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Abstract

In this paper I derive the formula for the temperature of a thermodynamic system as a
function of the multiplicity (number of microstates) and its the rate of change with respect
to the absorbed or lost energy. Then the formula is used to obtain the “temperature-
microstates-energy " relation for a black hole assuming that the number of microstates is
proportional to the energy of the emitted photon through either tunnelling effect or
Hawking radiation.
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1. Nomenclature

I shall use the following nomenclature for the constants and variables used in this paper

w= multiplicity: number of microstates corresponding to a given macroscopic state
W = another symbol for multiplicity ( u= W)
N = total possible number of microstates of the system
P = probability of a given macroscopic state of the system
k ;= Boltzmann constant
= system's entropy change
Q= net absorbed or lost heat (heat is a form of energy) (heat change)
= net absorbed or lost energy (energy change)
= absolute temperature of the system
dQ = infinitesimal net absorbed or lost energy
dE = infinitesimal net absorbed or lost energy
dS = infinitesimal entropy change
A= proportionality constant
T ;= absolute temperature of a black hole
f,= frequency of the Hawking radiation (or frequency of a virtual photon)
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2. Thermodynamic Equations
Let us consider the basic equations we shall use in Section 3. These equations are

Equation 1
The Second Principle of Thermodynamics
(Clausius' entropy definition)
The second principle of thermodynamics states:

1t is impossible to carry out a transformation whose only final result is to transfer heat
from a body at a given temperature, to a body at a higher temperature (Clausius'
postulate).

The German scientist Clausius defined the infinitesimal change in the entropy of a system
as follows [1]

Irreversible transformations
dSszQ 2.1a)

This means that the infinitesimal change in the entropy during an irreversible
transformation is equal to or greater than the quotient between the infinitesimal change in
the heat absorbed (or emitted) by the system and the system temperature. In an
irreversible transformation the entropy of the system plus the entropy of the environment
increases. For example, the entropy of the system can increase while the entropy of the
environment can remain constant. This is the case, for example, of a free adiabatic
expansion of a gas contained in one half of a container while in the other half there is
vacuum. When we open a valve so that the gas can go from one half to the empty one, the
gas expands adiabatically (we assume that the wall of the container do not allow the
transfer of heat to or from the environment) so that the entropy of the system increases
while the entropy of the environment does not change.

Reversible transformations

_do
ds == (2.1b)

This means that the infinitesimal change in the entropy during a reversible transformation
can be calculated by dividing the infinitesimal change in the heat absorbed (or emitted) by
the system by the system temperature. For reversible transformations, if the system
absorbs an amount of heat dQ from the environment, the entropy of the environment
decreases by dQ/T. On the other hand the entropy of the system increases by dQ/T, so that
the net change of entropy of the system and the environment is zero.

The second principle of thermodynamics can be expressed quantitatively in terms of the
change in entropy S=AS as follows

Irreversible transformations
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d
5=A5=5,-5=] 0 @2.1¢)

In an irreversible transformation

Sf>Si (2.14d)
Reversible transformations
A d Q
S=AS=Sf—Si=IT (2.1¢)
In a reversible transformation
S,=8, 2.11)

Thus we have linked the second principle of thermodynamics with the entropy of a
system. In Section 3 we only use equation (2.1 b). Equations (2.1 a) and equations (2.1 c)
through (2.1 f) are given for completeness purposes.

Equation 2
The Probability equation

Let us define the probability P that a system is in a given macrostate by the following
ratio

P= (2.2 a)

M

N

where u is the number of microstates that create a given macroscopic state (A
macroscopic state is also known as a thermodynamic state). In other words, the number of
microstates, u , for a given macroscopic state, is the number of ways in which the
macroscopic state can be produced or created. The number of microstates is also denoted
by W which is known as multiplicity. N is the total possible number of microstates (In the
case of a gas, NV is the total number of combinations of molecular velocities).

Because equation (2.2 a) can be written as
u=w=NP (2.2b)
we can say that the multiplicity of a system is proportional to the probability.

Equation 3
The Boltzmann entropy formula

The Boltzmann formula, which has been considered the second most famous formula of
physics, is

S=k,InW (3.1 )
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Substituting /¥ in equation (3.1 a) by equation (2.2 b) we get
S=k,In(NP| (3.1b)

It is worthy to remark that the entropy is a macroscopic quantity while the number of
microstates 1s a microscopic quantity.

3. Derivation of the Temperature of a System as a Function of
the Multiplicity and its the Rate of Change with Respect to the
Absorbed or Lost Energy

To make things easier let us abbreviate the name of the formula we want to derive. Thus I
shall call it: the Temperature-Microstates-Energy relation. Let us start the derivation by
differentiating equation (3.1 b) with respect to the absolute temperature, 7. This yields

;J—?,:kB%[ln(NP)] G.1)
%zkg(ﬁ)%wp) (3.2)
Z’—;sz(#)N% (33)

a’SZk—IfdP (3.5)

We shall assume that the system suffers a reversible transformation. We can eliminate dS
from equation (3.5) by substituting it with the second side of equation (2.1 b). This gives

dQ _ky
—==—dP 3.6
7 pY (3.6)
Equation (3.6) can be re-written as
k
1_KpdP (3.7)
T P dQ
or
P do
T:_— .
k5 dP (3-8)

Because heat is a form of energy we can write

dQ=dE (3.9)
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Consequently we can re-write equation (3.8) as follows

o P dE

= 1
k, dP (3.10)

Now let us express the definition of probability given by equation (2.2 a) in differential
form. This gives

dP=%d‘u 3.11)

Now in equation (3.10) we eliminate P and dP with equations (2.2 a) and (3.11),
respectively. These substitutions produce the following result

w NdIE

= 3.12
Nk du (3-12)
and after simplification we get
1 dE
T=—ul= 3.13
0 (3.13)
A more convenient way of writing the above formula is as follows
Temperature-Microstates-Energy relation
=t & (3.14)
kydp '
d
This is the Temperature-Microstates-Energy relation for reversible systems. Were %

is the rate of change of the microstates of the system (multiplicity) with respect to the
absorbed or lost energy. To obtain the final temperature-energy change expression for a
particular system, we have to either find a mathematical relation between the number of
microstates, u , and the absorbed or lost energy, E, or postulate one. In the next section
I shall illustrate this point by applying equation (3.14) to the physics of black holes.

4. The Temperature-Energy Change Relation for Black Holes

Now want to find the Temperature-Energy Change relation for black holes. Thus we shall
introduce the following postulate:

Postulate

The number of microstates, u , of a black holes is proportional to the energy, E  , of

the emitted photon through either tunnelling effect or Hawking radiation.
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Mathematically this means that
u=AE 4.1)

where A [J”'] is a proportionality constant. Let us differentiate equation (4.1) with
respect to the energy. This gives

E_y (4.2)

Substituting u and cj{_g in equation (3.14) with the second side of equations (4.1)

and (4.2), respectively we obtain
E
T'=— 4.3
» (4.3)

Finally, because we applied equation (3.14) to black holes, 7" becomes 7T, .
The energy lost by the system (black hole), E, is the energy of the escaping photon, E,

(the virtual photon that escapes to empty space through the Hawking evaporation
mechanism and becomes real). Thus we can write:

E

Tan=7" (4.4)
and solving for E,
Ev: Eescapingy = kBTBH (45)

Thus the energy of the escaping photon, E = E , 1s proportional to the absolute

escapingy

temperature, 7, ,of the black hole [2].

5. Conclusions
We can draw the following conclusions

(1) Assuming a linear relationship between the number of microstates of a black hole
and the energy of the emitted photon (the virtual photon that escapes to empty
space and becomes real), we found that this energy is proportional to the
temperature of the black hole. Mathematically:

E=E =k,Tp, (5.1)

escaping 'y

Therefore the temperature of the black hole can be determined by measuring the
frequency of the emitted photon through the formula

h
TBH:k_fv (5.2)
B

The Temperature of a System as a Function of the Multiplicity and its Rate of Change — v2
Copyright © 2014-2015 Rodolfo A. Frino. All rights reserved.



It is worthy to remark that the present astronomical techniques do not allow us to
detect the Hawking radiation.

(2) This model indicates that the Hawking radiation is monochromatic.
(3) Formula (3.14) allow us, also, to postulate non-linear relationships between the
number of microstates of a black hole and the energy of the emitted photon. To

determine the validity of these postulates, the predictions of the theory based on
them, should be compared with future measurement of black hole temperatures.
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