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A NOTE ON A PAPER OF ERCAN AND ÖNAL

T. S. S. R. K. Rao

Abstract. In this short note we formulate and prove a Banach space version
of the Banach-Stone theorem, obtained recently by Ercan and Onal ([4]) for
the case of lattice-valued continuous functions.

1. INTRODUCTION

Let X, Y be compact Hausdorff spaces and E a Banach lattice and F be an
abstract M -space with unit. Let π : C(X, E) → C(Y, F ) be a Riesz isomorphism
such that 0 /∈ f(X) if and only if 0 /∈ π(f)(Y ) for each f ∈ C(X, E). Ercan and
Önal have proved in [4] that E is Riesz isomorphic to F and X is homeomorphic
to Y . In this paper we show that similar conclusion can be drawn when E is a
complex Banach space and π is a surjective isometry. It is well-known that an
additional condition is necessary on π to ensure this conclusion. See Corollary 7.3
of [1] and the remark following it. Also see [2] for topological conditions which
make the component spaces homeomorphic.

We also consider this problem for certain M -spaces without unit, i.e, C0(X)
for a locally compact, non-compact set X .

For a Banach space E , let E1 denote the closed unit ball and ∂eE1 denote the
set of extreme points.

We recall that e ∈ E1 is a strong extreme point if ek ∈ E , ‖e ± ek‖ →
1 =⇒ ek → 0. It is easy to see that 1 ∈ C(X) is a strong extreme point.

2. MAIN RESULT

We recall that from [7] (Chapter 1) that by the Kakutani’ representation theorem
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F is isometric to C(N ) for a compact Hausdorff space N . In what follows we use
the well-known identification of C(Y, C(N )) with C(Y ×N ). A Banach space E
is said to be an L1-predual if E∗ is isometric to L1(µ) for a positive measure µ.
See [7] Chapter 7 for properties of these spaces. For a compact Hausdorff space K,
C(K) is an L1-predual. See [8] and [9] for a classification of these spaces among
function spaces.

Theorem 1. Let E be a Banach space and let π : C(X, E) → C(Y, C(N ))
be a surjective isometry such that 0 /∈ f(X) if and only if 0 /∈ π(f)(Y ) for each
f ∈ C(X, E). Then there exists a compact Hausdorff space M such that E is
isometric to C(M) and X, M are homeomorphic to Y, N respectively.

Proof. Since E is isometric to the range of a projection of norm one in
C(X, E) it follows from the results in Chapter 6 in [7] that E is an L 1-predual
space. To show that E is isometric to a C(M), in view of the results from [8],
(see [9] for the complex versions) we need to show that ∂eE1 �= ∅ and ∂eE

∗
1 is a

weak∗-closed set.
Since 1 ∈ C(Y, C(N )) is a strong extreme point, we have that C(X, E)1 has

a strong extreme point, say f . It follows from [3] that f(x) ∈ ∂eE1 for all x ∈ X .
Since π is a surjective isometry, we have that ∂eC(X, E)∗1 is a weak∗-closed set.
Now let {e∗α}α∈∆ ⊂ ∂eE

∗
1 be a net such that e∗α → e∗, in the weak∗-topology.

For x ∈ X , as {δ(x) ⊗ e∗α} ⊂ ∂eC(X, E)∗1 and δ(x) ⊗ e∗α → δ(x) ⊗ e∗ in the
weak∗-topology, we get that δ(x)⊗ e∗ ∈ ∂eC(X, E)∗1. Therefore e∗ ∈ ∂eE

∗
1.

Hence E is isometric to C(M) for a compact Hausdorff space M . After identi-
fying C(X, E) with C(X×M), it follows from the classical Banach-Stone theorem
that there is a homeomorphism σ : Y × N → X × M such that π(f) = π(1)f ◦ σ
for all f ∈ C(X × M).

Since |π(1)| ≡ 1, it is easy to see that the hypothesis implies that for each
y ∈ Y there exists a unique x ∈ X such that, σ({y}×N ) = {x}×M . It therefore
follows from Lemma 5 of [4] that X, M are homeomorphic to Y, N respectively.

We next state a more general version for injective tensor product spaces. This
can be proved using arguments similar to the ones given during the proof of the
above Theorem. For the extremal arguments, instead of the results from [3], one
uses the results from [5]. The arguments will be symmetric for the component
spaces. In what follows, we use the well-known fact that the injective product
space, E ⊗ε F can be identified as a subspace of the space of compact operators,
K(E∗, F ).

Theorem 2. Let π : E ⊗ε F → C(Y, C(N )) be a surjective isometry such that
for T ∈ E ⊗ε F , 0 /∈ π(T )(Y ) ⇐⇒ 0 /∈ T ∗(∂eF

∗
1 ). Then there exist compact
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Hausdorff spaces X, M such that E, F are isometric to C(X), C(M) respectively
and X, M are homeomorphic to Y, N respectively.

For general Banach spaces E, F, G, for which the injective tensor product spaces
E ⊗ε F is isometric to E ⊗ε G, the cancelation theorems ask for conditions under
which F is isometric to G. It is also reasonable to investigate what geometric
properties of G are passed on to F . In view of the classification scheme in [8]
and [9], one can fix E as one of the spaces in the classification scheme and let G

be some other type of L1-predual and ask for conditions on the isometry between
E ⊗ε F and E ⊗ε G to ensure that F is the same type of L1-predual as G. In what
follows we do this for C0(X) type spaces.

In the above results we have used crucially the presence of extreme point in
the unit ball of one of the tensor product spaces. We do not know how to prove
a similar result in the case of C0(X) spaces where X is locally compact and not
compact.

Question 3. Let Φ : C0(X, E) → C0(Y, C0(N )) be an isometry. Is E isometric
to C0(M) for some locally compact space M? Under what additional condition on
Φ do we get that X, M are homeomorphic to Y, N respectively?

Since C0(Y, C0(N )) can be identified with C0(Y × N ), we again have that E

is an L1-predual space and that ∂eE
∗
1 ∪ {0} is weak∗-closed.

It follows from the classification results of [9] that, now in order to show that
E is a C0(M) space, one needs to show that for any maximal face F of the unit
sphere S(E∗), the convex hull CO(F ∪ {0}) is a weak∗-closed set. We have only
a partial result in this direction.

Proposition 4. Let X be a dispersed locally compact space. Let Φ : C0(X, E) →
C0(Y, C0(N )) be a surjective isometry. Then E is isometric to C 0(M) for a locally
compact space M .

Proof. We again use the identification of C0(Y, C0(N )) with C0(Y × N ).
Since X is dispersed, it has a dense set of isolated points. Let x0 be an isolated
point. It easy to see that f → χx0f is a projection in C(X, E) such that C(X, E)
is isometric to E ⊕∞ E ′ (�∞-direct sum) for some Banach space E′. Now since
C(X, E) is a C0(.)-space, it follows from Example 1.1.4(a) of [6] which describes
�∞-summands in C0(.)-spaces, that E is isometric to a C0(S) for a locally compact
space S.

Analogous to the above results for M -spaces, one can also formulate the corre-
sponding L-space questions. It is possible that the L and M space duality theorem
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of Kakutani and the fact that an L spaces is the unique predual of its dual, is an
approach to handle these problems.

Question 5. Let (Ω,A) be a measure space. Let λ, ν be positive measures
with ν, σ-finite. Suppose Ψ : L1(λ, E) → L1(λ, L1(ν)) is an isometry. Under
what assumptions on Ψ do we get that E is isometric to L 1(ν)?

Here again one has that L1(λ, L1(ν)) is isometric to L1(λ × ν). Therefore
L1(λ, E) is an L-space. Since E is isometric to the range of a projection of norm
one in L1(λ, E), it follows from [7] that E is an abstract L space.
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