses the terminology quan-
tum assembly language) or Rigetti (which uses the terminology
quantum instruction language), we abbreviate to quantum lan-
guage.
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Figure 1: A schematic diagram showing the paths to connecting a personal computer to a usable gate-level quantum computer.
Starting from the personal computer (bottom center), nodes in green shows software platforms that can be installed on the
user's personal computer. Grey nodes show simulators run locally (i.e., on the user's computer). Dashed lines show API/cloud
connections to company resources shown in yellow clouds. Quantum simulators and usable quantum computers provided by these
cloud resources are shown in blue and gold, respectively. Red boxes show requirements along the way. For example, to connect to
Rigetti Forest and use the Agave 8 qubit quantum computer, one must download and install pyQuil (available on macOS, Windows,
and Linux), register on Rigetti's website to get an API key, then request access to the device. Notes: (i) Rigetti's Quantum Virtual
Machine requires an upgrade for more than 30 qubits, (ii) local simulators depend on the user's computer so numbers given are
approximates, and (iii) the grey box shows quantum computers that have been announced but are not currently available to general
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signed around the circuit (gate) model of quantum com-
puting.

In what follows, we run through each of the four
platforms in turn, discussing requirements and installa-
tion, documentation and tutorials, quantum program-
ming language syntax, quantum assembly/instruction
language, quantum hardware, and simulator capabili-
ties. Our discussion is not meant to serve as complete
instruction in a language, but rather to give the reader
a feel of each platform before diving into one (or more)
of his/her choosing. Our analysis includes enough infor-
mation to begin running algorithms on quantum com-
puters. However, we refer the reader, once s/he has
decided on a particular platform, to the specific docu-
mentation for complete information. We include links
to documentation and tutorial sources for each package.
We are also assuming basic familiarity with quantum
computing, for which many good resources now exist
24, 25].

2.1 Forest

Forest is a quantum software platform developed by
Rigetti which includes pyQuil, an open-source quan-
tum programming language embedded in the classical
host language Python, for constructing, analyzing, and
running quantum programs. pyQuil is built on top of
Quil, an open quantum assembly/instruction language
designed specifically for near-term quantum comput-
ers and based on a shared classical/quantum memory
model [26] (meaning that both qubits and classical bits
are available for memory). Forest also includes the
Grove library for algorithms and applications as well
as the Reference QVM, a local quantum computer sim-
ulator.

Requirements and Installation To install and use
pyQuil, Python 3 is required. The Anaconda distri-
bution of Python is recommended for various module
dependencies, although it is not required.

The easiest way to install pyQuil is using the Python
package manager pip. At a command line on Linux
Ubuntu, we type

pip install pyquil

to successfully install the software. Alternatively, if
Anaconda is installed, pyQuil can be installed by typing

conda install —c rigetti pyquil

at a command line. Another alternative is to download
the source code from the git repository and install the
software this way. To do so, one would type the follow-
ing commands:

git clone https://github.com/rigetti/pyquil
cd pyquil

Forest Overview

Institution Rigetti
First Release v0.0.2 on Jan 15, 2017
Version v1.9.0
Open Source? v
License Apache-2.0
Homepage Home
GitHub Git
Documentation Docs, Tutorials
(Grove)
(O} Mac, Windows, Linux
Requirements Python 3, Anaconda
(recommended)
Classical Host Python
Language
QuanIt;Lng‘Prog. pyQuil
Quantum Language Quil
uantum .
I?Izardware 8 qubits
~20 qubits locally, 26
Simulator qubits with most API
keys to QVM, 30+ w/
private access
Generate Quil code,
example algorithms in
Grove,
Features topolo.gy—spec.iﬁc
compiler, noise
capabilities in
simulator, community
Slack channel

; pip install —e

This last method is recommended for any users who
may wish to contribute to pyQuil. See the contribution
guidelines on Rigetti’s GitHub for more information.

Documentation and Tutorials Forest has excellent
documentation hosted online with background informa-
tion in quantum computing, instructions on installa-
tion, basic programs and gate operations, the simula-
tor known as the quantum virtual machine (QVM), the
actual quantum computer, and the Quil language and
compiler. By downloading the source code of pyQuil
from GitHub, one also gets an examples folder with
Jupyter notebook tutorials, regular Python tutorials,
and a program run_quil.py which can run text documents
written in Quil using the quantum virtual machine. The
Grove library, which can be installed separately from
GitHub, contains more examples of quantum algorithms
written in pyQuil.
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Syntax The syntax of pyQuil is very clean and suc-
cinct. The main element for writing quantum circuits is
a Program and can be imported from pyquil.quil. Gate
operations can be found in pyquil.gates. The api mod-
ule allows one to run quantum circuits on the virtual
machine. One nice feature of pyQuil is that qubit and
classical bit registers do not need to be defined a priori
but can be rather allocated dynamically. Qubits in the
qubit register are referred to by index (0, 1, 2, ...) and
similarly for bits in the classical register. A random bit
generator circuit, also called a quantum coin flip circuit,
can thus be written as follows*:

# random bit generator circuit
from pyquil. quil import Program

import pyquil.gates as gates
from pyquil import api

in pyQuil

gqprog = Program ()
gqprog += [gates .H(0),
gates .MEASURE(0, 0)]

qvm = api.QVMConnection ()
print (qvm.run(gprog), trials=1)

Listing 2: pyQuil code for a random bit generator.

In the first three lines, we import the bare minimum
needed to declare a quantum circuit/program (line 2),
to perform gate operations on qubits (line 3)°, and to
execute the circuit (line 4). In line 6 we instantiate
a quantum program, and in lines 7-8 we give it a list
of instructions: first do the Hadamard gate H to the
qubit indexed by 0, then measure the same qubit into
a classical bit indexed by 0. In line 10 we establish a
connection to the QVM, and in line 11 we run and dis-
play the output of the circuit using one “trial,” meaning
that the circuit is only simulated once. This program
prints out, as is standard for pyQuil output, a list of
lists of integers zero or one (equivalently, Boolean val-
ues): in our case, either [[0]] or [[1]]. In general, the
number of elements in the outer list is the number of
trials performed. The integers in the inner lists are the
final measurements into the classical register. Since we
only did one trial, we only get one inner list. Since we
only had one bit in the classical register, we only get
one integer within this inner list.

4All Forest, Qiskit, and ProjectQ programs in this paper was
run and tested on a Dell XPS 13 Developer Edition laptop running
64 bit Ubuntu 16.04 LTS with 8 GB RAM and an Intel Core i7-
8550U CPU at 1.80 GHz. A separate computer with a windows
environment was used to write and test Q# programs using Visual
Studio Code.

%In pyQuil documentation and examples, it is conventional to
import only the gates to be used: e.g., from pyquil.gates import H,
MEASURE. Here, we import the entire pyquil.gates for compari-
son to other programming languages, but note that the preferred
developer method is the former, which can nominally help speed
up code and keep programs cleaner.

> MEASURE 0

Quantum Language The Quil language, analogous
to assembly language on classical computers, is what
instructs the quantum computer which physical gates
to implement on which qubits. The general syntax of
Quil is GATE index where GATE is the quantum gate
to be applied to the qubit indexed by index (0, 1, 2,
...). pyQuil has a feature for generating Quil code from
a given program. For instance, in the above quantum
random bit generator, we could add the line

print (gprog)

at the end to produce the Quil code for the circuit,
which is shown below:

H 0
(0]

Listing 3: Quil code for a random bit generator.

We note that t is possible to write quantum circuits
in a text editor in Quil and then execute the circuit
on the QVM using the program run_quil.py, but writing
programs in pyQuil is of course generally easier. One
could also modify run_quil.py to allow circuit execution
on the QPU. We remark that the Quil compiler converts
a given circuit into Quil code that the actual quantum
computer can implement. We will discuss this more in
Section 3.3.

Quantum Hardware Rigetti has a quantum proces-
sor that can be used by those who request access. To
request access, one must visit the Rigetti website and
provide a full name, email address, organization name,
and description of the reason for QPU access. Once
this is done, a company representative will reach out
via email to schedule a time to grant the user QPU
access® . An advantage of this scheduling process, as
opposed to the queue system of Qiskit to be discussed
shortly, is that many jobs can be run in the alloted
time frame with deterministic runtimes, which is key for
variational and hybrid algorithms. These types of algo-
rithms send data back and forth between classical and
quantum computers—having to wait in a queue makes
this process significantly longer. A (perhaps) disadvan-
tage is that jobs cannot be executed anytime when the
QPU is available, but a specific time must be requested
and granted.

The actual device, the topology of which is shown
in Figure 2, consists of 8 qubits with nearest neighbor
connectivity. We will discuss this computer more in
detail in Section 3.2.

6A new scheme for scheduling time on Rigetti’s computers,
called Quantum Cloud Services, is in beta testing and may be
released in the future as an alternative to the method described
in the text.
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Figure 2: Schematic diagram showing the topology (connectiv-
ity) of the 8 qubit Agave QPU by Rigetti. Qubits are labeled
with integers 0, 1, ..., 7, and lines connecting qubits indicate
that a two qubit gate can be performed between these qubits.
For example, we can do Controlled-Z between qubits 0 and 1,
but not between 0 and 2. To do the latter, the Quil compiler
converts Controlled-Z (0, 2) into operations the QPU can per-
form. This diagram was taken from pyQuil’s documentation.

Simulator The quantum virtual machine (QVM) is
the main utility used to execute quantum circuits.
It is a program written to run on a classical CPU
that inputs Quil code and simulates the evolution of
an actual quantum computer. To connect to the
QVM, one must register for an API key for free on
https://www.rigetti.com/forest by providing a name
and email address. An email is then sent containing
an API key and a user ID which must be set up by
running

pyquil—config—setup

at the command line (after installing pyQuil, of course).
A prompt then appears to enter the emailed keys.

According to the documentation, most API keys give
access to the QVM with up to 30 qubits, and access to
more qubits can be requested. The author’s API key
gives access to 26 qubits (no upgrades were requested).

Additionally, the Forest library contains a local simu-
lator written in Python and open-sourced, known as the
Reference QVM. It is not as performant as the QVM,
but users can run circuits with as many qubits as they
have memory for on their local machines. As a general
rule of thumb, circuits with qubits numbering in the low
20s are possible on commodity hardware. The reference
QVM must be installed separately, which can be done
with pip according to:

pip install referenceqvm

To use the Reference QVM instead of the QVM, one
simply imports api from referenceqvm instead of from

pyQuil:

import referenceapi.api as api

2.2  Qiskit

The Quantum Information Software Kit, or Qiskit, is
an open-source quantum software platform for working
with the quantum language, OpenQASM, of comput-
ers in the IBM Q Experience. Qiskit is available in
Python, JavaScript, and Swift, but here we only discuss
the Python version”. Note that the name Qiskit is used
interchangeably for the quantum software platform and
the quantum programming language.

Qiskit Overview

Institution IBM
First Release 0.1 on March 7, 2017
Version 0.5.4
Open Source? v
License Apache-2.0
Homepage Home
Github Git
Documentation Docs, Tutorial
Notebooks, Hardware
OS Mac, Windows, Linux
Python 3.5+, Jupyter
Requirements Notebooks (for
tutorials), Anaconda 3
(recommended)
Classical Host Python, JavaScript,
Language Swift
QuanItlzglg.Prog. Qiskit
Quantum Language OpenQASM

IBMQX2 (5 qubits),

Quantum IBMQX4 (5 qubits),
Hardware IBMQX5 (16 qubits),
QS1_1 (20 qubits)
. ~25 qubits locally, 30
Simulator through cloug
Generate QASM code,
topology specific
Features compiler, community

Slack channel, circuit
drawer, Aqua library

Requirements and Installation Qiskit is available
on macOS, Windows, and Linux. To install Qiskit,
Python 3.5+ is required. Additional helpful, but not re-
quired, components are Jupyter notebooks for tutorials
and the Anaconda 3 Python distribution, which comes
with all the necessary dependencies pre-installed.

7See https://github.com/Qiskit/qiskit-js for information on
the JavaScript version and https://github.com/Qiskit/qiskit-
swift for the Swift version.
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3 python —m pip

The easiest way to install Qiskit is by using the
Python package manager pip. At a command line, we
install the software by typing:

pip install qiskit

Note that pip automatically handles all dependencies
and will always install the latest version. Users who
may be interested in contributing to Qiskit can install
the source code by entering the following at a command
line:
git clone https://github.com/QISKit/qgiskit —core

cd qiskit —core
install —e

For information on contributing, see the contribution
guidelines in Qiskit’s online documentation on GitHub.

Documentation and Tutorials The  doc-
umentation of Qiskit can be found online at
https://qiskit.org/documentation/. This contains

instructions on installation and setup, example pro-
grams and connecting to real quantum devices, project
organization, Qiskit overview, and developer doc-
umentation.  Background information on quantum
computing can also be found for users who are new
to the field. A very nice resource is the software
development kit (SDK) reference where users can find
information on the source code documentation.

Qiskit also contains a large number of tutorial note-
books in a separate GitHub repository (similar to For-
est and Grove). These introduce entangled states; stan-
dard algorithms like Deutsch-Josza, Grover’s algorithm,
phase estimation, and the quantum Fourier transform;
more advanced algorithms like the variational quantum
eigensolver and applications to fermionic Hamiltonians;
and even games like “quantum battleships.” Addition-
ally, the Aqua library for near-term applications con-
tains example algorithms in fields such as chemistry,
finance, and optimization.

There is also very detailed documentation for each
of the four quantum backends containing information
on connectivity, coherence times, and gate application
time. Lastly, we mention the IBM ) experience web-
site and user guides. The website contains a graphi-
cal quantum circuit interface where users can drag and
drop gates onto the circuit, which is useful for learning
about quantum circuits. The user guides contain more
instruction on quantum computing and the Qiskit pro-
gramming language.

Syntax The syntax for Qiskit can be seen in the fol-
lowing example program. In contrast to pyQuil, one
has to explicitly allocate quantum and classical regis-
ters. Below, we show the program for the random bit
circuit:

1 # random bit

generator circuit in Qiskit
qiskit import QuantumRegister,
ClassicalRegister , QuantumCircuit ,

from
execute

qreg = QuantumRegister (1)

creg = ClassicalRegister (1)

qcircuit = QuantumCircuit(qreg, creg)
gqcircuit .h(qreg[0])

qcircuit . measure(qreg[0], creg[0])
result = execute(qcircuit , backend=’

local_gasm_simulator’, shots=1).result ()
print (result.get_counts())

Listing 4: Qiskit code for a random bit generator.

In line 2 we import the tools to create quantum and
classical registers, a quantum circuit, and a function to
execute that circuit. We then create a quantum regis-
ter with one qubit (line 4), classical register with one
bit (line 5), and a quantum circuit with both of these
registers (line 6). Now that we have allocated quantum
and classical registers, we begin providing instructions
to construct the circuit: in line 8, we do a Hadamard
gate to the zeroth qubit in our quantum register (which
is the only qubit in the quantum register); in line 9,
we measure this qubit into the classical bit indexed by
zero in our classical register (which is the only bit in the
classical register)®. Now that we have built a quantum
circuit, we execute it in line 11 with one “shot” (the
same as a “trial” in pyQuil—the number of times to
run the circuit) and print out the result in line 12. By
printing result.get_counts(), we print the “counts” of the
circuit—that is, a dictionary of outputs and how many
times we received each output. For our case, the only
possible outputs are 0 or 1, and a sample output of the
above program is {'0": 1}, indicating that we measured
0 one time (and measured 1 zero times). (Note that the
default number of shots in Qiskit is 1024.)

Quantum Language OpenQASM (open quantum
assembly language [27]) is the quantum language that
provides instruction to the actual quantum devices,
analogous to Quil and the quantum devices of Forest.
The general syntax of OpenQASM is gate qubit where
gate specifies a quantum gate operation and qubit labels
a qubit. Qiskit has a feature for generating OpenQASM
code from a circuit. In the above random bit circuit ex-
ample, we could add the line

print (geircuit.qasm())

8We could just declare a single qubit and a single classical
bit for this program instead of having a register and referring
to (qu)bits by index. For larger circuits, it is generally easier
to specify registers and refer to (qu)bits by index than having
individual names, though, so we stick to this practice here.
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Figure 3: A schematic diagram showing the topology of IB-
MQXS5, taken from [32]. Directional arrows show entanglement
capabilities. For example, we could perform the operation (in
QASM) cx Q1, Q2 but not the operation cx Q2, Q1. To do
the latter, a compiler translates the instruction into equivalent
gates that are performable in the topology and gate set.

at the end to produce the QASM code for the circuit,
shown below:

. OPENQASM 2.0;

[N}

include ”qelibl.inc”;
qreg qO0[1];
creg c0[1];

5 h q0[0];

; measure q0[0] —> c0[0];

Listing 5: OpenQASM code for a random bit generator.

The first two lines are included in every QASM file.
Line 3 (4) creates a quantum (classical) register, and
lines 5 and 6 give the instructions for the circuit. It is
possible to write small circuits like this directly in Open-
QASM, but for larger circuits it is of course easier to
have the tools in Qiskit to efficiently program quantum
computers.

Quantum Hardware There is a vast amount of doc-
umentation for the quantum backends supported by
Qiskit. These devices include IBMQX2 (5 qubits), IB-
MQX4 (5 qubits), IBMQX5 (16 qubits), and QS1-1 (20
qubits, usable only by members of the IBM Q network).
Documentation for each is available on GitHub. We dis-
cuss in detail IBMQXS5 in Section 3.2, the topology of
which is shown in Figure 3.

Simulator IBM includes several quantum circuit sim-
ulators that run locally or on cloud computing re-
sources. These simulators include a local unitary
simulator—which applies the entire unitary matrix
of the circuit and is limited practically to about 12
qubits—and a state vector simulator—which performs
the best locally and can simulate circuits of up to about
25 qubits. For now we just quote qubit numbers, but
we discuss the performance of the state vector simulator
and compare it to other simulators in Section 3.4.

2.3 ProjectQ

ProjectQ is an open-source quantum software platform
for quantum computing that features connectivity to

N

3 python —m pip

IBM’s quantum backends, a high performance quan-
tum computer simulator, and several library plug-ins.
The first release of ProjectQ was developed by Thomas
Héner and Damien S. Steiger in the group of Matthias
Troyer at ETH Ziirich, and it has since picked up more
contributors. We refer to both the quantum software
platform and the quantum programming language as
ProjectQ below.

ProjectQ Overview

Institution ETH Zurich
First Release v0.1.0 on Jan 3, 2017
Version v0.3.6
Open Source? v
License Apache-2.0
Homepage Home
Github Git
Documentation Docs, Example
Programs, Paper
OS Mac, Windows, Linux
Requirements Python 2 or 3
Classical Host Python
Language
Quan]‘l::;:r:lg.Prog. ProjectQ
Quantum Language —
no dedicated
Quantum
Hardware hardware, can connect
to IBM backends
Simulator ~28 qubits locally
Draw circuits, connect
to IBM backends,
Features . .
multiple library
plug-ins

Requirements and Installation A current version
of Python, either 2.7 or 3.4+, is required to install Pro-
jectQ. The documentation contains detailed informa-
tion on installation for each operating system. In our
environment, we do the recommended pip install

python —m pip install —user projectq

to successfully install the software (as a user). To in-

stall via the source code, we can run the following at a

command line:

git clone https://github.com/ProjectQ—Framework
/ProjectQ

cd projectq

install —user

As with previous programs, this method is recom-
mended for users who may want to contribute to the

source code. For instructions on doing so, see the con-
tribution guidelines on the ProjectQ GitHub page.
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Documentation and Tutorials ProjectQ has very
good documentation on installation. However, we find
the remaining documentation to be a little sparse. The
online tutorial provides instruction on basic syntax and
example quantum programs (random bits, teleporta-
tion, and Shor’s factoring algorithm). The rest is the
code documentation/reference with information on the
structure of the code and each additional module, in-
cluding functions and classes. The papers [21, 22] are a
good reference and resource, but it is more likely that
the online documentation will be more up to date.

Syntax The syntax of ProjectQ is clear and succinct.
The notation for applying gates to qubits is meant to
resemble Dirac notation by inserting a vertical line be-
tween them. The general construction is operation |
qubit, for example H|0). An example program produc-
ing a random bit is shown below.

# random bit generator circuit
from projectq import MainEngine
import projectq.ops as ops

in ProjectQ

5 eng = MainEngine ()

10

gbits = eng.allocate_qureg (1)

ops.H |
ops . Measure |

gbits [0]
gbits [0]

eng . flush ()
print (int (gbits [0]))

Listing 6: ProjectQ code for a random bit generator.

In line 2, we import the necessary module to make
a quantum circuit, and in line 3 we import gate op-
erations. In line 5 we allocate an engine from the
MainEngine, and in line 6 we allocate a one qubit regis-
ter. In lines 8 and 9 we provide the circuit instructions:
first do a Hadamard gate on the qubit in the register in-
dexed with a 0, then measure this qubit. This is where
the “quantum syntax” of the Dirac notation appears
within the quantum programming language. We then
flush the engine which pushes it to a backend and en-
sures it gets evaluated/simulated. To mimic the be-
havior of trials or shots as in pyQuil or Qiskit above,
one could wrap lines 6 through 12 in a for loop for
the desired number of repetitions. Unlike pyQuil and
Qiskit, in ProjectQ one does not specify a classical reg-
ister when making a measurement. Instead, when we
measure gbits[0] in line 9, we get it’s value by convert-
ing it to an int when we print it out in line 12. (Trying
to convert an un-measured qubit to an int throws a No-
tYetMeasuredError in ProjectQ.) An example output of
the program would be printing 0 to the console.

Quantum Language As there is no ProjectQ-
specific quantum backend, ProjectQ does not have its

own dedicated quantum language. If one is using Pro-
jectQ in conjunction with an IBM backend, the code will
eventually get converted to OpenQASM, IBM’s quan-
tum assembly language.

Quantum Hardware ProjectQ does not have its
own dedicated quantum computer. One is able to use
IBM’s quantum backends when using ProjectQ, how-
ever.

Simulator ProjectQQ comes with a fast simulator
written in C++4, which will be installed by default un-
less an error occurs, in which case a slower Python simu-
lator will be installed. Additionally, ProjectQ includes
a ClassicalSimulator for efficiently simulating stabilizer
circuits—i.e., circuits that consist of gates from the nor-
malizer of the Pauli group, which can be generated from
Hadmard, CNOT, and phase gates [28]. This simula-
tor is able to handle thousands of qubits to check, e.g.,
Toffoli adder circuits for specific inputs. However, sta-
bilizer circuits are not universal, so we focus our bench-
mark and testing on the C++ Simulator.

ProjectQ’s C++ Simulator is sophisticated and fast.
On the author’s computer (the maximum qubit number
is limited by the user’s local memory, as mentioned), it
can handle circuits with 26 qubits of depth 5 in under
a minute and circuits of 28 circuits of depth 20 in just
under ten minutes. For full details, see section 3.4 and
Figure 6.

ProjectQ in other Platforms ProjectQ is well-
tested, robust code and has been used for other plat-
forms mentioned in this paper. Specifically, pyQuil con-
tains ProjectQ code [29], and the kernels of Microsoft’s
QDK simulator are developed by Thomas Héner and
Damian Steiger at ETH Zurich [30], the original au-
thors of ProjectQ. (Note that this does not necessarily
mean that the QDK simulator achieves the performance
of the ProjectQ C++ simulator as the enveloping code
could diminish performance.)

2.4  Quantum Development Kit

Unlike the superconducting qubit technology of Rigetti
and IBM, Microsoft is betting highly on topological
qubits based on Majorana fermions. These particles
have recently been discovered [31] and promise long co-
herence times and other desirable properties, but no
functional quantum computer using topological qubits
currently exists. As such, Microsoft currently has no
device that users can connect to via their Quantum De-
velopment Kit (QDK), the newest of the four quantum
software platforms featured in this paper. Nonetheless,
the QDK features a new “quantum-focused” language
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called Q# that has strong integration with Visual Stu-
dio and Visual Studio Code and can simulate quantum
circuits of up to 30 qubits locally. This pre-release soft-
ware was first debuted in January of 2018 and, while
still in alpha testing, is available on macOS, Windows,
and Linux.

QDK Overview

Institution Microsoft
. 0.1.1712.901 on Jan 4,
First Release 2018 (pre-release)
. 0.2.1802.2202
Version
(pre-release)
Open Source? v
License MIT
Homepage Home
Github Git
Documentation Docs
OS Mac, Windows, Linux
Visual Studio Code
Requirements (strongly
recommended)
Classical Host
Language G
Quantum Prog.
Lang. Q7
Quantum Language —
Quantum
Hardware o
. 30 qubits locally, 40
Simulator through Azure gloud
Features Built-in algoriFhms,
example algorithms

Requirements and Installation Although it is
listed as optional in the documentation, installing Vi-
sual Studio Code is strongly recommended for all plat-
forms. (In this paper, we only use VS Code, but Visual
Studio is also a possible framework. We remain agnos-
tic as to which is better and use VS Code as a matter
of preference.) Once this is done, the version of the
QDK can be installed by entering the following at a
Bash command line:

dotnet new —i ” Microsoft .Quantum.

ProjectTemplates::0.2 —x”

To get QDK samples and libraries from the GitHub
repository (strongly recommended for all and especially
those who may wish to contribute to the QDK), one can
additionally enter:
git clone https://github.com/Microsoft/Quantum.

it
> cd Qiantum
code

Documentation and Tutorials The above code
samples and libraries are a great way to learn the Q#
language, and the online documentation contains in-
formation on validating a successful install, running a
first quantum program, the quantum simulator, and the
Q% standard libraries and programming language. This
documentation is verbose and contains a large amount
of information; the reader can decide whether this is a
plus or minus.

Syntax The syntax of Q# is rather different from the
previous three languages. It closely resembles C# and
is more verbose than Python. Shown below is an opera-
tion, the analogue of a function in Python, for the same
random bit generator circuit that we have shown for all
languages. This operation assumes the operation Set is
defined, which sets a qubit into a given state.

// random bit generator circuit in Q#

operation random () : Int
{
body
{
mutable measured = 0;

using (qubits = Qubit[1])

Set (Zero, qubits[0]) ;
H(qubits [0]) ;
let res =M (qubits[0]) ;

// get the measurement outcome
if (res == One)
{

}
Set (Zero, qubits[0]);

}

// return the measurement outcome
return measured ;

set measured = 1;

Listing 7: Q# code for a random bit generator.

The use of brackets and keywords can perhaps make
this language a little more difficult for new users to
learn/read, but at its core the code is doing the same
circuit as the previous three examples. In line 2 we
define an operation (a callable routine with quantum
operations) that inputs nothing and returns an integer.
Line 4 defines the body of the operation, in which we
first initialize the measurement outcome to be zero (line
6) then get a qubit for the circuit (line 7). In line 9, we
set the qubit to be the Zero state, perform a Hadamard
gate in line 10, then measure the qubit in line 11. Lines
14-17 then grab the measurement outcome which is re-
turned from the operation in line 21. (Line 18 sets the
qubit back to the Zero state, which is required in Q#.)
In the Quantum Development Kit, this operation would
be saved into a .gs file which contains the Q# language.
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A separate .cs “driver” file would be used to call the op-
eration, and another .csproj file stores additional meta-
data. In total, these three files result in about 60 lines
of code. For brevity, we only show the main operation
written in Q# in the .gs file here.?

Here, we note that the QDK is striving for a high-
level language that abstracts from hardware and makes
it easy for users to program quantum computers. As an
analogy, one does not specifically write out the adder
circuit when doing addition on a classical computer—
this is done in a high level framework (a + b), and the
software compiles this down to the hardware level. As
the QDK is focused on developing such standards for
algorithms involving many gates and qubits, measur-
ing ease of writing code based on simple examples such
as a random bit generator and the teleportation circuit
(see Appendix D) may not do justice to the overall lan-
guage syntax and platform capabilities, but we include
these programs to have some degree of consistency in
our analysis.

Quantum Language/Hardware As mentioned,
the QDK has no current capability to connect to a real
quantum computer, and accordingly does not have a
quantum assembly /instruction language.

Simulator On the user’s local computer, the QDK
includes a quantum simulator that can run circuits of
up to 30 qubits. As mentioned above, kernels for QDK
simulators were written by developers of ProjectQ, so
performance can be expected to be similar to ProjectQ’s
simulator performance. (See Section 3.4.) Through a
paid subscription service to Azure cloud, one can get
access to high performance computing that enables sim-
ulation of more than 40 qubits. In the QDK documen-
tation, however, there is currently little instruction on
how to do this.

Additionally, the QDK provides a trace simulator
that is very effective for debugging classical code that
is part of a quantum program as well as estimating the
resources required to run a given instance of a quan-
tum program on a quantum computer. The trace sim-
ulator allows various performance metrics for quantum
algorithms containing thousands of qubits. Circuits of
this size are possible because the trace simulator exe-
cutes a quantum program without actually simulating
the state of a quantum computer. A broad spectrum of
resource estimation is covered, including counts for Clif-
ford gates, T-gates, arbitrarily-specified quantum oper-
ations, etc. It also allows specification of the circuit

9A complete program with all three files can be found on the
GitHub site https://github.com/rmlarose/qsoftware-code for the
most recent version of the QDK.

depth based on specified gate durations. Full details of
the trace simulator can be found in the QDK documen-
tation online.

3 Comparison

Now that the basics of each platform have been covered,
in this section we compare each on additional aspects in-
cluding library support, quantum hardware, and quan-
tum compilers. We also enumerate some notable and
useful features of each platform.

3.1 Library Support

We use the term “library support” to mean examples
of quantum algorithms (in tutorial programs or in doc-
umentation) or a specific function for a quantum algo-
rithm (e.g., language.DoQuantumFourierTransform(...)).
We have already touched on some of these in the pre-
vious section. A more detailed table showing library
support for the four software platforms is shown in Fig-
ure 4.

We remark that any algorithm, of course, can be im-
plemented on any of these platforms. Here, we are high-
lighting existing functionality, which may be beneficial
for users who are new to the field or even for experi-
enced users who may not want to program everything
themselves.

As can be seen from the table, pyQuil, Qiskit, and the
QDK have a relatively large library support. ProjectQ
contains FermiLib, plugins for FermiLib, as well as com-
patibility with OpenFermion, all of which are open-
source projects for quantum simulation algorithms. All
examples that work with these frameworks naturally
work with ProjectQ. Microsoft’s QDK is notable for
its number of built-in functions performing these algo-
rithms automatically without the user having to explic-
itly program the quantum circuit. In particular, the
QDK libraries offer detailed iterative phase estimation,
an important procedure in many algorithms that can
be easily realized on the QDK without sacrificing adap-
tivity. Qiskit is notable for its large number of tutorial
notebooks on a wide range of topics from fundamental
quantum algorithms to didactic quantum games.

3.2  Quantum Hardware

In this section we discuss only pyQuil and Qiskit, since
these are the only platforms with their own dedicated
quantum hardware. Qubit quantity is an important
characterization in quantum computers, but equally
important—if not more important—is the “qubit qual-
ity.” By this, we mean coherence times (how “long
qubits live” before collapsing to bits), gate application
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Algorithm Qiskit | ProjectQ | QDK
Random  Bit /(T) /(T) v/ (T) v/ (T)
Generator
Teleportation v (
Swap Test v (
Deutsch-Jozsa v (
Grover’s v (
Algorithm
Quantum v/ (T) v/ (T) v/ (B) v (B)
Fourier
Transform
Shor’s v/ (T) /(D)
Algorithm
Bernstein v/ (T) v/ (T) v/ (T)
Vazirani
Phase v/ (T) v/ (T) v (B)
Estimation
Optimization/ v/ (T) v/ (T)
QAOA
Simon’s v/ (T) v/ (T)
Algorithm
Variational /(T) /(T) v/ (P)
Quantum
Eigensolver
Amplitude v/ (T) v/ (B)
Anmplification
Quantum v (T)
Walks
Ising Solver /(T) v/ (T)
Quantum Gra- /(T)
dient Descent
Five Qubit v/ (B)
Code
Repetition v (T)
Code
Steane Code v/ (B)
Draper Adder v/ (T) v/ (D)
Beauregard /(T) /(D)
Adder
Arithmetic v (B) /(D)
Fermion v/ (T) v/ (T) v/ (P)
Transforms
Trotter /(D)
Simulation
Electronic v/ (P)
Structure
(FCI, MP2,
HF, etc.)
Process /(T) /(T) /(D)
Tomography
Vaidman De- v (T)
tection Test

/(1) /(1) /(1)

)
)
) /(1) /(T)
) v (T) v (T) /(B)

Figure 4: A table showing the library support for each of the
four software platforms. By “library support,” we mean a tuto-
rial notebook or program (T), an example in the documenta-
tion (D), a built-in function (B) to the language, or a supported
plug-in library (P).

times, gate error rates, and the topology/connectivity
of the qubits. Ideally, one would have infinite coher-
ence times, zero gate application time, zero error rates,
and all-to-all connectivity. In the following paragraphs
we document some of the parameters of IBMQX5 and
Agave, two of the largest publicly available quantum
computers. For full details, please see the online docu-
mentation of each platform.

IBMQX5 IBMQX5 is a superconducting qubit quan-
tum computer with nearest neighbor connectivity be-
tween its 16 qubits (see Figure 3). The minimum coher-
ence (T2) time is 3115 microseconds on qubit 0 and the
maximum is 89 4+ 17 microseconds on qubit 15. A sin-
gle qubit gate takes 80 nanoseconds to implement plus
a 10 nanosecond buffer after each pulse. CNOT gates
take about two to four times as long, ranging from 170
nanoseconds for cx q[6], q[7] to 348 nanoseconds for cx
q[3], a[14]. Single qubit gate fidelity is very good at over
99.5% fidelity for all qubits (fidelity = 1 - error). Multi-
qubit fidelity is above 94.9% for all qubit pairs in the
topology. The largest readout error is rather large at
about 12.4% with the average being around 6%. These
statistics were obtained from [32].

Lastly, we mention that to use any available quantum
computer by IBM, the user submits his/her job into a
queue, which determines when the job gets run. This
is in contrast to using Agave by Rigetti, in which users
have to request access first via an online form, then
schedule a time to get access to the device to run jobs.

Agave The Agave quantum computer consists of 8
superconducting transmon qubits with fixed capacitive
coupling and connectivity shown in Figure 2. The min-
imum coherence (T2) time is 9.2 microseconds on qubit
1 and the maximum is 15.52 microseconds on qubit 2.
The time to implement a Controlled-Z gate is between
118 and 195 nanoseconds. Single qubit gate fidelity is at
an average of 96.2% (again, fidelity = 1 - error) and min-
imum of 93.2%. Multi-qubit gate fidelity is on average
87% for all qubit-qubit pairs in the topology. Readout
errors are unknown. These statistics can be found in
the online documentation or through pyQuil.

3.3 Quantum Compilers

Platforms that provide connectivity to real quantum
devices must necessarily have a means of translating a
given circuit into operations the computer can under-
stand. This process is known as compilation, or more
verbosely quantum circuit compilation/quantum com-
pilation. Each computer has a basis set of gates and a
given connectivity—it is the compiler’s job to take in
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Figure 5: An example of a quantum circuit (top left) compiled by pyQuil for Rigetti's 8 qubit Agave processor (top right), and
the same circuit compiled by Qiskit for IBM’s 16 qubit IBMQX5. The qubits used on Agave are 0, 1, and 2 (see Figure 2), and
the qubits used on IBMQX5 are 0, 1, and 2. Note that neither compiler can directly implement a Hadamard gate H but produces
these via products of rotation gates R, and R.. A CNOT gate can be implemented on IBMQXS5, but not on Agave—here, pyQuil
must express CNOT in terms of Controlled-Z and rotations. The images of these circuit diagrams were made with ProjectQ.

a given circuit and return an equivalent circuit obey-
ing the basis set and connectivity requirements. In this
section we only discuss Qiskit and Rigetti, for these are
the platforms with real quantum computers.

The IBMQX5 basis gates are ug, ug, ug, and CNOT

where
Ul()\) = |:(]j e(i))\:| )
1 _ A
uz (P, \) = NG [ezl'qs ei(/\e+¢):| , and
_ [ cos(6/2)  —ePsin(6/2)
uz(0, ¢, \) = [em sin(0/2) e +e) 008(9/2)] '

Note that u; is equivalent to a frame change R, (6) up
to a global phase and us and ug are a sequence of frame
changes and pulses R, (7/2)

uz($,A) = Rz (¢ + m/2) Ro(m/2) R (A — /2),

uz(0,6,A) = R, (¢ + 3m) R (7/2)R.(0 + )Ry (7/2) R, (N)

with the rotation gates being the standard

_ —ioxj2 _ | cos0/2  —isinf/2
Rw(e) =e = |:’L sin 0/2 cos 0/2 ,
» e—i0/2

where X and Z are the usual Pauli matrices. On the
IBM quantum computers, R,(0) is a “virtual gate,”
meaning that nothing is actually done to the qubit phys-
ically. Instead, since the qubits are naturally rotating
about the z-axis, doing a z rotation simply amounts to
changing the clock, or frame, of the internal (classical)
software keeping track of the qubit.

The topology of IBMQXS5 is shown in Figure 3. This
connectivity determines which qubits it is possible to

natively perform CNOT gates on, where a matrix repre-
sentation of CNOT in the computational basis is given
by

10 0 0
01 00
CNOT := 000 1
00 10

Note that it is possible to perform CNOT between any
qubits in Qiskit, but when the program is compiled
down to the hardware level, the Qiskit compiler con-
verts this into a sequence of CNOT gates allowed in the
connectivity. The Qiskit compiler allows one to spec-
ify an arbitrary basis gate set and topology, as well as
providing a set of parameters such as noise.

For Rigetti’s 8 qubit Agave processor, the basis gates
are R, (km/2) for k € Z, R,(0), and Controlled-Z. The
single qubit rotation gates are as above, and the two
qubit Controlled-Z (CZ) is given by

10 0 O
01 0 O
cz= 001 O
0 0 0 -1

The topology of Agave is shown in Figure 2. Like Qiskit,
pyQuil’s compiler also allows one to specify a target
instruction set architecture (basis gate set and computer
topology).

An example of the same quantum circuit compiled by
both of these platforms is shown in Figure 5. Here, with
pyQuil we compile to the Agave specifications and with
Qiskit we compile to the IBMQX5 specifications. As
can be seen, Qiskit produces a longer circuit (i.e., has
greater depth) than pyQuil. It is not appropriate to
claim one compiler is superior because of this example,
however. Circuits that are in the language IBMQX5
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understands would naturally produce a shorter depth
circuit than pyQuil, and vice versa. It is known that
any quantum circuit (unitary matrix) can be decom-
posed into a sequence of one and two qubit gates (see,
e.g., [34]), but in general this takes exponentially many
gates. It is currently a question of significant inter-
est’%o find an optimal compiler for a given topology.

3.4 Simulator Performance

Not all quantum software platforms provide connectiv-
ity to real quantum computers, but many platforms in-
clude a quantum circuit simulator. This is a program
that runs on a classical CPU that mimics (i.e., simu-
lates) the evolution of a quantum computer. As with
quantum hardware, it is important to look at not just
how many qubits a simulator can handle but also how
quickly it can process them, in addition to other param-
eters like adding noise to emulate quantum computers,
etc.

Simulator performance depends on the particular
strategy used. Acting on an n qubit state with a 2™ x 2"
matrix requires significantly more memory than just
storing the state vector (wavefunction) and acting with
one/two qubit gates at a time [35]. Performance can
vary between simulators using the same strategy due
to minor differences in program execution, what un-
derlying libraries are used to perform matrix algebra,
whether multi-threading is used, etc. In this section,
we evaluate the performance of Qiskit’s local state vec-
tor simulator and ProjectQ’s local C++ simulator using
the program listed in Appendix C. Both of these pro-
grams use the general strategy of only storing the state
vector of the system. First, we mention the performance
of pyQuil’s QVM simulator.

pyQuil The Rigetti simulator, called the Quantum
Virtual Machine (QVM), does not run on the users local
computer but rather through computing resources in
the cloud. As mentioned, this requires an API key to
connect to. Most API keys give access to 30 qubits
initially, and more can be requested. The author is
able to simulate a 16 qubit circuit of depth 10 in 2.61
seconds on average. A circuit size of 23 qubits of depth
10 was simulated in 56.33 seconds, but no larger circuits
could be simulated because the QVM terminates after
one minute of processing with the author’s current API
access key.

The QVM contains sophisticated and flexible noise
models to emulate the evolution of an actual quan-

10IBM’s contest ending May 31, 2018, the “quantum developer
challenge,” is for writing the best compiler code in Python or
Cython that inputs a quantum circuit and outputs an optimal
circuit for a given topology.

tum computer. This is key for developing short depth
algorithms on near term quantum computers, as well
as for predicting the output of a particular quantum
chip. Users can define arbitrary noise models to test
programs, in particular define noisy gates, add decoher-
ence noise, and model readout noise. For full details and
helpful example programs, see the Noise and Quantum
Computation section of pyQuil’s documentation.

Qiskit Qiskit has several quantum simulators avail-
able as backends: the local_gasm_simulator, the lo-
cal_state_vector_simulator, the ibmqg_gasm_simulator, the
local_unitary_simulator, and the local_clifford_simulator.
The differences in these simulators is the strategy of
simulating quantum circuits. The unitary simulator
implements basic (unitary) matrix multiplication and
is limited quickly by memory. The state vector sim-
ulator does not store the full unitary matrix but only
the state vector and single/multi qubit gate to apply.
Both methods are discussed in [35], and [36, 37, 38]
contains details on other techniques. Similar to the
discussion of the ClassicalSimulator in ProjectQ, the lo-
cal_clifford_simulator is able to efficiently simulate stabi-
lizer circuits, which are not universal.

Using the local unitary simulator, a circuit of 10
qubits on depth 10 is simulated in 23.55 seconds.
Adding one more qubit increases this time by ap-
proximately a factor of ten to 239.97 seconds, and at
12 qubits the simulator timed out after 1000 seconds
(about 17 minutes). This simulator quickly reaches long
simulation times and memory limitations because for n
qubits, the unitary matrix of size 2™ x 2™ has to be
stored in memory.

The state vector simulator significantly outperforms
the unitary simulator. We are able to simulate circuits
of 25 qubits in just over three minutes. Circuits of up
to 20 qubits with depth up to thirty are all simulated
in under five seconds. See Figures 6 and 7 for complete
details.

ProjectQ ProjectQ comes with a high performance
C++ simulator that performed the best in our local
testing. The maximum size circuit we were able to suc-
cessfully simulate was 28 qubits, which took just under
ten minutes (569.71 seconds) with a circuit of depth 20.
For implementation details, see [21]. For the complete
performance and testing, see Figures 6 and 7.

QDK Although we do not test the QDK simulators
here, we note that performance can be expected to be
similar to performance of ProjectQ’s simulators as the
underlying kernels for the QDK simulator were devel-
oped by the ProjectQ developers [30].
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Figure 6: Plots of the performance of Qiskit's local state vec-
tor simulator (top) and ProjectQ’'s C++ simulator (bottom),
showing runtime in seconds for a given number of qubits (hor-
izontal axis) and circuit depth (vertical axis). Darker green
shows shorter times and brighter yellow shows longer times
(color scales are not the same for both plots). For more details
on the testing, see Appendix C.
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Figure 7: The circuit used for testing the ProjectQ C++ simu-
lator and Qiskit local state vector simulator, shown here on four
qubits. In the actual testing, the pattern of Hadamard gates,
VX gates, then the sequence of CNOT gates defines one level
in the circuit. This pattern is repeated until the desired depth
is reached. This image was produced using ProjectQ.

3.5 Features

A nice feature of Forest is Grove, a separate GitHub
repository that can be installed containing tutorials and
example algorithms using pyQuil. Rigetti is also build-
ing a solid community of users as exemplified by their
dedicated Slack channel for Rigetti Forest. The Quil
compiler and it’s ability to compile for any given in-
struction set architecture (topology and gate basis) are
also nice features. Lastly, pyQuil is compatible with
OpenFermion [39], an open-source Python package for
compiling and analyzing quantum algorithms to simu-
late fermionic systems, including quantum chemistry.

Qiskit is also available in JavaScript and Swift for
users who may have experience in these languages. For
beginners, Python is a very good starter programming
language because of its easy and intuitive syntax. Like
Grove, Qiskit also contains a dedicated repository of
example algorithms and tutorials. Additionally, the
Aqua library in Qiskit contains numerous algorithms
for quantum chemistry and artificial intelligence. This
library can be run through a graphical user interface or
from a command line interface. IBM is second to none
for building an active community of students and re-
searchers using their platform. The company boasts of
over 3 million remote executions on cloud quantum com-
puting resources using Qiskit run by more than 80,000
registered users, and there have been more than 60 re-
search publications written using the technology [33].
Qiskit also has a dedicated Slack channel with the abil-
ity to see jobs in the queue, a useful feature for deter-
mining how long a job submission will take to run. Ad-
ditionally, the newest release of Qiskit contains a built-
in circuit drawer.

Likewise, ProjectQ contains a circuit drawer. By
adding just a few lines of code to programs, one can
generate TikZ code to produce high quality TEX images.
All quantum circuit diagrams in the main text of this
paper were made using ProjectQ. The local simulator
of ProjectQ is also a great feature as it has very high
performance capabilities. Although ProjectQ has no
dedicated quantum hardware of its own, users are able
to connect to IBM’s quantum hardware. Additionally,
ProjectQ has multiple library plug-ins including Open-
Fermion, as mentioned above.

The QDK was available exclusively on Windows un-
til it received support on macOS and Linux in Febru-
ary 2018. The capability to implement quantum algo-
rithms without explicitly programming the circuit is a
nice feature of the QDK, and there are also many good
tutorials in the documentation and examples folder for
quantum algorithms. It is also notable that Q# pro-
vides auto-generation features for, e.g., the adjoint or
controlled version of a quantum operation. In a more
general sense, the QDK emphasizes and offers impor-
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tant tools for productive quantum algorithm develop-
ment including the testing of quantum programs, esti-
mating resource requirements, programming on differ-
ent models of quantum computation targeted by differ-
ent hardware, and ensuring the correctness of quantum
programs at compile time. These aspects are key in
moving towards high-level quantum programming lan-
guages.

4 Discussion and Conclusions

At this point, we hope that the reader has enough infor-
mation and understanding to make an informed decision
of what quantum software platform(s) is (are) right for
him/her. A next step is to begin reading the documen-
tation of a platform, install it, and begin coding. In a
short amount of time one can begin running algorithms
on real quantum devices and begin researching/devel-
oping applications in their respective field.

For those who may be still undecided, we offer the fol-
lowing subjective suggestions. As Python is generally
an easier language to pick up than C-style languages,
either Forest, Qiskit, or ProjectQ may be more appro-
priate for beginners. For those with experience in C#,
the Quantum Development Kit may be easier to pick up.
Forest, Qiskit, and the QDK all contain good resources
for learning about quantum computing. To test algo-
rithms on real quantum computers, Forest and Qiskit
are the obvious choices. ProjectQ is great for simulating
algorithms on a large number of qubits.

Again, these are simply suggestions and we encour-
age the reader to make his/her own choice. All plat-
forms are significant achievements in the field of quan-
tum computing and excellent utilities for students and
researchers to program real quantum computers. As a
final remark, we note that there are additional quantum
software packages being developed, a few of which are
mentioned in Appendix A and Appendix B.
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A Cirg

Cirq is a platform for working with quantum circuits
on near-term quantum computers that is very similar
in purpose to the four platforms reviewed in the main
text??.In this section we analyze Cirq in a similar fash-
ion to these platforms. It should be noted that Cirq
is still in alpha testing and will likely release breaking
changes in future releases. The following description is
for version 0.4.0.

Cirq is available on all three major operating systems
and requires a working installation of Python 3. The
easiest way to install Cirq is by typing

pip install cirq

at a command line. Alternatively, the source code can
be downloaded from [1]. This method is recommended
for users who may wish to contribute to the platform,
for which detailed contribution guidelines exist.

The documentation for Cirq is noticeably more sparse
than other platforms, especially in terms of tutorials
and examples. Currently, there exists a detailed tutorial
on implementing the variational quantum eigensolver
using Cirq and a few other tutorial scripts on selected
topics. The documentation also contains information on
using circuits, gates, and quantum computer simulators.

To get an idea for the language syntax, we include
the same random bit generator program in Cirq below:

import cirq

[cirq.LineQubit (0) ]
cirq. Circuit ()

qbits =
circ =

circ.append(cirq .H(gbits [0]))
circ.append(cirq.measure(gbits[0], key="z")

simulator = cirq.Simulator ()

result = simulator.run(circ, repetitions=1)

Listing 8: Cirq code for a random bit generator.

In this short program, we import the Cirq library in
line 2, then create a qubit register and circuit in lines 4-
5. Qubit registers are stored simply as lists (more gener-
ally, iterables) of qubits. Since Cirq is focused on near-
term quantum computing, qubits come as LineQubits or
GridQubits, as these are common constructions in near-
term architectures. In line 7 we apply a Hadamard gate
to the qubit, and in line 8 we measure the qubit in the
computational basis. (The key is an optional argument
that is useful for obtaining measurement results.) Fi-
nally, in line 10 we get a quantum computer simulator
and use it to run the circuit in line 12 for a total of

IThe reason Cirq is not included in the main text is be-
cause it was released after the first version of this paper. For
an article in which Cirq code can be run interactively, see
https://github.com/rmlarose/cirqg-overview.

one repetition (the same as trials or shots in pyQuil or
Qiskit). The outcome of the circuit could then be ob-
tained from result.histogram(key="z"), which would re-
turn a Counter object of key-value pairs corresponding
to measurement outcome and frequency of occurrence.
An example output could thus be Counter(1: 1), indi-
cating that the bit 1 was measured one time.

As expressed in the documentation, Cirq will be an
interface for researchers to use their 22 qubit Foxtail
and 72 qubit Bristlecone quantum computers. How-
ever, these are not yet available to general users over
the platform. As such, Cirq does not currently have its
own quantum language for communicating with quan-
tum processors. (There is functionality to output Open-
QASM code for running on IBM’s quantum computers,
however.)

As shown in the random bit generator program above,
Cirq does include quantum computer simulators. The
Simulator used above works for generic gates that imple-
ment their unitary matrix, and there is also an Xmon-
Simulator that is specialized to the native gate set of
Google’s quantum computers. Neither of these simu-
lators contain noise capabilities, but both are able to
emulate the (noiseless) behavior of running on a quan-
tum computer or access the wavefunction for debugging
purposes.

Notable features of Cirq include built-in utilities for
optimizing quantum circuits by reducing the number
of gates, automatic hardware-specific compilation, and
several useful tools for working with variational hybrid
algorithms such as parameterized gates and the ability
to simulate a “sweep” of the parameters, i.e. a particu-
lar set of angles in parameterized gates. This simplifies
and can speed up the optimization process because a
new quantum circuit does not have to be created after
every optimization pass.

Other features include a text-based circuit drawer
useful for debugging and the ability to print out quan-
tum states in Dirac notation. Moreover, Cirq allows
programmers to define Schedules and Devices to work
at the lowest level of algorithm execution, for example
specifying the duration of pulses and gates. The ability
to simulate noisy quantum circuits is being developed
in Cirq and will likely be released in future versions.

For comparison with other languages in Appendix D,
we include a complete program in Cirq for the quantum
teleportation algorithm here. To the author’s knowl-
edge, there does not exist an easy way to perform clas-
sical conditional operations in Cirq such as those re-
quired by the teleportation algorithm. An alternative
approach using Cirqg’s ability to compute reduced den-
sity matrices is used in the program below.

1 #!/usr/bin/env python3
2> # —x— coding:

utf—8 —*—

Accepted in {Yuantum 2019-03-15, click title to verify

18


https://github.com/rmlarose/cirq-overview

+

i #

5 # teleport .py

. #

s #

s # simulate the

# Teleportation circuit in Cirq.

3k

Ik

# imports

3k

import cirq

7 # qubits and circuit

#

gbits = [cirq.LineQubit(x) for x in range(3)]
circ = cirq.Circuit ()

# teleportation circuit

#

# perform X to teleport |[1> to qubit three
circ.append(cirq.ops.X(qbits[0]))

# main circuit
circ.append ([cirq.ops.H(gbits [1]),

cirq .ops.CNOT(gbits [1], qbits[2]),
cirq.ops.H(gbits [0])
cirq.ops.CNOT(gbits gbits [1]),

(0],
cirq . measure (gbits [0]) ,
cirq .measure(gbits [1])])
# print the circuit

print (circ)

i
# compute the reduced state of qubit

#

three

5 # get a simulator
; simulator = cirq.google.XmonSimulator ()

circuit with access to the
wavefunction

res = simulator.simulate(circ)

# print out the density matrix, which should be

# ([0, o],

# [0, 1]]

print (res.density_-matrix ([2]))

)

B Other Quantum Software

As mentioned in the main text, it would be counterpro-
ductive to include an analysis of all quantum software
platforms or quantum computing companies. For an
updated and current list, see [17]. Our selections in
this paper were largely guided by the ability for gen-
eral users to connect to and use real quantum devices,
as well as unavoidable factors like the author’s experi-
ence and release date of the software platform. In this

=

appendix, we briefly mention other software platforms.
The first three are predecessors to the quantum software
platforms presented in the main text, and the remain-
ing are other modern quantum software platforms still
being developed.

Quipper Quipper is a functional quantum program-
ming language developed by Peter Selinger, Richard
Eisenberg, et al. [2, 3]. Like pyQuil, Qiskit, and
ProjectQ are embedded into the classical Python pro-
gramming language, Quipper is embedded into Haskell,
a statically typed and purely functional classical lan-
guage.

The Quipper website [2] contains detailed documen-
tation on installation and the language itself. For an
example of syntax, the following code snippet, taken
from [4], writes a function that inputs a Boolean value
(0 or 1), creates a qubit corresponding to this value (|0)
or |1)), and acts on the qubit with the Hadamard gate,
returning the result:
plus_minus Bool —> Circ Qubit
plus_minus b = do
q <— qinit b
r <— hadamard q
return r

A complete description of this program, as well as
many other example programs, can be found in [4].
Quipper has many built-in libraries for quantum com-
puting subroutines and algorithms, for example quan-
tum linear systems, finding unique shortest vectors, and
ground state estimation. The QuipperLib consists of ad-
ditional modules that can be used but is not part of
the Quipper programming language proper. (In this
sense, Quipper and the QuipperLib can be thought of
as a quantum software platform.) Some examples of
libraries include Qram for efficient implementation of
random access memory and QFT which contains an im-
plementation of the Quantum Fourier Transform. See
the documentation for full details and library support
as well as additional features such as abilities to draw
quantum circuits and automatically generate reversible
circuits from ordinary functional programs.

Finally, we mention that Quipper does not currently
provide any support for connecting to quantum com-
puters, though “it was designed to control an actual
(future) quantum computer” [4]. Quipper does have
the ability to simulate classical circuits, stabilizers cir-
cuits, and quantum circuits, however. At the time of
writing, the latest release of Quipper (v0.8) was in 2016

[2].

Scaffold Scaffold is a quantum programming lan-
guage embedded into the classical language C [5]. It
is a pure quantum programming language in that its

Accepted in {Yuantum 2019-03-15, click title to verify

19



main purpose is to assist in writing quantum algorithms,
not necessarily running or simulating them. A typi-
cal Scaffold program has elements familiar to C/C++
programmers—preprocessor directives and a main mod-
ule (function)—as well as elements familiar to quantum
computer scientists—quantum gates and qubit regis-
ters. An example of a simple short quantum program
creating a quantum register and applying a Hadamard
gate is shown below.

#include ”gates.h”
module main () {
int i=0;
qreg qubit [1];
H(qubit [i]) ;

The standard library gates.h includes definitions of
commonly used gates in quantum computing such as
the Hadamard used above. The Scaffold language al-
lows for both “classical data types” (e.g. arrays, structs,
and unions) and “quantum data types” (e.g., qubit reg-
isters, quantum structs, and quantum unions). The
Classical to Quantum Gates module type (c2qg) allows
programmers to give classical descriptions of quantum
instructions at a higher level, making it easier to pro-
gram quantum circuits. For example, one can write a
module for the Toffoli gate in terms of its effect on the
target qubit conditioned on the control qubits, rather
than 15 Hadamard, CNOT, and T gates on these qubits.

Scaffold sits at the highest level of the quantum com-
puting stack and serves as an interface between quan-
tum programmers and quantum compilers. The Scaf-
fCC library [6] is an open-source compiler and sched-
uler written for Scaffold, meant to input quantum al-
gorithms written in Scaffold and output a compiled al-
gorithm, among other utilities. Scaffold programs can
be compiled to OpenQASM and the QX quantum com-
puter simulator’?. At the time of writing, the latest
release of StaffCC is version 4.0.

QCL The QCL (Quantum Computing Language) [7]
is the original quantum programming language and
first, to the author’s knowledge, of its kind. The QCL,
a C-style language last updated in 2014, contains many
data types and other constructs that modern quantum
programming languages inherit, such as qubits, quan-
tum registers, sub-registers, quantum operations, and
so on. The language contains both classical and quan-
tum control flow, “pseudo-classical” operators, and abil-
ities to implement query transformations required for
“black box” algorithms like the standard Deutsch-Jozsa
and Bernstein-Vazirani algorithms. Short example pro-
grams to get an idea for the QCL syntax, as well as

123ee https://qutech.nl/qx-quantum-computer-simulator/.

3 #

s 7

s # engine and qubit

longer programs implementing algorithms like Grover
and Shor, can be found in [8].

Strawberry Fields Developed by the Toronto-based
startup Xanadu, Strawberry Fields is a full-stack quan-
tum software platform for designing, optimizing, and
simulating quantum optical circuits [9]. Xanadu is
developing photonic quantum computers with contin-
uous variable qubits, or “qumodes” (as opposed to
the discrete variable qubits), and though the company
has not yet announced an available quantum chip for
general users, one may be available in the near fu-
ture. Strawberry Fields has a built in simulator us-
ing Numpy and TensorFlow, and a quantum program-
ming language called Blackbird. One can download the
source code from GitHub, and example tutorials can be
found for quantum teleportation, boson sampling, and
machine learning. Additionally, the Xanadu website
https://www.xanadu.ai/ contains an interactive quan-
tum circuit where users can drag and drop gates or
choose from a library of sample algorithms.

C  Testing Simulator Performance

Below is the listing of the program for testing the Pro-
ject@Q CH++ local simulator performance. These tests
were performed on a Dell XPS 13 Developer Edition
running 64 bit Ubuntu 16.04 LTS with 8 GB RAM and
an Intel Core i7-8550U CPU at 1.80 GHz.

#
# imports

from projectq import MainEngine

import projectq.ops as ops

from projectq.backends import Simulator
import sys

import time

#
# number of qubits and depth

5 if len(sys.argv) > 1:

n = int(sys.argv[1])
elge 3

n = 16
if len(sys.argv) > 1:

depth = int (sys.argv([2])
else:

depth = 10

#

register

#

eng = MainEngine (backend=Simulator(gate_fusion=
True), engine_list=[])
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30
31
32
33
34
35
36
38
39
10
11
42
43
14
45
16
17
18
49

50

gbits = eng.allocate_qureg(n)

#

# circuit

# timing — get the start time
start = time.time ()

# random circuit
for level in range(depth):
for q in gbits:
ops.H | q
ops.SqrtX | q
if q != gbits[0]:
ops .CNOT | (q, gbits[0])
# measure
for q in gbits:
ops . Measure | q

# flush the engine

> eng. flush ()

# timing — get the end time

55 runtime = time.time() — start

58

57 # print out the runtime

print (n, depth, runtime)

The circuit, which was randomly selected, is shown
in Figure 7. We remark that the Qiskit simulator was
tested on an identical circuit—we omit the code for
brevity.

D Example Programs: The Teleporta-
tion Circuit

In this section we show programs for the quantum tele-
portation circuit in each of the four languages for a side
by side comparison. We remark that the QDK program
shown is one of three programs needed to run the cir-
cuit, as discussed in the main body. The teleportation
circuit is standard in quantum computing and sends an
unknown state from one qubit—conventionally the first
or top qubit in a circuit—to another—conventionally
the last or bottom qubit in a circuit. Background in-
formation on this process can be found in any stan-
dard quantum computing or quantum mechanics re-
source. This quantum circuit is more involved than
the very small programs shown in the main text and
demonstrates some slightly more advanced features of
each language—e.g., performing conditional operations.
Note that the purpose of quantum teleportation is to
transmit a qubit “intact.” We perform a measurement
on the teleported qubit to verify the expected outcome
is obtained.

For completeness, we include a circuit diagram to
make it clearer what the programs are doing. Unlike

the main body of the text, this figure was made using
the new circuit_drawer released in Qiskit version 0.5.4.

q0p : |0
q0; : |0
q0,: |0
COO -0
(.'01 :0
C02 :0

B

7
XA

7 4
]

-

Figure 8: The teleportation circuit produced with the cir-
cuit_drawer released in Qiskit v0.5.4.
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pyQuil

Qiskit

#!/usr/bin/env python3
# —*— coding: utf-—-8 —x—

#

1
2
3
4
5 # teleport.py

6 #

7 # Teleportation

circuit in pyQuil.

s #

10 #

11 # imports

12 #

14 from pyquil. quil import Program
15 from pyquil import api
16 import pyquil.gates as gate

18 #
o # program and simulator

20 #

qvm = api.QVMConnection ()

1

2

21

22 gqprog = Program ()
23

2

25 #
26 # teleportation circuit
27 F#

20 # perform X to teleport
30 gprog += gates.X(0)

[1> to qubit three

32 # main circuit

33 qprog += [gates.H(1),

34 gates .CNOT(1, 2),
35 gates .CNOT(0, 1),
36 gates .H(0) ,

37 gates .MEASURE(0, 0)

38 gates MEASURE(1, 1)]
10 # conditional operations

11 gprog.if_then (0, gates.Z(2))
12 gprog.if_then (1, gates.X(2))

44 # measure qubit three
45 gprog.measure (2, 2)

47 #

a8 # run the circuit and print the results

49

print (gvm.run (gprog))

# optionally print the quil code
54 print (gprog)

N

NONONN NN NN N

5 oh s s s

[ [N B RS S RS S
et A

4 # —x— coding:

#!/usr/bin/env python3
utf—8 —x—

3k

teleport .py

Teleportation circuit in Qiskit.

imports

#
#
#
#
#
#
#

from qiskit import QuantumRegister,
ClassicalRegister , QuantumCircuit ,
execute

#

# registers and quantum circuit

#

qreg = QuantumRegister (3)
creg = ClassicalRegister (3)
t(

qcircuit = QuantumCircuit (qreg, creg)

#
# do the circuit

#

# perform X to teleport
gcircuit .x(qreg[0])

[1> to qubit three

# main circuit

qcircuit .h(qreg[0])
qcircuit .cx(qreg[1],
qcircuit .cx(qreg[0],
gcircuit .h(qreg[0])
gcircuit . measure(qreg [0],
qcircuit . measure(qreg[1],

qreg [2])
qreg [1])

creg [0])
creg [1])

# conditional operations
qcircuit .z (qreg[2]).c_if(creg[0][0]
qcircuit .x(qreg[2]).c-if (creg[1][0], 1)

# measure qubit three

qcircuit . measure(qreg[2], creg[2])

#

# run the circuit and print the results

#

result = execute(qcircuit , ~’
local_gqasm_simulator’).result ()

counts = result.get_counts ()

print (counts)

# optionally print the gasm code
print (gqcircuit .qasm())

# optionally draw the circuit

from qiskit.tools.visualization
circuit_drawer

circuit_drawer (qgcircuit)

import
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ProjectQ

Quantum Developer Kit

1 #!/usr/bin/env python3
2 # —x— coding: utf—8 —x—

4 #
5 # teleport .py

6 #

7 # Teleportation

circuit in ProjectQ.

s #

10 #

11 # imports
12 #

13 from projectq import MainEngine
14 from projectq.meta import Control
15 import projectq.ops as ops

17 F#

18 # engine and qubit register
19 #

20

21 # engine

22 eng = MainEngine ()

23

24 # allocate qubit register

gbits = eng.allocate_qureg(3)

T #

s # teleportation circuit

o #

30

31 # perform X to teleport |[1> to qubit three

32 ops.X | gbits[0]

34 # main circuit

35 ops.H | gbits[1]

s6 ops.CNOT | (gbits[1], qbits[2])

37 ops.CNOT | (qgbits[0], qbits[1])

ss ops.H | gbits[0]

30 ops.Measure | (qgbits[0], gbits[1])

40

141 # conditional operations

42 with Control(eng, qbits[1]):

13 ops.X | gbits [2]

11 with Control(eng, gbits[1]):

45 ops.Z | qbits[2]

46

47 # measure qubit three

15 ops.Measure | gbits[2]

49

50 #

51 # run the circuit and print the results
#

eng . flush ()
print (?Measured:”, int (qbits[2]))

N

NONON NN NN

//

// teleport.qgs

//

// Teleportation circuit in QDK.

//

operation Teleport (msg Qubit, there
Qubit) : () {

body {

using (register = Qubit[1]) {
// get auxiliary qubit to
teleportation

let here = register [0];

prepare for

// main circuit

H(here);
CNOT(here, there);
CNOT(msg, here);
H(msg) ;

// conditional operations
if (M(msg) = Omne) { Z(

if (M(here) == One) { X(

there); }
there); }

// reset the ”"here” qubit
Reset (here) ;

}

operation TeleportClassicalMessage (
message Bool) Bool {

body {

mutable measurement = false ;

using (register = Qubit[2]) {

// two qubits

let msg = register [0];

let there = register [1];

// encode message to send
if (message) { X(msg); }

// do the teleportation
Teleport (msg, there);

// check what message was
sent

if (M(there) = Onme) { set
measurement = true; }

// reset all qubits
ResetAll(register);

}

return measurement;
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