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The law of the wake in the turbulent boundary layer 
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SUMMARY 
After an extensive survey of mean-velocity profile measurements 

in various two-dimensional incompressible turbulent boundary- 
layer flows, it is proposed to represent the profile by a linear 
combination of two universal functions. One is the well-known 
law of the wall. The other, called the law of the wake, is 
characterized by the profile at a point of separation or reattachment. 
These functions are considered to be established empirically, by 
a study of the mean-velocity profile, without reference to any 
hypothetical mechanism of turbulence. Using the resulting 
complete analytic representation for the mean-velocity field, 
the shearing-stress field for several flows is computed from the 
boundary-layer equations and compared with experimental data. 

The development of a turbulent boundary layer is ultimately 
interpreted in terms of an equivalent wake profile, which supposedly 
represents the large-eddy structure and is a consequence of the 
constraint provided by inertia. This equivalent wake profile is 
modified by the presence of a wall, at which a further constraint is 
provided by viscosity. The wall constraint, although it penetrates 
the entire boundary layer, is manifested chiefly in the sublayer flow 
and in the logarithmic profile near the wall. 

Finally, it is suggested that yawed or three-dimensional flows 
may be usefully represented by the same two universal functions, 
considered as vector rather than scalar quantities. If the wall 
component is defined to be in the direction of the surface shearing 
stress, then the wake component, at least in the few cases studied, 
is found to be very nearly parallel to the gradient of the pressure. 

I. COMPENDIUM 
A. The law of the wall 

Consider a turbulent shear flow which is steady and two-dimensional 
on the average. Let u(x, y )  and v(x, y )  be the mean velocities in the direction 
of increasing rectangular coordinates x and y respectively. Suppose that 
the flow exerts a shearing stress T ~ ( x )  on a smooth impermeable wall at 
rest at y = 0. For a fluid of constant density, define a friction velocity 

by 
pu: = TU,. (1) 
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Experience with turbulent shear flow has shown that, under these conditions 
the mean-velocity profile in a considerable region near the surface is 
described by a relationship called the ' law of the wall ' : 

(2) 

The earliest formulation of the law of the wall was based on ob'servations 
of pipe flow. The current view, however, is one first suggested by Ludwieg 
& Tillmann (1949); the relationship (2) is taken for practical purposes as 
a unique and universal similarity law for every turbulent flow past a smooth 
surface. 
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Figure 1. The law of the wall. 
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For the special case of steady two-dimensional mean flow of an incom- 
pressible fluid, the form of the universal law is well established. In  
particular, for values of yuJv greater than about 50, equation (2) takes the 
form 

in which K and c are constants to be determined experimentally. On the 
other hand, the predominance of laminar shear very near the wall requires 
u/ur to approach yu,/v as y approaches zero. To illustrate the presence of 
linear and logarithmic regions in the mean-velocity profile, experimental 
data from several sources are collected in figure 1. A brief discussion of 
these data will be found in Part I1 of the present paper. 
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B. The defect law and the equilibrium boundary layer 

shear flow may be summarized in the formula 
The description just given of the mean velocity profile in a turbulent 

where the function h is arbitrary except that it is negligibly small in some 
finite region near the wall-say for y /6  less than about 0.1, where 6 is the 
thickness of the shear flow. 

For certain special cases frequently encountered (e.g. uniform pipe and 
channel flow and the boundary layer on a flat plate in a uniform stream), 
equation (4) is found experimentally to have the special form 

where II is a parameter which is independent of x and y. Profile similarity 
in terms of the argument y /6  is usually expressed by a relationship known 
as the velocity-defect law, or more properly the momentum-defect law. 
Outside the sublayer, it is an immediate consequence of the logarithmic 
variation off in equation (5) that 

with u = u1 at y = 6 .  
Quite recently these contributions to the experimental definition of 

turbulent shear flows have been brilliantly extended by F. Clauser (1954), 
who generalized the idea of a defect law by showing experimentally the 
existence bf boundary-layer flows for which the similarity laws (5) and (6) 
remain valid although the pressure gradient is positive. 

Finally; the existence of a logarithmic region in the mean-velocity 
profile has been shown by Millikan (1938) to follow directly, without 
reference to any hypothetical mechanism .of turbulent mixing, from the 
assumption of the simultaneous validity of the law of the wall in the form 
(2) and the defect law in the form (6). 

C. The law ofthe wake 
The relationships so far cited, especially the law of the wall, form the 

hard core of empirical knowledge of flow in turbulent boundary layers. 
Once they are accepted, it is natural to look for further inspiration in the 
inverse of Millikan's problem. That is, given a universal law of. the wall 
which is logarithmic outside the sublayer, what other asiumptions about 
the motion are necessary in order to establish a defect law? The most 
obvious answer is that the mean-velocity profile must have the form 01 
equation (5). The purpose of the present paper, however, is to suggest 
a less superficial answer, one which has several immediately useful con- 
sequences and which at the same time appears to approach somewhat 
closer to the central problem of turbulence itselfL. 

F.M. N 
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The essential element in this work is a study of the function h(x,y) 
in the general mean-velocity formula (4). An extensive survey of experi- 
mental data at large Reynolds numbers, reported in Parts I1 and 111, leads 
to the crucial conclusion that this function can be reduced directly to a 
second universal similarity law. Specifically, equation (4) may be written 
in the form 

where ll is a profile parameter, as in equation ( 5 ) ,  but the function w(y/S) 
is now supposedly common to all two-dimensional turbulent boundary-layer 
flows. 
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Figure 2. The law of the wake. 

The introduction of a second universal function in the mean-velocity 
profile will be referred to as the wake hypothesis, and the function w(y/S) 
in equation(7) will be referred to as the ‘ law of the wake’. Some experimental 
data which support the wake hypothesis are collected in figure 2. The 
measurements in question are included in the survey already mentioned, 
and the development leading to equation (7) and to figure 2 wiil be found in 
Part 111. 

In  preparing figure 2 the wake function w(y/S) in (7) has been subjected 
to the normalizing conditions w(0) = 0, w( 1) = 2 and (9,’s) dw = 1. The 

parameter ll is then found to be related to the local friction coefficient 
C, = ~u: /u ;  by 

(8) 
2n 

u. 
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to the displacement thickness 6" by 

and to the momentum thickness 0 by 
6 e - e  u2 

1 + a n  + pnz, - -  
2 (  6 >a= 

where a and 

D. The equations of mean motion 
T o  the extent that the similarity laws of the preceding sections are 

empirical, and not based on clear physical principles, these laws cannot 
be extended with confidence to conditions outside the range of observation. 
At the same time, these similarity laws go well beyond the usual limits of 
dimensional analysis. 

In  the first place, the thickness 6 and the parameter II are uniquely 
defined by equations (8) and (9), as is easily confirmed by eliminating either 
of these parameters between the equations in question. In  the second place, 
the mean-velocity field, including the flow in the sublayer, is determined 
whenever the kinematic viscosity v and three of the four parameters ul, u,, 
6 and ll are known. But a complete analytic description of the mean-velocity 
field implies a complete knowledge (at least within the boundary-layer 
approximation) of the streamline pattern, of the shearing-stress field, and 
of the local rate of transfer of energy from the mean flow to the turbulent 
secondary flow. Some typical calculations based on the formula (7) are 
presented in Part IV. 

E. Physical interpretation 
It is instructive to examine the nature of the wake component in 

equation (7) by letting u, approach zero (i.e. T~ -+ 0) after expressing II 
in terms of 6, 6*, ul and u, with the aid of equation (9). 

are constants of order unity. 

The result is 
- U = &u( ;) , 
u1 

which does not involve either K or v. It follows, since w(y/S) is by hypothesis 
a universal function, that the flow at a point of separation or reattachment 
is locally a pure wake flow. 

This observation suggests a simple physical interpretation for the law 
of the wall and the law of the wake, as illustrated in figure 3. The figure 
shows the profile u(y)  for various values of x in a hfpothetical boundary 
layer, which is proceeding from separation to separation through a region 
of attached flow. The dashed lines in the figure denote the wake-like 
structure represented in equation (7) by the function w(y/6).  The associated 
velocity defect u l - u  is given by IIu,(2- w) /K,  and the intercept at y = 0 
of the equivalent wake profile therefore differs from the velocity in the 
external stream by an amount ~ H u , / K .  

N Z  
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According to this interpretation, the law of the wake is to be viewed 
as a manifestation of a large-scale mixing process similar to flow in a wake, 
in that it is constrained primarily by inertia rather than by viscosity. When 
the flow is bounded by a wall, however, it is ultimately necessary to satisfy 
the boundary conditions of vanishing velocity and Newtonian friction at 
the surface. These conditions impose a further viscous constraint on the 
flow whose effect is to modify the mean-velocity distribution as shown by 
the solid lines in figure 3. Near the wall, where the wake mean velocity 
is nearly constant, the constraint provided by viscosity can be observed 
in the sublayer flow and in the similarity relationship known as the law of 
the wall. 

Figure 3 .  Mean-velocity field in a hypothetkal boundary layer, including tk.e 
equivalent wake. 

11. THE LAW OF THE WALL 

A. Historical development 
The early development of the law of the 

wall, in the hands of Prandtl, von KArmAn and others, included a simple 
dimensional argument which has not lost its usefulness. Suppose that 
the mean-velocity profile in a turbulent shear flow is found to be adequately 
represented by a relationship +(u,y, 6, T ~ ,  p, p) = 0, in an obvious notation, 
and that this relationship is found in some region to be independent of the 
characteristic length 6. It follows from the principles of dimensional 
analysis, without any explicit assumptions about the nature of the turbulence, 
that in this region equation (2) must be valid. 

Before the development of the mixing analogy, the function in equation (2) 
was sometimes taken as a power law, for lack of a better representation. 
The sublayer, that is, the region where viscous stress is predominant, was 
treated separately by means of the plausible assumption of a linear velocity 
profile very near the wall. 

and therefore u/u7 = yuJv. 

1. Evolution before 1949. 

In this approximation 
aupy = u/y = + = TwlCL = glv, 
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By 1930 the present general formulation of the law of the wall had 
been achieved, in the sense that no distinction was made in equation (2) 
between the sublayer and the fully turbulent flow. Nikuradse (1930), at 
the suggestion of Prandtl, expressed the law of the wall in the present form 
during an analysis of some measurements in pipe flow. Equation (2) 
also appears in articles by Tollmien and by Schiller in Volume IV  of 
Handbuch der Experimentalphysik. 

At about the same time, the mixing analogy of Prandtl (1926) and the 
similarity hypothesis of von Khrmin (1932) had provided an equation 
&(x,y) /2y = U,(X) /KY for the mean velocity in the fully turbulent region, 
with the integral u/u,  = ( 1 / ~ )  In [y /yo(x)]  +constant. I t  is clear, however, 
that the choice of v/u7 for the unspecified characteristic length yo(.) is not 
properly a part of the mixing analogy, but rather a part of the dimensional 
argument already mentioned. 

2. Recent developments. Until quite recently, the three most important 
elements in the development of the law of the wall have been, first, the 
dimensional argument leading to equation (2) ; second, the stipulation that 
the function f is linear at the wall; and third, the recognition that, for 
whatever reason, the function f is very nearly logarithmic in a certain region 
outside the sublayer. 

A fourth important element was added when Ludwieg & Tillmann 
(1949) found experimentally, using an ingenious heat-transfer technique 
for the indirect measurement of surface shearing stress, that for flow in 
a turbulent boundary layer the function f in equation (2) is apparently 
independent of pressure gradient. This result lies at the heart df the present 
study, virtually every part of which depends directly or indirectly on the 
hypothesis that the law of the wall is a unique and universal relationship 
for flow past a smooth surface. 

As several writers in the field have pointed out, equation (2) is an implicit 
equation for u, (hence for T,) when p ,  p, and u(y) are given. The law of 
the wall thus provides a means for accurate determination of the elusive 
wall shearing stress, once the function f in (2) has been established by a 
survey of experimental data on flows for which T, is accurately known. 

3 .  Experimental data. Nikuradse’s classical pipe measurements (1930) 
confirmed the prediction of a logarithmic region in the mean-velocity profile. 
The lowest curve in figure 1 shows the data.obtained, including a small 
correction for wall interference, in sixteen surveys at various Reynolds 
numbers of the region between the pipe wall and a value of y /S  of about 
0.15, where 6 is the pipe radius. Nikuradse did not obtain data on the 
sublayer, but inferred the validity of the general law of the wall from the 
argument already given in favour of the limiting form u/u, = yu,/v at 
y = 0. This omission was partly repaired by Reichardt’s measurements 
(1940) of mean velocity in the sublayer of a channel flow, and more completely 
repaired by the work of Laufer (1953) and Klebanoff (1954) on pipe flow 
and boundary-layer flow respectively. 
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The latter measurements, shown in figure 1, include data on the sublayer 
obtained in each instance with a hot-wire anemometer. For Laufer’s 
experiments on pipe flow, the wall shearing stress has blen derived from 
the observed axial pressure gradient. For KlebanofF‘s experiments on 
boundary layers, the wall shearing stress has been derived from the rate of 
momentum loss observed in other experiments with the same model 
(Klebanoff & Diehl 1951 ; see also Coles 1954). For Reichardt’s experi- 
ments on channel flow, the wall shearing stress was not measured 
independently, as Reichardt’s object was to interpolate experimentally 
in the region of the mean-velocity profile not studied by Nikuradse. 

Finally, some measurements by Sheppard (1947) in a natural wind 
near the ground offer a striking example of a turbulent shear flow for which 
it would seem that no Reynolds number can be explicitly defined. However, 
difficulty in visualizing either an origin of coordinates or a second boundary 
does not prevent the presentation of these data in terms of the law of the wall. 
Sheppard observed the surface shearing stress directly, using the floating- 
element technique, together with the mean velocity at several points up 
to a height of two metres. The result of the measurements is given in 
figure 1. The agreement with wind-tunnel data is surprisingly good when 
it is considered that Sheppard’s measurements were made over a concrete 
surface, and that the vertical temperature gradient may have differed 
significantly from the adiabatic lapse rate associated with neutral stability. 

Two empirical constants, K and c, appear 
Throughout the present study, the numerical values 

4. Numerical evaluation. 
in equation (3). 
given to these constants are 

K = 0.40, 
c = 5.1. 

A great variety of other values, especially for K ,  can be found in the 
experimental literature. However, in practically all cases where equation (3) 
is explicitly taken as a definition, K is found to lie between 0.39 and 0.41. 
Values outside this range are usually the result of operations or assumptions 
which change the definition of K and c. In any event, it is clear in figure 1 
that the data outside the sbblayer are well represented by equation (3) 
when K and c are given the values already mentioned. 

Within the sublayer, on the other hand, large fluctuations in velocity 
and cramped quarters for experimentation usually combine to make 
measurements of mean velocity somewhat uncertain. The available 
data in figure 1, therefore, should not be said to establish conclusively the 
uniqueness of the law of the wall in the sublayer, although these data have 
been used elsewhere (Coles 1955) in forming a tentative estimate of the 
function f(yu,/v) and related functions. 

B. Test of the wall law 
Except for a few applications of the floating- 

element technique in flows at constant pressure, values of surface stress in 
1. Momentum balance. 
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turbulent boundary layers have usually been obtained indirectly from the 
observed pressure gradient and rate of momentum loss, using the momentum- 
integral equation of von KBrm6n (1921). For two-dimensional incom- 
pressible steady mean flow in a boundary layer, this equation is 

where T ~ ( x )  is the wall shearing stress, ul (x )  is the velocity of the free stream 
outside the boundary layer, and 6*(x) and O(x) are the displacement and 
momentum thicknesses, defined respectively by 

and 

Experience in applying equation (1 1) to flows with positive pressure 
gradient has usually been that the values obtained for T, appear to increase 
rapidly when separation is imminent, contrary to the behaviour which 
is intuitively expected. In fact, the experiments of Ludwieg & Tillmann 
(1949) were originally designed not to study the law of the wall, but rather 
to investigate the validity of the momentum-integral equation (1 1) by 
providing an independent estimate for rW. 

It is therefore instructive to compare, for various experimental studies 
of flow in turbulent boundary layers, the values of wall shearing stress 
obtained from equation (11) with those inferred from the law of the wall. 
In order to avoid differentiation of measured quantities, equation (1 1) 
may be integrated with respect to x between two stations xo and x.  Replacing 
T~ by pu2, the result of the integration can be expressed by the two equations 

and 

where uo = ul(xo) and Oo = 6(xo). 
The dimensionless function @(x) may be evaluated experimentally 

from equation (14) if 6*, 6, and u1 are known as functions of x. Quite 
independently, the same function @(x) may be evaluated from equation (15) 
if the friction velocity u, is obtained by fitting the velocity profile to the 
hypothetical law of the wall. Agreement between the slopes of the two 
functions @(x) shows that the flow in question is not inconsistent with the 
logarithmic law of the wall displayed in figure 1. 

2. Presentation of data. The discussion will be limited to data obtained 
at reasonably large Reynolds numbers in experiments at reasonably large 



200 Donald Coles 

scale." The experimental point of departure is flow at constant pressure, 
for which some mean-velocity measurements of Wieghardt (1943) for a 
free-stream velocity of 33 m/sec are shown in figure 4. Here and in the 
fifteen following figures, the mean-velocity profiles shown are typical of 
the measurements, although some of the profile data have occasionally 
been omitted for reasons of economy in the graphical presenfation. 

Figure 4. Data of Wieghardt (1943) for constant stream velocity; stationsin metres. 

All of the profiles, whether shown in the figures or not, have first been 
inbividually fitted to the logarithmic region of the law of the wall, i.e. to the 
formula u/u, = 5.75 log,, (yu,/v) + 5.10, and the resulting values of u,/u, 
have then been smoothed where necessary. In  the fitting operation it 
has generally been assumed that the measurements for values of yuJv less 
than about 200 may be unreliable as a result of large fluctuations in velocity, 
wall interference, poor probe sensitivity at small mean velocities, probe 
position error, or uncertainty in the static pressure. For consistency, 
therefore, the contribution of the sublayer and of the logarithmic region 
to 6* and 0 have been computed for the function f of figure 1, i.e. for the 
solid lines in figures 4 to 19, rather than for the actual measurements. 

"This survey of experimental data includes certain material which has not 
previously been reported in detail in the literature. For their courtesy in providing 
this material I am indebted to F. Clauser of the Johns Hopkins University, Baltimore; 
Smith J. DeFrance of the NACA Ames Aeronautical Laboratory, Moffett Field; 
W. Tillmann of the Max-Planck-Institut fur Stromungsforschung, Gottingen ; 
K. Wieghardt of the Institut fur Schiffbau, Hamburg; and A. Kuethe of the 
University of Michigan, Ann Arbor. I am also indebted to F. Goddard of the Jet 
Propulsion Laboratory, Pasadena, for making available the services of the JPL 
computing section. 
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Each of figures 4 to 19 includes a sketch showing both the geometry 
of the experiment and the physical extent 6(x) of the shear flow. Finally, 
each of the figures includes a comparison of the two functions a(.) of 
equations (14) and (15), represented by open points and by a solid line 
respectively. 

TUDBULENCE GRID 

10 40 1000 ,o,om lO0,OW 

Figure 5. Data of Wieghardt (1944) with turbulence grid; stations in metres. 

I"I - 

metres. 
Figure 6. Data of Ludwieg and Tillmann (1949) for falling pressure; stations in 

3. Unseparated jlows. Wieghardt's measurements (1943) of boundary- 
layer growth for a uniform external stream have already been presented in 
figure 4. Wieghardt (1944) also investigated the effect of increasing the 



202 Donald Coles 

tunnel turbulence level by means of a coarse screen, obtaining the mean- 
velocity profiles shown in figure 5. Using the same channel and instru- 
mentation, Ludwieg & Tillmann (1949) observed a turbulent boundary- 
layer flow in a region of a negative pressure gradient, with the result shown 
in figure 6. These particular profile measurements, and those of figures 13 
and 14 below, are the ones originally cited by Ludwieg & Tillmann in 
their cogent paper on the law of the wall. 

w. - 

Figure 7. Data of Bauer (1951) for 20" slope; stations in feet. 

Figure 8. Data of Bauer (1951)Ifor 40" slope; stations in feet. 

Figure 9. Data of Bauer (1951) for 60" slope; stations in feet. 
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Some measurements of flow near the lower boundary of a stream 
accelerating under the force of gravity at essentially constant pressure 
have been reported by Bauer (1951). The fluid is water traversing the 
face of a model spillway; data for flow over a smooth plane surface at 
angles of 20", 40", and 60" to the horizontal are reproduced in figures 7, 8, 
and 9. In each case the body force per unit volume pg sin B is independent 
of x and y and so plays the same role as a constant pressure force per unit 
volume dpldx. 

I 

10 000 

Figure 10. Data of Schubauer and Klebanoff (1950); stations in feet. 

4. Flows approaching separation. Extensive measurements in a flow 
approaching separation have been made by Schubauer & Klebanoff (1950) 
on a large airfoil at the National Bureau of Standards. Typical mean- 
velocity profiles are shown in figure 10. Upstream of the 7 ft. station, 
the surface shearing stress and free-stream dynamic pressure both increase 
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53 

40 

30 
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10 

in the direction of flow. 
the wall and the pressure are nearly constant. 
begins at about x = 18 ft., and separation occurs at about x = 25.7 ft. 

Between x = 7ft. and x = 17-5ft. the stress a t  
The region of rising pressure 

YU. 

Figure 11. Data of Newman (1951); airfoil chord 50 inches 

2 - 1  

Figure 12. Data of Kehl 
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A similar study of a boundary layer near separation is available in some 
work of Newman (1951) for which the mean-velocity data are presented in 
figure 11. Because Newman measured the static-pressure variation within 
the boundary layer, and also made a plausible correction to his observed 
mean-velocity profiles for instrumental errors caused by turbulence, these 
data are among the most accurate and detailed which are available. Newman, 

001 

Figure 13. Data of Ludwieg and Tillmann (1949) for moderately rising pressure; 
stations in metres. 

9". - 
Figure 14. Data of Ludwieg and Tillmann (1949) for strongly rising pressure; 

stations in metres. 
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like Schubauer & Klebanoff, also measured turbulence intensities and 
turbulent shearing stress within the shear flow. 

Boundary-layer flow in diffusers of constant width and rectangular 
section has been studied by Kehl (1943), by Ludwieg & Tillmann (1949), 
and by Clauser (1954), with the results shown in figures 12 to 16. In  none 
of these five experiments did separation actually occur, and in the last two 
it was deliberately prevented. 

\ 
300 

Figure 15.  Data of Clauser (1954) for moderately rising pressure; stations in inches. 

Figure 16. Data of Clauser (1954) for strongly rising pressure; stations in inches. 

5. Flows following reattachment. Turbulent boundary-layer flow 
following reattachment downstream of a separation bubble has been 
investigated by McCullough & Gault (1949). Data for the upper surface 
of an NACA 64A006 airfoil section at an angle of attack of 5" are reproduced 
in figure 17. 
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Reattachment of separated flow downstream of a tripping device or 
spoiler, in flow with nominally constant pressure, is illustrated in figures 18 
and 19 with some measurements of Klebanoff & Diehl(l951) and of Tillmann 
(1945). In  the experiment of Klebanoff & Diehl transition occurred at 
the spoiler, which was a 114411. diameter rod at the 4 ft. station of the plate. 

Figure 17. Data of McCullough and 

VU. - 

Gault (1949) for 5" angle of attack; 
airfoil chord 5 feet. 

I 

Figure 18. Data of Klebanoff and Diehl (1951) for 1/4-inch rod; stations in fiet. 
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In the experiment of Tillmann the boundary layer was turbulent well 
upstream of the spoiler, which was a rectangular ledge 1.2 crn square at the 
2.02 m station. In both cases it may be noted that the flow far downstream 
has apparently not recovered from the effects of the enforced separation, 
as the mean-velocity profiles do not resemble the profiles for flow at constant 
pressure shown in figure 4. 

Y"r - 

Figure 19. Data of Tillmann (1945) for 12 mm ledge; stations in metres. 

6. Evaluation. The data cited in the previous section obviously do 
not provide a test of the hypothetical law of the wall alone, but provide a 
joint test of the law of the wall together with the turbulent boundary-layer 
approximation and the assumption of two-dimensional mean flow. 

These data confirm that the momentum-integral equation (1 1) cannot 
be relied upon to give accurate values of surface shearing stress in the 
neighbourhood of separation, for the reason that the left side of (1 1) is then 
equal to a small difference between two large quantities on the right. 
Consequently, large errors in T , ~  may be encountered, either as a result 
of inconspicuous departures from two-dimensional mean flow or as a result 
of the omission from the boundary-layer approximation of certain terms 
involving the Reynolds normal stresses and the pressure variation normal 
to the wall. 

Both Ludwieg & Tillmann( 1949), using a surface heat-transfer technique, 
and Schubauer & Klebanoff (1950), using extrapolated values of the measured 
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turbulent stress, have found experimentally that the surface shearing stress 
decreases monotonically toward zero on approaching a point of separation. 
Consequently, whether or not the hypothesis of a universal similarity law 
is correct for the flows in question, it is certain from the evidence, for example, 
of figures 10,13 and 14 that the momentum-integral equation in the form (1 1) 
is seriously in error. 

Besides the work of Ludwieg & Tillmann, perhaps the most convincing 
evidence for a universal law of the wall is simply that a distinct logarithmic 
region occurs in each of several hundred mean-velocity profiles examined 
here, with very few exceptions; a definite estimate for the wall shearing 
stress is readily obtained, and this estimate is entirely plausible. 

At the same time, it is known (Coles 1955) that a necessary and sufficient 
condition for a universal law of the wall, given the boundary conditions of 
vanishing velocity and Newtonian friction at the surface, is that the ratio 
u/u, is constant on streamlines of the mean flow. The edge of the sublayer, 
as usually defined, is therefore a mean streamline. This result must 
surely be considered in any search for a fundamental order and unity in the 
description of turbulent shear flows, 

I t  should also be noted that the concept of a universal similarity law 
has recently been reinforced by work of Preston (1954), using an experimental 
technique which depends on the general validity of equation (2) in essentially 
the same way that the use of a Stanton tube depends on the existence of 
a linear profile very near the wall. 

In  view of these remarks, the hypothesis of a universal law of the wall 
will be accepted for the purposes of the present paper. In fact, it will 
eventually be suggested that the similarity laws of this and the next section 
may be concepts sufficiently powerful to allow a quantitative treatment not 
only of flows approaching or recovering from separation, but also of yawed 
flows and flows which are actually separated from the adjacent wall. 

111. THE LAW OF THE WAKE 

A. The defect law 
A special form of the defect law (6) was 

proposed by Darcy nearly a hundred years ago, and again by Stanton in 
1911, to describe the mean-velocity profile in turbulent pipe flow. The 
defect law in the general form (6) was formulated independently by von 
KBrmAn (1932), who derived an approximate friction law involving two 
empirical constants for the turbulent boundary layer with constant pressure, 
According to experimental evidence from many sources, the defect function 
F(JI,y/i3) in a given flow is insensitive to roughness at the wall, provided 
that the origin for the normal coordinate y is properly chosen. On the 
other hand, it appears from a comparison of figures 4 and 5 that there is a 
small dependence of the defect law on the turbulence level in the external 
stream. 

One well known and useful property of the defect law is that it avoids 
the awkward problem of defining the thickness 6 for a boundary layer. 

1. Historical development. 

F.M. 0 
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For, if the displacement thickness 6+ is computed from equation (12) for 
the profile (6), neglecting the departure of the flow in the sublayer from 
the logarithmic law,* there is obtained 

6 U ,  = jlF(IT, $) d ( $ )  = C(IT), 

so that 6 is proportional to G+u,/u,. This implicit notation for the parameter 
IT will eventually be replaced by an explicit formula. 

The concept of a defect law has 
recently been generalized by F. Clauser (1954), who constructed experi- 
mentally two boundary-layer flows with positive pressure gradient, such that 
equations (5) and (6) remained valid. The flows in question have already 
been described in figures 15 and 16. Clauser used the term ‘equilibrium 
flow’ to denote a flow with a defect law, that is, in the present notation, 
a flow for which the parameter ll is constant. 

Examination of figures 7, 8 and 9 suggests that the three spillway flows 
studied by Bauer may be equilibrium flows in the sense of Clauser’s definition. 
So, at least approximately, is the flow with falling pressure studied by 
Ludwieg & Tillmann and reported in figure 6. 

2. The equilibrium boundary layer. 
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Figure 20. The defect law. 

A comparison of the velocity-defect function F for three equilibrium 
flows can be found in figure 18 of Clauser’s paper, and is repeated here 
in figure 20. This figure, unfortunately, sheds little light on the way in 
which the argument y/S and the parameter IT are involved in the function 
F(IT,y/S) of equation (6), and therefore does not immediately suggest 
any useful generalization of the defect law to non-equilibrium flows. 

replaced by ~ Z / K Z  as if the functionf were logarithmic everywhere. 
* This remark implies that, for example, J f d z  is written fz- j.2 df, and df is 
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3 .  The logarithmic region. At this point a further important 
consequence of the defect law in equilibrium flow should be mentioned. 
In  the first instance, the mixing analogy of Prandtl or von Khrmhn implies 
a logarithmic variation of the function f (yu, /u)  in flows for which T does 
not depend on y .  However, if the law of the wall is universally valid, 
then the velocity distribution u(y) can be expressed indeppdently of the 
shear distribution T(Y)  ; thus the argument based on the mixing analogy 
in favour of a logarithmic mean-velocity distribution is seriously weakened. 

It is therefore instructive to consider another argument, first proposed 
by Millikan (1938) and based on the wall and defect laws, which also leads 
to a logarithmic function f in equation (2) .  From the law of the wall, 
u/u, = f (yu, /v) ,  it follows that 

From the defect law, (ul - u)/u, = F(II,y/S), the corresponding expression 
is 

where the constant parameter II has been suppressed for an equilibrium 
flow. Now suppose that there is a finite region in which the wall and 
defect laws are simultaneously valid. In this region, the last two equations 
require that 

say. Obviously, K ( X , Y )  is fixed when either of the two variables yu, /v  
or y/S is specified. But these variables are formally independent of each 
other, since their ratio Su,/u may be chosen arbitrarily. It follows that K 

must be a constant. Furthermore, on integrating the expression for 
over the region in question, it is found that 

f (? )  = ;InT 1 YU7 + const., 

in agreement with equation ( 3 ) .  

B. The wake hypothesis 
The defect law (6) has at least a limited physical 

interpretation, in that the loss of momentum is expressed independently 
of the viscosity. This property, being consistent with the idea of a turbulent 
rather than a viscous transport process, can reasonably be assumed, as in 
Millikan’s argument, to apply everywhere outside the sublayer. 
Furthermore, the observed sensitivity of the momentum defect to external 
turbulence level and the observed insensitivity to wall roughness are not 
surprising. 

On the other hand, the various mean-velocity profiles so far studied 
are quite systematic in coordinates (u/uT, yuT/u) which involve the viscosity 

1. The wake function. 

0 2  
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of the fluid. I n  fact, once the universal law of the wall is accepted, it is 
difficult to escape the conviction that an arbitrarily chosen profile is com- 
pletely determined when the free-stream point (ul/u,, Su,/v) is specified. 
T o  illustrate this remark, figure 21 shows several mean-velocity profiles 
selected from various boundary-layer flows described earlier. * These 
profiles have essentially the same defect law (that is to say, the same value 
of the parameter II) in spite of wide variations in environment. 
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Figure 21. Two-parameter similarity in the mean-velocity profile. 

- 

Taking these properties together, it is something of an anticlimax to 
discover that the puzzle of the defect law is apparently a simple one. The 
key lies not in a study of the defect function F of equation (6) ,  but in a 
study of the original function g(rI,y/6) of equation ( 5 ) ,  which gives the 
departure of the mean-velocity profile from the logarithmic law of the wall. 
For the three equilibrium flows of figure 20, this departure is shown in 
figure 2, using a linear scale for yu7/6*ul. There is a striking resemblance 
between the three curves, including a common anti-symmetry about a 
midpoint. But this resemblance is obviously not confined to equilibrium 
flows if, as has just been suggested in figure 21, an arbitrary profile in non- 
equilibrium flow coincides in the coordinate system (u/u,, yuo/v) with a 
profile from some member of the one-parameter family of equilibrium flows. 

* Reading from left to right, the profiles are taken from figure 18 (Klebanoff & 
Diehl 1951, station 4.25), figure 16 (Clauser 1954, Series 2, station 108), figure 11 
(Newman 1951, stations D and C), figure 16 (Clauser 1954, Series 2, station 230), 
and figure 14 (Ludwieg & Tillmann 1949, Channel VI b, stations 3.73 and 3.53). 
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In view of these remarks and especially in view of figure 2, the mean- 
velocity profile may tentatively be written in the form already presented as 
equation (7),  

where the function w(y/6), for reasons which will become .apparent, will 
be called the law of the wake. If II does not depend on x, then both 
g(II ,y /6)  in equation (5) and IIw(y/S) in  equation (7) are functions of y/S 
only. This is the property assigned to equilibrium flows by Clauser. 
The present formulation of the mean-velocity profile is, however, more 
general than equation (5), in the sense that the law of the wake, although 
it occurs as a restricted form of ( 5 )  which is itself a special form of equation 
(4), is here assumed to apply for non-equilibrium flows. 

In order to test the hypothesis of a universal 
wake function in equation (7), it is necessary first to define the thickness 6 
and to specify some normalizing factor for w. T o  this end, the displacement 
thickness 6* may be computed from the definition, equation (12), for the 
particular profile given by (7). Neglecting the departure of the flow in the 
sublayer from the logarithmic wall law, we obtain 

2. Normalizing conditions. 

21 1 ' II w1 y dw 
6" = a;(, + --lo 3 ), 

where w1 is tentatively defined as the maximum value of w. 
convenient to take as a first normalizing condition 

It is therefore 

1; $ dw = 1. 

A second normalizing condition is suggested by the nearly anti-symmetric 
form of the curves in figure 2. The maximum value of w will occur very 
nearly at y/S = 1, provided that 

(17) w1 = w( 1) = 2. 
Now w(y/S) is by hypothesis a universal function, ,so that the boundary- 
layer thickness 6 is uniquely defined in terms of 6" by the integral condition 
(16) and the maximum condition (17). That is, the two relationships 
(8) and (9), together with the identity 

(s")(2) = (--)/(%), S*Ul 

6 UT 

are sufficient to determine all five of the dimensionless parameters ul/u,, 
S*/S, 8u,/v, 8*ul/v, and II (or 6*ul/6u,) when any two are given. For 
example, if the two known quantities are ul/uT and 6*u,/v, as is supposedly 
the case for the data cited in Part I1 of this study, then equations (8) and (9) 
lead to a simple transcendental equation for II ; 
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3. ProJile at separation. Equation (7) as originally written is not in 
a convenient form for use near a point'of separation or reattachment. 
However, on multiplication by UJU, and the elimination of n by means of 
(9), equation (7) leads to 

If u7 is put equal to zero in this expression, the result is evidently 

Moreover, certain numerical values can be assigned in advance to the ratios 
8*/8, f3/8 and S*/O at separation or reattachment. For example, the definition 
of 8 adopted here takes account of the nearly anti-symmetric variation of w 
by requiring that S*jS = 8 at separation. A corollary, anticipating 
numerical values of the next section, is f3/8 = 0.12 (approximately). On 
the other hand, the prediction 8*/0 = 4-2 (approximately) at separation 
or reattachment is a result which is relatively free of preconceptions about 
the form of the wake function w. It should also be noted that this prediction 
is based on examination of the mean-velocity profile in flows which need 
not be close to separation, 

Table 1. The wake function w(5) and related functions. . 

t: 
____ 

0 
0.05 
0.10 
0.15 
0.20 
0.25 
0.30 
0.35 
0 -40 
0.45 
0.50 
0.55 
0 *60 
0.65 
0 *70 
0.75 
0.80 
0-85 
0.90 
0.95 
1 -00 

0 
0.004 
0.029 
0.084 
0.168 
0.272 
0.396 
0.535 
0.685 
0-838 
0.994 
1.152 
1.307 
1.458 
1.600 
1.729 
1.840 
1.926 
1 -980 
1.999 
2.000 

j W t : d W  0 

0 
0 

0.002 
0.009 
0.024 
0.047 
0.082 
0.127 
0.183 
0.248 
0.322 
0.405 
0.495 
0.589 
0.685 
0.778 
0.863 
0.935 
0.981 
0.999 
1 -000 

1 +o.oooII 
1 +0.002rI 
1 +O.O22rI 
1 +O.O62II 
1+0.119II 
1 +0.190II 
1 +0.272rI 
1 +0.363II 
1 t-0.458l-I 
1 +0-552II 
1 +0.645II 
1 +0.737II 
1 +0.824II 
1 +0.906rI 
1 +0.978II 
1 + 1.037II 
1 + 1.079II 
1 + 1.1OOII 
1 + 1.090n 
1 + 1.051n 
1 + 1 .oooII 

1 + O ~ O O O r I  f 0 ~ 0 0 0 ~ ~  

1 +O.O27II +O*OOOr12 

1 + 0.1 54II +0*008112 

1 +0.360II +0.044112 

1 +0.614II+ 0.127112 

1 +0.88011+0.257112 

1+1.14311$-0.426112 

1 +1.38OII+0*61OIII8 

1 +1.56111+0.765112 

1 +1.64011+0.8231T2 

1 + 1.600II +0.761112 

4. Test of the hypothesis. For obvious reasons, the existence and form 
of the hypothetical wake function w(y/8) are most readily investigated in 
flows with a large wake component. Figure 2 shows the function in question, 
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subject to the normalizing conditions (16) and (17), for several mean-velocity 
profiles taken from the present survey. The difference in apparent scatter 
between the non-equilibrium and equilibrium data is the result of applying 
the normalizing conditions to individual profiles in the first case, but to 
the average of several profiles in the second. For unseparated flows at 
least, the wake hypothesis appears to be a useful concept, and a tentative 
determination of the wake function w ( y / 6 )  is therefore tabulated in table 1 
and plotted in figures 2 and 21. 

VERTICAL SCALE = S 
HORIZONTAL SCALE 5 

MEAN VELOCITY 

tz5 18.5 19.5 20.5 21.5 22.5 23.5 24.5 25.77 

Figure 22. The separating flow of Schubauer and Klebanoff (1950) (measured values 
of shearing stress have been reduced by 31 percent). 

The two-component profile, equation (7), can be made to represent 
quite well the data of Schubauer & Klebanoff, as shown in figure 22; 
of Newman, as shown in figure 23; of Kehl; of Clauser; of Ludwieg & 
Tillmann; of McCullough & Gault at 5" angle of attack, as shown in 
figure 24; and of Tillmann for reattaching flow, as shown in figure 25. 
The solid lines in these figures are computed from equation (7), using values 
for ul, u,, 6, and II which vary smoothly with x. Occasionally it has been 
found desirable to make slight revisions in the original values for the profile 
parameters obtained from consideration of the law of the wall alone. 

A few exceptions to the law of the wake can be found among the numerous 
profiles presented here. For example, it is impossible to find satisfactory 
values for the parameters ul, u,, 6, and IT in the general formula (7) such 
that the profile at the left in figure 21 can be represented within the apparent 
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VERTICAL SCALE 5 
HORIZONTAL SCALE = T 

Donald Coles 

MEAN VELOCITY 

B C 0 E F G  

Figure 23. The separating flow of Newman (1951). 

VERTICAL SCALE I 3 
HORIZONTAL SCALE I 

MEAN VELOCIT 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

Figure 24. The reattaching flow of McCullough and Gault (1949). 

VERTICAL SCALE lo 
HORIZONTAL SCALE I 

5286 
II 

Figure 25. The reattaching flow of Tillmann (1945). 
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experimental accuracy. This profile, however, was obtained about two 
boundary-layer thicknesses downstream of reattachment, in a region where 
the real accuracy of the profile measurements is unknown. 

Finally, it may be remarked that Wieghardt's experiments in figure 5 
indicate that there is a definite change in the shape as well as the amplitude 
of the wake component in flow at constant pressure when the free-stream 
turbulence level is increased. The term ' universal function ' applied to 
the law of the wake therefore implies that the external turbulence level 
is low, much as the same term applied to the law of the wall implies negligible 
surface roughness. 

IV. DISCUSSION 
A, The equations of mean motion 

In the past an important aim of 
phenomenological theories of turbulent shear flow has usually been to 
develop a priori some relationship connecting shearing stress and mean 
velocity, by analogy with the relationship 7 = pau/ay for laminar flow. 
It is now generally accepted that such a relationship probably does not 
exist in any practical sense. However, the same purpose is ultimately 
served by the equations of mean motion, which provide a valid relationship 
between shearing stress and mean velocity. In  this respect the present 
analytic representation (7) of the mean-velocity profile may be exploited 
immediately. 

The continuity equation may first be satisfied by introducing a stream 
function $(x ,y )  such that u = at,b/ay and v = - a $ / a x ;  $ is then constant 
on streamlines of the mean flow. But, if the departure of the profile in 
the sublayer from the logarithmic law of the wall is neglected, equation (7)  
requires that 

1. The turbulent shearing stress. 

A formula for the normal component of velocity may be obtained from 
v = - a$/ax, using equation (19) for $(x,  y ) ,  or directly from the continuity 
equation au/ax+av/ay = 0, using equation (7)  for u(x,y) .  In either case 
it is found that 

Jaw$ dw. (20) 
V y du, y u , w d n  1 d(IISu,) + -- 
U U, dx K u dx KU dx 
- =  

This expression is an exact consequence of equation (7) ,  in the sublayer 
as elsewhere. Its application in the calculation of the shearing-stress 
profile is most easily shown by putting - av/ay for au/ax in the boundary- 
layer momentum equation 

du, ' u  au 
T = ~ ~ - y p u , -  +p.J (u? 

dx 0 
thereby obtaining 

7 yu,du, vIuu2 
'i =I - - -  -- 
7, u3 dx lo 2 d ( : ) .  
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2. Flow at .constant pressure. For flow at constant pressure, i.e. for II 
and u1 constant, the expression (21) will be evaluated explicitly for the profile 
given by equation (7) .  Making the usual approximation in the sublayer, 
the result can be written in the form 

where w1 and w2 are auxiliary functions which depend on an argument 
5 = y/6 and a parameter II ; that is, 

where w(5) is the wake function. 
are tabulated together with w in table 1. 

putting y = 6 to obtain* 

The quantities wl(II, 5) and wz(II, 5 )  

Finally, the derivative du,/dx in equation (22) may be disposed of by 

K2 = - - S du ~ [ ( K ~ ) ' Q 1 - 2 ( K ~ ) n , + 2 n , ]  

Q2(II) = w z ( I I ,  1) = 1 + 1.600II +0.761112. 

u ,  dx 

with 
and 

distribution in a boundary layer with constant pressure such that 

Ql(rI) = w l p ,  1) = 1 + II 

Klebanoff ( 1954) has recently measured the turbulent shearing-stress 

S"U,/V = 9,700, 

The experimental mean-velocity profile for this flow has already been 
shown in figure 1. However, in order to make the present calculation 
independent of Klebanoff's measurements, it is convenient to estimate 
the parameter II from the data of Wieghardt in figure 4. Using either 
equation (7)  and the observed maximum excursion from the logarithmic 
law, or equation. (18) and the experimental values for ul/u, and S*ul/v, 
it is found that II is very nearly 0.55 for flow at constant pressure. Then, 
from equations (9) and (8), with S"ul/v = 9,700 and Il = 0.55, 

Furthermore, with 6" = 0*400in., 6 = 2.83 in. 
The profile u/u, computed as a function of yuJv = (6u7/u)(y/6) from 

equation (7) is plotted in figure 1. The excellent agreement with Klebanoff's 
* This expression, like equation (37) of a previous paper (Coles 1954), is a special 

form of the momentum-integral equation (ll), and may be used to compute a length 
Reynolds number. The present definition of the thickness 6, however, requires 
the numerical constants + ( 1 )  = 7-90, C, = 4.05, and Cz = 29.0 of the cited paper to 
be replaced (anticipating the value IT = 0.55) by c+~II/K c 7.85, QJK = 3.88, and 

6" = 0.400in. 

S U J V  = 2,500, ul/u, = 27.4, S* lS  = 0.142. 

2fi,/K2 = 26.4. 
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measurements is to be expected in view of the efforts made at the National 
Bureau of Standards to insure that the flow in question would be typical 
of the fully-developed boundary layer. 

The profile ~ / q  = ( T / T ~ ) ( ~ ~ : / U ? )  = -2u"/u2 computed from equation 
(22) is plotted against y/S in figure 26, together with measured data using 
the present estimate for 6 of 2.83 in. Finally, to establish the extent of the 
region of intermittent turbulence in terms of the coordinate y/S occurring 
in the law of the wake, figure 26 also shows Klebanoff's measurements of 
the intermittency factor y, defined as the fraction of the time that the flow 
is turbulent. The mean position of the turbulent boundary, i.e. the point 
y = &, is found to be at y/S = 0.825, with a standard deviation of 0.148 
about the mean. 

-2 

.003 

n v 
0.5 1.0 - 0 

6 

Figure 26. Shearing-stress profile in the flow of Klebanoff (1954). 

3. Plow approaching separation. Schubauer & Klebanoff (1950) and 
Newman (195 1) have recently carried out hot-wire measurements of turbulent 
shearing-stress in flows approaching separation. The representation of 
the mean-velocity field by the general profile equation (7) has already been 
illustrated in figures 22 and 23 for the flows in question.. The corresponding 
shearing stress profiles, computed with the aid of equations (20) and (21), 
are shown in the same figures together with the profiles determined 
experimentally. As noted in the figure, the values of reported by 
Schubauer & Klebanoff have been reduced by 3 1 yo in view of the excessively 
large values obtained for T, when T ( Y )  is extrapolated toy  = 0. It is likely 
that the hot-wire data are in fact too high, most probably as a result of over- 
compensation. 

Unfortunately, these calculations of shearing stress can be attempted 
only for regions in which the mean-velocity field is in reasonable agreement 
with the momentum-integral condition expressed by equation (1 1). 
Elsewhere in the flow it is found to be possible to satisfy only one of the two 
boundary conditions 7 = 0 at y = 6 or T = put at y = 0, u, being derived 
from a fit to the law of the wall. The alternative calculations are sh'own in 
figures 22 and 23 by the dashed lines. Because equation (21) is precisely 
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equivalent to equation (ll), the values obtained for T ,  on putting r = 0 
at y = S are obviously the same as the values implied by the slope of the 
function @(x) which is defined by equation (14) and is denoted by the open 
points in figures 10 and 11 for the data of Schubauer & Klebanoff and 
of Newman respectively. The discrepancies encountered in r , appear 
to be too large to be caused entirely by the neglect in equation (21) of the 
Reynolds normal stresses and the pressure variation ap/i3y, although this 
question is still open. 

Another explanation for the failure of the two-dimensional momentum- 
integral equation (1 1) has been suggested on experimental grounds by 
several writers. The displacement of fluid in a boundary layer is assumed 
to be described by the streamline slope v/u)  obtained by integrating the 
continuity equation &/ax + &jay = 0. This displacement will certainly 
be affected by lateral convergence or divergence of the general flow, although 
the presence of three-dimensional effects would not necessarily be revealed 
by a study of the mean-velocity profile u(y.) measured at various lateral 
stations. 

If r w  is known but the values taken for vju are even slightly in error, 
the right-hand side of equation (21) will not vanish at the outer edge of the 
boundary layer. Conversely, large errors in r w  may be encountered 
on putting T = 0 at y = 6. At one station in each of figures 22 and 23, the 
quantities 

are plotted separately in order to illustrate the extreme sensitivity of their 
sum Finally, as a tentative 
correction for three-dimensional flow the streamline slopes vju have been 
multiplied by suitable constant factors close to unity in order to satisfy 
both boundary conditions on T.  The corrected shearing stress profiles 
are shown by the solid lines in figures 22 and 23. 
B. Physical interpetation 

In this paper the term 'wake function' 
has consistently been used to denote the function w(y/S) in equation (7). 
The reason for this choice of terminology can be found in some measure- 
ments by Liepmann & Laufer (1947) of a plane half-wake or half-jet; 
that is, in the wedge-shaped region of turbulent mixing between a uniform 
flow and a fluid at rest. 

The dimensionless mean-velocity profiles for the fully developed 
half-wake were originally reported by Liepmann & Laufer to satisfy a 
similarity law corresponding to a linear growth of the shear flow. These 
same profiles, after a further translation and change of scale for the 
coordinates," are compared in figure 2 with the wake function w for flow 

* The present variable 5 = y/6 is related to the original variable uy/x in figure 13 
of Liepmann & Laufer's 'paper by the expression 5 = 0.505+0*331uy/x. When 
L - 0, uy/x = -1.52; and when 5 = 1 ,  uy/x = 1.50. Then uS/x = 3.02, and i t  
follows that, if u = 12, Six = 0.252 rads or 14.4". 

to small variations in v /u  or in du,/dx. 

1. Two-dimensional $ow. 



The law of the wake in the turbulent boundary layer 22 1 

in a boundary layer. The residual velocity near y/S = 0 in the figure is 
the normal component of velocity associated with fluid entrainment, and 
agrees in magnitude with the value v/ul = 0.03 implied at y/S = 0 by the 
equations of mean motion for the half-wake. 

Although the motion represented by the upper curve in figure 2 is 
bounded on the low-velocity side by fluid at rest, rather than by a solid wall, 
there can be little doubt that the similarity between the various experimental 
curves in the figure is more than accidental, and that substantially the same 
physical phenomenon is involved. The interpretation of the wake 
component in a boundary layer as a large-scale mixing process has already 
been mentioned in Part I in connection with figure 3. 

I t  goes without saying that if the streamwise mean-velocity distribution 
in a turbulent boundary layer can in fact be expressed as a linear combination 
of wall and wake components, as in equation (7), then so can the normal 
mean-velocity component ZI, the mean stream function #, and the displace- 
ment thickness a*, all of which are obtained from u(x, y )  by linear operations. 
This is not so, however, for the flow inclination v/u, the momentum thickness 
9, or the shearing stress T ; and it is most emphatically not so for the turbulent 
fluctuations, except in so far as the wake and wall components might be 
expected to contribute more strongly to the small and large wave number 
regions of the spectrum respectively. On the other hand, a foundation 
has been laid in the present paper for the comparison, at corresponding 
points in various free and bound shear layers, of measurements of‘inter- 
mittency factor as well as of spectra and intensity of various fluctuating 
quantities. 

Finally, in the event that the parameter IT is constant in a turbulent 
boundary layer, a’certain balance is implied between the constraints imposed 
by inertia and by viscosity, and between the large-scale and small-scale 
mixing processes. This balance is precisely measured in equation (9) 
by the magnitude of the parameter IT or alternatively of the combination 
6*u,/Su,. From the point of view adopted in these paragraphs, therefore, 
Clauser’s choice of the term ‘equilibrium flow’ to describe the situation 
when II is constant may well be regarded as inspired. 

It should be noted that Lees & Crocco (1952) have recently attempted 
a qualitative analysis of turbulent shear flows in which they visualize a 
continuous spectrum of mixing processes hhving both wake-like and 
boundary-layer-like properties. The concept of two flow components, 
one depending on friction and the other on the cumulative effect of pressure 
gradient, has also been independently advanced by Ross & Robertson 
(195 1) and by Rotta (1950), both of whom used a term linear in y to represent 
what is called here the wake function w(y/S). These authors did not give 
any interpretation for either of the mean-velocity functions, and were 
therefore able to recommend their formulation of the problem only as 
a useful engineering approach, although Rotta obtained relationships 
which anticipate the present work. As a matter of historical interest, it 
should also be noted that a much earlier attempt by Millikan (1938) to 
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examine the function denoted by h(x, y) in equation (4) was unsuccessful 
because the experimental data studied were not sufficiently precise. These 
efforts have certainly contributed, if not to the specific concept called the 
law of the wake, at least to the atmosphere in which this concept was evolved. 

The present interpretation of the wake and wall 
components in a turbulent boundary layer, as manifestations of the 
constraints provided by inertia and viscosity respectively, is not necessarily 
restricted to two-dimensional flows, provided the two flow components 
are viewed as vector rather than scalar functions of position. Specifically, 
suppose that the general profile equation (7) is rewritten in the form 

where 

2. Yawed $ow. 

q = 9f+9W, 

and 

q w =  " . w ( $ ) .  K 

In  these expressions, f (yq, /v)  and w(y/8) are to be identified with the 
scalar functions previously described for two-dimensional flow, and q,  
is defined as the magnitude of a friction velocity vector q ,  taken parallel 
to the surface shearing stress r ,, i.e. 

Furthermore, both q,  and Il are assumed to depend on two space coordinates, 
say x and z. Then, if qf and q, are not parallel vectors, the parameter 
Il(x,z) should presumably be interpreted as a linear operator having the 
properties of a square matrix, i.e. as a tensor. It also follows that the 
generalized vector friction law is 

W = Pq7 qT* 

qI=qTf  7 + y  ("9 2nqT*  
This notation is highly tentative, and may have to be revised after more 

data on yawed flows become available. In particular, the present definition 
for q,  is not perfectly consistent with the streamline hypothesis (Coles 1955) 
if r ,  is an arbitrary continuous function of two coordinates on the surface. 
However, the notation does allow the interpretation already proposed, 
that the flow near the surface where the wake component is small should 
have the same direction and sense as the surface shearing stress. Thus 
the concept of a constraint provided by friction is a vector concept. 

Given a mean-velocity profile in yawed flow, the vector nature of the 
wall and wake components can be tested in five steps. First, the direction 
of the mean flow near the surface, which is also by assumption the direction 
of the shearing-stress vector 7 ,  and of the wall component q,, is noted. 
Second, the component of mean velocity in this direction is plotted in 
coordinates (4. qJqF, yq7/v) appropriate to the law of the wall ; a fit to the 
function f then yields a value for 4,. Third, the thickness 6 is estimated 
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Figure 27. Vector resolution of the yawed flow of Kuethe, McKee, & Curry (1949). 



224 Donald Coles 

from this same plot, for example as twice the value of y for which the profile 
reaches half of its maximum excursion from the law of the wall. Fourth, 
the ' wall ' vector qf, = q,f(sq,/u) is computed and subtracted from the 
free-stream vector q, to obtain the 'wake ' vector q ,, = 2IIqJic. Finally, 
the profile is resolved in oblique coordinates determined by the direction 
of the wall and wake vectors. 

An examination of the experimental data of Gruschwitz (1935) in 
a curved channel suggests that serious errors were introduced in the mean- 
velocity measurements near the surface by the use of a periscope probe. 
In particular, the profiles in the straight portion of the channel differ from 
the concensus of data obtained by other investigators under similar 
conditions. Fortunately, the hot-wire measurements of Kuethe, McKee & 
Curry (1949) on a swept airfoil, although carried out at relatively small 
Reynolds number, involve large angles of yaw within the boundary layer 
and therefore provide a useful test for the concept of vector similarity. 
In  treating these data, incidentally, it has been assumed that the indication 
in some of the profiles of a sudden change in flow direction within the 
sublayer is fictitious. 

The airfoil of Kuethe, McKee & Curry was of elliptical planform, 
of 18 in. chord and 96.5 in. span, with the major axis swept back at an angle 
of 25". Four profiles obtained near the trailing edge of the airfoil at an angle 
of attack of 14" are plotted in figure 27 in terms of spanwise and chordwise 
components of mean velocity; in terms of streamwise and crossflow 
components ; and finally in terms of wall and wake components. 

The data in figure 27 can be fairly well represented by the characteristic 
wall and wake functions defined previously for unyawed flows, and it is 
difficult to say whether or not there is any systematic discrepancy. A more 
stimulating result, which may be coincidental or may illustrate an important 
intiinsic property of strongly wake-like yawed flows, is that the direction 
of the wake component is found in each case to be nearly the same as the 
direction of the gradient of the pressure field over the airfoil surface. That 
is, the final resolution is for practical purposes along the directions defined 
by the two vectors T, and -gradp, so that (gradp) x ( I I T ~ )  vanishes every- 
where. The inference that the constraint provided by inertia is also a 
vector constraint is potentially useful in investigating the nature of the 
tensor parameter II when more suitable data become available from 
experiments carried out at larger Reynolds numbers in flow on a larger scale. 
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