
..,— ~

P■■ L
,2 +3,«fi,.‘?~ ‘

:2

Dd
>

F’
*-3

Z
o
c:
N
U1
\o
N

Computer Security

Art and Science

Matt Bishop

�. Addison-Wesley
Boston ¯ San Francisco ¯ New York ¯ Toronto ¯ Montreal

London ¯ Munich ¯ Paris ¯ Madrid

Capetown ¯ Sydney ¯ Tokyo ¯ Singapore ° Mexico City

BAR-TM 002593

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trade-
marks. Where those designations appear in this book, and Addison-Wesley was aware of a trademark claim,
the designations have been printed with initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no expressed or implied
warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed for inciden-
tal or consequential damages in connection with or arising out of the use of the information or programs con-
tained herein.

The publisher offers discounts on this book when ordered in quantity for bulk purchases and special sales.
For more ~nfonnation, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales @pearsontechgroup.com

For sales outside of the U.S., please contact:

International Sales
(317) 581-3793
international @pearsontechgroup.com

Visit Addison-Wesley on the Web: www.awprofessional corn

Library of Congress Cataloging-in-Publication Data

B~shop, Matt.
Computer security : art and science / Matt Bishop.

p. cm.
Includes bibliographical references and ~ndex.
ISBN 0-201-44099-7 (alk. paper)
1. Computer security. I. Title.

QA76.9.A25 B56 2002
005.8~c21 2002026219

Copyright © 2003 by Pearson Education, Iuc.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the
prior consent of the publisher. Printed in the United States of America Published simultaneously in Canada.

Chapters 18-21 and 34, Copyright 2003 by Elisabeth C. Sulhvan. Published by Pearson Education, Inc. with
permission.

For information on obtaiuing permission for use of material from this work, please submit a written request
to:

Pearson Education, Inc.
Rights and Contracts Department
75 Arlington Street, Suite 300
Boston, MA 02116
Fax: (617) 848-7047

Text printed on recycled and acid-free paper

ISBN 0201440997
4 5 6 7 8 9 CRW 06 05 04 03

4th Printing November 2003

BAR-TM 002594

Chapter 22
Malicious Logic

TITUS ANDRONICUS: Ah!, wherefore dost thou urge the name of hands?
To bid Aeneas tell the tale twice o’er,

How Troy was burnt and he made miserable?
--The Tragedy of Titus Andronicus, III, ii, 26-28.

Computer viruses, worms, and Trojan horses are effective tools with which to attack
computer systems. They assume an authorized user’s identity. This makes most tradi-
tional access controls useless. This chapter presents several types of malicious logic,
focusing on Trojan horses and computer viruses, and discusses defenses.

22.1 Introduction

Odysseus, of Trojan War fame, found the most effective way to breach a hitherto-
impregnable fortress was to have people inside bring him in without knowing they
were doing so [482, 1016]. The same approach works for computer systems.

Definition 22-1. Malicious logic is a set of instructions that cause a site’s
security policy to be violated.

EXAMPLE: The following UNIX script is named ls and is placed in a directory.

cp /bin/sh /tmp/.xxsh
chmod o+s,w+x /tmp/.xxsh
rm ./Is
Is $*

It creates a copy of the UNIX shell that is setuid to the user executing this program (see
Section 14.3). This program is deleted, and then the correct Is command is executed. On
most systems, it is against policy to trick someone into creating a shell that is setuid to
themselves. If someone is tricked into executing this script, a violation of the (implicit)
security policy occurs. This script is an example of malicious logic.

613

BAR-TM 002595

614 Chapter 22 Malicious Logic

22.2 Trojan Horses

A critical observation is the notion of "tricked." Suppose the user root executed this
script unintentionally (for example, by typing "ls" in the directory containing this
file). This would be a violation of the security policy. However, if root deliberately
typed

cp /b~n/sh /tmp/.xxsh
chmod o+s,w+x /tmp/.xxsh

the security policy would not be violated. This illustrates a crucial component of the
problems with malicious logic. The system cannot determine whether the instruc-
tions being executed by a process are known to the user or are a set of instructions
that the user does not intend to execute. The next definition makes this distinction
explicit.

Definition 22-2. A 7)’ojan horse is a program with an overt (documented or
known) effect and a covert (undocumented or unexpected) effect.

EXAMPLE: In the preceding example, the overt purpose is to lis~ the files in a direc-
tory. The covert purpose is to create a shell that is setuid to the user executing the
script. Hence, this program is a Trojan horse.

Dan Edwards was the first to use this term [26]. Trojan horses are often used
in conjunction with other tools to attack systems.

EXAMPLE: The NetBus program allows an attacker to control a Windows NT work-
station remotely. The attacker can intercept keystrokes or mouse motions, upload and
download files, and act as a system administrator would act. In order for this program
to work, the victim Windows NT system must have a server with which the NetBus
program can communicate. This requires someone on the victim’s system to load and
execute a small program that runs the server.

This small program was placed in several small game programs as well as in
some other "fun" programs, which could be distributed to Web sites where unsus-
pecting users would be likely to download them.

Trojan horses can make copies of themselves. One of the earliest Trojan
horses was a version of the game animal. When this game was played, it created an
extra copy of itself. These copies spread, taking up much room. The program was
modified to delete one copy of the earlier version and create two copies of the modi-
fied program. Because it spread even more rapidly than the earlier version, the modi-
fied version of animal soon completely supplanted the earlier version. After a preset
date, each copy of the later version deleted itself after it was played [290].

BAR-TM 002596

22.3 Computer Viruses 615

Definition 22-3. A propagating Trojan horse (also called a replicating Tro-
jan horse) is a Trojan horse that creates a copy of itself.

Karger and Schell [552], and later Thompson [995], examined detection of
Trojan horses. They constructed a Trojan horse that propagated itself slowly and in a
manner that was difficult to detect. The central idea is that [he Trojan horse modifies
the compiler to insert itself into specific programs, including future versions of the
compiler itself.

EXAMPLE: Thompson [995] added a Trojan horse to the login program. When a user
logged in, the Trojan horse would accept a fixed password as well as the user’s nor-
mal password. However, anyone reading the source code for the login program
would instantly detect this Trojan horse. To obscure it, Thompson had the compiler
check the program being compiled. If that program was login, the compiler added
the code to use the fixed password. Now, no code needed to be added to the login
program. Thus, an analyst inspecting the login program source code would see noth-
ing amiss. If the analyst compiled the !ogin program from that source, she would
believe the executable to be uncorrupted.

The extra code is visible in the compiler source. To eliminate this problem,
Thompson modified the compiler. This second version checked to see if the compiler
(actually, the C preprocessor) was being recompiled. If so, the code to modify the
compiler so as to include both this Trojan horse and the login Trojan horse code
would be inserted. He compiled the second version of the compiler and installed the
executable. He then replaced the corrupted source with the original version of the
compiler. As with the login program, inspection of the source code would reveal
nothing amiss, but compiling and installing the compiler would insert the two Trojan
horses.

Thompson took special pains to ensure that the second version of the compiler
was never released. It remained on the system for a considerable time before some-
one overwrote the executable with a new version from a different system [839].
Thompson’s point1 was that "no amount of source-level verification or scrutiny will
protect you from using untrusted code," a point to be reiterated later.

22.3 Computer Viruses

This type of Trojan horse propagates itself only as specific programs (in the preced-
ing example, the compiler and the login program). When the Trojan horse can propa-
gate freely and insert a copy of itself into another file, it becomes a computer virus.

See [995], p. 763.

BAR-TM002597

616 Chapter 22 M~licious Logic

Definition 22-4. A computer virus is a program that inserts itself into one or
more files and then performs some (possibly null) action.

The first phase, in which the virus inserts itself into a file, is called the inser-
tion phase. The second phase, in which it performs some action, is called the execu-
tion phase. The following pseudocode fragment shows how a simple computer virus
works.

begi nvi rus :
if spread-condition then begin

for some set of target files do begin
if target is not infected then begin

determine where to place virus instructions
copy instructions from beginvi rus to endvi rus

into target
alter target to execute added instructions

end;
end;

end ;
perform some action(s)
goto beginning of infected program

endvi rus :

As this code indicates, the insertion phase must be present but need not always be exe-
cuted. For example, the Lehigh virus [470] would check for an uninfected boot file (the
spread-condition mentioned in the pseudocode) and, if one was found, would infec[
that file (the set of target files). Then it would increment a counter and test to see if the
counter was at 4. If so, it would erase the disk. These operations were the action(s).

Authorities differ on whether or not a computer virus is a type of Trojan horse.
Most equate the purpose of the infected program with the overt action and consider
the insertion and execution phases to be the covert action. To them, a computer virus
is a Trojan horse [310, 516]. However, others argue that a computer virus has no
covert purpose. Its overt purpose is to infect and execute. To these authorities, it is
not a Trojan horse [204, 739]. In some sense this disagreement is semantic. In any
case, defenses against a Trojan horse inhibit computer viruses.

According to Ferbrache [346], programmers wrote the first computer viruses
on Apple II computers. A virus developed for research purposes in 1980 wrote itself
to the disk boot sectors when the catalogue command was executed. Another one
infected many copies of the game "Congo," which stopped working. Friends of its
author had released it before it was fully debugged. The author rewrote it to replace
existing copies of itself with the fully debugged version. Released into the wild, it
rapidly supplanted the buggy copies.

In 1983, Fred Cohen was a graduate student at the University of Southern Cal-
ifornia. During a seminar on computer security, he described a type of Trojan horse
that the teacher, Len Adleman, christened a computer virus [205]. To demonstrate the

BAR-TM 002598

22.3 Computer Viruses - 617

effectiveness of the proposed attack, Cohen designed a computer virus to acquire
privileges on a VAX-11/750 running the UNIX operating system. He obtained all
system rights within half an hour on the average, the longest time being an hour and
the shortest being less than 5 minutes. Because the virus did not degrade response
time noticeably, most users never knew the system was under attack.

In 1984, an experiment involving a UNIVAC 1108 showed that viruses could
spread throughout that system, too. Unlike the UNIX system, the UNIVAC partially_
implemented the Bell-LaPadula Model, using mandatory protection mechanisms.2
Cohen’s experiments indicated that the security mechanisms of systems that did not
inhibit writing using mandatory access controls did little if anything to inhibit com-
puter virus propagation [204, 205].

The Brain (or Pakistani) virus, written for IBM PCs, is thought to have been
created in early 1986 [346] but was first reported in the United States in October
1987. It alters the boot sectors of floppy disks, possibly corrupting files in the pro-
cess. It also spreads to any uninfected floppy disks inserted into the system. Since
then, numerous variations of this virus have been reported [471].

In 1987, computer viruses infected Macintosh, Amiga, and other computers.
The MacMag Peace virus would print a "universal message of peace" on March 2,
1988, and then delete itself [355]. This computer virus infected copies of the Aldus
FreeHand program, which were recalled by their manufacturer [346].

In 1987, Tom Duff experimented on UNIX systems with a small virus that
copied itself into executable files. The virus was not particularly virulent, but when
Duff placed 48 infected programs on the most heavily used machine in the comput-
ing center, the virus spread to 46 different systems and infected 466 files, including
at least one system program on each computer system, within 8 days. Duff did not
violate the security mechanisms in any way when he seeded the original 48 programs
[312]. He wrote another virus in a Bourne shell script. It could attach itself to any
UNIX program. This demonstrated that computer viruses are not intrinsically
machine-dependent and can spread to systems of varying architectures.

In 1989, Dr. Harold Joseph Highland developed a virus for Lotus 1-2-3 [471].
This virus, stored as a set of commands for that spreadsheet, was loaded automati-
cally when a file was opened. Because the virus was intended for a demonstration
only, it changed the value in a specific row and column and then spread to other files.
This demonstrated that macros for office-type programs on personal computers could
contain viruses.

Several types of computer viruses have been identified.

22.3.1 Boot Sector Infectors

The boot sector is the part of a disk used to bootstrap the system or mount a disk.
Code in that sector is executed when the system "sees" the disk for the first time.

Specifically, it implemented the simple security condition but not the *-property [516].

BAR-TM 002599

Chapter 22 Malicious Logic

When the system boots, or the disk is mounted, any virus in that sector is executed.
(The actual boot code is moved to another place, possibly another sector.)

Definition 22-5. A boot sector infector is a virus that inserts itself into the
boot sector of a disk.

EXAMPLE: The Brain virus for the IBM PC is a boot sector infector. When the sys-
tem boots from an infected disk, the virus is in the boot sector and is loaded. It moves
the disk interrupt vector (location 13H or 19) to an alternative interrupt vector (loca-
tion 6DH or 109) and sets the disk interrupt vector location to invoke the Brain virus
now in memory. It then loads the original boot sector and continues the boot.

Whenever the user reads a floppy, the interrupt at location 13H is invoked. The
Brain virus checks for the signature 1234H in the word at location 4. If the signature
is present, control is transferred to the interrupt vector at location 6DH so that a nor-
mal read can proceed. Otherwise, the virus infects the disk.

To do this, it first allocates to itself three contiguous clusters (of two contigu-
ous sectors each). The virus then copies the original boot sector to the first of the six
contiguous sectors and puts copies of itself into the boot sector and the remaining
five sectors.

If there are no unused clusters, the virus will not infect the disk. If it finds only
one unused cluster, it will simply overwrite the next two. This accounts for the some-
times destructive nature of the Brain virus.

22.3.2 Executable Infectors

Definition 22-6. An executable infector is a virus that infects executable pro-
grams.

The PC variety of executable infectors are called COM or EXE viruses because they
infect programs with those extensions. Figure 22-I illustrates how infection can

Header ~ Executable code and data

0 100 "~First program instruction to be executedl000

Header ~ i Executable code and data

0 100 200 1000 1100

Figure 22-1 How an executable infector works. It inserts itself into the program
so that the virus code will be executed before the application code. In this
example, the virus is 100 words long and prepends itself to the executable code.

BAR-TM 002600

22.3 Computer Viruses 619

occur. The virus can prepend itself to the executable (as shown in the figure) or
append itself.

EXAMPLE: The Jerusalem virus (also called the Israeli virus) is triggered when an
infected program is executed. The virus first puts the value 0EOH into register ax and
invokes the DOS service interrupt (21H). If on return the high eight bits of register ax
contain 03H, the virus is already resident on the system and the executing version
quits, invoking the original program. Otherwise, the virus sets itself up to respond to
traps to the DOS service interrupt vector.

The Jerusalem virus then checks the date. If the year is 1987, it does nothing.
Otherwise, if it is not a Friday and not the 13th (of any month), it sets itself up to
respond to clock interrupts (but it will not infect on clock calls). It then loads and
executes the file originally executed. When that file finishes, the virus puts itself in
memory. It then responds to calls to the DOS service interrupt.

If it is a Friday and the 13th (of any month), and the year is not 1987, the virus
sets a flag in memory to be destructive. This flag means that the virus will delete files
instead of infecting them.

Once in memory, the virus checks all calls to the DOS service interrupt, look-
ing for those asking that files be executed (function 4B00H). When this happens, the
virus checks the name of the file. If it is COMMAND.COM, the virus does nothing.
If the memory flag is set to be destructive, the file is deleted. Otherwise, the virus
checks the last five bytes of the file. If they are the string "MsDos," the file is
infected? If they are not, the virus checks the last character of the file name. If it is
"M," the virus assumes that a .COM file is being executed and infects it; if it is "E,"
the virus assumes that a .EXE file is being executed and infects it. The file’s
attributes, especially the date and time of modification, are left unchanged.

22.3.3 Multipartite Viruses

Definition 22-7. A multipartite virus is one that can infect either boot sectors
or applications.

Such a virus typically has two parts, one for each type. When it infects an executable,
it acts as an executable infector; when it infects a boot sector, it works as a boot sec-
tor infector.

3 According to Compulit, as cited in [471], "[t]he author of the virus apparently forgot to set the

signature during .EXE file infection. This will cause multiple refections of .EXE files" (p. 47).
Analysts at the Hebrew University of Jerusalem found that the size of a .COM file increased
on y one time but the size of a .EXE file increased every time the file was executed.

BAR-TM 002601

620 Chapter 22 Malicious Logic

22.3.4 TSR Viruses

Definition 22-8. A terminate and stay resident (TSR) virus is one that stays
active (resident) in memory after the application (or bootstrapping, or disk
mounting) has terminated.

TSR viruses can be boot sector infectors or executable infectors. Both the Brain and
Jerusalem viruses are TSR viruses.

Viruses that are not TSR execute only when the host application is executed
(or the disk containing the infected boot sector is mounted). An example is the
Encroacher virus, which appends itself to the ends of executables.

22.3.5 Stealth Viruses

Definition 22-9. Stealth viruses are viruses that conceal the infection of files.

These viruses intercept calls to the operating system that access files. If the call is to
obtain file attributes, the original attributes of the file are returned. If the call is to
read the file, the file is disinfected as its data is returned. But if the call is to execute
the file, the infected file is executed.

EXAMPLE: The Stealth virus (also called the IDF virus or the 4096 virus) is an exe-
cutable infector. It modifies the DOS service interrupt handler (rather than the inter-
rupt vector; this way, checking the values in the interrupt vector will not reveal the
presence of the virus). If the request is for the length of the file, the length of the
uninfected file is returned. If the request is to open the file, the file is temporarily dis-
infected; it is reinfected on closing. The Stealth virus also changes the time of last
modification of the file in the file allocation table to indicate that the file is infected.

22.3.6 Encrypted Viruses

Computer virus detectors often look for known sequences of code to identify com-
puter viruses (see Section 22.7.4). To conceal these sequences, some viruses enci-
pher most of the virus code, leaving only a small decryption routine and a random
cryptographic key in the clear. Figure 22-2 summarizes this technique.

Virus code ~ Deciph.eringI
Deciphering key

Figure 22-2 An encrypted virus. The ordinary virus code is at the left. The
encrypted virus, plus encapsulating decryption information, is at the right.

BAR-TM 002602

621

Definition 22-10. An encrypted virus is one that enciphers all of the virus
code except for a small decryption routine.

EXAMPLE: Ferbrache4 cites the following as the decryption code in the 1260 virus.
It uses two keys, stored in kl and k2. The virus code itself begins at the location soy
and ends at the location eov. The pseudocode is as follows.

(* initiaTize the registers with the keys *)
rA e- kl;
rB ~- k2;
(* initiaTize rC with the message *)
rC ~ soy;
(* the encipherment loop *)
while (rC != eov) do begin

(* encipher the byte of the message *)
(*rC) e- (*rC) xor rA xor rB;
(* advance all the counters *)
rC ~- rC + 1;
rA ~- rA + 1;

end

The dual keys and the shifting of the first key prevent a simple xor’ing from
uncovering the deciphered virus.

22.3.7 Polymorphic Viruses

Definition 22-11. A polymorphic virus is a virus that changes its form each
time it inserts itself into another program.

Consider an encrypted virus. The body of the virus varies depending on the key cho-
sen, so detecting known sequences of instructions will not detect the virus. However,
the decryption algorithm can be detected. Polymorphic viruses were designed to pre-
vent this. They change the instructions in the virus to something equivalent but dif-
ferent. In particular, the deciphering code is the segment of the virus that is changed.
In some sense, they are successors to the encrypting viruses and are often used in
conjunction with them.

Consider polymorphism at the instruction level. All of the instructions

add 0 to operand
or 1 with operand
no operation
subtract 0 from operand

4 See [346], p. 75.

BAR-TM 002603

622 Chapter 22 Malicious Logic

have exactly the same effect, but they are represented as different bit patterns on
most architectures. A polymorphic virus would insert these instructions into the deci-
phering segment of code.

EXAMPLE: A polymorphic version of the 1260 computer virus might look like the
following. (The lines marked "random line" do nothing and are changed whenever
the virus replicates.)

(* initialize the registers with the keys *)
rA <- kl;
rD ~- rD + 1;(* random line *)
rB ~ k2;
(* initialize rC with the message *)
rC ~-- soy;
rC ~- rC + 1;(* random line *)
(* the encipherment loop *)
while (rC != eov) do begin

rC ~- rC - 1;(* random line X *)
(* encipher the byte of the message *)
(*rC) ~- (*rC) xor rA xor rB;

*

rD
rA

end
while

rD
end(*

advance all the counters *)
~- rC + 2;(* counter incremented ...
to handle random line X *)
~- rD + 1;(* random line *)
+- rA + 1;

(re != sov) do begin(* random
~- rD - 1;(* random line *)
random line *)

.)

line *)

Examination shows that these instructions have the same effect as the four
instructions listed above.

The production of polymorphic viruses at the instruction level has been auto-
mated. At least two tool kits, the Mutation Engine (MtE) and the Trident Polymor-
phic Engine (TPE), were available in 1992 [1064].

Polymorphism can exist at many levels. For example, a deciphering algorithm
may have two completely different implementations, or two different algorithms may
produce the same result. In these cases, the polymorphism is at a higher level and is
more difficult to detect.

22.3.8 Macro Viruses

Definition 22-12. A macro virus is a virus composed of a sequence of
instructions that is interpreted, rather than executed directly.

BAR-TM 002604

22.4 Computer Worms 623

Conceptually, macro viruses are no different from ordinary computer viruses. Like
Duff’s sh computer virus, they can execute on any system that can interpret the
instructions. For example, a spreadsheet virus executes when the spreadsheet inter-
prets these instructions. If the macro language allows the macro to access files or
other systems, the virus can access them, too.

EXAMPLE: The Melissa virus infected Word 97 and 98 documents on Windows and
Macintosh systems. It is invoked when the program opens an infected file. It installs
itself as the "open" macro and copies itself into the Normal template (so any files
that are opened are infected). It then invokes a mail program and sends copies of
itself to people in the user’s address book associated with the program.

A macro virus can infect either executables or data files (the latter leads to the
name data virus). If it infects executable files, it must arrange to be interpreted at
some point. Duff’s experiments did this by wrapping the executables with shell
scripts. The resulting executables invoked the Bourne shell, which interpreted the
virus code before invoking the usual executable.

Macro viruses are not bound by machine architecture. They use specific pro-
grams, and so, for example, a macro virus targeted at a Microsoft Word program will
work on any system running Microsoft Word. The effects may differ. For example,
most Macintosh users do not use the particular mail program that Melissa invoked,
so although Macintosh Word files could have been infected, and the infection could
have been spread, the virus did not mail itself to other users. On a Windows system,
where most users did use that mail program, the infection was spread by mail.

22.4 Computer Worms

A computer virus infects other programs. A variant of the virus is a program that
spreads from computer to computer, spawning copies of itself on each one.

Definition 22-13. A computer worm is a program that copies itself from one
computer to another.

Research into computer worms began in the mid-1970s. Schoch and Hupp
[889] developed distributed programs to do computer animations, broadcast mes-
sages, and perform other computations. These programs probed workstations. If the
workstation was idle, the worm copied a segment onto the system. The segment was
given data to process and communicated with the worm’s controller. When any activ-
ity other than the segment’s began on the workstation, the segment shut down.

EXAMPLE: On November 2, 1988, a program targeting Berkeley and Sun UNIX-
based computers entered the Internet; within hours, it had rendered several thousand

BAR-TM 002605

624 Chapter 22 Malicious Logic

computers unusable [322, 323, 845,900, 901,952, 953,974]. Among other tech-
niques, this program used a virus-like attack to spread: it inserted some instructions
into a running process on the target machine and arranged for those instructions to be
executed. To recover, these machines had to be disconnected from the network and
rebooted, and several critical programs had to be changed and recompiled to prevent
reinfection. Worse, the only way to determine if the program had suffered other mali-
cious side effects (such as deletion of files) was to disassemble it. Fortunately, the
only purpose of this virus turned out to be self-propagation. Infected sites were
extremely lucky that the worm5 did not infect a system program with a virus
designed to delete files and did not attempt to damage attacked systems.

Since then, there have been several incidents involving worms. The Father
Christmas worm was interesting because it was a form of macro worm.

EXAMPLE: Slightly before the Internet worm, an electronic "Christmas card" passed
around several IBM-based networks. This card was an electronic letter instructing
the recipient to save the message and run it as a program. The program drew a Christ-
mas tree (complete with blinking lights) and printed "Merry Christmas!" It then
checked the recipient’s list of previously received mail and the recipient’s address
book to create a new list of e-mail addresses. It then sent copies of itself to all these
addresses. The worm quickly overwhelmed the IBM networks and forced the net-
works and systems to be shut down [422].

This worm had the characteristics of a macro worm. It was written in a high-
level job control language, which the IBM systems interpreted. Like the Melissa
virus, which was written in the Visual Basic programming language, the Father
Christmas worm was never directly executed--but its effects (spreading from system
to system) were just as serious.

22.5 Other Forms of Malicious Logic

Malicious logic can have other effects, alone or in combination with the effects dis-
cussed in Sections 22.2 to 22.4.

22.5.1 Rabbits and Bacteria

Some malicious logic multiplies so rapidly that resources become exhausted. This
creates a denial of service attack.

5 We use the conventional terminology of calliug this program a "computer worm" because its

dominant method of propagation was from computer system to computer system. Others,
notably Eichin and Rochlis [322], have labeled it a "computer virus."

BAR-TM 002606

625

Definition 22-14. A bacterium or a rabbit is a program that absorbs all of
some class of resource.

A bacterium is not required to use all resources on the system. Resources of a
specific class, such as file descriptors or process table entry slots, may not affect cur-
rently running processes. They will affect new processes.

EXAMPLE: Dennis Ritchie [840] presented the following shell script as something
that would quickly exhaust either disk space or inode tables on a UNIX Version 7
system.

while true
do

mkdir x
chdir x

done

He pointed out, however, that the user who caused a crash using this program would
be immediately identified when the system was rebooted.

22.5.2 Logic Bombs

Some malicious logic triggers on an external event, such as a user logging in or the
arrival of midnight, Friday the 13th.

Definition 22-15. A logic bomb is a program that performs an action that
violates the security policy when some external event occurs.

Disaffected employees who plant Trojan horses in systems use logic bombs.
The events that cause problems are related to the troubles the employees have, such
as deleting the payroll roster when that user’s name is deleted.

EXAMPLE: In the early 1980s, a program posted to the USENET news network
promised to make administering systems easier. The directions stated that the shar
archive containing the program had to be unpacked, and the program compiled and
installed, as root. Midway down the shar archive were the lines

cd /
rm -rf *

Anyone who followed the instructions caused these lines to be executed. These com-
mands deleted all files in the system. Some system administrators executed the pro-
gram with unlimited privileges, thereby damaging their systems.

BAR-TM 002607

626 Chapter 22 Malicious Logic

22.6 Theory of Malicious Logic

The types of malicious logic discussed so far are not distinct. Computer viruses are a
form of Trojan horses. Computer viruses may contain logic bombs, as might com-
puter worms. Some worms and viruses are bacteria because they absorb all the
resources of some type.

EXAMPLE: The Internet worm was a bacterium on many systems. During its infec-
tion, the worm opened a port on the network. When another worm tried to infect the
system, it first checked the port. If the port was open, the infecting worm knew that
another worm was resident on the computer. The author apparently feared that this
check would lead to a defense of system administrators opening the port with a small
program. So, once out of every six times, the check was ignored and the worm rein-
fected the infected system. Because the worm was so prolific, infected machines
quickly had many different copies of the worm and were overwhelmed. The worms
consumed the CPU.

EXAMPLE: The Father Christmas worm created so much network traffic that the net-
works became unusable and had to be shut down until all instances of the worm were
purged from the mail queues. Hence, it was a bacterium also.

An obvious question is whether a universal detector can be written to detect
malicious logic. We consider the narrower question of whether there is an algorithm
that can determine if an arbitrary program contains replicating code (this covers both
replicating Trojan horses and computer viruses).

22.6.1 Theory of Computer Viruses

Cohen [207] asked if a single algorithm could detect computer viruses precisely. He
demonstrated that the virus detection problem, like the safety problem (see Theorem
3-2), is undecidable.

Definition 22-16. [207] Let T be a Turing machine and let V be a set of
sequences of symbols on the machine tape. Let sv be a distinguished state of T.
For every v ~ V, when T lies at the beginning of v in tape square k, suppose
that after some number of instructions are executed, a sequence v" ~ V lies on
the tape beginning at location k’, where either k + Ivl < k" or k’+ Ivl _< k. Then
(T, V) is a viral set and the elements of V are computer viruses.

Figure 22-3 illustrates this definition. The virus v may copy another element
of V either before or after itself but may not overwrite itself. Both possibilities are
shown. If v" precedes v, then k" + Ivt < k; otherwise, v precedes v’, and k + Iv[< k’.
Definition 22-16 is a formal version of Definition 22-4. It focuses on the replication

BAR-TM 002608

22.6 Theory of Malicious Logic 627

k" k’+j k k+j k k +j U

Figure 22-3 Illustration of Cohen’s definition of a viral set. Here, v, v’, k, and
k" are as in Definition 22-16, and Ivl = j.TheTuring machine can make copies
of v either before or after the tape squares containing v but does not overwrite
any part of v. Each diagram shows a possible position for v" with respect to v
on the tape.

(copying) aspect of computer viruses but includes the execution phase as a compo-
nent of v that need not be copied. In this case, v" would be the infection part of v, and
the actions other than infection would be the remainder of v.

Cohen established the undecidability of detecting generic computer viruses by
showing that, if such a decision procedure existed, it would solve the halting prob-
lem. Consider an arbitrary Turing machine T and an arbitrary sequence S of symbols
on tape. Construct a second Turing machine T" and tape V such that, when T halts on
S, V and T" create a copy of S on the tape. Then T" replicates S if and only if T halts
on S. By Definition 22-16, a replicating progra~n is a computer virus. So, there is a
procedure that decides if (T’, V) is a viral set if and only if there is a procedure that
determines if T halts on S--that is, if there is a procedure that will solve the halting
problem. Because the latter does not exist, neither can the former.

Theorem 22-1. [207] It is undecidable whether an arbitrary program contains
a computer virus.

Proof Let T and V define a Turing machine and sequence of tape symbols,
respectively. We construct a second Turing machine T" and sequence V" such
that T" reproduces V if and only if running T on V halts.

Let A and B be tape symbols, so A, B ~ M. Let qi, i > 1 be states of the
Turing machine, so qi ~ K for i >_ 1. Let a, b, i, andj be non-negative integers.
We also redefine the function ~5 as 8: K x M --~ K x M x {L, R, -}, where "-"
refers to no motion. This function is equivalent to the ~ function in Section 3.2
(see Exercise 13).

We will find it convenient to abbreviate arguments and values of ~5 as
follows. Let x, y, z, u, and si, i > 1, represent values drawn from the set of tape
symbols M. We can then write

8(qa, Y) = (qa, Y, L) when y :~ A
to represent all definitions of 8 where the first argument to 8 is qa and the sec-
ond argument to ~5 is an element of M other than A.

Three actions recur in our construction of T’. We define abbreviations
to simplify the description of that Turing machine. For any symbol x ~ M,
LS(qa, x, qb) represents’the sequence

BAR-TM 002609

628 Chapter 22 Malicious Logic

8(qa, x) = (qb, x, -)
g(qa, Y) = (qa, Y, L) when y � x

This sequence takes effect when the Turing machine is in state qa- It moves
the head to the left, skipping over take squares, until the machine encounters a
square with the symbol x. At that point, the Turing machine enters state qb,
and the head remains over the square with the X symbol.

The abbreviation RS(qa, x, qb) is defined similarly, but for motion to the
right:

8(qa, x) = (qb, x, -)
~(qa, Y) = (qa, Y, R) when y � x

This sequence moves the head to the fight until a square containing x is found.
The head stops at that square.

The third abbreviation, COPY(qa, x, y, z, qb), means that the Turing
machine’s head moves right to the next square containing the symbol x and
copies the symbols on the tape until the next square with the symbol y is
encountered. The copy is placed after the first symbol z following the symbol
y. Once the copying is completed, the Turing machine enters state qb.

The following sequence captures this. The part of each line following
the semicolon is a comment, for exposition purposes only. We assume that the
symbols A and B do not occur on the tape. If necessary, we augment the set M
with two symbols and use them for A and B.

RS(qa, x, qa+i)

~(qa+i, x) = (qa+i+l, A, -)

RS(qa+i+l, Y, qa+i+2)

RS(qa+t+2, z, qa+i+3)

8(qa+,+3, z) = (qa+i+4, z, R)

~)(qa+i+4, u) = (qa+i+5, B,-) for any u ~ M

LS(qa+i+5, A, qa+i+6)

~(qa+i+6, A) = (qa+i+7, x, -)

~(qa+i+7, sj) = (qa+i+5j+lO, A, R) for sj ~: y

~)(qa+i+7, Y) = (qa+i+8, Y, R)

RS(qa+,+5j+lO, B, qa+i+Sj+l 1)

~(qa+i+5j+l 1, B) = (qa+t+5.~+!2, s.t, R)

; move the head over the next x
; replace x with symbol A
; skip to the end of the segment to
copy

; skip to the location to copy it to
(which

; is the square after the one
containing z)

; mark it with B
; move the head back to where x
was

; put x back
; overwrite the first uncopied
symbol

; for the terminal one, go to cleanup
; move to location to copy symbol
to
; put it down

BAR-TM 002610

22.6 Theory of Malicious Logic 629

~(qa+i+5j+12, u) = (qa+i+5j+13, B,-)

LS(qa+i+5j+13, A, qa+i+5j+14)

~(qa+i+5j+14, A)= (qa+i+7, sj, R)
RS(qa+i+8, B, qa+i+9)

~(qa+i+9, B) = (qb, Y, -)

; mark where the next symbol goes
; go back to where the original was
; copy it back
; last symbol--move to where it
goes

; write it and enter terminal state

We proceed to construct T" and V’. Define the set of symbols in T" to be

M’={A,B,C,D}wM

where A, B, C, D �: M, and the set of states to be

K" = { qa, qb, qc, qa, qe, qf, qg, qh, qH } U K

where qa, qb, qc, qd, qe, qf, qz, qh, qH �: K. The initial state of T" is qa, and the
halting state of T" is qH. The’initial state of T is qf,.and we simulate the halting
state of T by the state qh- We abbreviate the executlon of T on the tape with the
head at the current position as SIMULATE(qf, T, qh), where qf is the state of T"
corresponding to the initial state of T and qh is the state of T’corresponding to
the final (terminal) state of T.

Let V" = (A, B, V, C, D). Then the transition function ~5 for T" is:

a(qa, A) = (qb, A, -)

~(qa, Y) = (qH, Y, -) for y � A
COPY(qb, B, C, D, qc)
LS(qc, A, qd)
RS(qd, D, qe)

~(qe, D) = (qe, D, R)

~(qe, B) : (qf, B, R)

SIMULATE(qf, T, qh)
LS(qh, A, qg)

COPY(qg, A, D, D, qH)

; check beginning of tape
; halting state
; copy V after D
; head moves to D (T executes the copy
; of V, not the original one)
; move over the D
; enter the initial state of T with the
; head at the beginning of V
; simulate T running on V
; T terminated--go to beginning
; of T" ’s tape
; copy initial contents over results of
; running T on V (reproduction)

The Turing machine T" first makes a copy of V. It then simulates T running on
the copy of V. The original V is to the left of the copy (see Figure 22-4), so the
simulation of T cannot alter it. If the simulation halts, T" enters state qh, in
which the original copy of V is recopied. This satisfies Definition 22-16. On

BAR-TM 002611

630 Chapter 22 Malicious Logic

~Head

Figure 22-4 The tape V" at state qf.The head is positioned over the tape for T.
Note that, when Tis being simulated, the head can never move left over B
because Tcannot move to the left of the (simulated) tape.

the other hand, if the simulation never halts, V is never recopied, and Defini-
tion 22-16 is never satisfied. This establishes the desired result.

Adelman used a completely different approach to obtain a generaliza-
tion of this result, which we state without proof.

Theorem 22-2. [9] It is undecidable whether an arbitrary program contains
malicious logic.

These results mean that there is no generic technique for detecting all mali-
cious logic, or even all computer viruses. Hence, defenses must focus on particular
aspects of malicious logic. Furthermore, multiple defenses are needed. We turn to
these defenses now.

22.7 Defenses

Defending against malicious logic takes advantage of several different characteristics
of malicious logic to detect, or to block, its execution. The defenses inhibit the sus-
pect behavior. The mechanisms are imprecise. They may allow malicious logic that
does not exhibit the given characteristic to proceed, and they may prevent programs
that are not malicious but do exhibit the given characteristic from proceeding.

22.7.1 Malicious Logic Acting as Both Data and Instructions

Some malicious logic acts as both data and instructions. A computer virus inserts
code into another program. During this writing, the object being written into the file
(the set of virus instructions) is data. The virus then executes itself. The instructions
it executes are the same as what it has just written. Here, the object is treated as an
executable set o,f instructions. Protection mechanisms based on this property treat all
programs as type "data" until some certifying authority changes the type to "execut-
able" (instructions). Both new systems designed to meet strong security policies and
enhancements of existing systems use these methods (see Section 15.3.1).

BAR-TM 002612

22.7 Defenses 631

EXAMPLE: Boebert, Young, Kain, and Hansohn [127] propose labeling of subjects
and objects in the Logical Coprocessor Kernel or LOCK (formerly the Secure Ada
Target or SAT) [126, 434, 881,882], a system designed to meet the highest level of
security under the U.S. Department of Defense TCSEC (see Section 21.2). Once
compiled, programs have the label "data" and cannot be executed until a sequence of
specific, auditable events changes the label to "executable." After that, the program
cannot be modified. This scheme recognizes that viruses treat programs as data
(when they infect them by changing the file’s contents) and as instructions (when the
program executes and spreads the virus) and rigidly separates the two.

EXAMPLE: Duff [312] has suggested a variant for UNIX-based systems. Noting that
users with execute permission for a file usually also have read permission, he pro-
poses that files with execute permission be of type "executable" and that those with-
out it be of type "data." Unlike the LOCK, "executable" files could be modified, but
doing so would change those files’ types to "data." If the certifying authority were
the omnipotent user, the virus could spread only if run as that user. Libraries and
other system components of programs must also be certified before use to prevent
infection from nonexecutable files.

Both the LOCK scheme and Duff’s proposal trust that the administrators will
never certify a program containing malicious logic (either by accident or deliber-
ately) and that the tools used in the certification process are not themselves corrupt.

22.7.2 Malicious Logic Assuming the Identity of a User

Because a user (unknowingly) executes malicious logic, that code can access and
affect objects within the user’s protection domain. So, limiting the objects accessible
to a given process run by the user is an obvious protection technique. This draws on
the mechanisms for confining information (see Chapter 17, "Confinement Problem").

22.7.2.1 Information Flow Metrics
Cohen suggests an approach [206]. This approach is to limit the distance a virus can
spread.

Definition 22-17. Define theflow distance metricfd(x) for some information
x as follows. Initially, all information has fd(x) = 0. Whenever x is shared,
fd(x) increases by 1. Whenever x is used as input to a computation, the flow
distance of the output is the maximum of the flow distance of the input.

Information is accessible only while its flow distance is less than some partic-
ular value.

BAR-TM 002613

632 Chapter 22 Malicious Logic

EXAMPLE: Anne, Bill, and Cathy work on the same computer. The system uses the
flow distance metric to limit the flow of information. Anne can access information
with a flow distance less than 3, and Bill and Cathy can access information with a
flow distance less than 2. Anne creates a program dovirus containing a computer
virus. Bill executes it. Because the contents of the program have a flow distance of 0,
when the virus infects Bill’s file safefile, the flow distance of the virus is 1, and so
Bill can access it. Hence, the copying succeeds. Now, if Cathy executes safefiIe,
when the virus tries to spread to her files, its flow distance increases to 2. Hence, the
infection is not permitted (because Cathy can only access information with a flow
distance of 0 or 1).

This example also shows the problem with the flow distance policy (which
constrains sharing based on the flow distance metric). Although Cathy cannot be
infected by viruses that Bill has acquired, she can be infected by viruses that Bill has
written. (For example, had Cathy run Anne’s dovirus program, she would have had
her files infected.) The bounding constant limits the transitivity of trust. This number
should therefore be low. If it is 1, only the people from whom Cathy copies files are
trusted. Cathy does not trust anyone that they trust.

This mechanism raises interesting implementation issues. The metric is asso-
ciated with information and not objects. Rather than tagging specific information in
files, systems implementing this policy would most likely tag objects, treating the
composition of different information as having the maximum flow distance of the
information. This will inhibit sharing.

Ultimately, the only way to use this policy is to make the bounding constant 0.
This isolates each user into his or her own protection domain and allows no sharing.
Cohen points out that this defeats the main purpose of scientific or development
environments, in which users build on the work of others.

22.7.2.2 Reducing the Rights
The user can reduce her associated protection domain when running a suspect pro-
gram. This follows from the principle of least privilege (see Section 13.2.1). Wise-
man discusses one approach [1055], and Juni and Ponto present another idea in the
context of a medical database [532].

EXAMPLE: Smith [939] combines ACLs and C-Lists to achieve this end. Suppose s1
owns a file o] and s2 owns a program o2 and a file 03. The union of discretionary
ACLs is

= { r), w), % x), 03, w),
(s2, % r), (s2, 02, w), (s2, % x), 03, r) }

Program 02 contains a Trojan horse. If s1 wants to execute 02, he must ensure that it
does not write to o3. Ideally, s]’s protection domain will be reduced to { (s1, o2, x)}.

BAR-TM 002614

22.7 Defenses 633

Then ifPl2, the process (subject) created when s1 executes 02, tries to access 03, the
access will be denied. In fact, P12 inherits the access rights of s1. So, the default pro-
tection domain forpl2 will be

PD(Pl2) = PD(sl) = { (P12, °1, r), (P12, °1, w), (P12, 02, x), (P12, 03, w) }

Now, because s1 can write to 03, so can P12. Moreover, s1 cannot constrain this
behavior because s1 does not own 03 and so cannot delete its access rights over o3.

Smith’s solution is to require each user si to define an authorization denial
subset R(si) to contain those ACL entries that it will not allow others to exercise over
the objects that si owns. In this example, if R(s2) = { (Sl, o3, w) }, then

PD(Pl2) = PD(s1) ~ ~ (uj¢ 1R(sj)) = { (P12, °1, r), (P12, °1, w), (P12, 02, x) }

where "~" means set complement. Now P12 cannot write to 03.

Although effective, this approach begs the question of how to determine
which entries should be in the authorization denial subsets. Karger suggests basing
access on the program being executed and some characteristic of the file being
accessed.

EXAMPLE: Karger proposes a knowledge-based subsystem to determine if a pro-
gram makes reasonable file accesses [550]. The subsystem sits between the kernel
open routine and the application. The subsystem contains information about the
names of the files that each program is expected to access. For example, a UNIX C
compiler reads from C source files (the names of which end in ".c" and ".h") and
writes to temporary files (the names of which begin with "/tmp/ctm") and assembly
files (whose names end in ".s"). It executes the assembler, which reads from assem-
bly files and writes to object files (with names ending in ".o"). The compiler then
invokes the linking loader, which reads from object files and library files (whose
names end in ".a") and writes to executable files (with names ending in ".out" unless
the user supplies an alternative name). So, Karger’s subsystem has the following
associations.

Program Reads Writes Executes
Compiler *.c, *.h *.s,/trap/otto* Assembler, loader
Assembler *.s *.o
(Linking) loader *.o, *.a *.out

(The "*" means zero or more characters.)
When the subsystem is invoked, it checks that the access is allowed. If not, it

either denies the access or asks the user whether to permit the access.

A related approach is to base access to files on some characteristic of the com-
mand or program [206], possibly including subject authorizations as well [204].

BAR-TM 002615

634 Chapter 22 Malicious Logic

EXAMPLE: Lai and Gray [603] have implemented a modified version of Karger’s
scheme on a UNIX system. Unlike Karger, they combine knowledge about each
command with the command-line arguments of the current invocation. Their idea is
to use this information to determine the user’s intent to access files and the type of
access. They do not protect these files, but instead prevent other files not named on
the command line from being accessed (with two exceptions).

Processes are divided into two groups. File accesses by trusted processes are
not checked. Associated with each untrusted process is a valid access list (VAL) con-
sisting of the arguments of the process plus any temporary files created. When an
untrusted process tries to access a file, the kernel executes the following sequence of
steps.

1. If the process is requesting access to a file on the VAL, the access is
allowed if the effective UID and GID of the process allow the access.

2. If the process is opening the file for reading and the file is world-readable,
the open is allowed.

3. If the process is creating a file, the creation is allowed if the effective UID
and GID of the process allow the creation. The file is entered into the VAL
of the process and is marked as a new nonargument (NNA)file. The file’s
protection modes are set so that no other user may access the file.

4. Otherwise, an entry in the system log reflects the request, and the user is
asked if the access is to be allowed. If the user agrees, the access is allowed
if the effective UID and GID of the process allow it. Otherwise, the access
is denied.

VALs are created whenever a trusted process spawns an untrusted process, and are
inherited.

Files marked NNA have permissions such that only the creating user can
access them. They are in the VAL of the creating process, and no others, so only that
process and its descendents can access the NNA file. However, neither the creating
process nor its descendants may change the protection modes of that file. When the
file is deleted, its entry is removed from the VAL. When the process terminates, the
user is notified of any existing NNA files.

The trusted processes in a 4.3BSD UNIX environment are UNIX command
interpreters (csh and sh), the programs that spawn them on login (getty and login),
programs that access the file system recursively (ar, chgrp, chown, diff, du, dump,
find, ls, rcp, restore, and tar), programs that often access files not in their argument
lists (binmail, cpp, dbx, mail, make, script, and vi), and various network daemons
(fingerd, ftpd, ntaIkd, rlogind, rshd, sendmail, talkd, telnetd, tftpd, and uucpd). Fur-
thermore, a program called trust enables root to spawn trusted processes other than
those listed above.

As an example, consider the assembler when invoked from the cc program.
The assembler is called as

BAR-TM 002616

22.7 Defenses 635

as x.s /tmp/cc2345

andtheassemblercreatesthefile/tmp/asllll duringtheassembl~ The VALis

x.s /tmp/cc2345 /tmp/asllll

with the first file being read-only and the next two being readable and writable (the
first because cc created it and the second because as created it). In cc’s VAL, the
temporary file/tmp/cc2345 is marked NNA; in as’s VAL, it is not (because it is a
command-line argument to as). The loader is invoked as

ld /lib/crtO.o /tmp/cc2345 -lc -o x

The loader’s VAL is

/]ib/crtO.o /tmp/cc2345 /lib/libc.a x

The first three files are read-only and the last file is readable and writable.
Now, suppose a Trojan horse assembler is to copy the program to another

user’s area. When it attempts to create the target file, rule 3 forces the target to be
readable only by the originator. Hence, the attacker cannot read the newly created
file. If the attacker creates the file with privileges to allow him to read it, the victim is
asked if write access to the file should be allowed. This alerts the user to the presence
of the Trojan horse.

An alternative mechanism is interception of requests to open files. The
"watchdog" or "guardian" then performs a check to determine if the access is to be
allowed. This effectively redefines the system calls involved. The issues of determin-
ing how to write watchdogs to meet the desired goals and allowing users to specify
semantics for file accesses [88, 259] may prove useful in some contexts--for exam-
ple, in protecting a limited set of files.

All such mechanisms (1) trust the users to take explicit actions to limit their pro-
tection domains sufficiently, (2) trust tables to describe the programs’ expected actions
sufficiently for the mechanisms to apply those descriptions and to handle commands
with no corresponding table entries effectively, or (3) trust specific programs and the
kernel when they would be the first programs malicious logic would attack.

22.7.2.3 Sandboxing
Sandboxes and virtual machines (see Section 17.2) implicitly restrict process rights.
A common implementation of this approach is to restrict the program by modifying
it. Usually, special instructions inserted into the object code cause traps whenever an
instruction violates the security policy. If the executable dynamically loads libraries,
special libraries with the desired restrictions replace the standard libraries.

BAR-TM 002617

636 Chapter 22 Malicious Logic

EXAMPLE: Bishop and Dilger [117] propose a modification to UNIX system calls to
detect race conditions in file accesses. A race condition occurs when successive sys-
tem calls operate on an object identified by name, and the name can be rebounded to
a different object between the first and second system calls. The augmentation
involved would record the inode number (unique identifier) of the object identified in
the first system call. When the object named in the second system call differed from
the object named in the first system call, the mechanism would take appropriate
action.

22.7.3 Malicious Logic Crossing Protection Domain
Boundaries by Sharing

Inhibiting users in different protection domains from sharing programs or data will
inhibit malicious logic from spreading among those domains. This takes advantage
of the separation implicit in integrity policies (see Chapter 6).

EXAMPLE: When users share procedures, the LOCK system (see Section 22.7.1)
keeps only one copy of the procedure in memory. A master directory, accessible only
to a trusted hardware controller, associates with each procedure a unique owner and
with each user a list of others whom that user trusts. Before executing any procedure,
the dynamic linker checks that the user executing the procedure trusts the proce-
dure’s owner [125]. This scheme assumes that users’ trust in one another is always
well-placed.

A more general proposal [1066] suggests that programs to be protected be
placed at the lowest possible level of an implementation of a multilevel security pol-
icy. Because the mandatory access controls will prevent those processes from writing
to objects at lower levels, any process can read the programs but no process can write
to them. Such a scheme would have to be combined with an integrity model to pro-
vide protection against viruses to prevent both disclosure and file corruption.

EXAMPLE: The Data General model (see Figure 5-3, on page 129) places the exe-
cutables below the user region in the hierarchy of layers. The site-specific executa-
bles are highest, followed by the trusted data, and the Data General executables are at
the lowest level. This prevents alteration of the Data General executables and trusted
data by site executables and alteration of all executables and trusted data by user
applications.

Carrying this idea to its extreme would result in isolation of each domain.
Because sharing would not be possible, no viruses could propagate. Unfortunately,
the usefulness of such systems would be minimal.

BAR-TM 002618

22.7 Defenses 637

22.7.4 Malicious Logic Altering Files

Mechanisms using manipulation detection codes (or MDCs) apply some function to a
file to obtain a set of bits called the signature block and then protect that block. If, after
recomputing the signature block, the result differs from the stored signature block, the
file has changed, possibly as a result of malicious logic altering the file. This mecha-
nism relies on selection of good cryptographic checksums (see Section 9.4).

EXAMPLE: Tripwire [568, 569] is an integrity checker that targets the UNIX envi-
ronment. This program computes a signature block for each file and stores it in a
database. The signature of each file consists of file attributes (such as size, owner,
protection mode, and inode number) and various cryptographic checksums (such as
MD-4, MD-5, HAVAL, SHS, and various CRCs). The system administrator selects
the components that make up the signature.

When Tripwire is executed, it recomputes each signature block and compares
the recomputed blocks with those in the database. If any of them differ, the change is
reported as indicating a possibly corrupted file.

An assumption is that the signed file does not contain malicious logic before it
is signed. Page [793] has suggested expansion of Boebert and Kain’s model [126] to
include the software development process (in effect, limiting execution domains for
each development tool and user) to ensure that software is not contaminated during
development.

EXAMPLE: Pozzo and Grey [817, 818] have implemented Biba’s integrity model on
the distributed operating system LOCUS [811] to make the level of trust in the
above-mentioned assumption explicit. They have different classes of signed execut-
able programs. Credibility ratings (Biba’s "integrity levels") assign a measure of
trustworthiness on a scale of 0 (unsigned) to N (signed and formally verified), based
on the origin of the software. Trusted file systems contain only signed executable
files with the same credibility level. Associated with each user (subject) is a risk level
that starts out as the highest credibility level. Users may execute programs with cred-
ibility levels no less than their risk levels.When the credibility level is lower than the
risk level, a special "mn-untrusted" command must be used.

All integrity-based schemes rely on software that if infected may fail to report
tampering. Performance will be affected because encrypting the file or computing
the signature block may take a significant amount of time. The encrypting key must
also be secret because if it is not, then malicious logic can easily alter a signed file
without the change being detected.

Antivirus scanners check files for specific viruses and, if a virus is present,
either warn the user or attempt to "cure" the infection by removing the virus. Many
such agents exist for personal computers, but because each agent must look for a

BAR-TM 002619

638 Chapter 22 Malicious Logic

particular virus or set of viruses, they are very specific tools and, because of the
undecidability results stated earlier, cannot deal with viruses not yet analyzed.

22.7.5 Malicious Logic Performing Actions Beyond
Specification

Fault-tolerant techniques keep systems functioning correctly when the software or
hardware fails to perform to specifications. Joseph and Avi~ienis have suggested treat-
ing the infection and execution phases of a vires as errors. The first such proposal [529,
530] breaks programs into sequences of nonbranching instructions and checksums
each sequence, storing the results in encrypted form. When the program is ran, the pro-
cessor recomputes checksums, and at each branch a coprocessor compares the com-
puted checksum with the encrypted checksum; if they differ, an error (which may be an
infection) has occurred. Later proposals advocate checking of each instruction [260].
These schemes raise issues of key management and protection as well as the degree to
which the software managing keys, which transmit the control flow graph to the copro-
cessor and implement the recovery mechanism, can be trusted.

A proposal based on N-version programming [48] requires implementation of
several different versions of an algorithm, running them concurrently and periodi-
cally checking their intermediate results against each other. If they disagree, the
value assumed to be correct is the intermediate value that a majority of the programs
have obtained, and the programs with different values are malfunctioning (possibly
owing to malicious logic). This requires that a majority of the programs are not
infected and that the underlying operating system is secure. Also, Knight and Leve-
son [574] question the efficacy of N-version programming. Detecting the spread of a
virus would require voting on each file system access. To achieve this level of com-
parison, the programs would all have to implement the same algorithm, which would
defeat the purpose of using N-version programming [575].

22.7.5.1 Proof-Carrying Code
Necula has proposed a technique that combines specification and integrity checking
[762]. His method, called pro@carrying code (PCC), requires a "code consumer" (user)
to specify a safety requirement. The "code producer" (author) generates a proof that the
code meets the desired safety property and integrates that proof with the executable code.
This produces a PCC binary. The binary is delivered (through the network or other
means) to the consumer. The consumer then validates the safety proof and, if it is correct,
can execute the code knowing that it honors that policy. The key idea is that the proof
consists of elements drawn from the native code. If the native code is changed in a way
that violates the safety policy, the proof is invalidated and will be rejected.

EXAMPLE: Necula and Lee [763] tested their method on UNIX-based network
packet filters as supported by the Berkeley Packet Filter (BPF) [669, 724]. These fil-
ters were written in an interpreted language. The kernel performed the interpretations

BAR-TM 002620

22.7 Defenses 639

and prevented the filter from looping and from writing to any location except the
packer’s data or a small scratch memory. The filters were rewritten in assembly lan-
guage and augmented with proofs that showed that they met the safety policy that the
kernel enforced. The proofs ranged from 300 to 900 bytes, and the validation times
ranged from 0.3 to 1.3 ms. As expected, the start-up cost was higher (because the
proofs had to be validated before the filters were run), but the runtimes were consid-
erably shorter. In their experiments, in which 1,000 packets were received per second
(on the average), the total cost of using the BPF exceeded the PCC after 1,200 pack-
ets. The method also compared favorably with implementations using a restrictive
subset of Modula-3 (after 10,500 packets) [89, 496] and software fault isolation
(after 28,000 packets; see Section 17.2.2).

22.7.6 Malicious Logic Altering Statistical Characteristics

Like human languages, programs have specific statistical characteristics that mali-
cious logic might alter. Detection of such changes may lead to detection of malicious
logic.

EXAMPLE: Malicious logic might be present if a program appears to have more pro-
grammers than were known to have worked on it or if one particular programmer
appears to have worked on many different and unrelated programs [1066]. Program-
mers have their own individual styles of writing programs. At the source code level,
features such as language, formatting, and comment styles can distinguish coding
styles. However, adherence to organizational coding standards obscures these fea-
tures [598]. At the object code level, features such as choice of data structures and
algorithms may distinguish programmers [957].

Comparison of object and source may reveal that the object file contains con-
ditionals not corresponding to any in the source. In this case, the object may be
infected [385]. Similar proposals suggest examination of the appearance of programs
for identical sequences of instructions or byte patterns [516, 1066]. The disadvantage
of such comparisons is that they require large numbers of comparisons and need to
take into account the reuse of common library routines or of code [564].

Another proposal suggests that a filter be designed to detect, analyze, and
classify all modifications that a program makes as ordinary or suspicious [247].
Along the same lines, Dorothy Denning suggests the use of an intrusion-detection
expert system6 to detect viruses by looking for increases in file size, increases in the
frequency of writing to executable files, or alterations in the frequency of execution
of a specific program in ways that do not match the profiles of users who are spread-
ing the infection [270].

6 Chapter 25, "Intrusion Detection," discusses this system in more detail.

BAR-TM 002621

640 Chapter 22 Malicious Logic

22.7.7 The Notion of Trust

The effectiveness of any security mechanism depends on the security of the underly-
ing base on which the mechanism is implemented and the correctness of the imple-
mentation. If the trust in the base or in the implementation is misplaced, the
mechanism will not be secure. Thus, "secure," like "trust," is a relative notion, and
the design of any mechanism for enhancing computer security must attempt to bal-
ance the cost of the mechanism against the level of security desired and the degree of
trust in the base that the site accepts as reasonable. Research dealing with malicious
logic assumes that the interface, software, and/or hardware used to implement the
proposed scheme will perform exactly as desired, meaning that the trust is in the
underlying computing base, the implementation, and (if done) the verification.

22.8 Summary

Malicious logic is a perplexing problem. It highlights the impotence of standard
access controls, because authorized users are requesting authorized actions. The
security controls cannot determine if the user knows about such actions.

The most exciting idea is the separation of data from instructions. It unites
notions of strong typing with security. In addition to blocking much malicious logic,
it has applications for security in general (see Chapter 23, "Vulnerability Analysis,"
for examples).

Currently, file scanners are the most popular defensive mechanism. Both
integrity scanners and antivirus scanners look for changes in files. Antivirus scanners
(which also check for some nonvirus Trojan horses) use a database of virus signa-
tures. New dictionaries of these signatures are released periodically, or in the event
of a major virus attack. For example, updated virus dictionaries were released within
hours after Melissa’s discovery.

Integrity scanners check for changes in files, but without determining their
causes. If the contents of a file have changed since the last scan, the integrity checker
reports this fact, but another agency (user, program) must determine the reason for
the change.

22.9 Research Issues

Malicious logic is a fertile ground for study, because the problem is simple but defies
easy solution. The key observation is that any solution must distinguish between the
actions that users knowingly perform and those same actions when users unknow-
ingly perform them. Humans have a difficult time determining if the actions of others

BAR-TM 002622

22.10 Further Reading 641

are deliberate, and so how can computers be endowed with such powers of discrimi-
nation? This raises three issues for research: human interaction, integrity checking,
and analysis of actions.

Effective procedural mechanisms will prevent users from downloading sus-
pect programs, but how can users be persuaded to abide by these rules, and how can
the effects of violating these rules be ameliorated? The notion of "sandboxing," or
restriction of privileges (as discussed in Section 22.7.2.3), is intuitively appealing but
difficult to put into practice. One issue is how to define the sandbox. The system on
which the program is to be run can define the domain of execution (as some Web
browsers do) or can be constrained through a combination of the system and of the
program itself. In the latter case, the program carries credentials and the receiving
system checks them. Both the credentials and the way in which they are checked
influence the effectiveness of the reduced domain of execution.

Integrity checking is another area of active research. Cryptographic check-
sums have been discussed in Section 9.4, and integrity models in Chapter 6. The
application of integrity models and the protection and updating of checksums are
central to system security. Networks complicate the problem.

Analysis of actions for anomalies is the basis for one form of intrusion detec-
tion. Among the issues are characterization of the expected behavior of a program to
such a degree that the anomalies that viruses introduce can be distinguished from
normal behavior. Because computer viruses typically increase the number of writes
(during the infection phase and possibly during the execution phase), examining this
number may be fruitful, but other behaviors, such as transitions between localities
within the program, are also affected. Could these behaviors be detected?

22.10 Further Reading

Fites, Johnston, and Kratz [355], Hruska [495], and Levin [624] present overviews of
computer viruses and their effects. The National Institute of Standards and Technol-
ogy Special Publication 500-166 [1025] discusses management techniques for mini-
mizing the threats of computer viruses. Spafford, Heaphy, and Ferbrache’s book
[956] is well written and gives a good exposition of the state of the art in the late
1980s. Arnold [39] and Ludwig [645] describe how to write computer viruses;
Arnold’s book includes sample code for UNIX systems. Cohen’s short course on
computer viruses [208] is an excellent technical survey. McIlroy’s essay [679] pre-
sents a wonderful overview of computer viruses.

Denning’s essay [281] presents the nomenclature for malicious logic used in
this chapter. His anthology [282], and that of Hoffman [476], collect many of the
seminal, and most interesting, papers in the study of malicious logic. Parker [799],
Whiteside [1041], and others describe attacks on systems using various forms of
malicious logic in a more informal (and enjoyable) manner.

Appel and Felty [35] discuss a semantic model for proof-carrying code.

BAR-TM 002623

642 Chapter 22 Malicious Logic

22.11 Exercises

1. Tripwire does not encipher the signature blocks. What precautions must
installers take to ensure the integrity of the database?

2. Consider how a system with capabilities as its access control mechanism
could deal with Trojan horses.

a. In general, do capabilities offer more or less protection against
Trojan horses than do access control lists? Justify your answer in
light of the theoretical equivalence of ACLs and C-Lists.

b. Consider now the inheritance properties of new processes. If the
creator controls which capabilities the created process is given
initially, how could the creator limit the damage that a Trojan horse
could do?

c. Can capabilities protect against all Trojan horses? Either show that
they can or describe a Trojan horse process that C-Lists cannot
protect against.

3. Describe in detail how an executable infecting computer virus might
append itself to an executable. What changes must it make to the
executable, and why?

4. A computer system provides protection using the Bell-LaPadula policy.
How would a virus spread if:

a. the virus were placed on the system at system low (the compartment
that all other compartments dominate)?

b. the virus were placed on the system at system high (the
compartment that dominates all other compartments)?

5. A computer system provides protection using the Biba integrity model.
How would a virus spread if:

a. the virus were placed on the system at system low (the compartment
that all other compartments dominate)?

b. the virus were placed on the system at system high (the
compartment that dominates all other compartments)?

6. A computer system provides protection using the Chinese Wall model.
How would a virus spread throughout the system if it were placed within a
company dataset? Assume that it is a macro virus.

7. Discuss controls that would prevent Dennis Ritchie’s bacterium (see
Section 22.5.1) from absorbing all system resources and causing a system
crash.

8. How could Thompson’s rigged compiler be detected?

BAR-TM 002624

643

9. Place the SAT/LOCK mechanism of treating instructions and data as
separate types into the framework of the Clark-Wilson model. In
particular, what are the constrained data objects, the transaction
procedures, and the certification and enforcement rules?

10. Critique Lai and Gray’s virus prevention mechanism described in Section
22.7.2.2. In particular, how realistic is its assessment of the set of
programs to be trusted? Are there programs that they omitted or that they
should have omitted?

11. Design a signature detection scheme to detect polymorphic viruses,
assuming that no encipherment of virus code was used.

12. Assume that the Clark-Wilson model is implemented on a computer
system. Could a computer virus that scrambled constrained data items be
introduced into the system? Why or why not? Specifically, if not, identify
the precise control that would prevent the virus from being introduced, and
explain why it would prevent the virus from being introduced; if yes,
identify the specific control or controls that would allow the virus to be
introduced and explain why they fail to keep it out.

13. Prove that the ~ function defined in Section 22.6.1 is equivalent to the ~
function in Section 3.2.

BAR-TM 002625

