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1. PROLOGUE

On October 18, 1996, hundreds of people, including many mathe-
maticians, gathered at Kerepesi Cemetery in Budapest to pay their last
respects to Paul Erdo� s. If there was one theme suggested by the farewell
orations, it was that the world of mathematics had lost a legend, one of its
great representatives. On October 21, 1996, in accordance with his last
wishes, Paul Erdo� s' ashes were buried in his parents' grave at the Jewish
cemetery on Kozma street in Budapest.

Paul Erdo� s was one of this century's greatest and most prolific mathe-
maticians. He is said to have written about 1500 papers, with almost 500
co-authors. He made fundamental contributions in numerous areas of
mathematics.

There is a Hungarian saying to the effect that one can forget everything
but one's first love. When considering Erdo� s and his mathematics, we can-
not speak of ``first love,'' but of ``first loves,'' and approximation theory was
among them. Paul Erdo� s wrote more than 100 papers that are connected,
in one way or another, with the approximation of functions. In these two
short reviews, we try to present some of Paul's fundamental contributions
to approximation theory.

A list of Paul's papers in approximation theory is given at the end of this
article. These are referenced in this article in the form [ab.n], indicating
the nth item in the year 19ab. This list is a sublist of the official list of
publications by Erdo� s, in [GN], with a list of additions and correc-
tions available at the website www.acs.oakland.edu�tgrossman�
erdoshp.html. Other references in this article (such as the reference
[GN] just used) are listed just prior to that list of Erdo� s' approximation
theory papers.
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Numerous articles and obituaries on Erdo� s have appeared (see, e.g., the
web page www.math.ohio-state.edu�tnevai�ERDOS�), and more
will undoubtedly appear. The interested reader might wish to look at the
article by L. Babai which appeared in [Ba].

2. PAUL ERDO� S AND POLYNOMIALS

I will discuss some of Erdo� s' results related to polynomials that attracted
me most. This list reflects my personal taste and is far from complete, even
within the subdomains I focus on most, namely polynomial inequalities,
Mu� ntz polynomials, and the geometry of polynomials.

The two inequalities below (and their various extensions) play a key role
in proving inverse theorems of approximation. Let Pn denote the set of all
algebraic polynomials of degree at most n with real coefficients.

Markov's Inequality. The inequality

&p$&L�[&1, 1]�n2 &p&L�[&1, 1]

holds for every p # Pn .

Bernstein Inequality. The inequality

| p$( y)|�
n

- 1& y2
&p&L�[&1, 1]

holds for every p # Pn and y # (&1, 1).

For Erdo� s, Markov- and Bernstein-type inequalities had their own
intrinsic interest and he explored what happens when the polynomials are
restricted in certain ways. It had been observed by Bernstein that Markov's
inequality for monotone polynomials is not essentially better than for
arbitrary polynomials. Bernstein proved that if n is odd, then

sup
p

&p$&L�[&1, 1]

&p&L�[&1, 1]

=\n+1
2 +

2

,

where the supremum is taken over all 0{ p # Pn that are monotone on
[&1, 1]. This is surprising, since one would expect that if a polynomial is
this far away from the ``equioscillating'' property of the Chebyshev polyno-
mial, then there should be a more significant improvement in the Markov
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inequality. In the short paper [40.04], Erdo� s gave a class of restricted poly-
nomials for which the Markov factor n2 improves to cn. He proved that
there is an absolute constant c such that

| p$( y)|�min { c - n
(1& y2)2 ,

en
2 = &p&L�[&1, 1] , y # [&1, 1],

for every polynomial of degree at most n that has all its zeros in R"(&1, 1).
This result motivated several people to study Markov- and Bernstein-type
inequalities for polynomials with restricted zeros and under some other
constraints. Generalizations of the above Markov- and Bernstein-type
inequality of Erdo� s have been extended in many directions by many people
including Lorentz, Scheick, Szabados, Varma, Ma� te� , Rahman, and Govil.
Many of these results are contained in the following, due to P. Borwein
and T. Erde� lyi [BE]: there is an absolute constant c such that

| p$( y)|�c min {�n(k+1)
1& y2 , n(k+1)= &p&L�[&1, 1] , y # [&1, 1],

for every polynomial p of degree at most n with real coefficients that has at
most k zeros in the open unit disk.

Clarkson and Erdo� s wrote a seminal paper on the density of Mu� ntz
polynomials. Mu� ntz's classical theorem characterizes sequences 4 :=(*i)

�
i=0

with

0=*0<*1<*2< } } } (1)

for which the Mu� ntz space M(4) :=span[x*0 , x*1 , ...] is dense in C[0, 1].
Here, M(4) is the collection of all finite linear combinations of the func-
tions x*0 , x*1 , ... with real coefficients, and C(A ) is the space of all real-
valued continuous functions on A/[0, �) equipped with the uniform
norm. If A :=[a, b] is a finite closed interval, then the notation C[a, b] :=
C([a, b]) is used.

Mu� ntz's Theorem. Suppose 4 :=(*i)
�
i=0 is a sequence satisfying (1).

Then M(4) is dense in C[0, 1] if and only if ��
i=1 1�* i=�.

The point 0 is special in the study of Mu� ntz spaces. Even replacing
[0, 1] by an interval [a, b]/[0, �) in Mu� ntz's theorem is a nontrivial
issue. Such an extension is, in large measure, due to Clarkson and Erdo� s
[43.02] and L. Schwartz [Sc]. In [43.02], Clarkson and Erdo� s showed
that Mu� ntz's Theorem holds on any interval [a, b] with a>0. That is, for
any increasing nonnegative sequence 4 :=(*i)

�
i=0 and any 0<a<b, M(4) is

dense in C[a, b] if and only if ��
i=1 1�*i = �. Moreover, they described
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what kind of functions are in the uniform closure of the span on [a, b]
assuming ��

i=1 1�*i<�. Further, they showed that under the assumption
��

i=1 1�* i<� every function f # C[a, b] from the uniform closure of M(4)
on [a, b] is of the form

f (x)= :
�

i=0

a ix*i, x # [a, b). (2)

In particular, f can be extended analytically throughout the open disk cen-
tered at 0 with radius b.

Erdo� s considered this result his best contribution to complex analysis.
Later, by different methods, L. Schwartz extended some of the Clarkson�
Erdo� s results to the case when the exponents *i are arbitrary distinct non-
negative numbers. For example, in that case, under the assumption
��

i=1 1�* i<� every function f # C[a, b] from the uniform closure of M(4)
on [a, b] can still be extended analytically throughout the region

[z # C"(&�, 0]: |z|<b],

although such an analytic extension does not necessarily have a representa-
tion given by (2). The Clarkson�Erdo� s results were further extended by
Peter Borwein and the author, from the interval [0, 1] to subsets of [0, �)
with positive Lebesgue measure. That is, if 4 :=(*i)

�
i=0 is an increasing

sequence of nonnegative real numbers with *0=0 and A/[0, �) is a com-
pact set with positive Lebesgue measure, then M(4) is dense in C(A ) if and
only if ��

i=1 1�* i=�. This result had been expected by Erdo� s and others
for a long time.

I find the following result of Erdo� s and Tura� n [50.08] especially
attractive.

Theorem. If p(z)=�n
j=0 ajz j has m positive real zeros, then

m2�2n log \ |a0 |+|a1 |+ } } } +|an |

- |a0an | + .

This result was originally due to Schur. Erdo� s and Tura� n rediscovered it
with a short proof.

In [39.02], Erdo� s proved that the arc length from 0 to 2? of a real
trigonometric polynomial f of degree at most n satisfying | f (�)|�1 is max-
imal for cos n�. An interesting question he posed quite often is the follow-
ing: Let 0<a<b<2?. Is it still true that the variation and arc-length in
[a, b] is maximal for cos (n�+:) for a suitable :? The following related
conjecture of Erdo� s was open for quite a long time: Is it true that the arc
length from &1 to 1 of a real algebraic polynomial of degree at most n is

4 IN MEMORIAM: PAUL ERDO� S



File: DISTL2 325405 . By:CV . Date:26:06:98 . Time:13:34 LOP8M. V8.B. Page 01:01
Codes: 2825 Signs: 2164 . Length: 45 pic 0 pts, 190 mm

maximal for the Chebyshev polynomial Tn? This was proved independently
by Kristiansen [Kr2] and by Bojanov [Boj].

A well-known theorem of Chebyshev states that if p is a real algebraic
polynomial of degree at most n and z0 # R"[&1, 1], then

| p(z0)|�|Tn(z0)| &p&L�[&1, 1] ,

where Tn is the Chebyshev polynomial of degree n. The standard proof of
this is based on zero counting which can no longer be applied if z0 is not
real. By letting z0 # C tend to a point in (&1, 1), it is fairly obvious that
this result cannot be extended to all z0 # C. However, a surprising result of
Erdo� s [47.08] shows that Chebyshev's inequality can be extended to all
z0 # C outside the open unit disk.

Erdo� s and Tura� n were probably the first to discover the power and
applicability of an almost forgotten result of Remez. The so-called Remez
inequality is not only attractive and interesting in its own right, but it also
plays a fundamental role in proving various other things about polyno-
mials. For a fixed s # (0, 2), let

Pn(s) :=[ p # Pn : m([x # [&1, 1]: | p(x)|�1])�2&s],

where m( } ) denotes linear Lebesgue measure. The Remez inequality con-
cerns the problem of bounding the uniform norm of a polynomial p # Pn on
[&1, 1] given that its modulus is bounded by 1 on a subset of [&1, 1] of
Lebesgue measure at least 2&s. That is, how large can &p&L�[&1, 1] (the
uniform norm of p on [&1, 1]) be if p # Pn(s)? The answer is given in terms
of the Chebyshev polynomials. The extremal polynomials for the above
problem are the Chebyshev polynomials \Tn(x) :=\cos (n arccos h(x)),
where h is a linear function which maps [&1, 1&s] or [&1+s, 1] onto
[&1, 1].

One of the applications of the Remez inequality by Erdo� s and Tura� n
[40.05] deals with orthogonal polynomials. Let w be an integrable weight
function on [&1, 1] that is positive almost everywhere. Denote the
sequence of the associated orthonormal polynomials by ( pn)�

n=0 . Then a
theorem of Erdo� s and Tura� n [40.05] states that

lim
n � �

[ pn(z)]1�n=z+- z2&1

holds uniformly on every closed subset of C"[&1, 1].
Erdo� s and Tura� n [38.05] established a number of results on the

spacing of zeros of orthogonal polynomials. One of these is the following.
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Let w be an integrable weight function on [&1, 1] with �1
&1 (w(x))&1 dx=:

M<�, and let

(1>) x1, n>x2, n> } } } >xn, n (> &1)

be the zeros of the associated orthonormal polynomials pn in decreasing
order. Let

x&, n=cos �&, n, 0<�&, n<?, &=1, 2,..., n.

Let �0, n :=0 and �n+1, n :=?. Then there is a constant K depending only on
M such that

�&+1, n&�&, n<
K log n

n
, &=0, 1,..., n.

This result has been extended by various people in many directions.
Erdo� s and Freud [74.13] worked together on orthogonal polynomials

with regularly distributed zeros. Let : be a nonnegative measure on
(&�, �) for which all the moments

+m :=|
�

&�
xm d:(x), m=0, 1, ...

exist and are finite. Denote the sequence of the associated orthonormal
polynomials by ( pn)�

n=0 . Let x1, n>x2, n> } } } >xn, n be the zeros of of pn in
decreasing order. Let N(:, t) denote the number of positive integers k for
which

xk, n&xn, n�t(x1, n&xn, n).

The distribution function ; of the zeros is defined, when it exists, as

;(t)= lim
n � �

n&1Nn(:, t), 0�t�1.

Let

;0(t)=
1
2

&
1
?

arcsin(2t&1).

A nonnegative measure : for which the array xk, n has the distribution func-
tion ;0(t) is called an arc-sine measure. If d:(x)=w(x) dx is absolutely
continuous and : is an arc-sine measure, then w is called an arc-sine
weight. One of the theorems of Erdo� s and Freud [74.13] states that the
condition

lim sup
n � �

(#n&1)1�(n&1) (x1, n&xn, n)�4
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implies that : is arc-sine and

lim
n � �

(#n&1)1�(n&1) (x1, n&xn, n)=4. (3)

They also show that the weights wa(x) :=exp(&|x|a), a>0, are not arc-
sine. It is further proved by a counterexample that even the stronger suf-
ficient condition (3) in the above-quoted result is not necessary in general
to characterize arc-sine measures. As the next result of their paper shows,
the case is different if w has compact support. Namely, they show that a
weight w, the support of which is contained in [&1, 1], is arc-sine on
[&1, 1] if and only if

lim sup
n � �

(#n)1�n�2.

A set A/[&1, 1] is called a determining set if all weights w, the restric-
ted support [x: w(x)>0] of which contains A, are arc-sine on [&1, 1].
A set A/[&1, 1] is said to have minimal capacity c if for every =>0 there
exists a $(=)>0 such that for every B/[&1, 1] having Lebesgue measure
less than $(=) we have cap(A"B )>c&=. Another remarkable result of this
paper by Erdo� s and Freud is that a measurable set A/[&1, 1] is a deter-
mining set if and only if it has minimal capacity 1�2.

Erdo� s' paper [58.05] with Herzog and Piranian on the geometry of
polynomials is seminal. In this paper, they proved a number of interesting
results and raised many challenging questions. Although quite a few of
these have been solved by Pommerenke and others, many of them are still
open. Erdo� s liked this paper very much. In his talks about polynomials, he
often revisited these topics and mentioned the unsolved problems again
and again. A taste of this paper is given by the following results and still
unsolved problems from it. As before, associated with a monic polynomial

f (z)= `
n

j=1

(z&zj), zj # C, (4)

let

E=E( f )=En( f ) :=[z # C: | f (z)|�1].

One of the results of Erdo� s, Herzog, and Piranian tells us that the infimum
of m(E( f )) is 0, where the infimum is taken over all polynomials f of the
form (4) with all their zeros in the closed unit disk (n varies and m denotes
the two-dimensional Lebesgue measure). Another result is the following: Let
F be a closed set of transfinite diameter less than 1. Then there exists a
positive number \(F ) such that, for every polynomial of the form (4) whose
zeros lie in F, the set E( f ) contains a disk of radius \(F ). There are results
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on the number of components of E, the sum of the diameters of the
components of E, some implications of the connectedness of E, and some
necessary assumptions that imply the convexity of E. An interesting con-
jecture of Erdo� s states that the length of the boundary of En( f ) for a poly-
nomial f of the form (4) is 2n+O(1). This problem seems almost impossible
to settle. The best result in this direction is O(n) by P. Borwein [Bor] that
improves an earlier upper bound 74n2 given by Pommerenke.

One of the papers where Erdo� s revisits this topic is [73.01], written
jointly with Netanyahu. The result of this paper states that if the zeros
zj # C are in a bounded, closed, and connected set whose transfinite diameter
is 1&c (0<c<1), then E( f ) contains a disk of positive radius \ depending
only on c.

Ero� d attributes the following interesting result to Erdo� s and Tura� n and
presents its proof in his paper. If

f (z)=\ `
n

j=1

(x&xj), &1�x1�x2� } } } �xn�1, (5)

and f is convex between xk&1 and xk for an index k, then

xk&xk&1�
16

- n
.

It is not clear to me whether or not Erdo� s and Tura� n published this result.
An elementary paper of Erdo� s and Gru� nwald (Gallai) [39.07] deals with

some geometric properties of polynomials with only real zeros. One of their
results states that if f is a polynomial of the form (5), then

|
xk+1

xk

| f (x)| dx� 2
3 (xk+1&xk) max

x # [xk , xk+1]
| f (x)|.

Some extensions of the above are proved in [40.02]. In this paper, Erdo� s
raised a number of questions. For example, he conjectured that if t is a real
trigonometric polynomial with only real zeros and with maximum 1 then

|
2?

0
|t(�)| d��4.

Concerning polynomials p # Pn with all their zeros in (&1, 1) and with
maxx # [&1, 1] | p(x)|=1, Erdo� s conjectured that if xk<xk+1 are two
consecutive zeros of p, then

|
xk+1

xk

| p(x)| dx�dn(xk+1&xk),
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where

dn :=
1

yk+1& yk
|

yk+1

yk

|Tn( y)| dy,

Tn is the usual Chebyshev polynomial, and yk< yk+1 are two consecutive
zeros of Tn . (Note that dn is independent of k and that lim dn=2�?.) These
conjectures and more have all been proved in 1974; see Saff and Sheil-
Small [SaSh], and also Kristiansen [Kr1].

A paper of Erdo� s [42.05] deals with the uniform distribution of the
zeros of certain polynomials. Let

1=x0�x1>x2> } } } >xn�xn+1=&1

and let x i=cos �i , where � i # [0, ?]. Let |n(x)=>n
i=1 (x&xi). Let

0�A<B�?. Let Nn(A, B ) denote the number of �i in (A, B ). Extending
the results of an earlier paper [40.08] of his with Tura� n, Erdo� s proved that
if there are absolute constants c1 , c2>0 such that

c1 f (n)
2n � max

xk+1
�x�xk

||n(x)|�
c2 f (n)

2n , k=0, 1,..., n,

then

Nn(A, B)=
B&A

?
n+O((log n)(log f (n))).

The gap condition of Fabry states that if f (z)=� ak znk is a power series
whose radius of convergence is 1, and lim nk�k=�, then the unit circle
is the natural boundary of f. Po� lya proved the following converse result.
Let (nk) be an increasing sequence of nonnegative integers for which
lim inf nk �k<�. Then there exists a power series � ak znk with radius of con-
vergence 1 and for which the unit circle is not the natural boundary. Erdo� s
[45.03] offers a direct and elementary proof of Po� lya's result.

Another notable paper of Erdo� s [47.02], joint with H. Fried, explores
some connections between gaps in power series and the zeros of their par-
tial sums. Let f (z)=1+��

n=1 anzn be a power series with radius of con-
vergence 1. The power series is said to have Ostrowsky gaps * if there
exists a *<1 and a pair of infinite sequences (mk) and (nk), with mk<nk

and lim nk �mk>1 such that |an |<*n for mk�n�nk . Let A(n, r) denote
the number of zeros of Sn(z) :=1+�n

i=1 a i zi in the open disk centered at
0 with radius r. A theorem of Erdo� s and Fried states that a necessary and
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sufficient condition that a power series have Ostrowsky gaps is that there
exists an r>1 such that

lim inf
A(n, r)

n
<1.

Erdo� s [67.16] gives an extension of some results of Bernstein and
Zygmund. Bernstein had asked the question whether one can deduce
boundedness of |Pn(x)| on [&1, 1] for polynomials Pn of degree at most
n if one knows that |Pn(x)|�1 for m>(1+c)n values of x with some c>0.
His answer was affirmative. He showed that if |Pn(x (m)

i )|�1 for all zeros
x(m)

i of the mth Chebyshev polynomial Tm with m>(1+c)n, then
|Pn(x)|�A(c) for all x # [&1, 1], with A(c) depending only on c. Zygmund
had shown that the same conclusion is valid if Tm is replaced by the m th
Legendre polynomial Lm . Erdo� s established a necessary and sufficient con-
dition to characterize the system of nodes

&1�x (m)
1 <x (m)

2 < } } } <x (m)
n �1

for which

|Pn(x (m)
i )|�1, i=1, 2,..., m; m>(1+c)n,

implies |Pn(x)|�A(c) for all polynomials Pn of degree at most n and for
all x # [&1, 1], with A(c) depending only on c. His result contains both
that of Bernstein and of Zygmund as special cases. Note that such an
implication is impossible if m�n+1, by a well-known result of Faber.

Erdo� s wrote a paper [46.05] on the coefficients of the cyclotomic poly-
nomials. The cyclotomic polynomial Fn is defined as the monic polynomial
whose zeros are the primitive nth roots of unity. It is well known that

Fn(x)=`
d |n

(xn�d&1)+(d ).

For n<105, all coefficients of Fn are \1 or 0. For n=105, the coefficient
2 occurs for the first time. Denote by An the maximum over the absolute
values of the coefficients of Fn . Schur proved that lim sup An=�. Emma
Lehmer proved that An>cn1�3 for infinitely many n. In his paper [46.05],
Erdo� s proved that for every k, An>nk for infinitely many n. This is implied
by his even sharper theorem to the effect that

An>exp[c(log n)4�3]

for n=2 } 3 } 5 } } } } pk with k sufficiently large. Recent improvements and
generalizations of this can be explored in [Ma1-3].
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Erdo� s has a note [49.08] on the number of terms in the square of a
polynomial. Let

fk (x)=a0+a1xn
1+ } } } +ak&1xnk&1 , 0{ai # R,

be a polynomial with k terms. Denote by Q( fk) the number of terms of f 2
k .

Let Qk :=min Q( fk), where the minimum is taken over all fk of the above
form. Re� dei posed the problem whether Qk<k is possible. Re� nyi, Kalma� r,
and Re� dei proved that, in fact, lim inf Qk �k=0, and also that Q(29)�28.
Re� nyi further proved that

lim
n � �

1
n

:
n

k=1

Qk

k
=0.

He also conjectured that lim Qk �k=0. In his short note [49.08], Erdo� s
proves this conjecture. In fact, he shows that there are absolute constants
c1>0 and 0<c2<1 such that Qk<c2 k1&c

1. Re� nyi conjectured that
lim Qk=�. He also asked whether or not Qk remains the same if the coef-
ficients are complex. These questions remain open (at least in this paper).

Erdo� s has a number of papers on rational approximation. In [76.20], he
proves that if f is a non-vanishing continuous function defined on [0, �) for
which limx � � f (x)=0, then for every sequence of integers 0 :=n0<
n1< } } } satisfying ��

i=1 1�n i=�, there is a sequence of Mu� ntz polynomials
( pk)/span[xn

0 , xn
1 ,...] for which

lim
k � � " 1

f
&

1
pn"L �[0, �)

=0. (6)

Using a result from the Clarkson�Erdo� s paper [43.02], he also observes,
in [76.20], that if f is a nonvanishing continuous function defined on
[0, �) for which there exists a sequence ( pn)/span[xn

0 , xn
1 ,...] with

0 :=n0<n1< } } } and ��
i=1 1�n i<� such that (6) holds, then f is the

restriction to [0, �) of an entire function.
A typical result of Erdo� s, Newman, and Reddy [77.04] deals with

rational approximations to e&x on [0, �). They prove, among many other
results, that if p and q are real polynomials of degree at most n&1 with
n�2, then

"e&x&
p(x)
q(x) "L�(N)

�
(e&1)n e&4n2&7n

n(3+2- 2)n&1
.

11IN MEMORIAM: PAUL ERDO� S



File: DISTL2 325412 . By:CV . Date:26:06:98 . Time:13:34 LOP8M. V8.B. Page 01:01
Codes: 2561 Signs: 1601 . Length: 45 pic 0 pts, 190 mm

This should be compared with the approximation rate

"e&x&
1

q(x)"L�[0, �)

�2&n

with q(x) :=�n
k=0 xk�(k!). A substantial collection of various results con-

cerning various kinds of rational approximation can be found in another
paper of Erdo� s written jointly with Reddy [76.46].

Erdo� s [62.01] proved a significant result related to his conjecture about
polynomials with \1 coefficients. He showed that if

fn(�) := :
n

k=1

(ak cos k�+bk sin k�)

is a trigonometric polynomial with real coefficients,

max
1�k�n

[max[ |ak | , |bk |]]=1, :
n

k=1

(a2
k+b2

k)=An,

then there exists c=c(A)>0 depending only on A for which limA � 0 c(A)=0
and

max
0���2?

| f (�)|�
1+c(A )

- 2 \ :
n

k=1

(a2
k+b2

k)+
1�2

.

Closely related to this is a problem for which Erdo� s offered 8100 and
which has become one of my favorite Erdo� s problems: Is there an absolute
constant =>0 such that the maximum norm on the unit circle of any polyno-
mial p(x)=�n

j=0 aj x j with each aj # [&1, 1] is at least (1+=) - n? Erdo� s
conjectured that there is such an =>0. Even the weaker version of the
above, with (1+=) - n replaced by - n+= with an absolute constant =>0,
looks really difficult (the lower bound - n+1 is obvious by the Parseval
formula). Originally, Erdo� s and D. J. Newman conjectured that there is an
absolute constant =>0 such that the maximum norm on the unit circle of
any polynomial p(x)=�n

j=0 ajx j with each aj # C, |aj |=1 is at least
(1+=)- n . An astonishing result of Kahane [K, L] disproves this by
showing the existence of ``ultra flat'' unimodular polynomials with modulus
always between (1&=) - n and (1+=) - n on the unit circle for an
arbitrary prescribed =>0.
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In [65.19], dedicated to Littlewood on his 80th birthday, Erdo� s gave an
interesting necessary condition ensuring that a sequence of integers
0�n0<n1< } } } is not a Zygmund sequence. More precisely, he showed
that if 0�n0<n1< } } } is a sequence that contains two subsequences (nki

)�
i=1

and (nli
)�

i=1 satisfying

ki � �, ki<l i<ki+1 , li&k i � �, (nli
&nki

)1�(li&ki ) � 1,

then there is a power series ��
k=0 ak znk with |ak | � 0 that diverges

everywhere on the unit circle. The proof of this theorem utilizes probabilistic
arguments which have been used in several earlier papers.

An interesting paper of Erdo� s [54.07] with Herzog and Piranian deals
with sets of divergence of Taylor series and trigonometric series. A typical
result of this paper states that for every subset E of the unit circle with
logarithmic capacity 0, there is a function f (z)=��

n=1 anzn so that f is con-
tinuous on the closed unit disk, ��

n=1 anzn diverges on E, and the sequence
of partial sums sn is uniformly bounded on the unit circle.

In 1911, Lusin constructed a power series ��
n=0 an zn with an � 0 that

diverges at every point on the unit circle. Dvoretzky and Erdo� s [55.05]
gave an interesting extension of this result. They proved that if (bn)/C
with |bn |�|bn+1 | for each n and ��

n=0 |bn | 2=�, then there exists a power
series ��

n=0 anzn with each an equal to either bn or 0 that diverges
everywhere on the unit circle. Here the monotonicity condition cannot be
entirely dispensed with, since every power series ��

n=0 anztn with an � 0
and ��

n=0 tn �tn+1<� converges on a subset of the unit circle which is
everywhere dense on the unit circle. The condition ��

n=0 |bn |2=� cannot
be relaxed either by Carleson's theorem (Carleson's theorem was a conjec-
ture when Dvoretzky and Erdo� s wrote their paper, so they commented on
this as the above assumption ``probably cannot be relaxed at all, since it is
conjectured that every power series with ��

n=0 bn zn with ��
n=0 |bn |2<�

converges almost everywhere in C'').
Several topics from Erdo� s's problem paper [76.14] have already been

discussed before. Here is one more interesting group of problems. Let
(zk)�

k=1 be a sequence of complex numbers of modulus 1. Let

An :=max
|z|=1

`
n

k=1

|z&zk |.

What can one say about the growth of An? Erdo� s conjectured that
lim sup An=�. In my copy of [76.14] that Erdo� s gave me a few years
ago, there are some handwritten notes (in Hungarian) saying the following.
``Wagner proved that lim sup An=�. It is still open whether or not
An>nc or �n

k=1 Ak>n1+c happens for infinitely many n (with an absolute
constant c>0). These are probably difficult to answer.'' [W]
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Erdo� s was famous for anticipating the ``right'' results. ``This is obviously
true; only a proof is needed'' he used to say quite often. Most of the times,
his conjectures turned out to be true. Some of his conjectures failed for the
more or less trivial reason that he was not always completely precise with
the formulation of the problem. However, it happened only very rarely that
he was essentially wrong with his conjectures. If someone proved some-
thing that was in contrast with Erdo� s' anticipation, he or she could really
boast to have proved a really surprising result. Erdo� s was always honest
with his conjectures. If he did not have a sense about which way to go, he
formulated the problem ``prove or disprove.'' Erdo� s turned even his ``ill
fated'' conjectures into challenging open problems. The following quotation
is a typical example of how Erdo� s treated the rare cases when a conjecture
of his was disproved. It is from his problem paper [76.14] entitled
``Extremal Problems on Polynomials.'' For this quotation, we need to
know the following notation: Associated with a monic polynomial
f (z)=>n

j=1 (z&zj), where zj are complex numbers, let En ( f ) :=
[z # C: | f (z)|�1]. In his problem paper Erdo� s writes (in terms of the
notation employed here): ``In [7] we made the ill fated conjecture that the
number of components of En ( f ) with diameter greater than 1+c (c>0) is
less than $c , $c bounded. Pommerenke [14] showed that nothing could be
farther from the truth; in fact he showed that for every =>0 and k # N,
there is an En ( f ) which has more than k components of diameter greater
than 4&=. Our conjecture can probably be saved as follows: Denote by
8n (c) the largest number of components of diameter greater than 1+c
(c>0) which En ( f ) can have. Surely, for every c>0, 8n (c)=o(n), and
hopefully 8n (c)=o(n=) for every =>0. I have no guess about a lower
bound for 8n (c), also I am not sure whether the growth of 8n (c),
(1<c<4) depends on c very much.''

The list of Erdo� s' truly ingenious and diverse results concerning polyno-
mials and related topics could be continued for many more pages. One
cannot include even all the highlights in a limited space. The reader may
correctly think that there are more important results of Erdo� s in
approximation theory than those mentioned in this article. I was concen-
trating on those results and problems of Erdo� s that meant the most to me
so far and I am looking forward to discovering the beauty in many of his
papers that I have not had the chance to read so far.

Tama� s Erde� lyi
Department of Mathematics
Texas A6M University
College Station, Texas 77843
terdelyi�math.tamu.edu

14 IN MEMORIAM: PAUL ERDO� S



File: DISTL2 325415 . By:CV . Date:26:06:98 . Time:13:34 LOP8M. V8.B. Page 01:01
Codes: 2440 Signs: 1347 . Length: 45 pic 0 pts, 190 mm

3. PAUL ERDO� S AND INTERPOLATION

0. We begin with some definitions and notation. Let C=C(I )
denote the space of continuous functions on the interval I :=[&1, 1], and
let Pk denote the set of algebraic polynomials of degree at most k. & }& will
denote the usual uniform norm on C. Let X be an interpolation array, i.e.,

X=(xi, n=cos(�i, n): i=1,..., n; n=0, 1, 2,...),

with

&1�xn, n<xn&1, n< } } } <x2, n<x1, n�1 (1)

and 0��i, n�?, and consider the corresponding Lagrange interpolation
polynomial

Ln ( f, X, x) := :
n

k=1

f (xk, n) lk, n (X, x), n # N. (2)

Here, for n # N,

lk, n (X, x) :=
|n (X, x)

|$n (X, xk, n)(x&xk, n)
, 1�k�n, (3)

with

|n (X, x) := `
n

k=1

(x&xk, n), (4)

are polynomials of exact degree n&1. They are called the fundamental
polynomials associated with the nodes [xk, n : k=1,..., n].

The main question is, of course, the convergence, i.e., to understand for
what choices of the interpolation array X we can expect that
Ln ( f, X ) � f (n � �).

Since, by the Chebyshev alternation theorem, the best uniform approxi-
mation Pn&1 ( f ) to f # C from Pn&1 interpolates f in at least n points, there
exists, for each f # C, an interpolation array Y for which

&Ln ( f, Y )& f &=En&1 ( f ) := min
P # Pn&1

& f &P& (5)

goes to 0 as n � �. However, for the whole class C, the situation is much
less favourable.

To formulate the corresponding negative result of G. Faber, we quote
some estimates and introduce further definitions.
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By the classical Lebesgue estimate,

|Ln ( f, X, x)& f (x)|�|Ln ( f, X, x)&Pn&1 ( f, x)|+|Pn&1 ( f, x)& f (x)|

�|Ln ( f &Pn&1 , X, x)|+En&1 ( f )

�\ :
n

k=1

|lk, n (X, x)|+1+ En&1 ( f ), (6)

therefore, with the notations

*n (X, x) := :
n

k=1

|lk, n (X, x)|, n # N, (7)

4n (X ) :=&*n (X, x)&, n # N, (8)

(Lebesgue function and Lebesgue constant (of Lagrange interpolation),
respectively), we have for n # N

|Ln ( f, X, x)& f (x)|�[*n (X, x)+1] En&1 ( f ) (9)

and

&Ln ( f, X )& f &�[4n (X )+1] En&1 ( f ). (10)

G. Faber, in 1914, proved the then rather surprising lower bound

4n (X )� 1
12 log n, n�1, (11)

for any interpolation array X. Based on this result he obtained (cf. [Fa])

Theorem 1. (Faber). For any fixed interpolation array X there exists a
function f # C for which

lim
n � �

&Ln ( f, X )&=�. (12)

1. Paul Erdo� s came to interpolation theory early in his career and
wrote on the order of 30 papers in this subject area, quite a few of which
were written recently. The general themes considered were:

A. General results on the Lebesgue function and the Lebesgue
constant.

B. Construction of ``good'' nodes for which Ln ( f, X, x)& f (x)
remains relatively small.
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C. Improving Lagrange interpolation by relaxing the degree or
replacing the uniform norm with Lp norms.

D. Investigating the divergence behaviour of Ln ( f, X, x).

In what follows, we try to sketch some of these results and give an over-
view of the questions raised, mainly in his more famous problem papers.

2. In the late 1930s, Erdo� s and Tura� n wrote three fundamental
papers in interpolation theory, [37.04], [38.05], [40.05]. It is difficult to
overestimate the impact of these papers. They laid down methods and
ideas, and stated theorems on interpolation, orthogonal polynomials and
related questions which have been frequently used in the almost 60 years
since then. Here we quote some of the theorems.

To state one of the most influential results, we must introduce some
further definitions.

Let w be a weight on I=[&1, 1], i.e., w(x)�0 a.e. (almost everywhere)
on I, and �I w<�, and let [ pn : n # N] be the corresponding sequence of
orthonormal polynomials (i.e., �I pnpm w=$n, m). Then, as is well known,
for n # N, pn (w, x)=#n (w) >n

k=1 (x&xk, n (w)) with

&1<xn, n (w)<xn&1, n (w)< } } } <x1, n (w)<1, n # N. (13)

So, X(w) :=(xk, n (w): 1�k�n, n # N) is an interpolation array. Denoting
by Ln ( f, w, x) the Lagrange polynomial based on (13), Erdo� s and Tura� n
proved the following theorem highlighting the importance of the [ pn] and
X(w) in interpolation.

Theorem 2 [37.04]. For every f # C and for every weight w,

\|
1

&, 1
| f (x)&Ln ( f, w, x)| 2 w(x) dx+

1�2

�- 6 En&1 ( f ). (14)

It was only after 40 years (see the works of R. Askey [A] and P. Nevai
[N]) that it was shown that the exponent 2 cannot be replaced by 2+=
for every weight.

Continuing on this theme, Erdo� s and Feldheim proved the following sur-
prising result for the weight (1&x2)&1�2.

Theorem 3 [36.10]. For every f # C and 0<p<�

lim
n � � |

1

&1
| f (x)&Ln ( f, T, x)| p 1

- 1&x2
dx=0. (15)
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Here T=(tk, n :=cos[(2k&1)�2n]?: 1�k�n, n # N) is the Chebyshev
array, with Tn (x)=: #n >n

k=1 (x&tk, n) the Chebyshev polynomials (they
tend to show good behaviour in interpolation questions). The correspond-
ing result for trigonometric interpolation based on equidistant nodes was
proved independently by J. Marcinkiewicz [M1].

3. For n # N, the Hermite�Feje� r (HF) interpolation polynomial
Hn ( f, X, x) is the unique polynomial in P2n&1 which satisfies the condi-
tions

{Hn ( f, X, xk, n)= f (xk, n),
H$n ( f, X, xk, n)=0,

1�k�n,
1�k�n.

(16)

As L. Feje� r (teacher and advisor of Erdo� s) proved in 1916, the HF polyno-
mials do converge to f for good choices of the array X. Namely, Feje� r
proved that

Theorem 4 [Fe2]. For every f # C,

lim
n � �

&Hn ( f, T, x)& f (x)&=0. (17)

Compare this result with Theorem 1 and note that Ln # Pn&1 while
Hn # P2n&1 !

It easily follows that

Hn ( f, X, x)= :
n

k=1

f (xk, n) hk, n (X, x), (18)

where hk, n # P2n&1 , the fundamental functions of first kind of HF interpola-
tion, have the form

hk, n (X, x) :={1&
|n"(X, xk, n)
|$n (X, xk, n)

(x&xk, n)= l 2
k, n (X, x)

=: vk, n (X, x) l2
k, n(X, x). (19)

If there exists a positive fixed number * so that the linear functions vk, n ,
defined in (19), satisfy the inequalities

vk, n (X, x)�*>0, 1�k�n, n # N, x # I, (20)

then Feje� r called the array X *-normal. For example, if P (:, ;)
n (x) =

c(:, ;)
n >n

k=1(x&x (:, ;)
k, n ) (:, ;>&1) is the n th Jacobi polynomial, then

X (:, ;) :=(x (:, ;)
k, n ) is a *-normal interpolation array with *=min(&:, &;)
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whenever &1<:, ;<0. Thus T=X (&1�2, &1�2) , the Chebyshev array, is
1�2-normal.

In 1942, G. Gru� nwald showed the significance of *-normal arrays by
proving

Theorem 5 (Gru� nwald [G3]). If X is *-normal, then for all f # C

lim
n � �

&Hn ( f, X, x)& f (x)&=0. (21)

No wonder Erdo� s, who was a doctoral student of Feje� r, turned to HF
interpolation and *-normality.

In the paper [38.05], Erdo� s and Tura� n proved some (as they called
them) Feje� rian theorems. Using certain properties of the Lagrange and HF
fundamental polynomials, they were able to obtain results on the distribu-
tion of the nodes. We mention only the two most frequently quoted results.

Theorem 6 [38.05]. If X is an interpolation array and

&lk, n (X, x)&�c (22)

for every k and n, then

�k+1, n&�k, nt
1
n

, k=1, 2,..., n&1. (23)

Moreover, condition (22) can be replaced by

&hk, n (X, x)&�c (24)

for every k and n.

4. The paper [40.05], written in 1939, is ``dedicated to Professor
L. Feje� r on the occasion of his sixtieth birthday''. It considers, among other
matters, interpolation based on *-normal arrays and on the roots of
orthogonal polynomials.

A typical theorem is the following.

Theorem 7 [40.05]. If X is *-normal, then

&|n (X, x)&�
8

- *

- n
2n . (25)

The authors give two relatively simple proofs of this result.
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With regard to orthogonal polynomials, this paper deals with four basic
problems: behaviour on the interior of [&1, 1], behaviour on the exterior
of [&1, 1], the distance between consecutive roots, and the distribution of
roots.

We should also mention Lemma 4 of that paper which turned out to be
fundamental in investigating *n (X, x).

Theorem 8 [40.05, Lemma 4]. Let X=(xk, n) in [&1, 1] be an
arbitrary interpolation array. Then

lk, n (X, x)+lk+1, n (X, x)�1, x # [xk+1, n , xk, n], 1�k�n&1. (26)

5. One of Erdo� s' famous co-authors in interpolation theory was
the previously mentioned Hungarian mathematician G. Gru� nwald.
G. Gru� nwald was a holocaust victim; he was killed in 1943 at the age of 33.
Erdo� s and Gru� nwald wrote three joint papers. In the paper [38.01], they
proved

Theorem 9 [38.01]. Let T be the Chebyshev array. Then

|lk, n (T, x)|<
4
?

for all k and n, and

lim
n � �

|l1, n (T, 1)|=
4
?

.

This result was subsequently generalized by Erdo� s in [44.05].
G. Gru� nwald (1935, 1936) and J. Marcinkiewicz (1937) proved the fol-

lowing result.

Theorem 10 (Gru� nwald [G1; G2], J. Marcinkiewicz [M2]). There
exists a function f # C for which

lim
n � �

|Ln ( f, T, x)|=� (27)

for every x # [&1, 1].

In their second joint paper, [38.12], Erdo� s and Gru� nwald sharpen this
result. They construct a function f # C satisfying (27), where, at the same
time, the even function f (cos �) has a uniformly convergent Fourier series
on [0, ?].
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Marcinkiewicz [M2] showed that for every x0 there exists a continuous
f for which

lim
n � �

1
n

:
n

k=1

Lk ( f, T, x0)=�. (28)

In other words, the arithmetic means of the Lagrange interpolating polyno-
mials of a continuous function can diverge at a given point. This is in
marked contrast to the celebrated theorem of Feje� r [Fe1] for Fourier
series.

In their third joint paper, [37.09], Erdo� s and Gru� nwald claimed to
prove a far reaching generalization of (28), namely the existence of an f # C
for which

lim
n � �

1
n } :

n

k=1

Lk ( f, T, x) }=�, (29)

for all x # [&1, 1]. However, as was discovered later by Erdo� s himself,
there is an oversight in the proof and the method only gives this result with
the modulus sign inside the summation.

Only in [91.23] were Erdo� s and G. Hala� sz (who was born four years
later than the Erdo� s�Gru� nwald paper) able to complete the proof and
obtain the following result.

Theorem 11 [91.23]. Given a positive sequence (=n) converging to zero
however slowly, one can construct a function f # C such that for almost all
x # [&1, 1]

1
n } :

n

k=1

Lk ( f, T, x) }�=n log log n (30)

for infinitely many n.

The right-hand side is optimal, for in the paper [50.13] Erdo� s has
proved that

Theorem 12 [50.13].

1
n } :

n

k=1

Lk ( f, T, x) }=o(log log n) (31)

for almost all x, whenever f # C.
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The proof of (30) was an ingenious combination of ideas from number
theory, probability and interpolation. It is not by chance that the authors
are Erdo� s and Hala� sz!

6. Estimates (9)�(12) show clearly the importance of the Lebesgue
function *n(X, x) and the Lebesgue constant 4n(X ). During the last 40
years Erdo� s proved very general relations concerning their behaviour and
applied them to obtain the strongest possible divergence theorems for
Ln( f, X ).

To begin, let us state the counterpart of (11). Namely, using an estimate
of L. Feje� r's [Fe3] (cf. [T, Section 4.12.6]),

4n(T )=
2
?

log n+O(1), (32)

one can see that the order log n in (11) is best possible.
S. Bernstein (1931) (cf. [B]) improved upon (11) by showing that for

any fixed X one can choose a point x0 # [&1, 1] for which

*n(X, x0)>{2
?

+o(1)= log n. (33)

In his paper [58.16], Erdo� s proved the following statement which turned
out to be crucial.

Theorem 13 [58.16, Lemma 3]. Let y1 , y2 ,..., yt be any t (t>t0) dis-
tinct numbers in [&1, 1] not necessarily in increasing order. Then, for at
least one j (1� j�t),

:
u&1

i=1

1
| y i& y j |

>
t log t

8
. (34)

(The half-page proof is based on the inequality between the arithmetic and
harmonic means.)

Inequalities (34) and (26) were used to obtain the main result of [58.16],
namely:

Theorem 14 [58.16]. For any fixed interpolation array X/[&1, 1],
real =>0, and A>0, there exists n0=n0(A, =) so that the set

[x # R: *n(X, x)�A for all n�n0(A, =)] (35)

has measure less than =.

Almost 20 years ago, and 20 years after the above result, Erdo� s and
J. Szabados proved:
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Theorem 15 [78.29]. For an arbitrary interpolation array X and any
fixed interval [a, b]/I,

|
b

a
*n(X, x) dx�c(b&a) log n, n�n0(a, b), (36)

where c>0 is an absolute constant.

We remark that many of the ideas of this paper were used and developed
to obtain pointwise estimates for *n(X, x) (cf. (38)) and for the incomplete
Lebesgue function (i.e., when in (7) we exclude the index k whenever xk, n

is ``too close'' to x). Such pointwise estimates are of fundamental impor-
tance in the a.e. divergence theorem (cf. part 8 below).

Recently Erdo� s, P. Ve� rtesi and J. Szabados, [95.01], refined (36) by
showing that

|
bn

an

*n(X, x)dx�c(bn&an) log[n(:n&;n)+2], (37)

where an=cos :n , bn=cos ;n . This result can handle small intervals whose
lengths may depend on n.

The pointwise estimate (35) was improved upon more than 20 years later
by P. Erdo� s and P. Ve� rtesi. They proved the following.

Theorem 16 [81.16]. Let =>0 be given. Then, for any fixed interpola-
tion array X/[&1, 1], there exist sets Hn=Hn(=, X ) of measure �= and
a number '='(=)>0 such that

*n(X, x)>' log n (38)

if x # [&1, 1]"Hn and n�1.

Closer investigation shows that (instead of the original '=c=3) '=c=
can be attained (cf. [V1]). The behaviour of the Chebyshev array T shows
that (38) is best possible in order.

Now note the significant gap in the lower bounds (11) and (32), between
the constants 1�12 and 2�?. In 1961, strongly using the ideas and results of
the papers [40.08] and [42.05], Erdo� s and Tura� n, [61.01], proved that
they can replace (11) by

4n(X )�
2
?

log n&c log log n. (39)
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In the same year, using a different and rather delicate argument, Erdo� s
[61.20] proved that log log n can be replaced by c; namely

4n(X )�
2
?

log n&c. (40)

This is a very significant and strong result as, by (32), it then follows that

}4n*&
2
?

log n }�c, (41)

where

4n* :=min
X/I

4n(X ), n�1, (42)

is the optimal Lebesgue constant. As a consequence of this result, the closer
investigation of 4n* attracted the attention of many mathematicians. The
problem turned out to be rather difficult.

We had to wait almost another 20 years to get a better estimate for 4n*.
First, in 1978, T. Kilgore, C. de Boor, and A. Pinkus proved the so-called
Bernstein-Erdo� s conjectures concerning the optimal interpolation array X
(cf. [Ki; BP; BrP]). Their result was then applied in a series of papers to
get 4n* within the error o(1) (L. Brutman, R. Gu� ntter, P. Ve� rtesi, and
others [Br], [Gu� 1], [Gu� 2], [V2], [V3]).

7. One of the most significant contributions of Erdo� s to interpola-
tion theory is his joint paper [55.09] with Paul Tura� n dedicated to L. Feje� r
on his 75th birthday.

In the class Lip : (0<:<1), a natural error estimate for Lagrange inter-
polation is

&Ln( f, X )& f &�cn&: 4n(X )

(cf. (10)). Erdo� s and Tura� n raised the following natural question: How
sharp is this estimate in terms of the order of the Lebesgue constant as
n � �? They themselves considered interpolation arrays X, where

4n(X )tn; (;>0).

(In the class Lip :, this is a natural setting.) In the above paper [55.09]
they obtained the following results.

Theorem 17 [55.09]. Let X be as obove. If :>;, then we have uniform
convergence in Lip :. If :<;�(;+2) , then, for some f # Lip :, Lagrange
interpolation is divergent (in fact, &Ln( f, X )& is unbounded).
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These two cases comprise what is called the ``rough theory,'' since solely
on the basis of the order of 4n(X ) one can decide the convergence-
divergence behavior. However,

Theorem 18 [55.09]. If ;�(;+2)<:<;, then anything can happen.
That is, there is an interpolation array Y1 with 4n(Y1)tn; and a function
f1 # Lip :, such that limn � �&Ln( f1 , Y1)&=�, and another interpolation
array Y2 with 4n(Y2)tn; , such that limn � �&Ln( f, Y2)& f &=0 for every
f # Lip :.

That is, to decide the convergence�divergence behavior, we need more
information than just that given by the Lebesgue constant. The corre-
sponding situation is called ``fine theory'' (similar results were stated
without proof by S. M. Lozinskii in 1948 [Lo]).

This paper of Erdo� s and Tura� n has been very influential. It left open
a number of problems and attracted the attention not only of the
Hungarian school of interpolation (G. Freud, O. Kis, M. Sallay, P. Ve� rtesi,
J. Szabados), but also of others as well (R. J. Nessel, W. Dickmeis, E. van
Wickeren). Quite recently, G. Hala� sz [H] gave a new interpretation and
generalization to the original results of Erdo� s and Tura� n.

8. After the result of Gru� nwald and Marcinkiewicz (cf. (27)), a
natural problem was to obtain an analogous result for an arbitrary array
X. In [58.16, p. 384], Erdo� s wrote: ``In a subsequent paper I hope to prove
the following result:

Let X/[&1, 1] be any point group [interpolation array]. Then there
exists a continuous function f (x) so that for almost all x

lim
n � �

|Ln( f, X, x)|=�.''

After 4 long years of work, Erdo� s and Ve� rtesi proved the above result,
[80.25], [81.03], [81.12]. Erdo� s writes in [80.25]: ``[Here we prove the
above] statement in full detail. The detailed proof turns out to be quite
complicated and several unexpected difficulties had to be overcome.''

In a personal letter, Erdo� s wrote about the main idea of the proof:
[First] ``we should prove that for every fixed A and '>0 there exists an
M (M=M(A, ')) such that if we divide the interval [&1, 1] into M equal
parts I1 ,..., IM then

:
k

$ |lk, n (X, x)|>A, x # Ir ,

apart from a set of measure �'. Here �$ means that k takes those values
for which x � Ir .''
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9. L. Feje� r's result (17) shows that if the degree of the interpolation
polynomial is about two times bigger than the number of interpolation
points, then we can get convergence. Erdo� s raised the following question.
Given =>0, suppose we interpolate at n nodes, but allow polynomials of
degree at most n(1+=). Under what conditions will they converge for all
continuous functions?

The story of this problem is typically Erdo� sian. In [43.06], Erdo� s stated
an answer to the above problem, but instead of proving it, he just gave an
indication that ``the proof is a simple modification of Theorem 3.'' After
some 45 years, as a result of the joint effort of Erdo� s, Kroo� , and Szabados,
the original statement concerning the above problem was proved, even in
a slightly stronger form. The result is the following.

Theorem 19 [89.16]. For every f # C and =>0, there exists a sequence
of polynomials pn ( f ) of degree at most n(1+=) such that

pn ( f, xk, n)= f (xk, n), 1�k�n,

and

& f &pn ( f )&�cEwn(1+=)x ( f )

for some c>0, holds if and only if

lim sup
n � �

Nn (In)
n |In |

�
1
?

whenever lim
n � �

n |In |=� (43)

and

lim
n � �

n min
1�k�n&1

(�k+1, n&�n, k)>0. (44)

Here, Nn (In) is the number of the �k, n in In/I. Condition (43) ensures
that the nodes are not too dense, and condition (44) says that adjacent
nodes should not be too close.

10. One of the immediate consequences of the Faber theorem,
(11), is the following:

For any interpolation array X, there exists a polynomial P # Pn&1 for
which

|P(xk, n)|�1, 1�k�n, (45)

but

&P&� 1
12 log n. (46)
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Erdo� s [67.16], inspired by some results of S. Bernstein and A. Zygmund,
asked the following question (quoted here in the notation used in this
survey).

``Let X be an interpolation array. What are necessary and sufficient condi-
tions on X that if for P # Pwn(1&=)x (=>0 is arbitrarily fixed) and

|P(xk, n)|�1, 1�k�n,

then

&P&�c(=)

should hold?''
In his fairly difficult paper [67.16] Erdo� s finds the answer. Loosely

speaking, he proves that the distance between two consecutive roots cannot
be too small (i.e., o(1�n)) on the circle and the density of the interpolation
array cannot exceed the density of the roots of the Chebyshev polynomials.
The exact formulation and other relevant questions��which are also closely
connected to the previous papers [43.06] and [89.16]��are left to the
interested reader (cf. (49) and the related problem).

11. In place of (7) one can investigate the expression
*n (s)(X, x) :=�n

k=1 |lk, n (X, x)| s for arbitrary interpolation array X. Erdo� s
claimed that for any interpolation array X

|
1

&1
*n (2)(X, x) dx�2&c

log n
n

but never came up with a proof. Recently in a joint paper, Erdo� s with
J. Szabados, A. K. Varma and P. Ve� rtesi proved a weaker statement,
namely:

Theorem 20 [94.08]. For any interpolation,

|
1

&1
*n (2)(X, x) dx�2&c

log2 n
n

, n�1. (47)

A similar result holds if we estimate the weighted integral of *n (2s)(X, x).

12. A paper on Erdo� s is not complete without mention of his
exceptional ability to pose fundamental, interesting, and sometimes quite
difficult problems. He created a new form of mathematical writing in his
famous problem-papers. We finish this part with an extended sample.

Erdo� s, ``the absolute monarch of problem posers,'' wrote some dozen
problem-papers on his and his fellow mathematicians' questions and results
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on interpolation. Many of the questions posed have been solved, others
seem too difficult to handle.

Erdo� s writes (cf. [91.27, pp. 253�257]):
``In the 1930s G. Gru� nwald and J. Marcinkiewicz proved that there is a

continuous function f (x) for which the interpolation polynomials taken at
the roots of the Chebyshev polynomials Tn (x) diverge everywhere in
&1�x�1. This was an important and surprising result and several of us
tried to extend it to the Fourier expansion. 30 years later Carleson showed
that for the Fourier expansion we have convergence almost everywhere.
About 10 years ago Ve� rtesi and I [80.25] proved that for every point
group [interpolation array X] there is a continuous function f (x) for which
Ln ( f, X, x) diverges almost everywhere. The proof is quite difficult and is
best possible, since it is not difficult to find point groups for which
Ln ( f, X, x) converges for a set of power c. Now the following interesting
problem can be posed: Is there a point group for which for every con-
tinuous function there is at least one x0 for which

lim
n � �

*n (X, x0)=�

holds but Ln ( f, X, x0) � f (x0)? In other words Ln ( f, X ) cannot be com-
pletely bad, i.e., it cannot diverge simultaneously at all points where
divergence is possible. In fact perhaps there are c=2+0 such points. At the
moment I do not see how to attack this problem, which probably is quite
difficult. The classical results of Gru� nwald and Marcinkiewicz show that
the roots of Tn (x) do not have this property.

The following problem also seems very difficult: Is it true that for every
point group there is a continuous function f (x) for which the arithmetic
means of the Lagrange interpolation polynomials

1
n

:
n

k=1

Lk ( f, X, x) (48)

diverge almost everywhere [cf. (30)]... ? This if true would be a streng-
thening of the classical result of Gru� nwald�Marcinkiewicz. The following
question seems interesting but is perhaps difficult: Is there a point group for
which the following strange behaviour holds: There is a set A in [&1, +1]
for which there is a continuous function f (x) for which Ln ( f, X, x) diverges
everywhere in A, but this is not possible for the arithmetic means (48)?
I proved 40 years ago that in some sense the arithmetic means behave
better than Ln ( f, X, x). In case of the roots of Tn (x), Ln ( f, T, x) can diverge
as fast as o(log n) but the sequence (48) can diverge only as fast as
o(log log n). This result though no doubt quite interesting throws no light
on our problem just formulated ([50.13]).
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Let x0=cos( p�q)?, p#q#1 (mod 2). I proved that if we interpolate on
the roots of Tn (x) then there is a continuous f (x) for which (see [41.02]
and [43.03])

|Ln ( f, T, x0)| � �.

I claimed that a slight modification gives a continuous f (x) for which
Ln ( f, T, x) � � and in fact I claimed that for any closed set A there is a
continuous f (x) for which the set of limit points of Ln ( f, T, x) is precisely
the set A. I feel it would be worthwhile to work out the proof in detail... .

I think the following conjecture (if true) would be of great interest. It
would be a significant extension of the old results of Faber and Bernstein
and of our theorem with Ve� rtesi and it would show that our theorem with
Kroo� and Szabados is best possible in a different sense [Cf. [80.25] and
[43.06], [89.16]].

Let [xk, n] be an arbitrary point group, and let =n � 0 as slowly as we
please. Is it true that there always is a continuous f (x) for which pn (x) is
a polynomial of degree <n(1+=n) which satisfies

pn (xk, n)= f (xk, n), 1�k�n (49)

then pn (x) will diverge almost everywhere? In other words a sequence of
polynomials which satisfies (49) will diverge almost everywhere.

As far as I know this conjecture has not even been proved if the xk, n are
given by the roots of Tn (x).

Some results which seem to point in the direction of this conjecture were
proved by Shekhtman and Szabados [Cf. [Sh], [Sz]]... .

I proved [(40)] that

4n (X )>
2
?

log n&c,

and Kilgore [with the help of de Boor and Pinkus] settled an old conjec-
ture of S. Bernstein by proving that 4n (X ) is minimal if all the n+1 max-
ima of �n

k=1 |lk (X, x)| are equal. This beautiful result leaves the following
question unanswered: Let [xk, n] be a point group. Is it true that there is
an x0 , &1�x0�1 for which

lim
n � �

:
n

k=1

|l (n)
k (X, x0)|>

2
?

log n&c, (50)
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and in fact (50) perhaps holds for almost all x0? I claimed [61.20], [68.16]
that I proved that for every &1�a<b�1

max
a�x�b

:
n

k=1

|lk (X, x)|> } 2?+o(1) } log n. (51)

The proof of (51) was never published and I think if it would be
reconstructed it would deserve publication. Szabados and I proved that
[78.29]

|
b

a
*n(X, x) dx>c(b&a) log n,

but we could not determine the best value of c. We conjectured that the
best value of c is given if the xi are the roots of Tn(x).'' (Cf. (37), too.)

Here is another problem from the classical theory of interpolation. Erdo� s
conjectured that the quantity

|
1

&1
:
n

k=1

l2
k, n (X, x) dx (52)

attains its minimum if and only if the nodes are the roots of the integral
of the Legendre polynomials. He had a good reason for this; it is well
known that the minimum of

" :
n

k=1

l2
k, n(X, x)" (53)

is attained if and only if the nodes are the ones mentioned above, and in
this case (51) is equal to 1. Nevertheless, in 1966 Szabados disproved this
conjecture; so the characterization of the minimizing system of nodes is still
unsolved.

We end this part with a list of some papers of Erdo� s which are excep-
tionally rich in problems: [50.13], [55.09], [58.16], [61.20], [67.16],
[68.16], [80.25], [83.24] and [91.27].

Peter Ve� rtesi
Mathematical Institute
Hungarian Academy of Sciences
Rea� ltanoda utca 13�15
1053 Budapest, Hungary
veter�math-inst.hu
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4. A PERSONAL MEMORY OF PAUL ERDO� S

Paul Erdo� s (Erdo� s Pa� l) died on September 20, 1996 in Warsaw. He was
83. It is safe to assume that he was trying to solve problems on his last day
as he was almost every minute in his life. His life is chronicled very nicely
by Paul Hoffman in the November 1987 Atlantic Monthly, and even more
so by L. Babai in [Ba]. Mathematics was his life and he was a connoisseur
of problem solving. He learned mathematics by solving problems. He is
known to be the most prolific mathematician in history. It is impossible to
imagine a person who was more devoted to mathematics. He gave up
almost everything that one can enjoy in life for the joy of exploring mathe-
matics by solving problems. He saw life in terms of mathematics, and
(jokingly?) called a small kid ``=,'' husbands ``slaves,'' wives ``bosses,'' people
with family ``captured,'' and so on. Erdo� s never ``died.'' ``Died'' was the
word he used to mean ``stopped doing math.'' Probably he would say he
``left'' or, as Euler in his famous story, he ``finished.'' I recall a comment of
his when he was once angry with a secretary. He left the office and turned
to me, saying ``she does not have a chance to prove the Riemann
Hypothesis.'' As a Hungarian, quite frequently he was thinking in terms of
Hungarian expressions. I guess that most of his jokes and funny expres-
sions were created in Hungarian first. They simply sound better and more
funny in Hungarian, and a word for word English translation would sound
rather silly. Sometimes in his lectures in the U.S.A. he turned to one of the
Hungarians in the audience and repeated the sentence in Hungarian after
saying ``it sounds better in Hungarian.''

He visited our Mathematics Department at Texas A6M University in
February 1996 and gave a sequence of talks. Our distinguished visitors
typically give three talks, one for the general faculty, one for specialists,
and one for graduate students. His talks were also advertised accordingly.
I thought it was a mistake. He always presented talks that were equally
interesting to students and mathematicians with good taste. In fact, he
formed the taste of his audience and the readers of his papers. In his talks,
he presented mathematics as a useful, living, evolving, and human discipline.
If I were asked to name the person who formed my mathematical taste the
most, next to my advisors at various levels of my study, I would mention
Erdo� s, despite the fact that we met only a few times. He conveyed the rich-
ness and vitality of mathematics by attending to its social and historical
dimensions. Every lecture of his contained a number of memorable short
stories and anecdotes, and he always gave plenty to take home. He had an
amazing memory. Many times his preparation for a talk was simply
organizing his thoughts without any notes. Before his second talk in our
department, he was talking with me throughout the morning. Someone
came by the office and frantically said that Erdo� s' talk would start in five
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minutes. Erdo� s talked to me for two more minutes, then looked at his
watch and said ``In three minutes I have a lecture, I have to prepare.''

He often joked about his age and loss of memory. In fact, he had an
amazing memory even at the age of 83. He frequently remembered the
exact time and place (sometimes even the weather) when and where some
good idea had occurred to him. Nevertheless I recall a funny story that
happened during his visit at Texas A6M. In one of our discussions, he
asked who proved a certain result about polynomials. I told him it was
Pommerenke. He kept thinking and half a minute later he said: ``No, it was
not Pommerance, it was Pommerenke.'' An hour later, he said in his lec-
ture: ``One who could explain how the brain works would certainly deserve
a Nobel Prize. An hour ago, I asked someone in my office who proved this
theorem. He told me it was Pommerance, and from this I almost
immediately recalled that it was Pommerenke.''

Erdo� s was supposed to receive an honorary degree at Texas A6M. He
finished his last talk of his visit at Texas A6M by saying jokingly: ``I will
come back in December to receive an honorary degree, assuming both I
and the university exist.'' I thought that it was my bad luck that due to my
visit to Copenhagen for the year I would miss this chance to accompany
Erdo� s during his stay. Unfortunately, I did not miss my last chance.

Most mathematicians understood his obsession to some extent, although
most likely no one understood it completely. For mathematics, he sacrificed
things that most people think necessary to live a happy life. Most people
outside mathematics found him very strange. He owned barely anything.
He had no home, no family, no job, and no permanent address. He did not
need these. What he needed was the maximal amount of time for thinking
about mathematical problems. If he proved a major result in the morning,
in the afternoon he could think about another longstanding conjecture.
In fact, it always seemed to me that he did not even want to waste any time
to stop for a few days and just reflect and enjoy the beauty of his
achievements. He was never worried about financial security. He knew that
he was getting enough for his talks to be able to reach his next destination.
Not doing mathematics was a waste of time for him, and he did not want
anything that could have possibly prevented him from doing mathematics.
His friends and colleagues realized this and took care of the affairs of
everyday life for him such as checks, tax returns, transportation, food, and
the like. Sometimes he behaved like a lost child and he was naively honest
in showing whether or not he was interested in what his partner was say-
ing. He was genuinely interested in the mathematical work of almost
everybody, but he requested people to summarize their best achievements
briefly. If he found the summary too detailed, he simply changed topics and
started to talk about other things. This was another way in which he
formed the mathematical taste of his colleagues. However, I never found
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this attitude of his insulting. I have to admit that mostly he was right about
it, and I learned a great deal from him in this way.

His mother was very close to Erdo� s and traveled with him a lot. Some-
times in our conversations, he suddenly started to talk about her. For
example, he mentioned to me on at least two different occasions that once
he arrived at Vancouver with his mother on a foggy day, and in the fog
and rain she did not understand why her son described the city as one of
the most beautiful cities on Earth. The next day was sunny, and she agreed.

Although his primary interest was always mathematics, he was quite
informed about other things in life. Once, he was sitting next to me during
a dinner in his honor. Hearing that I was talking about soccer with a
Polish colleague of mine, he stopped writing a formula on a napkin and
said ``How come that we Hungarians are so weak in soccer recently? We
used to be much better. Can you explain it?'' I tried to present my
``theory,'' and to my great surprise he was genuinely interested in it and he
shared his opinions with me. He also said ``I occasionally watch soccer
games on television. I clearly remember that I watched England beating
Germany in 1966 at Lake Balaton with Paul Tura� n'' (he appeared not to
know that this match was the World Cup Final in 1966).

From September 1985 to June 1987, I was working in the Mathematics
Institute of the Hungarian Academy of Sciences in Budapest. I had a num-
ber of discussions with Erdo� s during this period. Typically he would sit in
the office of the director and have discussions with more than a dozen
people a day. He particularly liked discussions with students and young
mathematicians. He gave various pieces of advice, directions, suggestions,
references, hints, ideas, or he simply expressed his feelings as to whether or
not a conjecture was true. These were often combined with short stories
and historical remarks. It was very easy to approach him. In fact, most of
the time, he initiated the discussions. He always wanted to know about the
problems that people in the Institute were working on. Usually I was work-
ing in my office when I received calls from Erdo� s from the office of the
director. He was so busy with seeing people that sometimes by the time I
reached his office he had time only to arrange a time for our next discus-
sion. I had a few lunches with him in the restaurants nearby. I can recall
an occasion when I had lunch early but, when Erdo� s asked me to have
lunch with him, I pretended that I was still hungry. Somehow a number of
people must have known the place where he had lunch each day because
our conversations were often interrupted by phone calls reaching him at
the restaurant.

In January 1987, I attended one of my first mathematical conferences, in
Havana, Cuba. In one of our discussions, Erdo� s asked for details about
this trip and at some point he started to worry that my (modest) financial
support from the Academy would not be sufficient to pay the hotel expenses
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in Havana. ``If you run out of money, just ask my good friend Saff to give
you some, and tell him that I will pay it back soon,'' he said. At that time,
I did not even know Ed Saff and as he told me years later, he doubted that
he would have given money to a complete stranger even if he referred to
Erdo� s. Fortunately I did not need to take advantage of this offer. However,
this little story always reminds me of the genuinely giving and caring spirit
of Erdo� s.

Erdo� s had far more co-authors than any other mathematician, ever.
I believe one does not need to define ``Erdo� s number'' in this journal.
There are Erdo� s number trees available on the Internet (see www.acs.
oakland.edu�tgrossman�erdoshp.html ). According to one of
these, he had 485 co-authors (that is, 485 mathematicians are listed with
Erdo� s number 1). He was in constant contact with his collaborators. He
had many calls and wrote several letters almost every day. In January,
1993, I received a card from him. He wrote it in Hungarian. It translates
as ``Haifa is a nice city. Let f (z)=>n

j=1 (z&zj) where z j are complex
numbers. Let E=E( f ) :=[z # C: | f (z)|�1]. Is it true that diam(E )�2?
It must be trivial but I cannot see this at the moment.'' It turned out that
he was absolutely right about this. The answer is yes, and it is not that
difficult to prove. This qualifies for being trivial in the vocabulary of
Erdo� s.

The statement the mathematician is a machine that converts coffee into
theorems is incorrectly attributed to Erdo� s. I am not really a coffee drinker,
but during Erdo� s' visit to College Station, I was not able to avoid drinking
coffee with him a few times. I found out that he himself attributed the
above saying to Re� nyi. He added that he just agreed with it.

Erdo� s was not known as a person who gave practical advice to people
about how to live. ``You absolutely need to learn how to drive in the
U.S.A.'' was one of the last pieces of advice he gave me on February 1 in
College Station. This was the last day I saw him. I talked to him one more
time. He called me the next day around midnight from Dallas. ``Erde� lyi?
This is Erdo� s Pa� l'' he said. ``I found the paper containing an example for
a function on [0, 1] that is not monotone on any uncountable subset of
[0, 1]'' he continued and gave me the reference (Sierpinsky, Fundamenta
Math. 1 (1923), 316�318) while I was turning off the television showing a
hockey game. A former classmate of mine from Hungary had e-mailed this
question to me, and I had answered him half-jokingly that ``Erdo� s is just
visiting us so an answer may be given soon.'' I was right about it. ``I am
happy that we sorted this out. Good night!'' These were the last words I
heard from him. Of course, as always, he was talking in Hungarian with
Hungarians. Whenever he visited a place throughout the world, he always
looked for Hungarians. I sensed that he particularly enjoyed having
Hungarians around him.
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He has contributed to many important fields of mathematics. Once I
heard a comment that described Erdo� s' contribution to mathematics as a
diamond broken into a thousand pieces. Would Erdo� s be considered as an
even more significant mathematician if he had focused only on a few major
problems? People can argue about it, but I think the term ``broken into''
is unfair. However, a thing that everybody must agree about Erdo� s is that
his contribution to mathematics can be described as a great many pieces of
diamonds.

Several of these pieces are in or related to the field of approximation
theory, in particular polynomial inequalities, the geometry of polynomials,
and interpolation. Nevertheless, Erdo� s' greatness lay in the fact that he was
never thinking in terms of ``fields.'' He was thinking in terms of ``naturally
interesting'' problems. There are many results of his related to approxima-
tion theory that have some flavor of probability, number theory, potential
theory, combinatorics, ergodic theory, geometry, and optimization (the list
could be continued). In Section 2 of this survey, I have mentioned only
some of the highlights of his research in approximation theory. The
highlights I selected are quite personal. Different people might choose dif-
ferent results to demonstrate the richness and vitality of Erdo� s' work in
approximation theory. This is a question of taste. Problems of Erdo� s' about
polynomials always looked particularly attractive and challenging to me.
His taste had a tremendous impact on me. He loved to give talks not only
for experts but also for high-school, undergraduate, and graduate students.
During my stay in the Mathematics Institute in Budapest between 1985
and 1987, I discussed many problems with him concerning inequalities for
polynomials with restricted zeros. His mathematical taste represented
everything that made me want to be a mathematician.

Tama� s Erde� lyi
Department of Mathematics
Texas A6M University
College Station, Texas 77843
terdelyi�math.tamu.edu
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