
287© Rap Payne 2019
R. Payne, Beginning App Development with Flutter,
https://doi.org/10.1007/978-1-4842-5181-2

APPENDIX A

 Dart Language
Overview
We use the Dart language when writing Flutter, but Dart isn’t very popular

(yet). Most developers jump right into Flutter with no prior knowledge of

the language. In case that’s you, we wanted to get you a little assistance.

In this appendix, we’re making no attempt to teach you everything about

Dart. Our goal here is to get you just enough Dart to be effective as you write

Flutter. So this appendix is brief and to the point. We are only dealing with

the things that would otherwise have slowed you down while writing Flutter.

An example of this is the rune data type. Super cool and innovative Dart

feature, but rarely used with Flutter so we omitted it. Please try to be tolerant

of us if we left out your favorite feature. We didn’t forget it. We just decided it

wasn’t as important as you thought it should be. Please forgive us.

 What is Dart?
Dart is a compiled, statically typed, object-oriented, procedural

programming language. It has a very mainstream structure much like

other OO languages, making it awfully easy to pick up for folks who have

experience with Java, C#, C++, or other OO, C-like languages. And it adds

some features that developers in those other languages would not expect

but are very cool nonetheless and make the language more than elegant.

https://doi.org/10.1007/978-1-4842-5181-2

288

In light of all that, we’ve organized this appendix in two sections:

• Expected features – A quick reference (aka a

“cheatsheet”) of mainstream features, the bare

minimum of what you’ll need to know for Flutter. You

should tear through this section at lightning speed.

• Unexpected features – These are things that might be

a surprise to developers who work in traditional OO

languages. Since Dart departs from tradition in these

areas, we thought it best to explain them briefly – very

briefly.

 Expected features – Dart Cheatsheet
This quick reference assumes that you’re an experienced OO developer

and ignores the stuff that would be painfully obvious to you. For a more in-

depth and detailed look at Dart, please visit https://dart.dev/guides/

language/language-tour.

 Data types
int x = 10; // Integers

double y = 2.0; // IEEE754 floating point numbers

bool z = true; // Booleans

String s = "hello"; // Strings

dynamic d; // Dynamic variables can change types

d = x; // at any time. Use sparingly!

d = y;

d = z;

Appendix A dArt LAnguAge Overview

https://dart.dev/guides/language/language-tour
https://dart.dev/guides/language/language-tour

289

 Arrays/lists
// Square brackets means a list/array

// In Dart, arrays and lists are the same thing.

List<dynamic> list = [1, "two", 3];

// Optional angle brackets show the type - Dart supports Generics

// How to iterate a list

for (var d in list) {

 print(d);

}

// Another way to iterate a list

list.forEach((d) => print(d));

// Both of these would print "1", then "two", then "3"

 Conditional expressions
// Traditional if/else statement

int x = 10;

if (x < 100) {

 print('Yes');

} else {

 print('No');

}

// Would print "Yes"

// Dart also supports ternaries

String response = (x < 100) ? 'Yes' : 'No';

// If name is set, use it. Otherwise use 'No name given'

String name;

String res = name ?? 'No name given';

Appendix A dArt LAnguAge Overview

290

//the "Elvis" operator. If the object is non-null, evaluate

//the property. Prevents null exceptions from throwing.

print(name?.length);

 Looping
// A for loop

for (int i=1 ; i<10 ; i++) {

 print(i);

}

// Would print 1 thru 9

// A while loop

int i=1;

while(i<10) {

 print(i++);

}

// Would print 1 thru 9

 Classes
class Name {

 String first;

 String last;

 String suffix;

}

class Person {

 // Classes have properties

 int id;

Appendix A dArt LAnguAge Overview

291

 Name name; // Another class can be used as a type

 String email;

 String phone;

 // Classes have methods

 void save() {

 // Write to a database somehow.

 }

}

 Class constructors
class Person {

 Name name;

 // Typical constructor

 Person() {

 name = Name();

 name.first = "";

 name.last = "";

 }

}

 Unexpected things about Dart
The preceding Dart features were unsurprising to any experienced OO

developers, but Dart has some pretty cool features that are unique. We’ll

cover these next, but since they’re less familiar, let’s take just a sentence or

two for each and explain it briefly before giving you a code sample.

Appendix A dArt LAnguAge Overview

292

 Type inference
If I said “x=10.0”, what data type would you guess that x is? Double? And

how did you know? Because you looked to the right of the equal sign and

inferred its type based upon the value being assigned to it. Dart can do that

too. If you use the keyword var instead of a data type, Dart will infer what

type it is and assign that type:

var i = 10; // i is now defined as an int.

i = 12; // Works, because 12 is an int.

i = "twelve"; // No! "twelve" is a String and not an int.

var str = "ten"; // str is now defined as a String.

str = "a million"; // Yep, works great.

str = 1000000.0; // Nope! 1000000.0 is a double, not a string.

This is often confused with dynamic. Dynamic can hold any data type

and can change at runtime. Var is strongly and statically typed.

 final and const
final and const are Dart variable modifiers:

final int x = 10;

const double y = 2.0;

They both mean that once assigned, the value can’t change. But const

goes a little farther – the value is set at compile time and is therefore

embedded in the installation bundle.

final means that the variable can’t be reassigned. It does not mean that

it can’t change. For example, this is allowed:

final Employee e = Employee();

e.employer = "The Bluth Company";

Appendix A dArt LAnguAge Overview

293

e changed, but it wasn’t reassigned so that’s okay. This, however, is not

allowed:

const Employee e = Employee();

const is not allowed at all because this particular class has properties

that could potentially change at runtime. final marks a variable as

unchangeable, but const marks a value as unchangeable.

So in summary

• dynamic – Can store any data type. The data type can

change at any time.

• var – The data type is inferred from the value on the

right side of the “=”. The data type does not change.

• final – The variable, once set, cannot be reassigned.

• const – The value is set at compile time, not runtime.

 Variables are initialized to null
The default data type for most variables is null. The default return value of

a function is null:

int x;

double y;

bool z;

String s;

dynamic d;

All of the preceding data are null since they haven’t been assigned a

value yet.

Appendix A dArt LAnguAge Overview

294

 String interpolation with $
Interpolation saves devs from writing string concatenations. This …

String fullName = '$first $last, $suffix';

… is effectively the same thing as this …

String fullName = first + " " + last + ", " + suffix;

When the variable is part of a map or an object, the compiler can get

confused, so you should wrap the interpolation in curly braces.

String fullName = '${name['first']} ${name['last']}';

 Multiline strings
You can create multiline strings with three single or double quotes:

String introduction = """

Now the story of a wealthy family

who lost everything

And the one son who had no choice

but to keep them all together.

""";

 Spread operator
The “…” operator will spread out the elements of an array, flattening them.

This will be very familiar to JavaScript developers:

List fiveTo10 = [5, 6, 7, 8, 9, 10,];

// Spreading the inner array with "...":

List numbers = [1, 2, 3, 4, ...fiveTo10, 11, 12];

// numbers now has [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]

Appendix A dArt LAnguAge Overview

295

 Map<foo, bar>
Maps are like a hash or dictionary. They’re merely an object with a set of

key-value pairs. The keys and values can be of any type:

// You set the value of a Map with curly braces:

Map<String, dynamic> person = {

 "first": "George",

 "last": "Bluth",

 "dob": DateTime.parse("1972-07-16"),

 "email": "amazingGob@gmail.com",

};

// Angle brackets on a Map set the data types of the keys and

// values. They're not required but are a good practice

// You reference a map member with square brackets:

String introduction = person['first'] + " was born "+

person['dob'].toString();

 Functions are objects
Just like in JavaScript, functions are first-class objects. They can be passed

around like data, returned from a function, passed into a function as a

parameter, or set equal to a variable. You can do just about anything with a

function that you can do with an object in Java or C#:

Function sayHi = (String name) => print('Hello, ' + name);

// You can pass sayHi around like data; it's an object!

Function meToo = sayHi;

meToo("Tobias");

Appendix A dArt LAnguAge Overview

296

 Big arrow/Fat arrow
In the preceding example, we also saw the fat arrow syntax. When you

have a function that returns a value in one line of code, you can put that

returned value on the right side of a “=>” and the argument list on the left

side. These are all the same:

int triple(int val) {

 return val * 3;

}

Function triple = (int val) {

 return val * 3;

};

Function triple = (int val) => val * 3;

The fat arrow is just syntactic sugar, allowing devs to be more

expressive with less code.

 Named function parameters
Positional parameters are great, but it can be less error-prone (albeit more

typing) to have named parameters. Instead of calling a function like this:

sendEmail('ceo@bluthcompany.com','Popcorn in the breakroom');

You can call it like this:

sendEmail(subject:'Popcorn in the breakroom',

 toAddress:'ceo@bluthcompany.com');

Now the order of parameters is unimportant. Here is how you’d write

the function to use named parameters. Note the curly braces:

void sendEmail({String toAddress, String subject}) {

 // send the email here

}

Appendix A dArt LAnguAge Overview

297

Named parameters also work great with class constructors where they

are very commonly used in Flutter:

class Person {

 Name name;

 // Named parameters

 Person({String firstName, String lastName}) {

 name = Name()..first=firstName..last=lastName;

 }

}

 Omitting “new” and “this.”
In Dart, it is possible – and encouraged – to avoid the use of the new

keyword when instantiating a class:

// No. Avoid.

Person p = new Person();

// Yes

Person p = Person();

In the same way, inside of a class, the use of “this.” to refer to members

of the class is not only unneeded because it is assumed, but it is also

discouraged. The code is shorter and cleaner:

class Name {

 String first;

 String last;

 String suffix;

 String getFullName() {

 // No. Avoid "this.":

 String full=this.first+" "+this.last+", "+this.suffix;

Appendix A dArt LAnguAge Overview

298

 // Better.

 String full=first+" "+last+", "+suffix;

 return full;

 }

}

 Class constructor parameter shorthand
Merely a shorter way of writing your Dart classes which receive

parameters. When you write the constructor to receive “this.something”

and have a class-scoped property with the same name, the compiler writes

the assignments so you don’t have to:

class Person {

 String email;

 String phone;

 // The parameters are assigned to properties automatically

 // because the parameters say "this."

 Person(this.email, this.phone) {}

}

The preceding code is equivalent to

class Person {

 String email;

 String phone;

 Person(String email, String phone) {

 this.email = email;

 this.phone = phone;

 }

}

Appendix A dArt LAnguAge Overview

299

 Private class members
Dart does not use class visibility modifiers such as public, private,

protected, package, or friend like other OO languages. All members are

public by default. To make a class member private, put an underscore in

front of the name:

class Person {

 int id;

 String email;

 String phone;

 String _password;

 set password(String value) {

 _password = value;

 }

 String get hashedPassword {

 return sha512.convert(utf8.encode(_password)).toString();

 }

}

In that example, id, email, and phone are public. _password is private

because the first character in the name is “_”, the underscore character.

 Mixins
Mixins are baskets of properties and methods that can be added to any

class. They look like classes but cannot be instantiated:

mixin Employment {

 String employer;

 String businessPhone;

Appendix A dArt LAnguAge Overview

300

 void callBoss() {

 print('Calling my boss');

 }

}

A mixin is added to a class when it uses the “with” keyword:

class Employee extends Person with Employment {

 String position;

}

This Employee class now has employer and businessPhone properties

and a callBoss() method:

Employee e = Employee();

e.employer = "The Bluth Company";

e.callBoss(); // An employee can call its boss.

Dart, like Java and C#, only supports single inheritance. A class can only

extend one thing. But mixin members are added to a class so any class can

implement multiple mixins and a mixin can be used in multiple other classes.

 The cascade operator (..)
When you see two dots, it means “return this class, but before you do, do

something with a property or method.” We might do this

Person p = Person()..id=100..email='gob@bluth.com'..save();

which would be a more concise way of writing

Person p = Person();

p.id=100;

p.email='gob@bluth.com';

p.save();

Appendix A dArt LAnguAge Overview

301

 No overloading
Dart does not support overloading methods. This includes constructors.

 Named constructors
Since we can’t have overloaded constructors, Dart supports a different way

of doing essentially the same thing. They’re called named constructors and

they happen when you write a typical constructor, but you tack on a dot

and another name:

class Person {

 // Typical constructor

 Person() {

 name = Name()..first=""..last="";

 }

 // A named constructor

 Person.withName({String firstName, String lastName}) {

 name = Name()

 ..first = firstName

 ..last = lastName;

 }

 // Another named constructor

 Person.byId(int id) {

 // Maybe go fetch from a service by the provided id

 }

}

Appendix A dArt LAnguAge Overview

302

And to use these named constructors, do this:

Person p = Person();

// p would be a person with a blank first and last name

Person p1 = Person.withName(firstName:"Lindsay",lastName:"Fünke");

// p1 has a first name of "Lindsay" and a last name of "Funke"

Person p3 = Person.byId(100);

// p3 would be fetched based on the id of 100

Appendix A dArt LAnguAge Overview

303© Rap Payne 2019
R. Payne, Beginning App Development with Flutter,
https://doi.org/10.1007/978-1-4842-5181-2

Index

A
AlertDialog, 154
Android

emulator, 14, 15
Android Studio, 11
Android Virtual Device (AVD)

manager, 14, 15
Anti-RaisedButton, 81
API call, 228
API requests, 228, 229
AppBar widget, 103, 104
async, 215
await, 214

B
BLoC, 200, 201
Boolean value

property, 60
BoxConstraints, 106
BoxFit options, 52
BoxFit.scaleDown, 51
Box model, 124
BoxShape, 173
build.gradle file, 276
Button widgets, 78

C
Cascade operator (..), 300
Class visibility modifiers, 299
Cloud firestore, 257, 258
Cloud functions, 258, 259
ColorCircle, 197
ColorMixer, 195
ColorValueChanger, 197
Column widget, 111
Compile-to-native cross-platform

frameworks, 7
Componentization, 34
Container

alignment property, 126, 127
<div>, 125
properties, 125
size, 128–130

crossAxisAlignment, 115, 117
Cross-platform development

categories, 6
CRUD app, API service, 241

DELETE request, 247
Flutter app, creation, 243
GET request, 247
PeopleList widget, 244–246
PeopleUpsert.dart, 248–252

https://doi.org/10.1007/978-1-4842-5181-2

304

Pipedream.com, 242
POST call, 252
PUT call, 252
strongly typed business

class, 243, 244
testing, 242

curl command, 242
CustomPainter, 174, 175

D
Dart

cascade operator (..), 300
class constructors, 291
classes, 290, 291
expected features

arrays/lists, 289
conditional

expressions, 289–290
data types, 288
looping, 290

Flutter, 211
mixins, 299
named constructors, 301, 302
overloading methods, 301
private class members, 299
unexpected features

big arrow/fat arrow, 296
class constructor, 298
final and const, 292–293
function parameters, 296–297
functions, 295
map, 295

multiline strings, 294
spread operator, 294
string interpolation, 294
type inference, 292
variables, 293

Debugging, 25
Development process

Flutter project, creation, 19, 20
running, app

debugging, 25
hot reloading, 24
play/debug button, 22
tethered device, 24
web app, 23

DevTools, 12
Dialog widget, 153
Dismissible, 83
Drawer navigation, 144–150
DropdownButton, 63–65
DRY principle, 248

E
Embedded images, 50
Event loop, 211
Expanded widget

example, 117, 118
flex factor, 119, 120

F
Firebase Authentication, 259
Firestore.instance.

collection(‘Foo’), 279

CRUD app, API service (cont.)

INDEX

305

FittedBox, 110
FlatButton, 81
Floating action button, 81, 82
Flutter app, 207

async, 215, 216
await, 214
code to create the

future, 212, 213
compile-to-native solutions, 7
cross-platform

development, 5, 6
Dart language, 211, 287
data from a Future, 213, 214
data with an external

server, 207
data within the device, 207
definition, 4
event loop, 211
finding a library, 208, 209
future, 211
Google CRM team, 5
importing the library, 210
including a file, 216
iOS apps, 5
memory to JSON, 221
pubspec.yaml, 210
reading a file, 219, 220
reading JSON, 222, 223
shared preferences, 223

to read preferences, 224
to write preferences, 224

using JSON, 220, 221
using the library, 211
writing a file, 218

Flutter checkbox widget, 60
Flutter DevTools, 12
Flutter doctor, 16, 17
Flutter radio widgets, 61, 62
Flutter SDK, 10
Flutter styles, 160, 162
Flutter Switch widget, 61
Flutter toolchain

emulators, 13
flutter doctor, 16
flutter upgrade, 17, 18
IDE DevTools, 12
IDEs (see IDEs)
SDK, installation, 10

Flutter upgrade, 17, 18
Flutter widgets

layout widgets, 36
navigation widgets, 37
value widgets, 36

fontFamily, 165
Form example, 71, 73, 74, 76
FormField widget, 67, 68

Form.autovalidate, 69, 71
save() method, 69
validator, 69

Form widget, 65–67
FutureBuilder, 234, 235

G
Genymotion, 14
Gesture

add a new item, 89
associate with behavior, 87

INDEX

306

custom widget, 85
GestureDetector widget, 86
long press, 87
pinching-to-zoom, 92
swiping, 90

GestureArena, 92
GestureDetector widget, 86, 87
Gestures and behaviors, 84
Google Firebase

adding FlutterFire
plugins, 277, 278

advantage, 255
create Android app

google-services.json file, 275
Gradle files, 276, 277
id or package name, 273
package name/nickname, 274
time, 273

creating database, 263, 267
creating iOS app, 267, 268, 272
creating project, 260–262
delete, 282, 283
Foo, 279, 280
Podfile.xcworkspace, 271
query, 281
server, 256
tools, 257

Cloud firestore, 257, 258
Cloud functions, 258, 259
firebase authentication, 259

upsert, 281, 282
GoogleService-info.plist, 270
google-services.json file, 275

Gradle files, 276, 277
GridView, 131

GridView.count(), 132–134
GridView.extent(), 131, 132

H
Hooks, 201
HTTP GET or DELETE request, 230
HTTP responses

brute force, 233
FutureBuilder, 234, 235
StreamBuilder, 236, 237

I
IconButton, 81
Icon widget, 48
IDEs

Android emulator, 14, 15
Android Studio and IntelliJ, 11
DevTools, 12
iOS simulator, 13
VS code, 11

Image sizing, 51
Image widget, 36, 49
InputDecoration widget, 56
IntelliJ, 11
Internet, 36
iOS simulator, 13

J
JSON, 220

Gesture (cont.)

INDEX

307

K
keyboardType property, 58
Kotlin, 5

L
Layout widgets, 36
Lifting state up, 193
ListView.builder, 121, 123
ListView.custom, 122
ListView.separated, 121

M
MainAxisAlignment, 113, 114
MaterialApp widget, 100, 101
Microsoft Visual Studio, 11
Mixins, 299

N
Navigation

dialog, 140
drawers, 139
stacks, 139
tabs, 139
widgets, 37

Network images, 51

O
Omitting “new” and “this.”, 297, 298
onChanged property, 55
onHorizontalDragEnd, 92

onPressed, 79
onVerticalDragEnd, 92

P, Q
PATCH request, 231
path_provider 1.3.0, 209
.plist file, 273
Positioned widget, 178–180
POST request, 231
Private class members

cascade operator (..), 300
Mixins, 299, 300
named constructors, 301
overloading, 301

pubspec.yaml, 210
PUT request, 231

R
RaisedButton, 80
React, 34
React Native, 15
Redux, 202
Row and column, widgets, 110, 112
Row widget, 111

S
SafeArea widget, 104, 105
Scaffold widget, 101, 102
ScopedModel, 201
showDialog(), 154
SimpleDialog, 154

INDEX

308

SizedBox(), 121
Slider, 62
SnackBar widget, 105, 106
.snapshots() method, 279
Spacer(), 121
Stacking widgets, 176, 177
Stack navigation, 140–144
StatefulWidget, 45, 130,

187, 189, 194
important rule about, 190, 191
lifting the state up, 192, 193
passing down, 191, 192
state management, 193–197
usage of stage, 198

StreamBuilder widget, 236, 237, 279
Strongly typed class

business class, 238
.fromJSON() method, 239, 240
typed deserialization, 238

Subwidgets, 39, 40

T, U
TabBarView, 151
TabBar widget, 150
TabController, 151
Table widget

columnWidths, 137
rows and columns, 134, 135
TableRow, 135, 136

Tab navigation, 150–153
TextField widget, 55, 188
TextStyle, 163–165
Text widget, 36, 39, 47

V
Value widgets, 36

W
.where() function, 281
Widget

BLoC, 200, 201
gestures, 83
inheritedWidget, 200
key, 41
passing value in, 42–44
provider, 202
Redux, 202
ScopedModel, 201
StatefulWidget, 189, 190
styling, 159
value, 36

Widgets, layout
entire screen, 94
extra space, 96
fine-tuned spacing, 97
ListView, 94, 95
PersonCard, 94–96
Row widget, 96
visual, 97–99
VS Code, 99

Widget’s size
layout

BoxConstraints, 109
branches, 108
LimiteBox(), 110

RenderBox, 106
unbounded height error, 107, 108

INDEX

309

Widgets style
border, 170, 171
BorderRadius, 172, 173
BoxShape, 173–175
Card widget, 180
colors, 161–163
container

decorations, 168–170
custom fonts, 165–167
fonts, 166, 167

positioned widget, 178–180
shadows, 168, 169
stacking widgets, 176, 177
TextStyle, 163–165
themes, 181–183

X, Y, Z
Xamarin, 15
.xcworkspace file, 270

INDEX

	Appendix A:
Dart Language Overview
	What is Dart?
	Expected features – Dart Cheatsheet
	Data types
	Arrays/lists
	Conditional expressions
	Looping

	Classes
	Class constructors

	Unexpected things about Dart
	Type inference
	final and const
	Variables are initialized to null
	String interpolation with $
	Multiline strings
	Spread operator
	Map<foo, bar>
	Functions are objects
	Big arrow/Fat arrow
	Named function parameters
	Omitting “new” and “this.”
	Class constructor parameter shorthand

	Private class members
	Mixins
	The cascade operator (..)
	No overloading
	Named constructors

	Index

