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Abstract

■ To behave adaptively in environments that are noisy and
nonstationary, humans and other animals must monitor feed-
back from their environment and adjust their predictions and
actions accordingly. An understudied approach for modeling
these adaptive processes comes from the engineering field of
control theory, which provides general principles for regulating
dynamical systems, often without requiring a generative model.
The proportional–integral–derivative (PID) controller is one of
the most popular models of industrial process control. The pro-
portional term is analogous to the “delta rule” in psychology, ad-
justing estimates in proportion to each error in prediction. The
integral and derivative terms augment this update to simulta-
neously improve accuracy and stability. Here, we tested whether
the PID algorithm can describe how people sequentially adjust
their predictions in response to new information. Across three

experiments, we found that the PID controller was an effective
model of participants’ decisions in noisy, changing environ-
ments. In Experiment 1, we reanalyzed a change-point detection
experiment and showed that participants’ behavior incorpo-
rated elements of PID updating. In Experiments 2–3, we devel-
oped a task with gradual transitions that we optimized to detect
PID-like adjustments. In both experiments, the PID model
offered better descriptions of behavioral adjustments than both
the classical delta-rule model and its more sophisticated vari-
ant, the Kalman filter. We further examined how participants
weighted different PID terms in response to salient environmen-
tal events, finding that these control terms were modulated by
reward, surprise, and outcome entropy. These experiments
provide preliminary evidence that adaptive learning in dynamic
environments resembles PID control. ■

INTRODUCTION

To behave adaptively, we must adjust our behavior in re-
sponse to the dynamics of our environment (Pezzulo &
Cisek, 2016; Ashby, 1956). Achieving this goal requires us
to collect feedback about the outcomes of our recent
actions and incorporate this feedback into decisions about
how to adjust future actions. Within research on learning
and decision-making, a popular approach for achieving this
feedback-based control is the “delta-rule model”1 (Δx = αδ;
Widrow & Hoff, 1960; cf. Maxwell, 1868). This model
adjusts expectations (x) proportionally to the discrepancy
between observed and predicted outcomes (i.e., prediction
error, δ), depending on the learning rate (α).
Although there is substantial cross-species evidence for

delta-rule controlled behavior (e.g., Garrison, Erdeniz, &
Done, 2013; Mirenowicz & Schultz, 1994; Rescorla &
Wagner, 1972), this algorithm has major limitations.
The delta rule is sensitive to any noise that will cause per-
sistent errors, leading to either oscillatory behavior (at a
high learning rate) or a sluggish response (at a low learn-
ing rate; Aström & Murray, 2008; Rumelhart, Hinton, &

Williams, 1986). However, one of the greatest limitations
of this algorithm is that it performs poorly in environ-
ments that are nonstationary (i.e., that change discontin-
uously over time; Aström & Murray, 2008; Pearce & Hall,
1980).

More elaborate feedback control mechanisms have
been developed within a branch of engineering called
Control Theory that studies the regulation of dynamical
systems. Many control theoretic algorithms augment the
basic delta rule with additional control terms that greatly
improve accuracy, stability, and responsivity. The most
popular variant of these control theoretic models is the
popular proportional–integral–derivative (PID) controller
(Figure 1). This model is simple, accurate, and robust,
with response properties that have been well characterized
over the last century (Aström & Murray, 2008; Franklin,
Powell, & Emami-Naeini, 1994). The PID controller takes
the error from a reference signal as input, and it outputs a
control signal consisting of a linear combination of control
signals proportional to the error (P-Term), the integral of
the error (I-Term), and the derivative of the error (D-Term;
Figure 1). These three terms minimize deviations from
the reference based on errors in the present, past, and
expected future, respectively.

Proportional control (cf. delta-rule control) directly
minimizes deviation from the reference and is often the
primary driver of the control process. Integral control
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provides low-frequency compensation for residual
steady-state errors, allowing the controller to reduce
noise and track gradual changes in the environment.
Derivative control provides high-frequency compensa-
tion that increases stability, such as by dampening con-
trol adjustments when the controller is approaching the
reference or increasing adjustments when the reference
or environment suddenly changes (see Aström & Murray,
2008). Intuitively, integral control provides low-frequency
compensation by combining several time points, whereas
derivative control provides high-frequency compensation
by tracking the instantaneous change. Here, we test
whether this popular model of industrial control can
account for adjustments in human behavior within a
dynamic environment.

PID control has algorithmic properties that make it
useful for most control systems. For instance, relative
to algorithms that require an explicit representation of
task dynamics, PID can provide an effective, and compu-
tationally cheaper, model-free alternative to adjusting
cognitive or behavioral processes over time, particularly
for natural environments that require particularly com-
plex world models. Moreover, convergent evidence sug-
gests that the PID algorithm may help account for the
variety of feedback-related findings observed in humans
and other primates. Behavioral and neural correlates of
feedback-controlled choice provide preliminary evidence
that participants transform decision-relevant variables in
a manner predicted by the PID algorithm. Consistent
with proportional control, there is substantial evidence
that participants adjust their behaviors based on recent
errors or conflict (Ullsperger, Danielmeier, & Jocham,
2014; Lau & Glimcher, 2005; Gratton, Coles, & Donchin,
1992; Rescorla & Wagner, 1972; Rabbitt, 1966), with cor-
responding signals observed most prominently in the
striatum and ACC (Smith et al., 2015; Garrison et al.,
2013; Matsumoto, Matsumoto, Abe, & Tanaka, 2007;
Seo & Lee, 2007; Kennerley, Walton, Behrens, Buckley,
& Rushworth, 2006; Ito, Stuphorn, Brown, & Schall,
2003; Mirenowicz & Schultz, 1994; Niki & Watanabe,

1979). Previous work has found that people are also sen-
sitive to the extended history of errors or conflict (Aben,
Verguts, & Van den Bussche, 2017; Wittmann et al.,
2016; Alexander & Brown, 2015; Bugg & Crump, 2012;
Botvinick, Braver, Barch, Carter, & Cohen, 2001; Logan
& Zbrodoff, 1979; Laming, 1968), with proposals that
this specifically involves integrating over recent errors
(Wittmann et al., 2016; Alexander & Brown, 2015). Accord-
ingly, experiments have found neural signals in pFC and
ACC that reflect this feedback history (Wittmann et al.,
2016; Bernacchia, Seo, Lee, & Wang, 2011; Blais & Bunge,
2010; Carter et al., 2000), and recent models of ACC have
emphasized the role that integrative, recurrent activity in
this region plays in executive control (Shahnazian &
Holroyd, 2018; Hunt & Hayden, 2017; Wang, 2008).
Finally, consistent with derivative control, prior work has
found that participants track the environmental rate of
change when making decisions, with associated neural
correlates in the anterior pFCs and ACC (Wittmann
et al., 2016; Jiang, Beck, Heller, & Egner, 2015; McGuire,
Nassar, Gold, & Kable, 2014; Kovach et al., 2012;
Bernacchia et al., 2011; Behrens, Woolrich, Walton, &
Rushworth, 2007). Although some of these results have
been attributed to participants’ representations of envi-
ronmental dynamics (e.g., Jiang et al., 2015; McGuire
et al., 2014; Behrens et al., 2007), PID control may offer
a more parsimonious account of these behaviors.
Despite the success of the PID model as a simple and

effective algorithm for implementing control in other
fields, as well as suggestive evidence for relevant neural
signatures in circuits involved in adaptive control, PID
has yet to be formally tested as a model of human adap-
tive learning. In the current set of experiments, we di-
rectly tested whether a PID model can describe human
performance in adaptive learning tasks. In Experiment 1,
we reanalyzed a recent study that examined predictive
inference in an environment with discrete change points.
Behavior on this task confirmed key predictions of the
PID model but was limited in its ability to adjudicate
between candidate models. Informed by our findings in

Figure 1. (Left) The PID controller uses the current error (P-Term), the integral of the error (I-Term), and the derivative of the error (D-Term)
to provide compensation based on the present, past, and future, respectively. (Right) The PID controller specifies a control signal based on the
weighted sum of the PID terms, with each term weighted by their respective gain. Similar to a thermostat-controlled furnace, the plant implements
the control signal, moving the measured processes closer to the reference (e.g., the desired temperature). The figure on the left was adapted from
Aström and Murray (2008) with permission from Princeton University Press.
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Experiment 1, for Experiments 2–3, we developed a
novel task that was optimized for PID control, using
gradual rather than sudden change points. We found that
the PID model was a strong predictor of participants’
choices in both experiments. Experiment 3 replicated
the predictive power of our model and further examined
whether participants dynamically adjust their control
terms based on rewards, surprise, and outcome entropy.
Across these tasks, participants’ performance confirmed
key predictions of the PID model, demonstrating that
this simple model provides a promising account of adap-
tive learning.

EXPERIMENT 1

The PID model is designed to adapt the behavior of a sys-
tem in response to changes in the environment. We
therefore began by testing whether this model could ex-
plain behavioral adjustments in an existing change-point
detection task, one that was designed to assess how hu-
mans can adapt their learning rate to uncertain and vola-
tile outcomes (McGuire et al., 2014). In this experiment,
participants predicted where a target stimulus would ap-
pear (horizontal location on the screen) and then re-
ceived feedback about where the true location of the
outcome had been (see Figure 2A). Outcome locations
were normally distributed around a mean, and the mean
of this distribution changed suddenly throughout the ex-
periment (at change points), according to a predeter-
mined hazard rate. This task allows us to measure
participants’ choices and feedback in a continuous space
with high precision, making it desirable for studying PID
control. We can therefore use the PID model to predict
trial-to-trial adjustments in participant behavior (predict-
ed locations) based on their history of error feedback. In
other respects, this task is not ideally suited for testing
our model: The dramatic changes in target distributions
may “reset” adaptive control processes (Tervo et al.,
2014; Karlsson, Tervo, & Karpova, 2012; Bouret & Sara,
2005), and so this experiment serves as a preliminary test
of our hypothesized control dynamics. We will address
these concerns in Experiments 2–3.

Methods

Participants and Procedure

Experiment 1 consisted of a reanalysis of a change-point
task used by McGuire and colleagues (2014). Briefly,
32 participants (17 women; mean age = 22.4 years,
SD = 3.0 years) selected a location on a line using a joy-
stick and then were shown the correct location for that
trial. On a random subset of trials, participants were
rewarded according to their accuracy, dissociating
the trial value (which depended on whether the trial
was rewarded) from errors. Target locations were
drawn from a Gaussian distribution with a variable

mean and variance. The mean was stable for three
trials and then, on a weighted coin flip (hazard rate =
0.125), was uniformly redrawn from the line coordinates;
the variance alternated between high and low levels
across blocks. Participants performed 160 training trials
followed by four blocks of 120 trials during fMRI. Two
participants were excluded for having an inconsistent
number of trials per block, leaving 30 participants for
the final analysis. See McGuire et al. (2014) for additional
details.

Lagged Regression Analysis

A critical prediction of the PID model is that participants’
updates (i.e., the change in their location guesses)
should depend on their history of errors. Whereas a delta-
rule model predicts that only the error on the current
trial will directly influence updates, a PID controller inte-
grates errors over a longer history, enabling the control-
ler to correct for a consistent bias in errors. Integral
control will manifest as an exponentially decaying influ-
ence over previous errors, whereas derivative control will
place a positive weight on the current error and a nega-
tive weight on the t−1 error. These two terms make
different predictions for the t−1 error: Integral control
will place a high weight on this error, whereas derivative
control will place a lower weight on t−1 than it does
on earlier trials.

To measure the independent contribution of each tri-
al’s feedback in the recent past, we used a simple lagged
regression analysis to test how prediction updates
(change in predicted location from the current trial to
the next trial) depended on the errors from the current
and 10 previous trials (ut ∼ 1 + et + et−1 + ⋯ + et−10;
Wilkinson notation). We assessed the influence of pervi-
ous trials’ feedback by testing whether the sum of previ-
ous trials’ betas was significantly different from zero,
using a nonparametric sign-randomization test at the
group level (comparing the observed results with a null
distribution that we generated by randomly assigning
positive or negative signs to each participant’s summed
betas). Throughout the article, all randomization tests
used 105 simulations, and all statistical tests were two-
tailed with α = .05.

PID Model

The PID algorithm controls a system to maintain a de-
sired reference signal (Figure 1). It takes as input the
signed error relative to this reference (et = reference −
output) and produces a control signal (ut) that specifies
the adjustment for the next time point (here, the next
trial). The control signal is defined by a linear combina-
tion of three terms: the P-Term (reflecting the error), the
I-Term (reflecting the leaky integration of the error), and
the D-Term (reflecting the derivative of the error). Each
of these terms was weighted by its own gain parameter
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Figure 2. Experimental tasks. (A, left) On each trial of Experiment 1, participants selected a horizontal location with a joystick and were then shown
the correct location. On a random subset of trials, participants received performance-contingent rewards (shown as gold coins). Figure was
adapted from McGuire et al. (2014). (Right) A representative block of trials from an example participant. The mean correct location was stable for a
variable number of trials and then was uniformly resampled. (Inset histogram) The distributions of errors for this participant across their session.
(B, left) Participants in Experiment 2 selected a location on the circle with their mouse and then were shown the correct location. (Right)
A representative block of trials, demonstrating that the mean correct location changed gradually over time. As seen in the histogram for an example
participant (inset), the gradual changes in location for this task resulted in error distributions that were less peaked than in Experiment 1
(compare A inset). (C, left) Experiment 3 was identical to Experiment 2, but participants were rewarded based on their accuracy, according to one of
four reward–error functions. They were informed of the current reward mode during fixation, and during feedback, they received the reward
corresponding to their accuracy on that trial (conditional on the current reward mode). (Right) Error–reward slopes for the four reward modes.
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(KP, KI, and KD). For trial t, the control signal (ut) was
generated by transforming the error (et) as follows:

ut ¼ KPet þ KI
Xt

n¼1

λt−nen þ KD et − et−1ð Þ

where λ represents a memory persistence parameter,
with larger values leading to longer retention. On the first
trial of a block, the I-Term is et and the D-Term is 0, pro-
ducing a control action similar to proportional control. In
the following tasks, ut was defined as the difference in
the choice location between trial t + 1 and trial t (here-
after, the “update”), and et was the difference between
the correct location and the chosen location. Although
PID is not traditionally a state estimation algorithm, it
can serve this function by regulating performance to
maintain a desired accuracy (i.e., no error), such as what
occurs in autoencoder learning systems (Denève, Alemi,
& Bourdoukan, 2017).

PID Model Fit

We used each participant’s time course of errors within
each block to generate hypothesized P, I, and D values
based on the raw errors, the integral of the errors, and
the first derivative of the error, respectively. Our regres-
sion model consisted of an intercept and the three PID
terms (u ∼ 1 + P + I + D), and we fit this model with
iteratively reweighted robust regression (using MATLAB’s
fitlm function; bisquare weighting factor) to minimize
overfitting to the outliers that can occur when partici-
pants make scalar responses. Fit statistics were generated
based on the non-reweighted residuals from the robust
model, to avoid undue bias in favor of complex models.
Because the λ parameter (memory persistence) inter-

acted with the identifiability of our PID terms when esti-
mated jointly (e.g., when λ = 0, P and I are identical), we
chose to fit this single term at the group rather than in-
dividual level. We fit λ with a grid search (range = 0.5–1,
increments of 0.001), using median R2 across participants
as our measure of fit (normalizing individual differences
in update variability). Regression models were estimated
at the individual level, and regression weights were tested
for deviance from zero at the group level with a sign-
randomization test (see above).
We compared the P (i.e., delta rule), PI, PD, and PID

models, as these are the most common instantiations of
the PID algorithm. To quantify model performance, we
calculated each participant’s Akaike information criterion
(AIC; Akaike, 1983), an index of goodness-of-fit that is pe-
nalized for model complexity.2 We compared the AIC at
the group level using Bayesian model selection (Rigoux,
Stephan, Friston, & Daunizeau, 2014), quantifying the
Bayesian omnibus risk (BOR; probability that all models
are equally good across the population) and each
model’s protected exceedance probability (PXP; the
probability that this model is more frequently the best

fit than any of the competing models, controlling for
the chance rate). BOR tests whether there is an omnibus
difference between models, whereas PXP describes
which models fit the best.

PID Controller Simulations

To better understand the expected range of behavior un-
der our candidates’ models, we simulated delta-rule and
PID controller’s performance for the outcome histories
that each participant encountered during the experi-
ment. We used a restricted maximum likelihood estima-
tion procedure (MATLAB’s fmincon) to determine the
values of the PID gains, λ, and choice bias (i.e., intercept)
that perform best given the outcomes of each partici-
pant’s task. We then compared these best-performing
delta-rule and PID gains with the gains estimated from
participants’ behaviors.

We also tested whether simulated behavior from our
models produce the same pattern of behavior that we
measured with our lagged regression. We simulated an
ideal observer that used each participant’s estimated
PID parameters and outcome history to generate a se-
quence of updates and then fit our lagged regression to
this simulated behavior, separately for the P, PI, and PID
candidate controllers. This analysis allows us to qualita-
tively determine the extent to which the PID model can
act as a generative model of participants’ decision-
making behaviors (Nassar & Frank, 2016; Gelman, Meng,
& Stern, 1996). If participants are using PID control, then
simulated updates from a PID controller should similarly
weight the feedback received over previous trials.

Results

Model-agnostic Analysis

To identify the degree to which behavioral adjustments
were influenced by recent feedback, we regressed partic-
ipants’ current and previous errors on their update. We
found that although the current error was the strongest
predictor of updates, errors from previous trials also in-
fluenced adjustment (Figure 3A). The sum of leading
trials’ betas was reliably less than zero (summed beta:
mean = −0.040, SD = 0.064; p = .00017). This suggests
that, although immediate feedback was the most influ-
ential factor for participants’ updates, they also incorpo-
rated an extended history of error feedback into their
adjustments. Whereas the current trial had a positive in-
fluence on updates, these previous trials instead had a
negative influence on the current update, potentially
compensating for the extreme errors that participants
made at a change point (see Figure 2A).

To verify that our model can generate performance
that captures the behavior observed in this task, we sim-
ulated behavior on this task using parameters estimated
for our PID model and reduced versions thereof (P and

Ritz et al. 1409



PI). We then performed the same lagged regression on
these simulated data that we used on real data (Figure 3A).
As expected, we found that the simulated PI and PID
models captured the influence of leading errors, unlike
the P-only model (which predicts that there should be no
influence of leading errors).

PID Model Fit

We first performed a search to identify the PID gains that
optimized task performance (minimizing mean squared
prediction error) for the outcome sequence observed
by each participant. We found that the optimal PID gains
were all reliably different from zero (mean [SD] PID gain:
KP = 1.0 [0.18], KI = −0.16 [0.12], KD = −0.070 [0.077],
λ = 0.85 [0.071]). Consistent with the lagged regression
analysis, the optimized integral and derivative gains were
negative.
Fitting our PID model to participants’ updates, we

found that the best-fit models accounted for a substantial
amount of this variance (median R2 = .92), with param-
eters for all terms being significantly different from zero
(mean [SD] standardized betas: βP = 0.62 [0.27], p ≤
10−5; βI = −0.019 [0.022], p ≤ 10−5; βD = −0.0068
[0.016], p = .022; see Figure 3B). The group level λ
(memory persistence) was also quite high (0.9430), sug-
gesting that participants retained a great deal of informa-
tion regarding past feedback. Participants’ estimated
gains qualitatively resembled the gains produced by
the simulated PID controller, sharing the same sign
and rank order (compare gray diamonds and circles in
Figure 3B).
We used Bayesian model selection to compare the fit

of each model (PXP) and tested whether there was an
omnibus difference between models (BOR). We found
that the PI model had the highest PXP (PXPP = 0.14,
PXPPI = 0.46, PXPPD = 0.14, PXPPID = 0.26; Figure 3C)
but that there is altogether insufficient evidence to sup-
port one model over another (BOR = 0.55, providing
roughly equal evidence that the models are the same
or different). These data therefore do not allow us to rule
out the possibility that a simple delta-rule (P-only) model
parsimoniously accounts for participant behaviors. The
PID models did not predict behavior better than the
Bayesian change-point model in the original publication
(original median R2 = .97; McGuire et al., 2014), which
incorporated information about the generative structure
of the statistical environment.

Discussion

We found preliminary evidence that participants per-
forming a change-point detection task are influenced by
their history of error feedback, consistent with the pre-
dictions of a PID controller. Participants’ updates could
also be predicted from the integral and derivative of their
errors. Despite these promising indications of PID con-
trol, we were unable to confidently differentiate between
candidate models. Furthermore, this model did not ex-
plain behavior better than the change-point detection
model from this original experiment.
Although this experiment offers mixed evidence in

favor of the PID algorithm, this may be because this task
was designed for change-point models, with sudden,

Figure 3. Experiment 1 results. (A) For our model-agnostic analyses,
we regressed the errors that participants made on the current and
10 leading trials on their current update (black: participants’ regression
weights). Next, we used the PID parameters estimated in our regression
analysis to generate behavior from P, PI, and PID controllers and fitted
our lagged regression to this simulated behavior (colored lines). (Inset)
The regression weights from only the leading trials (i.e., before the
current trial), controlling for the effect of the current trial. (B) For our
model-based analyses, we regressed the trial-wise P-, I-, and D-Terms on
participants’ updates and found that all three terms were significantly
different from zero. Colored circles indicate individual participants’
regression weights. Dark gray diamonds indicate the mean gains from
the best-performing delta-rule models, based on each participant’s
outcome history; light gray diamonds indicate the mean gains from the
best-performing PID controllers. (C) We used Bayesian model selection
to adjudicate between our candidate models, finding that the PI model
best explained the data, albeit with moderate support (see text). Error
bars throughout indicate mean and between-participant bootstrapped
95% confidence intervals.
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dramatic shifts in the outcome distribution. These
change points introduce extreme errors that participants
might treat categorically differently from normal predic-
tion errors, evoking a “reset” in their decision process
or causing the representation of a different context
(McGuire et al., 2014; O’Reilly et al., 2013; Nassar, Wilson,
Heasly, & Gold, 2010; Courville, Daw, & Touretzky, 2006;
Bouret & Sara, 2005). This experiment also involved a
training paradigm designed to make participants aware
of the generative structure of the task, an advantage
not typically afforded in the real world or exploited by
PID control systems. With these concerns in mind, we
developed a novel adaptive learning task in which out-
comes changed smoothly over time, encouraging partic-
ipants to treat outcomes as arising from a single, changing
context. Participants were not instructed on this generative
structure explicitly, reducing the potential for the use of
structured inference strategies that best characterized
learning in Experiment 1.

EXPERIMENT 2

Although Experiment 1 provided promising evidence
that participants use their history of feedback in a way
that resembled PID control, it did not provide definitive
evidence as to whether this is the best explanation for the
data. However, participants may have strategically reset
their predictions at extreme change points, making it
more difficult to measure history-dependent predictions.
To address this, we developed a task with gradual transi-
tions in which participants tracked an outcomes distribu-
tion whose mean linearly changed from one location to
another and whose variance changed randomly through-
out the block. To make these location transitions seem
more continuous, outcomes appeared along a circle rather
than a straight line, thus also avoiding edge effects that
can occur at either end of a screen. This design allowed
us to precisely measure participants’ predictions, errors,
and adjustments within an environment whose dynamics
are more fluid and predictable than Experiment 1. This
task was explicitly designed to emulate an environment
for which a PID controller is well suited and specifically
to maximize our power to detect differences between
PID control and proportional (delta-rule) control.

Methods

Participants and Procedure

Twenty-nine Brown University undergraduate students
(25 women; mean age = 18.6 years, SD = 0.83 years)
performed a supervised learning task in which they pre-
dicted an outcome location on a circular display (see
Figure 2B).
Participants completed five blocks of 100 trials in

which they used a mouse cursor to guess a location on
the circumference of the circle. They were then shown

the correct location, with an arc indicating the magnitude
and direction of their error. Participants completed
50 training trials before the main experiment. Participants
had up to 3 sec to make their guess, or else their final
cursor angle would be chosen as the guess for that trial,
and feedback was presented for 2 sec. Our final analysis
excluded any trials where participants did not move their
cursor to the edge of the circle as well as a subset of trials
after aberrant feedback due to a technical issue (1.8% of
the total trials).

The target location for each trial was drawn from a
Gaussian distribution over arc degrees, with a mean
and a standard deviation that systematically changed over
time. On a weighted coin flip (hazard rate = 0.80), the
distribution’s mean shifted based on a random draw
from U(−180, 180) degrees. After the new mean was
drawn, the mean transitioned from the old mean to
the new mean over U(8, 20) trials, with the means during
transition trials linearly interpolated between the old
and new means. The standard deviation varied indepen-
dently of the mean and was redrawn from U(1, 8) de-
grees on a weighed coin flip (hazard rate = 0.40).
These task parameters were selected through simulation
to maximally differentiate the performance of PID and
delta-rule models. Unless otherwise indicated, methods
of analysis and model selection for this study are identical
to Experiment 1.

Results

Model-agnostic Analysis

Regressing the current and 10 leading errors onto the
current update (see Methods under Experiment 1), we
again found that the sum of leading errors was signifi-
cantly different from zero (summed leading betas:
mean = 0.27, SD = 0.31, p ≤ 10−5; Figure 4A). This rep-
licates the observation in Experiment 1 that participants
incorporate the extended history of errors into their
prediction process.

Fitting our lagged model to behavior generated from
our models produced a similar pattern of predictions as
in Experiment 1: The P-only model categorically failed to
capture the influence of leading errors. The PI and PID
models were similar in their ability to recreate partici-
pants’ use of previous errors; however, the PID model
seemed to better capture participants’ weighting of re-
cent leading errors (i.e., over the previous three trials).
We examined whether this trend was reliable across par-
ticipants by fitting linear and quadratic trends over trials
to each participant’s leading betas. We found a significant
quadratic trend (quadratic trend standardized beta:
mean = −0.0054, SD = 0.009, p = .004) but not a linear
trend (linear trend standardized beta: mean = 0.002,
SD = 0.020, p = .39). Although this finding is broadly
compatible with derivative control’s nonlinear weighting
of previous errors, the observed trend extended further

Ritz et al. 1411



backward in time than the previous-trial effects predicted
by a simple derivative.

PID Model Fit

The best-performing PID gains were significantly differ-
ent from zero (mean [SD] gain: KP = 0.48 [0.13], KI =
0.45 [0.085], KD = 0.080 [0.066], λ = 0.84 [0.033]; all
ps ≤ 10−5; Figure 4B). Our PID model accounted for
most of the variance in participants’ updates (median
R2 = .84), and the parameters for the P-, I-, and D-Terms
were all significantly different from zero (mean [SD] stan-
dardized beta: βP = 0.75 [0.10], p ≤ 10−5; βI = 0.099
[0.088], p ≤ 10−5; βD = 0.026 [0.045], p = .0034; sign-
randomization test; Figure 4B). The group level λ was
0.87. Participants’ parameters were similar to the ideal

PID controller, although they had a greater reliance on
proportional control and a lesser reliance on integral
control than was optimal.
Bayesian model selection favored the PI model (PXPP =

0.064, PXPPI = 0.79, PXPPD = 0.049, PXPPID = 0.095;
Figure 4C), although there was a moderate likelihood
that models did not differ in their fit (BOR = 0.20). This
was mostly due to the similarity in likelihood between
the PI and PID models (excluding PID: BOR < 0.001,
PXPPI > 0.99). Therefore, our model selection supports
the interpretation that PI control explains behavior
better than the delta-rule model.

Discussion

Using a novel variant of a change-point task, we provide
strong evidence that the PI control model can usefully
describe participants’ predictions. Our model-free analy-
sis showed that participants incorporated previous errors
in their adjustments, an observation incompatible with
proportional control, but predicted by our PI and PID
models. We also found that all of the PID terms were again
significant predictors of participants’ updates and that
they were qualitatively similar to the gains of an ideal
PID controller. Building on Experiment 1, this experiment
provided strong evidence that PI was the best-fitting
model. These data further support a role for control pro-
cesses that extend beyond immediate errors.
These first two experiments have provided promising

evidence that the PID framework predicts adaptive learn-
ing better than the classical delta-rule model. A striking
feature of these experiments is that participants had very
different estimated control gains across the two experi-
ments, consistent with the differential gains of the best-
performing PID agents. These differences suggest that
participants may set their control gains in a context-
specific manner, although at an unknown time scale.
Popular delta-rule models have suggested that partici-
pants may in fact rapidly adjust their control gains in re-
sponse to changes to the local context (Pearce & Hall,
1980). This prompted us to develop a third experiment,
to replicate our results from Experiment 2 and test
whether participants can adaptively adapt PID gains to
their local contexts.

EXPERIMENT 3

In Experiment 3, we sought to replicate the findings from
Experiment 2, while at the same time manipulating the
incentives for performing accurately on the task. We
additionally sought to examine three factors that might
influence the weights that individuals might place on
each of the PID terms over the course of an experiment.
First, we examined the influence of surprise (absolute

error) on these control weights, given classic findings
that such surprise signals modulate learning, indicating
the degree to which the environment has been learned

Figure 4. Experiment 2 results. (A) Participants adjusted their choices
based on previous trials, unlike the predictions of a proportional
controller (i.e., delta-rule model). (B) P-, I-, and D-Terms significantly
predicted participants’ updates. (C) The PI controller best explained
participants’ behavior. See Figure 3 for detailed graph legends. Error
bars indicate mean and between-participant bootstrapped 95%
confidence intervals.

1412 Journal of Cognitive Neuroscience Volume 30, Number 10



(Pearce & Hall, 1980; see also McGuire et al., 2014;
O’Reilly et al., 2013; Hayden, Heilbronner, Pearson, &
Platt, 2011; Nassar et al., 2010). Second, given evidence
that learning can be influenced by uncertainty over re-
cent feedback (Nassar et al., 2010; Courville et al., 2006;
Yu & Dayan, 2005) or related estimates of volatility
(Behrens et al., 2007), we examined how PID gains were
influenced by an index of the outcome entropy over the
past several trials. This measure of uncertainty indexes
both expected uncertainty (the variance in the generative
distribution) and unexpected uncertainty (changes in the
mean of the generative distribution, i.e., ramps), the
latter of which is more dominant in our tasks.
We also examined the influence of reward on PID

gains, given previous evidence that these can impact
learning in a dissociable fashion from surprise or uncer-
tainty alone (McGuire et al., 2014) and, more generally,
that rewards may compensate for the costs of effortful
control policies (Kool, Gershman, & Cushman, 2017;
Manohar et al., 2015; Padmala & Pessoa, 2011; Hayden,
Pearson, & Platt, 2009), including learning in particular
(Shenhav, Botvinick, & Cohen, 2013; Hayden et al.,
2009). For example, this could occur if integrating feed-
back utilizes domain-general working memory processes
(Collins & Frank, 2012, 2018). Importantly, Experiments
1 and 3 were designed to de-confound reward from er-
rors, providing us the ability to measure their influences
on PID gains separately from one another and from our
measure of uncertainty. In Experiment 1, performance-
dependent rewards were given on a random subset of
interleaved trials, whereas in Experiment 3, rewards were
a nonlinear function of error that changed over time.
These measures allowed us to distinguish the indepen-
dent effects of surprise (absolute error) and reward on
learning. For example, participants may have been moti-
vated to perform accurately, and insofar as this motiva-
tion is further enhanced by reward, our analysis should
be able to dissociate this motivation from other out-
comes of error (e.g., surprise).
Finally, we compared our PID model against a popular

model of adaptive learning, the Kalman filter (Kording,
Tenenbaum, & Shadmehr, 2007; Kakade & Dayan, 2002;
Kalman, 1960). This model performs state estimation
using a delta-rule algorithm with an uncertainty-weighted
learning rate. Previous experiments have found that it is
a good model of behavior and it is based on the same
principles that motivated the heuristic terms in our adap-
tive gain analysis.

Methods

Participants and Procedure

Forty-seven Brown University subject pool participants
(32 women; mean age = 21.3 years, SD = 4.07 years)
performed a rewarded supervised learning task (without
monetary compensation). Apart from the reward manip-
ulation, the structure of this task was similar to Experi-

ment 2. On each trial, the reward magnitude depended
on the accuracy of the participant’s guess (i.e., the
absolute error between guess and outcome location;
Figure 2C). These rewards decreased exponentially with
increasing error magnitude. To de-correlate rewards and
errors and to vary overall motivation to perform the task,
we adjusted the steepness (mean) of this exponential
(gamma) function over trials, resampling one of four
possible means (1, 1.5, 2.5, and 4.5) at random time
points, chosen with a flat hazard rate of 0.20 across all
trials (Figure 2C, right). We instructed participants that
these different levels of steepness defined four “reward
modes.” The reward mode for a given trial was indicated
by the color of the fixation cross (one of four colors from
equally spaced locations on a heat colormap). The input
(errors) to these reward functions were divided by 3.5
to approximately match the reward that these functions
returned at participants’ mean performance level in
Experiment 2.

Participants completed 50 training trials, followed by
six blocks of 75 trials. On each trial, participants had up
to 5 sec to make their guess, feedback was presented for
2.5 sec, and then the reward mode for the next trial was
displayed during an ITI that was drawn from U(1, 1.5). At
the end of each block, participants were shown the mean
reward earned during that block. Our final analysis ex-
cluded any trials where participants did not move their
cursor to the edge of the circle (0.07% of the total trials).
The lagged and trial-wise regression analyses were
performed as described in Experiments 1 and 2.

Gain Modulation Analysis

To examine the influence of reward (Experiments 1 and
3; n = 77), errors (Experiments 1–3; n = 106), and out-
come entropy (Experiments 1–3; n = 106) on the gains
of the PID terms, we reran our PID regression analysis,
including interaction terms for each type of gain modula-
tion. In Experiment 1, the reward modulator consisted of
binary reward feedback that was given on a random sub-
set of trials, conditional on participants’ error being
within a prespecified threshold. This feedback was not
correlated with absolute error on the task. In Experi-
ment 3, the reward modulator was the number of points
that participants received on each trial, which was a time-
varying nonlinear function of absolute error (see proce-
dure described above). In this task, participants received
both error and reward feedback on every trial. Absolute
error was correlated with the reward (median r = −.68);
however, Belsley collinearity diagnostics (Belsley, Kuh, &
Welsch, 1980) indicated that the collinearity between ab-
solute error and reward was below standard tolerances,
suggesting that our regression would be able to assess
the independent contributions of each factor. In all three
experiments, the error modulator was the absolute pre-
diction error. Outcome entropy was defined as the natural
logarithm of the outcome sample standard deviation over
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the current and 10 previous trials within each block (with
a truncated window for the first 10 trials in each block).

A robust regression (bisquare weighted) was run for
every participant in every experiment, excluding the
reward modulator for Experiment 2. The regression
model included all main effects as well as the interactions
between the PID terms and gain modulators [u ∼ 1 +
(P + I + D) × Reward + (P + I + D) × Absolute Error +
(P + I + D) × Outcome Entropy]. We mean-centered
betas within their respective experiment and then re-
centered the betas on their grand mean, removing
between-experiment variance (Cousineau, 2005).

Kalman Filter Analysis

Our Kalman filter analysis was based on the algorithm
used in Kording et al. (2007), building off the code that
accompanied their publication. This Kalman filter esti-
mated the likelihood of different states using an uncer-
tainty-weighted delta-rule algorithm. Each state was a
differential equation that defined a random walk over a
specific time scale (i.e., slowly or quickly changing out-
come locations). See Kording et al. (2007) for a complete
description of this algorithm. Although the Kalman filter is
not optimized for our task, given that the outcomes were
not generated from a random walk, it has nevertheless
proved to be a good model of behavior in previous exper-
iments that used a random walk generative function (e.g.,
Gershman, 2015; Kording et al., 2007; Daw, O’Doherty,
Dayan, Seymour, & Dolan, 2006; Kakade & Dayan, 2002).

Following Kording et al. (2007), states were defined as
30 diffusion time scales logarithmically spaced between
two trials and the length of the experiment. We fit state
noise parameters for each participant using restricted max-
imum likelihood estimation (MATLAB’s fmincon). The ini-
tial mean was set to the first outcome, and the initial
covariance was set to a small variance constant (10−4). As
in our PID analysis, we fit the Kalman filter’s parameters
so as to minimize the difference between its prediction up-
dates and each participant’s prediction updates, based on
participants’ errors on each trial (i.e., one-step look ahead).

We also compared the PI model against a variant of the
Kalman filter that is less commonly used to describe
adaptive behaviors but was better suited for our experi-
ment. This position-velocity Kalman filter tracks ran-
domly drifting changes in both the position (x) and
velocity ( _x) of the outcome locations:

xtþ1 ¼ Fxt þN 0;Qð Þ
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We used restricted maximum likelihood estimation to fit
participant-specific velocity decay (v), time delay (τ), and
state noise (σα

2) parameters to participants’ updates using
the same one-step look ahead procedure described
above. The initial mean was set to the first outcome,
and the initial covariance was set to the variance in out-
come position and velocity, averaged across participants.

Results

Model-agnostic Analysis

Regressing the current and 10 leading errors onto the
current update (see Methods under Experiment 1), we
replicated the observation that participants were influenced
by past errors (summed betas: mean = 0.23, SD = 0.21,
p ≤ 10−5; see Figure 5A). Our model-generated behavior

Figure 5. Experiment 3 results. (A) Participants adjusted their choices
based on previous errors, unlike the predictions of a proportional
controller (i.e., delta-rule model). (B) P, I, and D control significantly
predicted participants’ updates. (C) The PI controller best explained
participants’ behavior. See Figure 3 for detailed graph legends. Error
bars indicate mean and between-participant bootstrapped 95%
confidence intervals.
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again showed that the delta-rule model categorically fails
to capture the influence of leading errors. Unlike Experi-
ment 2, here, we found that the weighting of previous
errors was best fit as a linear decay from the current trials,
resembling PI control (mean [SD] trend beta: linear =
0.0087 [0.016], p < 10−4; quadratic = −0.002 [0.016],
p = .39; sign-randomization test). This discrepancy from
Experiment 2 may be because rewards in Experiment 3
were highly dependent on accuracy. This may have
biased participants more toward integral control (which
favors accuracy) and away from derivative control (which
favors stability; Aström & Murray, 2008).

PID Model Fit

Replicating Experiments 1 and 2, we found that our stan-
dard PID model accounted for most of the variance in
participants’ updates (median R2 = .81). The parameters
for the P-, I-, and D-Terms were all significantly different
from zero (mean [SD] standardized beta: βP = 0.72
[0.11], p ≤ 10−5; βI = 0.11 [0.086], p ≤ 10−5; βD =
0.020 [0.047], p = .006; Figure 5B). The group level λ
was 0.8016. Participants’ estimated gains were similar to
the ideal PID controller, but they overweighted propor-
tional control and underweighted integral control. We
found that there were likely differences between the
model likelihoods (BOR < 0.001) and that Bayesian
model selection strongly favored the PI model (PXPPI >
0.99) over the alternate models (all other PXPs < 10−4;
Figure 5C).

Gain Modulation

We examined the independent influence of rewards, ab-
solute error, and outcome entropy in modulating the PID
gains across our three experiments. We found that all
three modulators significantly interacted with the P-, I-,
and D-Terms, but in distinct ways (Figure 6): Increased
reward led to increased P and I gains and a decreased
D gain (Figure 6A; mean [SD] interaction beta: βP:reward =
0.086 [0.12], p ≤ 10−5; βI:reward = 0.0098 [0.036], p= .016;
βD:reward = −0.010 [0.040], p = .032; sign-randomization
test). Increased absolute error led to an increased P gain
and decreased I and D gains (Figure 6B; mean [SD] inter-
action beta: βP:error = 0.043 [0.078], p ≤ 10−5; βI:error =
−0.032 [0.053], p ≤ 10−5; βD:error = −0.014 [0.062], p =
.019); increased outcome entropy led to a decreased P
gain and increased I and D gains (Figure 6C; mean [SD]
interaction beta: βP:entropy = −0.018 [0.056], p = .0016;
βI:entropy = 0.057 [0.059], p ≤ 10−5; βD:entropy = 0.0098
[0.039], p = .011).

These interactions were robust to several quality
checks. First, all effects remained significant when we
corrected for multiple comparisons using the Holm–
Bonferroni procedure (Holm, 1979). Given the presence
of outliers, we also tested our effects using a robust
Wilcoxon signed-rank test (Wilcoxon, 1945), finding that
all interactions remained significant ( ps ≤ .014). Finally,
we also found that all interactions remained significant
when we did not remove between-experiment variance
( ps ≤ .035; Figure 6 depicts participants’ raw interaction
betas).

Figure 6. Gain modulation. Trial-wise reward (A), absolute error (B), and outcome entropy (C) significantly interacted with all three PID terms.
All models included PID terms as main effects. Colored shapes indicate individual participant’s standardized betas in each experiment (see
legend). Error bars indicate mean and between-participant bootstrapped 95% confidence intervals, uncorrected for between-experiment
variance.
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Kalman Filter Analysis

We fit the Kalman filter to participants’ behavior in both
Experiments 2 and 3, finding that Bayesian model selec-
tion strongly favored the PI control model over the stan-
dard Kalman filter (pooling across experiments; PXPPI >
0.99, BOR < 10−14; Figure 7A). Using our lagged regres-
sion analysis approach, we also found that the standard
Kalman filter’s updates depended on previous errors in
a qualitatively different way from participant updates.
Unlike participants, the Kalman filter placed negative
weights on errors made in earlier trials (Figure 7B). We
also found that the standard Kalman filter also performed
especially poorly when outcomes changed over time
(i.e., at different outcome velocities), whereas partici-
pants and the PI model were able to accommodate such
changes in outcomes (Figure 7C).

We also compared the PI control model against a
Kalman filter model that tracked the position and velocity
of outcomes over time. Despite the additional complexity
of this model, we found that the PI model fit similarly
well (PXPPI = 0.63, BOR = 0.70). These models were
identifiable, as we could accurately recover the correct
model when either of them generated behavior, sug-
gesting that they offer dissociable explanations of partici-
pants’ behaviors. Interestingly, we found that participants’
velocity estimates strongly decayed over time (mean v =
0.32) and that this parameter strongly correlated with
participants’ integral gain (r= .79, p< 10−16), suggesting
that these terms might serve complementary computa-
tional roles. Collectively, these results show that the PI
model offers a more parsimonious account of participants’
behavior than a complex, task-informed inferential model.

Discussion

In Experiment 3, we found confirmatory evidence that
the PI model accurately describes participants’ predic-
tions and that participants adjust their weighting of dif-
ferent PID terms based on trial-wise task dynamics. We
found that each PID term was uniquely sensitive to
changes in reward, absolute error, and outcome entropy,
extending previous observations of the role of these
modulators on proportional control and providing fur-
ther evidence that the PID terms represent distinct con-
trol processes. We also found that the PI model offered a
better explanation of behavior than the standard Kalman
filter and performed similarly to a specialized Kalman
filter variant, demonstrating that the PI model is as
powerful as more complex models based on explicit state
space representations.
When participants received larger rewards, they modu-

lated their gains in a way that is consistent with a prefer-
ence for accuracy (P- and I-Terms) over stability (D-Term;
Ang, Chong, & Li, 2005), potentially indicating an exploit-
ive strategy for the high-reward environments (Kovach
et al., 2012). Although participants’ proportional gain
was already larger than the best-performing gain, this
may reflect the unique role of reward modulation, when
controlling for the environmental changes (e.g., entropy)
that make a high proportional gain less desirable. An-
other alternative is that the P- and/or I-Terms are effortful
to implement, with rewards “paying the cost” of these
control policies (Kool et al., 2017; Manohar et al., 2015).
Further work will be necessary to dissociate the role
of salience and motivation on reward-modulated gain
adjustments.

Figure 7. Kalman filter analysis. The PI control model fitted participants’ behavior better than a standard Kalman filter model. (A) For most
participants (colored dots), a complexity-corrected measure of fit (AIC) was better for the PI control model than the Kalman filter model. (B) Unlike
the PI control model, the Kalman filter model poorly resembled how lagged errors influenced participants’ updates (compare with A in Figures 4–5).
(C) Unlike the PI control model, the Kalman filter did not resemble participants’ accuracy when the outcome distribution changed over time (pooled
across Experiments 2 and 3).
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In response to absolute errors (i.e., surprise), partici-
pants increased their immediate adjustment (P-Term)
and relied less on previous feedback (I- and D-Terms).
This is consistent with the idea that large errors may in-
dicate changes in the environment (Nassar et al., 2010;
Pearce & Hall, 1980) and with filtering mechanisms in
industrial PID control that improve robustness by limiting
the long-term influence of noisy samples (Ang et al.,
2005).
Although outcome entropy, and uncertainty, has tradi-

tionally been thought to increase the gain on propor-
tional control (Nassar et al., 2010; Behrens et al., 2007;
Courville et al., 2006), in our experiment, the P-Term
was decreased and the I- and D-Terms were instead in-
creased. Interestingly, when we instead implement this
gain modulation in a P-only model, we do find that out-
come entropy increases the gain of the P-Term (data not
shown). Unlike previous experiments studying un-
certainty, environmental change in Experiments 2 and 3
required tracking gradually changing outcomes, which
accounted for most of the outcome entropy and for
which integral and derivative control are particularly use-
ful (Wittmann et al., 2016; Kovach et al., 2012). In Exper-
iment 1, where these gradual changes were not present,
we found that uncertainty after a change point increased
control gains (McGuire et al., 2014), which may be
reflected here by integrating over the trials since the
change point.
We found that the PI model explained participants’ be-

havior better than a standard Kalman filter (a powerful
model of adaptive learning; Kording et al., 2007) and that
the Kalman filter failed to capture participants’ use of
feedback history. This difference was largely due to the
ability of the integral term to track ramping changes in
the environment, epochs that were poorly accounted
for by the Kalman filter. Interestingly, the Kalman filter’s
updates were negatively correlated with errors made on
earlier trials (when controlling for the influence of the
current error). We believe that this is due to the short
diffusion time scales, which were updated the fastest
(they were set to the highest state noise, as in Kording
et al., 2007) and define the difference between current
and recent trials. We found that the lagged influence of
recent trials was more strongly negative for shorter time
scales (data not shown).
We also compared the PI model against a position-

velocity Kalman filter that tracked both the position
and velocity of outcomes, finding that these models fit
similarly well. There was a strong relationship between
this Kalman filter’s velocity term and the PI controller’s
integral term, suggesting that participants could use inte-
gral control to track ramping changes in the environ-
ment. This position-velocity Kalman filter has received
little attention in the learning literature and warrants fur-
ther investigation; however, it currently offers a less par-
simonious explanation of behavior than PI control due to
its greater computational complexity and its requirement

for explicit state representations. Although both of these
Kalman filters did not offer better models than PI control,
the Kalman filter embodies the same principles as our
adaptive gain analysis: Control gains should be adaptive
and depend on factors like environmental stability.

GENERAL DISCUSSION

Across three experiments, we found that the PI model
successfully captured participants’ prediction updating
in a stochastic environment. By incorporating a richer
model of control monitoring and adjustment, the PI con-
troller was able to account for ways in which performance
in such environments deviates from predictions of stan-
dard-error-driven (delta-rule) learning models. We also
replicated and extended previous findings showing that
learning parameters themselves are modulated by envi-
ronmental signals (e.g., reward) and extended these find-
ings to show that signals related to the magnitude of
reward, error, and outcome entropy can differentially
affect the gains on the PID model parameters.

Our findings suggest that PI control offers a good ac-
count of behavior across two fairly different task environ-
ments. Indeed, although we found that normative PID
gains differed substantially between Experiment 1 (dis-
crete transitions) and Experiments 2–3 (gradual transi-
tions), participants’ behavior continued to qualitatively
match the behavior predicted by this normative control-
ler across studies, in each case matching the sign and
rank order of the best-performing control gain. This sug-
gests that these gains adapted to the specific environ-
ment that participants were acting in. Specifically, when
outcomes were prone to shift sharply and dramatically
(Experiment 1), participants tended to rely less on history-
dependent control processes like integral and derivative
control, especially on trials in which large errors may have
indicated a state shift.

Although we have focused our discussion of the PID
controller on all three of its components, in industrial
settings, the D-Term is often given the lowest gain or
not included (Aström & Murray, 2008), as it is highly sen-
sitive to noise. Accordingly, our own data supported little
to no role for the derivative term in the current experi-
ments, both normatively and in our model fits to partic-
ipants’ behavior. Although the derivative control term
was significant in all of the experiments and interacted
with the absolute error, it did not account for sufficient
variance to outweigh complexity penalties in model com-
parison. This may have been compounded by the fact
that the derivative term was negatively modulated by ab-
solute error, which may have caused it to explain less of
the variance on trials where there were large updates.
Although the outcomes in Experiments 2 and 3 were
designed to differentiate PID control from the delta-rule
model, they were not designed to specifically detect
derivative control. Future research should investigate
cases where derivative control is especially beneficial
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for good performance. Because derivative control pro-
vides high-frequency compensation to improve respon-
sivity, it may be the case that derivative control is
generally poorly suited for tasks that depend on intertrial
adjustments and favor accuracy over speed. Relative to
Experiment 2, Experiment 3 emphasized accuracy
through its reward structure and deemphasized respon-
sivity because of its longer trial length. Although there
were several differences between these experiments,
these factors may have contributed to the differences in
derivative control between these experiments.

Some of the most promising evidence for derivative
control was that, in Experiment 2, participants down-
weighted recent errors (from t−3 and t−1) relative to
what would be expected by error integration alone.
Although basic derivative control would only compare
the current and previous errors, participants’ behavior
resembles a common practice in control engineering to
low-pass filter the derivative term to improve robustness
(Ang et al., 2005). The discrepancy between the observed
nonlinear influence of previous errors (predicted by the
full PID model) and the model selection preference for
the PI model may therefore be accounted for by alter-
native forms of derivative control.

We found that the PID terms depended on reward
feedback (Experiments 1 and 3), absolute errors (Exper-
iments 1–3), and outcome entropy (Experiments 1–3) on
a trial-to-trial basis. Although there is substantial literature
on how environmental factors should influence the stan-
dard delta-rule model, less is known on how these factors
should affect PID gains. These modulation factors may
offer insight as to how the control system sets different
control gains, which in our experiment were fit to behav-
ior. Although we have proposed speculative explanations
for the role of each modulating factor, at a minimum, the
unique pattern of interactions for each of the PID terms
suggests that P, I, and D represent dissociable forms of
control. Future experiment should examine the extent
to which gain modulation depends on the structure of
the task and environment, for instance, whether the task
rewards consistency in addition to accuracy.

The PID model provides robust control without relying
on an explicit model of the environment, offering a
parsimonious explanation of participants’ behavior. Al-
though this model is not optimal (e.g., with respect to
mean squared error), it offers an approximate solution
without the computational demands of exactly modeling
the nonlinear system dynamics (Motter, 2015). That said,
there have been notable successes for algorithms that in-
stead learn generative models of the environment (e.g.,
using Bayesian estimation) and can represent the uncer-
tainty about upcoming choices (e.g., Franklin & Frank,
2015; Griffiths, Lieder, & Goodman, 2015; McGuire
et al., 2014; Nassar et al., 2010; Daw, Niv, & Dayan,
2005; although see Duverne & Koechlin, 2017; Geana
& Niv, 2014; Mathys, Daunizeau, Friston, & Stephan,
2011). To examine this possibility, we compared the PI

control model against the Kalman filter, a standard model
for state estimation in the face of uncertainty. We found
that the PI model better explained participants’ behavior
than a standard Kalman filter (Kording et al., 2007) and
fitted comparably to a Kalman filter that was specialized
for this experiment. In contrast to the Kalman filter, the
PID controller offers a general control process that can
parsimoniously account for participants’ behavior with
minimal knowledge about the task structure. These
benefits would likely be compounded by the complex
dynamics of natural environments.
Despite these promising results, we would not rule out

the possibility that participants rely on a combination of
both model-free (e.g., PID) and model-based control (Kool,
Cushman, & Gershman, forthcoming; Korn & Bach, 2018;
Momennejad et al., 2017; Daw, Gershman, Seymour, Dayan,
& Dolan, 2011; Gläscher, Daw, Dayan, & O’Doherty, 2010).
Previous experiments have demonstrated the utility of
model-based predictions for explaining participants’ be-
havior in other environments, and participants can report
confidence in their choices. Model-based control may serve
to modulate the PID controller itself (e.g., to tune gain pa-
rameters or reset control processes; McGuire et al., 2014;
Nassar et al., 2010; Behrens et al., 2007; Bouret & Sara,
2005); may be selectively engaged in environments that
are stable, constrained, or familiar; and/or may trade off
over different stages in learning (Denève et al., 2017).
Another promising feature of the PID model is that it

offers a model of behavioral control that can be plausibly
implemented by a neural system. There have been
several neural network implementations of PID control-
lers in industrial engineering (e.g., Cong & Liang,
2009), with integral and derivative control implemented
as positive and negative recurrent circuits, respectively.
This simple architecture demonstrates the ease with
which a neural system could develop PID control dynam-
ics. Moreover, recent studies have found neuroscientific
evidence that is broadly consistent with the predictions
of such an architecture. For instance, Bernacchia and
colleagues (2011) found that, in rhesus macaques’ cingu-
late cortex and pFC, large populations of neurons en-
coded the history of trial-epoch-selective activity, likely
including error-related responses (cf. Seo & Lee, 2007).
Each of these regions contained equally sized popula-
tions of neurons that tracked either the exponentially
weighted sum of recent trials or the difference between
recent and previous trials, putative markers of integral
and derivative control, respectively. Convergent data in
humans found that fMRI activity in dorsal ACC parametri-
cally tracked a recent history of prediction errors in a chang-
ing environment (Wittmann et al., 2016), again consistent
with the operations of an integral-based controller. Accord-
ingly, these authors found that incorporating integration
into their behavioral model explained choices in their task
better than the traditional delta-rule model. Although these
findings provide evidence for neural signatures of feedback
history (see also Seo & Lee, 2007; Kennerley et al., 2006)
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and are consistent with the monitoring function of PID
control, future experiments are needed to formally test
for the neural correlates of this model.
These experiments together provide strong evidence

for the viability of control theoretic models as mecha-
nisms of human prediction updating in dynamic environ-
ments. This class of models has been highly influential in
research on motor control, including the PID controller
in particular (e.g., Kawato & Wolpert, 1998). Motor con-
trol models typically describe the rapid regulation of limb
movements to produce trajectories that are fast, accurate,
and robust. In contrast, participants in our experiments
were not motivated to make fast or accurate trajectories
and instead may have used an analogous control process
to adapt their predictions from trial to trial. Control theo-
retic algorithms (like PID control) may be a domain-general
class of neural functions, involved in a diverse array of cog-
nitive processes (Pezzulo & Cisek, 2016; Powers, 1973;
Ashby, 1956), including the cognitive control functions that
have been suggested to operate using both classical
(Botvinick et al., 2001) and optimal (Shenhav et al., 2013)
control principles. The architecture of these executive con-
trol algorithms and the nature of the references that they
regulate are important areas of further research.
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Notes

1. Domain-specific “delta-rule” algorithms are common in
many fields, such as the Rescorla–Wagner learning rule (Rescorla
& Wagner, 1972) or a delta rule algorithm used in neural net-
works (Widrow & Hoff, 1960). In this article, we define the delta
rule as a more general class of error-based learning rules in
which adjustments are proportional to errors.
2. We chose AIC over the more conservative Bayesian infor-
mation criterion (BIC) because model recovery found that
BIC was overly conservative: Model selection using BIC did
not prefer the full PID model when this model generated be-
havior (i.e., when PID was the ground truth). Although AIC is
not the ideal fit metric for Bayesian model selection (as it is not
an approximation of model likelihood), the development team
for SPM’s Bayesian model selection protocol has justified using
AIC as a legitimate alternative to BIC: “Though not originally
motivated from a Bayesian perspective, model comparisons
based on AIC are asymptotically equivalent to those based on
Bayes factors (Akaike, 1973a), that is, AIC approximates the
model evidence” (Penny, Stephan, Mechelli, & Friston, 2004,
p. 1162; see also Rigoux et al., 2014; Penny, 2012).
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