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Abstract

Convolutional neural networks (CNNs) impose con-
straints on the weights, and the connectivity of a stan-
dard neural network, providing a framework well suited to
the processing of spatially or temporally distributed data.
Although CNNs have been applied to face and character
recognition, they have still received relatively little atten-
tion. The present paper applies the CNN architecture to an
artificial test problem and to an application in robot vision.
Autonomous sewer robots must navigate independently the
sewer pipe system using information from sensors. One re-
quired component is robust detection of pipe joints and in-
lets using data from the omnidirectional sensor. A simple
CNN is shown to robustly classify 32x32 pixel normalized
video frame data on a limited validation set. The study in-
dicates that machine learning methods for robot vision are
feasible in terms of classification accuracy and online im-
plementation.

1 Introduction

The goal of sewer robotics is to construct an autonomous
robot capable of autonomously conducting sewer inspec-
tion tasks in sewerage systems [13]. Autonomous sewer
robots are robots designed to perform automated inspection
of sewer pipe systems. These robots must navigate inde-
pendently the sewer pipe system using only available infor-
mation from sensor systems. The task of accurately detect-
ing and classifying relevant landmarks and features in the
environment is an essential part of the navigation routines.
Because video is often used for the inspection work, per-
forming detection of cracks and other faults, it is useful if
the same data can be utilized for landmark detection.

Paletta, Rome and Platz [13] used a multi-stage system

for landmark detection based on video data. This involved
an attention controller, pre-processing, feature extraction,
probabilistic interpretation, and final classification. Early
components of the system operate according to fixeda pri-
ori rules while latter components are data-driven and adap-
tive. A related work for sewer pipe navigation include pro-
cedures for navigating under uncertainty [12].

Other pattern recognition approaches designed for use in
autonomous sewer inspection include application of neural
architecture to segmentation of pipe joints [7] and recon-
struction of a 3D model of the interior of the pipe based on
video data [6].

In this work we follow the general viewpoint of [13],
holding that interpretation of sensor images should be learnt
from experience, and modeling of features of interest takes
place in terms of their appearance to the agent. This is there-
fore a strong data-based perspective: analytical approaches
towards constructing an objective model of the objects in
question are rejected in favor of methods that directly learn
from experienced sensor data. The present work attempts to
take this perspective further, in attempting to implement an
entirely trainable system. Thus, pre-processing and feature
detection, transformation and classification modules are in-
tegrated into a single adaptive neural architecture. Convo-
lutional neural networks (CNNs) form the theoretical basis
that makes such an approach possible.

2 Convolutional Neural Networks

The termconvolutional network(CNN) is used to de-
scribe an architecture for applying neural networks to two-
dimensional arrays (usually images), based on spatially lo-
calized neural input. This architecture has also been de-
scribed as the technique of shared weights or local recep-
tive fields [16, 5, 14] and is the main feature of Fukushima’s
neocognitron[11, 10]. Le Cun and Bengio [4] note three ar-



chitectural ideas common to CNNs: local receptive fields,
shared weights (weight averaging), and often, spatial down-
sampling. Processing units with identical weight vectors
and local receptive fields are arranged in an spatial array,
creating an architecture with parallels to models of biolog-
ical vision systems [4]. A CNN image mapping is charac-
terized by the strong constraint of requiring that each neural
connection implements the same local transformation at all
spatial translations. This dramatically improves the ratio
between the number of degrees of freedom in the system
and number of cases, increasing the chances of generaliza-
tion [15]. This advantage is significant in the field of image
processing, since without the use of appropriate constraints,
the high dimensionality of the input data generally leads to
ill-posed problems. To some extent, CNNs reflect models
of biological vision systems [9]. CNNs take raw data, with-
out the need for an initial separate pre-processing or feature
extraction stage: in a CNN the feature extraction and clas-
sification stages occur naturally within a single framework.

In the CNN architecture, the ’sharing’ of weights over
processing units reduces the number of free variables, in-
creasing the generalization performance of the network.
Weights are replicated over the spatial array, leading to in-
trinsic insensitivity to translations of the input - an attrac-
tive feature for image classification applications. CNNs
have been shown to be ideally suited for implementation
in hardware, enabling very fast real-time implementation
[17]. Although CNNs have not been widely applied in im-
age processing, they have been applied to handwritten char-
acter recognition [5, 17, 3, 1] and face recognition [15, 9, 8].
CNNs may be conceptualized as a system of connected fea-
ture detectors with non-linear activations. The first layer of
a CNN generally implements non-linear template-matching
at a relatively fine spatial resolution, extracting basic fea-
tures of the data. Subsequent layers learn to recognize par-
ticular spatial combinations of previous features, generating
’patterns of patterns’ in a hierarchical manner. If downsam-
pling is implemented, then subsequent layers perform pat-
tern recognition at progressively larger spatial scales, with
lower resolution. A CNN with several downsampling lay-
ers enables processing of large spatial arrays, with relatively
few free weights.

To sum, CNNs perform mappings between spatially /
temporally distributed arrays in arbitrary dimensions. They
may be applied to time series, images, or video. CNNs are
characterized by:

• translation invariance (neural weights are fixed with re-
spect to spatial translation)

• local connectivity (neural connections only exist be-
tween spatially local regions)

• an optional progressive decrease in spatial resolution
(as the number of features is gradually increased).

Often when applying CNNs we wish to progressively re-
duce spatial resolution at each layer in the network. For
example, a CNN may be used for classification where an
image is mapped to a single classification output. Given
fixed filter sizes, reducing spatial resolution has the effect
of increasing the effective spatial range of subsequent fil-
ters. In a CNN with subsampling in each layer, the outcome
is a gradual increase in the number of features used to de-
scribe the data, combined with a gradual decrease in spatial
resolution. Because the change in coordinate system is ac-
complished in a nonlinear, incremental, hierarchical man-
ner, the transformation can be be made insensitive to input
translation, while incorporating information regarding the
relative spatial location of features. This provides an in-
teresting contrast to methods such as principle components
analysis, which make the transition from normal coordinate
space to feature space in a single linear transformation.

Please refer to [2]1 for a formal description of a CNN.
However, a graphical example of the architecture should as-
sist in conceptualizing the operation of a CNN. Fig. 1 show
an elementary network that maps 8x8 input arrays to a sin-
gle output array via three layers, each consisting of a 2x2
weight vector. The feature arrays are formed by convolv-
ing the weights vectors with the previous array, using a step
size of 2. The network has 64 inputs and 84 connections,
but due to the constraint of translation invariance, there are
only 12 free weights.

spatially distributed
8x8 input array

2-D weight vector (4x4 copies)

2-D weight vector (2x2 copies)

2output layer
(1x1 copy)

hidden feature array

hidden feature array

Figure 1. An elementary CNN architecture

3 Numerical tests

Although impressive applied applications of CNNs have
been reported (e.g. [1]), less work has been done to specify
the theoretical performance of CNN networks, either ana-
lytically or through numerical tests. Previous work [2] has

1preprint available at http://www.gmd.gr.jp/html/ matthew.browne/



defined and detailed the formal structure of a CNN. Here
we shall detail a numerical experiment that is used partly
to elucidate the essential properties of CNNs, and partly in
order to confirm that CNNs can learn spatially invariant,
non-linear filtering systems.

Small 4x4 pixel input arrays were considered. Each in-
put array considered of two ’micro features’, either two pix-
els in top-left to bottom-right (type A) diagonal arrange-
ment, or two pixel in bottom-left to top-right diagonal ar-
rangement (type B). Each micro-feature was allowed to vary
independently over all possible spatial locations in the input
space. Considering input arrays of two micro-features, four
combinations are possible: AA, BB, AB, BA. Figure 2 dis-
plays class AA and class BB while figure 3 displays the
combined class AB / BA.

The first numerical experiment was to test that a CNN
could correctly differentiate between classes AA and BB.
Casual inspection of figure 2 would indicate that the vari-
ous permutations and interference between the micro fea-
tures creates a non-trivial and perhaps challenging problem
for a normal neural network. It was expected that a CNN
with 2@2x2:1@3x3 filters and 29 free weights was suffi-
cient to differentiate between the two classes2. The net-
work successfully classified all inputs except those shown
in the lower section of figure 2. In these cases, interfer-
ence between the micro features creates identical patterns.
Although the CNN can theoretically learn purely spatial dif-
ferences, sensitivity to pure translation would have violated
the underlying decision rule required to classify the rest of
the data set, namely orientation differences.

The second numerical experiment was more challeng-
ing: the CNN was required to differentiate between class
AB/BA and class AA/BB. This represents a kind of spatial
X-OR problem, with the added difficulty of interference be-
tween features. A 4@2x2:4@3x3 CNN was trained to con-
vergence on this data set. 100% performance was obtained
on this problem, demonstrating that a minimal CNN archi-
tecture can learn a non-linear translation-invariant mapping
in two dimensional feature space.

The key property of the first layer of the CNN is that only
a single template is learnt for all possible translations. The
following layer integrates information across different tem-
plates and spatial translations, enabling approximation of
the X-OR function.Thus,CNN units de-couple detection of
a feature’s shape and a feature’s location. In conventional
spatial feature extraction (principle component ’eigenfaces’
are a prominent example) shape and location are clamped.
Thus, a separate representation of a feature must be learnt
over the entire of range spatial locations where it may oc-
cur. Although the artificial problem is highly stylized, real-

2The first layer consisting of 2 filters of size 2x2 capture the two micro
filters, the final filter integrates information over the 3x3 feature space. A
total of 29 free weights are used in the network.

istic detection of complex objects in spatially or temporally
distributed data usually involves uncertainty in the absolute
and relative position of sub-features.

Class AA

Class BB

Misclassified class AA

Misclassified class BB

Figure 2. Differentiation of classes 1 and 2
requires translation invariance and tolerance
of interference between features.

4 Application in service robotics

The current project involves video data gathered from a
robot fitted with an omnidirectional camera with the task
of navigating and inspecting civil sewer pipe systems. Ef-
fective navigation requires that the robot be capable of de-
tecting pipe inlets and pipe joints using the same sensor
data used for fault detection, namely the omnidirectional
data. Figure 4 displays examples of each sensor data class.
The CCD original camera image frames were truncated and
down sampled to arrays of 36x36 pixels. It was found that
this was approximately the maximum amount of downsam-
pling that could be achieved while preserving enough res-
olution for detection of the relatively finely structured pipe



Class AB / BA

Figure 3. Differentiation of of class 3 from
classes 1 and 2 represents a spatial X-OR
problem requires implementation of a transla-
tion invariant non-linear spatial filter system.

joints. Standard 1:255 valued black and white pixel intensi-
ties were normalized across frames to lie within a range of
0:1.

Dirt, reflections, and changes in reflectance represented a
challenge in this classification task. However, the objects to
be detected had a relatively simple structure. The main chal-
lenge for classification of this kind of spatial input by ma-
chine learning methods is the size of the input (362 = 1296
inputs) and variability in the scale and location of features
as they pass through the robot’s visual field3.

Table 1 shows the relatively simple architecture used for
classification of the camera frames. Only one feature map
per layer was used to detect pipe joints and pipe inlets, re-
spectively. The ’inlet detector’ and the ’joint detector’ sub-
networks each consisted of a total 51 free weights, includ-
ing biases to each 2D weight vector. We note that the in-
put size of the 36x36 was somewhat tailored to the archi-
tecture, since application of a 5x5 convolution filter with-
out downsampling results in a 32x32 array, which is conve-
nient for subsampling to a single 1x1 array, corresponding
to the class prediction. Tan-sigmoid and log-sigmoid trans-

3A conventional neural network would require a correspondingly large
number of free weights. Pre-processing methods such as PCA would de-
crease the number of free weights required, but generally create features
highly sensitive to translation and scale

Original Omnidirectional
Camera Image

Preprocessed
Input Image

Pipe inlet present

Pipe joint present

Clear pipe

Figure 4. Examples of three classes of omni-
directional camera images for classification
by the CNN.



fer functions were used.

Table 1. Architecture of CNN used for omni-
vision camera processing.

layer 1 2 3 4 5 6
filter size 5 2 2 2 2 2
map size 32 16 8 4 2 1
downsampling no yes yes yes yes no
transfer fun. tan tan tan tan tan log

The networks were trained using 160 manually classi-
fied video frames drawn from a sample run through the test
pipe, consisting of an approximately equal number of ’joint
present’, ’inlet present’, and ’nothing present’ class sam-
ples. Training was performed for 1000 epochs, using back-
propagation, with momentum and an adaptive learning rate.
After training, mean square error rates of 0.0022 and 0.0016
were obtained.

Validation was performed on a second 840 frame, 42 sec-
ond video sample through the same pipe. For classification
of continuous video data, subsequent frames are not statis-
tically independent, and there also exists some ’grey area’
where one class stops and the next starts. Thus, calculation
of an overall correct classification rate is rather misleading.
A more accurate description of the performance of the net-
work is provided in fig. 5, which displays the output of the
CNN, along with the actual state of the sewer pipe within
the visual field of the robot.

5 Discussion

The present paper has presented a demonstration of the
properties of CNNs using artificial data, and the application
of the architecture to an applied problem in robot vision.
CNNs are shown to implement non-linear mappings of fea-
tures with invariance to spatial translation. More precisely,
CNNs decouple the learning of feature structure and feature
location, and are therefore well suited to problems where
the relative or absolute location of features has a degree of
uncertainty. It is the contention of the authors that this is a
general rule, rather than a special case, in classification of
spatially or temporally distributed data.

CNNs have been studied with a view to application in
robot vision, where we have found the properties of spatial
invariance and weight constraints are necessary for applica-
tion of machine learning methods to high dimensional im-
age input, where features of interest may occur at a variety
of spatial locations. The validation results in figure 5 show
that the CNN are very positive indication that CNNs may
be effectively applied to detecting navigational landmarks

Output Unit Activation
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Figure 5. Predicted and actual objects in the
visual field of the omnidirectional camera for
validation of CNN network.



in the sewer-pipe environment. With appropriate threshold-
ing, the activations of the ’inlet detector’ and ’joint detec-
tor’, would result in perfect landmark detection for the val-
idation data. We note the uncertainty of the ’joint detector’
around frame 491 is due to a slightly unusual inlet construc-
tion that bears some similarity to a normal pipe joint. The
system is computationally efficient, capable of processing
image frames using an on-board processor in real time.

With respect to the development of an industrial-
standard landmark-detection system, much work is required
to train and test the network with a wider variety of envi-
ronments and lighting conditions. We emphasize that the
present results should be treated only as a promising indica-
tion of the effectiveness of CNNs for robot vision in sewer
robots.

The CNN architecture also requires further development.
Although basic gradient descent with an adaptive learn-
ing rate is adequate, implementation of more advanced
optimization techniques (such as Levenburg-Marquardt or
conjugate-gradient optimization) is a priority. The basic
CNN framework allows a wide variety of possible network
architectures: are currently investigating pruning and grow-
ing algorithms for specification of the various network pa-
rameters. Finally, although CNNs are an efficient method
of applying neural networks to image processing, real-time
processing of high definition images with a sophisticated
architecture would appear to be computationally infeasible
without the use of specialized hardware implementation.
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