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This notebook demonstrates plotting of 2- and 3-dimensional vectors in Mathematica. 

1.  Basic  concepts.   Vectors  represent  mathematical  quantities  with  both  magnitude
(length) and direction. The usual practice is to draw a vector v from a beginning point P
to an endpoint  Q, with an arrowhead  at Q  to identify  it as the terminal  point  of the vec-
tor. Two vectors v and w are considered  identical if they have the same length and point
in the same direction, even if their initial points are different. 

     This leads to the algebraic representation of vectors by coordinates.  Given a vector v,
translate  it  parallel  to  itself  (to  preserve  its  direction)  until  its  initial  point  is  the  origin.
Then  the coordinates  of  v  are  the coordinates,  say (a,  b),  of  the  terminal  point  R  of  the
translated v. (See the figure below.) The length or magnitude ||v|| of v is the length of the
segment from the origin to the terminal point of v:
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(1)                                                          ||v|| = 
è!!!!!!!!!!!!!!

a2 + b2 .

Note: In the current  edition of the text,  a single  vertical  bar denotes  the length of a vec-
tor. Here, the double-vertical  bars — notation of the next edition of the text — appear, to
make it easy to distinguish  magnitude of a vector from the absolute value of a real num-
ber.

     Vector  arithmetic  reduces  to  carrying  out  the  ordinary  arithmetic  of  real  numbers
separately on each coordinate:

Definition (Vector Operations) . The sum of two vectors v = (a, b) and  w = (c, d) is the
vector

                                                              
                                                      v + w = (a + c, b + d).
                                                                
The product of the vector v = (a, b) by the scalar (real number) r is
 
                                                               rv = (ra, rb).
                                                                       
The vector difference of v = (a, b) and w = (c, d) in that order is
 
                                                      v – w = (a – c, b – d).
                                                                
Note that the vector difference v – w is just the sum of the vector v and the scalar multi-
ple (–1)w of the vector w by –1, which is the negative of w. 

     The length of the scalar multiple rv  of v by r is |r| times the length of v, as the follow-
ing calculation shows:

(2)                        ||rv|| = || (ra, rb)|| =
è!!!!!!!!!!!!!!!!!!!!!!!!

r2  a2 + r2  b2 =  |r| 
è!!!!!!!!!!!!!!

a2 + b2  =  |r| ||v||. 
             
Note  that  multiplication  of  a  vector  by  a  negative  number  causes  the  direction  of  the
vector to reverse. Thus, the vector  rv has the same direction as v if r > 0, but has oppo-
site direction if r < 0.        
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      Mathematica  has  a  standard  graphics  package  `Arrow`  that  can  plot  vectors  as
directed line segments  in the plane.  The next short routine illustrates its use on a pair of
simple vectors. 
 
 Example 1. Let v = (– 2, 5) and w = ( 3, – 1). Then find and plot (a) v  +  w, (b)  v  –  w,
(d)  2v – 3w.  (e) Compute ||2v – 3w ||.  
 
 Solution.  While  Mathematica  can  deal  with  vector  arithmetic,  it  is  certainly  easy

enough to do these computations without technological aids! Indeed,  
                                          v  +  w = (– 2 + 3 , 5 – 1) = (1, 4), 
                                         v  –  w = (– 2 – 3, 5 – [–1]) = (– 5, 6), 
 and  
                                    2v – 3w = (– 4, 10) – (9, – 3) = (– 13, 13). 
                   
The  following  Mathematica  program  illustrates  how  to  plot  the  vectors  v,  w,  and   v   +
w. It is easy to modify it to deal with other vectors v and w, and other scalars r and s —
such as arise in parts (b) and (d). Note that ordered pairs such as (– 2, 5) must be entered
with braces, not parentheses.   (The semicolons at the ends of the first four lines suppress
printing  of  the  quantities  those  lines  define.)  To  execute  the  routine  and  generate  the
figure,  place  the  cursor  at  the  end  of  the  blue  code,  and  hit  the  Enter  key  (at  the  lower
right edge of the standard Macintosh keyboard).

In[11]:= v := 8-2, 5<;
w := 83, -1<;
r := 1;
s := 1;
Needs@"Graphics`Arrow`"D

ShowAGraphicsA9Arrow@80, 0<, vD, Arrow@80, 0<, wD,

8Dashing@80.03, 0.03<D, Line@8v, v + w<D, Line@8w, v + w<D<,

TextAFontForm@"v", 8"Times-Bold", 12<D, 9
vP1T
ÅÅÅÅÅÅÅÅÅÅÅÅ

2
, .4 vP2T=E,

TextAFontForm@"w", 8"Times-Bold", 12<D,

9
wP1T
ÅÅÅÅÅÅÅÅÅÅÅÅÅ

2
, .3 wP2T=E, RGBColor@1, 0, 1D, Arrow@80, 0<, 81, 4<D,

Text@FontForm@"v + w", 8"Times-Bold", 12<D,

8.85 Hv + wLP1T, .5 Hv + wLP2T<D=,

Axes Ø True, PlotLabel Ø "Vector Sum"EE
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Out[15]= Ü Graphics Ü

Note: As written,  this  routine includes  two Lines commands  to connect  the endpoints
of the vectors v  and w to the endpoint  of v + w.  That illustrates  the parallelogram  law:
geometrically,  the  vector  v  +  w  is  the  diagonal  of  the  parallelogram  corresponding  to
the  vectors  v  and  w,  assuming  that  both  v  and  w  are  nonzero.  Since  the  other  linear
combinations  of this example don't  represent  the sum of  v and w, before plotting those
delete  (or  comment  out,  by  putting  (*  before  and  *)  at  the  end  of   line  that  has  the
Dashing command.

(e) Since (– 13, 13) = 13 (– 1, 1), by (2) the length of 2v – 3w is 13 times the length of
(– 1, 1):

                          ||2v – 3w|| = 13 || (– 1, 1) || = 
è!!!!!!!!!!!!!!

12 + 12  = 13 
è!!!

2  ≈ 18.38478.
                       
     The following routine plots L = (1/2)(2v – 3w) and the unit vector u = (1/

è!!!
2 ) (– 1,

1) in the direction of L. (See Definition 2.12.)  The long length of 2v – 3w creates scal-
ing  problems  in  plotting  both  that  vector  and  the  unit  vector  in  its  direction:  all  that
would be visible of u would be its arrowhead.  This accounts for the program using half
2v – 3w instead of that vector itself. Execute the program as above. 

In[16]:= Needs@"Graphics`Arrow`"D

L := 9-
13
ÅÅÅÅÅÅÅ
2

,
13
ÅÅÅÅÅÅÅ
2

=

u :=
v

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!!!!!!
v.v

ShowAGraphicsA9Arrow@80, 0<, vD,

TextAFontForm@"v", 8"Times-Bold", 12<D, 9
vP1T
ÅÅÅÅÅÅÅÅÅÅÅÅ

2
, .6 vP2T=E,

RGBColor@1, 0, 1D, Arrow@80, 0<, uD,
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Text@FontForm@"u", 8"Times-Bold", 12<D,

8.8 uP1T, 1.3 uP2T<D=, Axes Ø True,

PlotLabel Ø "Unit Vector in Direction of a Vector"EE
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Out[19]= Ü Graphics Ü

    
    The formal definition of two vectors being parallel (Definition 2.13) is that their direc-
tion vectors are equal or differ by a factor of – 1. However,  the most convenient way to
test whether  two given vectors  are actually  parallel  is to use the following  criterion.  Its
equivalence  to  the  definition  results  from  the  fact  that  a  nonzero  multiple  of  a  given
vector has the same or opposite direction as the given vector. (See (2) above.) 

      Two nonzero  vectors  v and w are parallel  if  and only if  w = k v  for some nonzero
real number k.  

     This makes it easy to see, for example,  that the two vectors (– 6, – 1) and (2, 1/3) =
– (1/3) (– 6, – 1) are parallel. 

     Another important fact about basic vector arithmetic concerns the geometric interpre-
tation of the difference of two vectors.  As the next figure illustrates,  it follows from the
parallelogram  law  of  addition  (see  the  figure  for  Example  1(a)  above)  that  the  vector
difference  v  – w  is the vector  that  when added  to w  gives  the vector  v  .  From this  it  is
easy to derive the formula for the position vector from a point AHa1 , a2 ) to a point B(b1 ,
b2L .  For  let v  = Ha1 , a2 ) = OA and let w  = (b1 ,  b2L  = OB. Then (see  the figure below)
from the parallelogram law

                                       OB = OA + AB, that is, w = v + AB,
                                  
so that
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(3)                           AB = w – v =  (b1  – a1 , b2  – a2 ). 
                                                
 To summarize the discussion, Equation (3) says that 
 
        The vector v – w is representable as the vector drawn from the endpoint of w to the
endpoint of v.                                                                            

Position Vector as a Vector Difference

w

- w
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O

vv - w

v — w

     
Another  important  idea  is  the  representation  of  vectors  in  terms  of  the  standard  basis
for R2 , which is the ordered set {i, j}, where the vectors i and j are

(4)                                              i = (1, 0) and j = (0, 1).
                                                              
It follows immediately  from (4) that any vector v = (a, b) in the plane is a unique linear
combination of the standard basis vectors, namely,

                                                  v = (a, b) = a i + b j.
                                                             
For instance,  in Example 1(a) above the vector v = (–2, 5) is –2i + 5j  and the vector w
= (3, –1) is 3i – j. (See also Definition 1.16).    

2. Three-dimensional  vectors.  The real  plane R2  consists  of all  ordered  pairs (x, y) of
real  numbers.  Similarly,  real  3-dimensional  Euclidean  or  Cartesian  space  is  the  set  of
all  ordered  triples  (x,  y,  z)  of  real  numbers.  Representing  3-dimensional  space  on  a  2-
dimensional  surface  such as a piece of paper,  a chalkboard,  or a computer  screen is not
simple.  Indeed,  a  precise  description  of that  process  requires  ideas  from linear  algebra,
which  you most  likely  have  not  studied.  The  text  represents  the  points  of 3-space  with
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the aid of a right-handed coordinate system, like the one shown in the following figures.
To locate a point P in R3  with coordinates (x, y, z), 

      – first go to the point Q(x, y) in the xy-plane as usual, and then
     – go up (if z > 0) or down (if z < 0) the distance |z| units to reach the point.
      
The following figure illustrates this with the points P(2, 2, 3) and Q(–3, 1, –4). Note that
Mathematica  plots  3-dimensional  points  via  its  built-in Graphics3D  command.  It is
also  possible  to  add  text,  such  as  labels,  at  specified  places  in  a  figure,  and  to  specify
both  the  size  and  color  of  plotted  points.  As  before,  execute  the  following  code  and
watch the picture develop.
                                                                                                       

In[20]:= P = 82, 2, 3<;
Q = 8-3, 1, -4<;
plotpoints =

8Graphics3D@8PointSize@0.02D, RGBColor@1, 0, 1D, Point@PD,
Text@FontForm@"P", 8"Times-Italic", 12<D, 82.2, 2.2, 3<D<D,

Graphics3D@8PointSize@0.02D, RGBColor@1, 0, 0D, Point@QD,
Text@FontForm@"Q", 8"Times-Italic", 12<D, 8-2.8, 1.2, -4<D<D<

Show@plotpointsD

Out[22]= 8Ü Graphics3D Ü, Ü Graphics3D Ü<
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Out[23]= Ü Graphics3D Ü
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     By default,  Mathematica  draws a box around its three-dimensional  diagrams.  Its goal
is  to  help  your  eye  better  perceive  the  main  features  of  the  diagram.  In  this  case,  for
instance,  the surrounding  box emphasizes  that the point P lies above,  to the right of, and
behind the point Q. (Compare Figure 1.9 of the text.) Mathematical  diagrams customarily
use another  means of orienting spatial relationships:  the inclusion of coordinate  axes and
scales.  The  following  modified  plot  retains  the  surrounding  box,  and  adds  coordinate
axes  labeled  in  the  customary  right-handed  fashion:  if  you  point  your  right  index  finger
in the direction  of the positive  x axis and your right middle  finger  in the direction  of the
positive  y  axis,  then  your  thumb  points  in  the  direction  of  the  positive  z  axis.  The  com-
mand  Axes ->  True  causes  Mathematica  to  add  ticks,  but  on  the  surrounding  box
rather than the coordinate  axes themselves  as in the text.  As you can see from the result-
ing  figure,  Mathematica's  style  makes  it  easy  to  perceive  the  relative  size  of  plotted
points' coordinates.

     The code  introduces  variables  xwin, yext,  and zlen  that  specify  how long a por-
tion of each coordinate axis to plot. (They are not named in a uniform fashion — such as
xwin,  ywin,  and  zwin  —   to  forestall  Mathematica's  reporting  of  possible  spelling
errors!)  In each case, the axis length is twice the absolute  value of the largest  coordinate
that  appears  in  the  points  P  and  Q.  (The  semicolons  suppress  printing  of  the  values  of
xwin,  yext,  and  zlen.)  To  save  space,  the  code  from  the  last  program  that  defines
plotpoints is not repeated: once that program executes, its information is available in
memory as long as your session lasts. That is good to keep in mind.

In[24]:= xwin = 3;
yext = 2;
zlen = 4;

coordaxes = Graphics3DA

99RGBColor@0, 1, 0D, Line@88-xwin, 0, 0<, 8xwin, 0, 0<<D,

TextA"x", 9xwin +
xwin
ÅÅÅÅÅÅÅÅÅÅÅÅ

5
, 0, 0=E=,

9RGBColor@0, 1, 0D, Line@880, -yext, 0<, 80, yext, 0<<D,

TextA"y", 90, yext +
yext
ÅÅÅÅÅÅÅÅÅÅÅÅ

5
, 0=E=,

9RGBColor@0, 1, 0D, Line@880, 0, -zlen<, 80, 0, zlen<<D,

TextA"z", 90, 0, zlen +
zlen
ÅÅÅÅÅÅÅÅÅÅÅÅ

5
=E==E

Show@plotpoints, coordaxes, Axes Ø TrueD

Out[27]= Ü Graphics3D Ü
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Out[28]= Ü Graphics3D Ü

Plotting Points in Three - Space

     Just  as in two dimensions,  vectors in 3-space arise as quantities  with both length and
direction.  Unfortunately,  Mathematica  still  does  not  have  an  arrow  command  for  3-
dimensional  plotting,  so  plotting  vectors  in  3-space  is  more  challenging.  The  program
below  uses  the  Polygon  command  to  put  (fairly  crude)  arrowheads  on  the  end  of  a
vector, cutting the vector about 90% of the way from its initial to terminal point. Without
use  of  advanced  concepts  of  computer-graphics  programming,  the  resulting  rendering  is
much  less  professional  than  that  above  for  2-dimensional  vectors.  The  program  below
illustrates the vectors v, w, and v + w from Example 1.12 of the text. Execute it and com-
pare the result with Figure 1.17 of the text. 

In[29]:= v = 8-4, 2, 0<;
w = 86, -3, 4<;

q =
è!!!!!!!!!

v.v ;

r =
è!!!!!!!!!

w.w ;

s =
è!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

Hv + wL.Hv + wL;
vplot =

Graphics3DA99Line@880, 0, 0<, v<D, PolygonA9v, 9.9 vP1T, .9 vP2T,

.9 vP3T -
1
ÅÅÅÅ
q
=, 9.9 vP1T, .9 vP2T, .9 vP3T +

1
ÅÅÅÅ
q
==E,

TextAFontForm@"v", 8"Times-Bold", 12<D,
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9.5 vP1T, .5 vP2T, .5 vP3T -
2
ÅÅÅÅ
q
=E=,

9Line@880, 0, 0<, w<D, PolygonA9w, 9.9 wP1T, .9 wP2T,

.9 wP3T -
1
ÅÅÅÅ
r
=, 9.9 wP1T, .9 wP2T, .9 wP3T +

1
ÅÅÅÅ
r
==E,

TextAFontForm@"w", 8"Times-Bold", 12<D,

9.5 wP1T, .5 wP2T, .5 wP3T -
2
ÅÅÅÅ
r
=E=,

9RGBColor@1, 0, 1D, Line@880, 0, 0<, v + w<D, PolygonA

9v + w, 9.9 Hv + wLP1T -
1
ÅÅÅÅ
s

, .9 Hv + wLP2T, .9 Hv + wLP3T -
1
ÅÅÅÅ
s
=,

9.9 Hv + wLP1T +
1
ÅÅÅÅ
s

, .9 Hv + wLP2T, .9 Hv + wLP3T -
1
ÅÅÅÅ
s
==E,

Text@FontForm@"v + w", 8"Times-Bold", 12<D,

8Hv + wLP1T, Hv + wLP2T, 1.1 Hv + wLP3T<D=,

9RGBColor@1, 0, 0D, Line@8v, w<D,

PolygonA9v, 9.9 vP1T, .9 vP2T -
1
ÅÅÅÅ
q

, .9 vP3T -
1
ÅÅÅÅ
q
=,

9.9 vP1T, .9 vP2T +
1
ÅÅÅÅ
q

, .9 vP3T +
1
ÅÅÅÅ
q
==E,

Text@FontForm@"v – w", 8"Times-Bold", 12<D,

8.3 H2 v + wLP1T, .3 H2 v + wLP2T, .5 H2 v + wLP3T<D==E

Show@vplot, coordaxes, Axes Ø True, Lighting Ø FalseD

Out[34]= Ü Graphics3D Ü
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Out[35]= Ü Graphics3D Ü
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