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DATA PARALLEL ALGORITHMS 

Parallel computers with tens of thousands of processors are typically 
programmed in a data parallel style, as opposed to the control parallel style 
used in multiprocessing. The success of data parallel algorithms-even on 
problems that at first glance seem inherently serial-suggests that this style 
of programming has much wider applicability than was previously thought. 

W. DANIEL HILLIS and GUY L. STEELE, JR. 

In this article we describe a series of algorithms ap- 
propriate for fine-grained parallel computers with 
general communications. We call these algorithms 
data parallel algorithms because their parallelism 
comes from simultaneous operations across large 
sets of data, rather than from multiple threads of 
control. The intent is not so much to present new 
algorithms (most have been described earlier in 
other contexts), but rather to demonstrate a style of 
programming that is appropriate for a machine with 
tens of thousands or even millions of processors. The 
algorithms described all use O(N) processors to solve 
problems of size N, typically in O(log N) time. Some 
of the examples solve problems that at first sight 
seem inherently serial, such as parsing strings and 
finding the end of a linked list. In many cases, we 
include actual run times measured on the 65,536- 
processor Connection Machine*’ system. A key fea- 
ture of this hardware is a general-purpose communi- 
cations network connecting the processors that frees 
the programmer from detailed concerns of the map- 
ping between data and hardware. 

MODEL OF THE MACHINE 
Our model of a fine-grained parallel machine with 
general-purpose communication is based on the 

Connection Machine is a registered trademark of Thinking Machines 
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Connection Machine system [14]. Current Connec- 
tion Machine systems have either 16,384 or 65,536 

processors, each with 4,096 bits of memory. There is 
nothing special about these particular numbers, 
other than being powers of two, but they are indica- 
tive of the scale of the machine. (The model is more 
sensible with thousands rather than tens of proces- 
sors.) The system has two parts: a front-end com- 
puter of the usual von Neumann style, and an array 
of Connection Machine processors. Each processor in 
the array has a small amount of local memory, and 
to the front end, the processor array looks like a 
memory. A typical front-end processor is a VAX@ or 
a Symbolics 36OOe. 

The processor array is connected to the memory 
bus of the front end so that the local processor mem- 
ories can be random accessed directly by the front 
end, one word at a time, just as if it were any other 
memory. This section of the memory on the front 
end, however, is “smart” in the sense that the front 
end can issue special commands that cause many 
parts of the memory to be operated upon simultane- 
ously, or cause data to move around within the 
memory. The processor array therefore effectively 
extends the instruction set of the front-end processor 
to include instructions that operate on large 

VAX is a trademark of Digital Equipment Corporation. 

Symbolics 3600 is a trademark of Symbol&, Inc. 
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amounts of data simultaneously. In this way, the 
processor array serves a function similar to a 
floating-point accelerator unit, except that it accel- 
erates general parallel computation and not just 
floating-point arithmetic. 

The control structure of a program running on a 
Connection Machine system is executed by the front 
end in the usual way. An important practical bene- 
fit of this approach is that the program is developed 
and executed within the already-familiar program- 
ming environment of the front end. The program 
can perform computations in the usual serial way 
on the front end and also issue commands to the 
processor array. 

The processor array executes commands in SIMD 
fashion. There is a single instruction stream coming 
from the front end; these instructions act on multi- 
ple data items, on the order of one (or a few) per 
processor. Most instructions are executed condition- 
ally: That is, each processor has state bits that deter- 
mine which instructions the processor will execute. 
A processor whose state bit is set is said to be 
selected. The state bit is called the confext flag be- 
cause the set of selected processors is often referred 
to as the context within which instructions are exe- 
cuted. For example, the front end might arrange for 
all odd-numbered processors to have their context 
flags set, and even-numbered processors to have 
their context flags cleared; issuing an ADD instruc- 
tion would then cause each of the selected proces- 
sors (the odd-numbered ones) to add one word of 
local memory into another word. The deselected 
(even-numbered) processors would do nothing, and 
their local memories would remain unchanged. 

Contexts may be saved in memory and later re- 
stored, with each processor saving or restoring its 
own bit in parallel with the others. There are a few 
instructions that are unconditional: They are exe- 
cuted by every processor regardless of the value of 
the context flag. Such instructions are required for 
saving and restoring contexts. 

A context, or a set of values for all the context 
flags, represents a set: namely, a set of selected pro- 
cessors. Forming the intersection, union, or comple- 
ment of such sets is simple and fast; it requires only 
a one-bit logical AND, OR, or NOT operation issued 
to the processors. Locally viewed, each processor 
performs just one logical operation on one or two 
single-bit operands: viewed globally, an operation on 
sets is performed. (On the current Connection Ma- 
chine hardware, such an operation takes about a 
microsecond.) 

The processors can individually perform all the 
usual operations on logical, integer, and floating- 

point operands: add, subtract, multiply, divide, com- 
pare, max, min, not, and, or, exclusive or, shift, 
square root, and so on. In addition, single values 
computed in the front end can be broadcast from the 
front end to all processors at once (essentially by 
including them as immediate data in the instruction 
stream). 

A number of other computing systems have been 
constructed with the characteristics we have already 
described, namely, a large number of parallel proc- 
essors, each of which has local memory and the abil- 
ity to execute instructions of more or less the usual 
sort, as broadcast from a master controller. These 
include ILLIAC IV [8], the Goodyear MPP [3], the 
Non-Von [23]; and the ICL DAP [12]; among others 
[13]. There are two additional characteristics of the 
Connection Machine programming model, however, 
which distinguish it from these other systems: gen- 
eral, pointer-based communication, and virtual proces- 
SOYS. 

Previous parallel computing systems of this fine- 
grained SIMD style have restricted interprocessor 
communication to certain patterns wired into the 
hardware; typically this pattern is a two-dimensional 
rectangular grid, or a tree. The Connection Machine 
model allows any processor to communicate directly 
with any other processor in unit time, while other 
processors also communicate concurrently. Commu- 
nication is implemented via a SEND instruction. 

Within each processor, the SEND instruction 
takes two operands: One addresses-within the 
processor-the field that contains the data to be 
sent; the other addresses a processor pointer (i.e., the 
number of the processor to which the datum is to be 
sent and the destination field within that processor, 
into which the data will be placed). The communi- 
cations system is very much like a postal system, 
where you can send a message to anyone else di- 
rectly, provided you know the address, and where 
many letters can be routed at the same time. The 
SEND instruction can also be viewed as a parallel 
“store indirect” instruction that allows each proces- 
sor to store anywhere in the entire memory, not just 
in its own local memory. 

The SEND instruction can also take one additional 
operand that specifies what happens if two or more 
messages are sent to the same destination. The op- 
tions are to deliver to the destination the sum, maxi- 
mum, minimum, bitwise AND, or bitwise OR of the 
messages; to deliver one message and discard all 
others; or to produce an error. 

From a global point of view, the SEND instruction 
performs something like an arbitrary permutation 
on an array of items, although it is actually more 
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general than a permutation because more than one 
item may be sent to the same destination. The pat- 
tern is not wired into the hardware, but is encoded 
as an array of pointers, and is completely under soft- 
ware control; the same encoding, once constructed, 
can be used over and over again to transfer data 
repeatedly in the same pattern. To implement a 
regular communication pattern, such as a two- 
dimensional grid, the pointers are typically com- 
puted when needed rather than stored. 

The Connection Machine programming model is 
carefully abstracrted from the details of the hardware 
that supports it, and, in particular, the number and 
size of its hardware processors. Programs are de- 
scribed in terms of virtual processors. In actual im- 
plementations, hardware processors are multiplexed 
as necessary to support this abstraction; indeed, the 
abstraction is supported at a very low level by a 
microcoded controller interposed between the front 
end and the processor array, so that the front end 
always deals in virtual processors. 

The benefits of the virtual processor abstraction 
are twofold. The first is that the same program can 
be run unchanged on different sizes of the Connec- 
tion Machine system, notwithstanding the linear 
trade-off between the number of hardware proces- 
sors and execution time. For example, a program 
that requires 216 virtual processors can run at top 
speed on a system with the same number of hard- 
ware processors, but it can also be executed on one- 
fourth that amount of hardware (214 processors) at 
one-fourth the speed, provided it can fit into one- 
fourth the amount of memory as well. 

The second benefit is that for many purposes the 
number of processors may be regarded as expanda- 
ble rather than fixed, so that it becomes natural to 
write programs using the Lisp, Pascal, or C style of 
storage allocation rather than the Fortran style. By 
this we mean that there is a procedure one can call 
to allocate a “fresh” processor as if from thin air 
while the program is running. In Fortran, all storage 
is preallocated before program execution begins, 
whereas Lisp has the cons operation to allocate a 
new list cell (as well as other operations for con- 
structing other objects); Pascal has the new opera- 
tion; and C has the malloc function. In each case, a 
new object is allocated and a pointer to this new 
object is returned. Of course, in the underlying im- 
plementation, the address space (physical or virtual) 
is actually a fixed resource pool from which all such 
requests are satisfied, but the point is that the lan- 
guage supports the abstraction of newly created stor- 
age. In the Connection Machine model, one may 
similarly allocate fresh storage using the operation 

processor-cons; the difference is that the newly allo- 
cated storage comes with its own processor attached. 

In the ensuing discussion, we shall assume that 
the size and number of processors are sufficient to 
allocate one processor for each data element in the 
problem being solved. This allows us to adopt a 
model of the machine in which the following are 
counted as unit-time operations: 

l any conventional word-at-a-time operation; 

l any such operation applied to all the data ele- 
ments concurrently, or to some selected subset; 

l any communications step that involves the broad- 
cast of information to all data elements; 

l any communications step that involves no more 
than a single message transmission from each data 
element. 

For purposes of analysis, it is also often useful to 
treat processor-cons as a unit-time operation, 
although it may be implemented in terms of more 
primitive operations, as described in more detail on 
page 1176. 

EXAMPLES OF PARALLEL PROGRAMMING 
To show some of the possibilities of data-parallel 
programming, we present here several algorithms 
currently in use on the Connection Machine system. 
Most of these algorithms are not new: Some of the 
ideas represented here appear in the languages APL 
[ll, 151 and FP [l], while others are based on algo- 
rithms designed for other parallel machines, in par- 
ticular, the Ultracomputer [z], and still others have 
been developed by our coworkers on the Connection 
Machine [4, 5, 7, 9, 10, 191. 

Beginning with some very simple examples to 
familiarize the reader with the model and the nota- 
tion, we then proceed to more elaborate and less 
obvious examples. 

Sum of an Array of Numbers 
The sum of n numbers can be computed in time 
O(log n) by organizing the addends at the leaves of a 
binary tree and performing the sums at each level of 
the tree in parallel. There are several ways of orga- 
nizing an array into a binary tree. Figure 1 illus- 
trates one such method on an array of 16 elements 
named x0 through x15. In this algorithm, for purposes 
of simplicity, the number of elements to be summed 
is assumed to be an integral power of two. There are 
as many processors as elements, and the statement 
for all k in parallel do s od causes all processors to 
execute the same statement s in synchrony, but the 
variable k has a different value for each processor, 
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FIGURE 1. Computing the Sum of an Array of 16 Elements 

namely, the index of that processor within the array. 

for j := I to log,n do 
for all k in parallel do 

if ((k + 1) mod 2j) = 0 then 
x[k] := x[k - 2+] + x[k] 

fi 
od 

od 

At the end of the process, x,,-1 contains the sum of 
the n elements. On the Connection Machine, an op- 
timized version of this algorithm for 65,536 elements 
takes about 200 microseconds. 

All Partial Sums of an Array 
A frequently useful operation is computing all par- 
tial sums of an array of numbers. In APL, this com- 
putation is called a plus-scan; in other contexts, it is 
called the “sum-prefix” operation because it com- 
putes sums over all prefixes of the array. For exam- 
ple, if you put into an array your initial checkbook 
balance, followed by the amounts of the checks you 
have written as negative numbers and deposits as 
positive numbers, then computing the partial sums 
produces all the intermediate and final balances. 

It might seem that computing such partial sums is 
an inherently serial process, because one must add 
up the first k elements before adding in element 

k + 1. Indeed, with only one processor, one might as 
well do it that way, but with many processors one 
can do better, essentially because in log n time with 
n processors one can do n log n individual additions; 
serialization is avoided by performing logically re- 
dundant additions. 

Looking again at the simple summation algorithm 
given on the facing page, we see that most of the 
processors are idle most of the time: During iteration 
j, only n/21 processors are active, and, indeed, half of 
the processors are never used. However, by putting 
the idle processors to good use by allowing more 
processors to operate, the summation algorithm can 
compute all partial sums of the array in the same 
amount of time it took to compute the single sum. In 
defining 1: to mean C!=j x,, note that Cf + CF+i = 
Cr. The partial-sums algorithm replaces each xk by 
xi: that is, the sum of all elements preceding and 
including &. In Figure 2 (on the following page), this 
process is illustrated for an array of 16 elements. 

for j := I to log,n do 
for all k in parallel do 

if k 2 2i then 
x[k] := x[k - 2’-‘1 + x[k] 

fi 
od 

od 
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FIGURE 2. Computing Partial Sums of an Array of 16 Elements 

The only difference between this algorithm and 
the earlier one is the test in the if statement in the 
partial-sums algorithm that determines whether 
a processor will perform the assignment. This 
algorithm keeps more processors active: Dur- 
ing step j, n - 2’-’ processors are in use; after step 
j, element number k has become Ci where a = 
max(O, k - 2j + 1). 

This technique can be generalized from summa- 
tion to any associ.ative combining operation. Some 
obvious choices are product, maximum, minimum, 
and logical AND, OR, and EXCLUSIVE OR. Some 
programming languages provide such reduction and 
parallel-prefix operations on arrays as primitives. 
The current proposal for Fortran 8x, for example, 
provides reduction operations called SUM, 
PRODUCT, MAXVAL, MINVAL, ANY, and ALL. 
The corresponding reduction functions in APL are 
+/, x/, [ /, 1 /, V/. and A/; APL also provides 
other reduction operations and all the corresponding 
scan (prefix) operations. The combining functions for 
all these operations happen to be commutative as 
well, but the algorithm does not depend on commu- 
tativity. This was no accident; we took care to write 

x[k] := x[k - 2+] + x[k] 

instead of the more usual 

x[k] := x[k] + x[k - 2j-‘1 

precisely in order to preserve the correctness of the 
algorithm when + is replaced by an associative but 
noncommutative operator. Under “Parsing a Reg- 
ular Language” (facing page), we discuss the use of 
parallel-prefix computations with a noncommutative 
combining function for a nonnumerical application, 
specifically, the division of a character string into 
tokens. Another associative noncommutative opera- 
tor of particular practical importance is matrix mul- 
tiplication. We have found this technique useful in 
multiplying long chains of matrices. 

Counting and Enumerating Active Processors 
After some subset of the processors has been 
selected according to some condition (i.e., by using 
the result of a test to set the context flags), two 
operations are frequently useful: determining how 
many processors are active, and assigning a distinct 
integer to each processor. We call the first operation 
count and the second enumerate: Both are easily 
implemented in terms of summation and sum-prefix. 
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To count the active processors, we have every 
processor unconditionally examine its context flag 
and compute the integer 1 if the flag is set and 0 if it 
is clear. (Remember that an unconditional operation 
is performed by every processor regardless of 
whether or not its context flag is set.) We then per- 
form an unconditional summation of these integer 
values. 

To enumerate the active processors, we have 
every processor unconditionally compute a 1 or 0 in 
the same manner, but then we perform an uncondi- 
tional sum-prefix calculation with the result that 
every processor receives a count of the number of 
active processors that precede it (including itself) in 
the ordering. We then revert to conditional opera- 
tion; in effect, the selected processors have received 
distinct integers, and values computed for the dese- 
lected processors are henceforth simply ignored. 
Finally, it is technically convenient to have every 
selected processor subtract one from its value, so 
that the n selected processors will receive values 
from 0 to n - 1 rather than from 1 to n. 

These operations each take about 200 microsec- 
onds on a Connection Machine of 65,536 elements. 
Because these operations are so fast, programming 
models of the Connection Machine have been sug- 
gested that treat counting and enumeration as unit- 
time operations [6, 71. 

Radix Sort 
Sorting is a communications-intensive operation. In 
parallel computers with fixed patterns of communi- 
cation, the pattern of physical connections usually 
suggests the use of a particular sorting algorithm. For 
example, Batcher’s bitonic sort [2] fits nicely on 
processors connected in a perfect shuffle pattern, 
bubble sorts [16] work well on one-dimensionally 
connected processing, and so on. In the Connection 
Machine model, the ability to access data in parallel 
in any pattern often eliminates the need to sort data. 
When it is necessary to sort, however, the generality 
of communications provides an embarrassment of 
riches. 

Upon implementing several sorting algorithms on 
the Connection Machine and comparing them for 
speed, we found that, for the current hardware 
implementation, Batcher’s method has good perfor- 
mance for large sort keys, whereas for small sort keys 
a version of radix sort is usually faster. (The break- 
even point is for keys about 25 to 32 bits in length. 
With either algorithm, sorting 65, 536 32-bit num- 
bers on the Connection Machine takes about 30 
milliseconds.) 

To illustrate the use of count and enumerate, we 
present here the radix sort algorithm. In the inter- 
est of simplicity, we will assume that all processors 
(n) are active, that sort keys are unsigned integers, 
and that maxint is the value of the largest represent- 
able key value. 

for j := I to I + tlog, maxintJ do 
for all k in parallel do 

if (x[k] mod 2’) c 2j-’ then 
comment The bit with weight 2j-’ is zero. 
tnemmoc 
y [k] := enumerate 
c := count 

fi 
if (x[k] mod 2’) 2 2j-’ then 

comment The bit with weight 2j-’ is one. 
tnemmoc 
y [k] := enumerate + c 

fi 

X[Y PI1 := +I 
od 

od 

At this point, an explanation of a fine point concern- 
ing the intended semantics of our algorithmic nota- 
tion is in order. An if statement that is executed for 
all processors is always assumed to execute its then 
part, even if no processors are selected, because 
some front-end computations (such as count) might 
be included. When the then part is executed, the 
active processors are those previously active proces- 
sors that computed true for the condition. 

The radix sort requires a logarithmic number of 
passes, where each pass essentially examines one bit 
of each key. All keys that have a 0 in that bit are 
counted (call the count c) and then enumerated in 
order to assign them distinct integers yk ranging from 
0 to c - 1. All keys that have a 1 in that bit are then 
enumerated, and c is added to the result, thereby 
assigning these keys distinct integers yk ranging from 
c to n - I. The values yk are then used to permute 
the keys so that all keys with a 0 bit precede all keys 
with a I bit. (This is the step that takes particular 
advantage of general communication.) This permuta- 
tion is stable: The order of any two keys that both 
have 0 bits or both 1 bits is preserved. This stability 
property is important because the keys are sorted by 
least significant bit first and most significant bit last. 

Parsing a Regular Language 
To illustrate the use of a parallel-prefix computation 
in a nonnumerical application, consider the problem 
of parsing a regular language. For a concrete practi- 
cal instance, let us consider the problem of breaking 
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up a long string of characters :into tokens, which is 
usually the first thing a compiler does when process- 
ing a program. A string of characters such as 

if x <=n then print (“>c = “) x) ; 

must be broken up into the following tokens, with 
redundant white space eliminated: 

This process is sometimes called Zexing a string. 
Any regular language of this type can be parsed by 

a finite-state automaton that begins in a certain state 
and makes a transition from one state to another 
(possibly the same one) as each character is read. 
Such an automat.on can be represented as a two- 
dimensional array that maps the old state and the 
character read to the new state. Some of the states 
correspond to the start of a token; if the automaton 
is in one of those states just after reading a charac- 
ter, then that character is the first character of a 
token. Some characters may not be part of any to- 
ken; White-space characters, for example, are typi- 
cally not part of a token unless they occur within a 
string; such delimiting characters may also be iden- 
tified by the automaton state just after the character 
is read. To divide a string up into tokens, then, 
means merely determining the state of the automa- 
ton after each character has been processed. 

Table I shows the automaton array for a simple 
language in which a token may be one of three 
things: a sequence of alphabetic characters, a string 
surrounded by double quotes (where an embedded 
double quote is represented by two consecutive dou- 
ble quotes), or any of +, -, *, =, C, >, <=, and >=. 
Spaces and newlines delimit tokens, but are not part 
of any token except quoted strings. The automaton 
has nine states: N is the initial state; A is the start of 
an alphabetic token; Z is the continuation of an al- 
phabetic token; 1: is a single-special-character token; 
< is a < or > character; = is an = that follows a < or 
> character (an = that does not follow < or > will 
produce state *); Q is the double quote that starts a 
string; S is a character within a string; and E is the 
double quote that ends a string, or the first of two 
that indicate an embedded double quote. The states 
A, *, <, and Q indicate that the character just read is 
the first character of a token. 

Although, like the computation of partial sums, 
this may appear at first glance to be an inherently 
serial process, it too can be put into the form of a 
parallel-prefix computation. Rather than regarding 

the lexing automaton as a monolithic process, let us 
regard the individual characters of the string as 
unary functions that map an automaton state onto 
another state. By indicating the application of the 
character Y to state N as NY, we may then write 
NY = A. By extension, it is also possible to regard a 
string as a function that maps a state p to another 
state 4; 4 is the state you end up in if you start the 
automaton in state p and then let the automaton 
read the entire string one character at a time. The 
result of applying the string Y “+ to the state Z may 
be written as ZY”+ = ((ZY)“)+ = (Z”)+ = Q+ = S. It 
is not too hard to see that the function correspond- 
ing to a string is simply the composition of the func- 
tions for the individual characters. 

A function from a state to a state can be repre- 
sented as a one-dimensional array indexed by states 
whose elements are states. The columns of the array 
in Table I are in fact exactly such representations for 
the functions for individual characters. Composing 
the columns for two characters or strings to produce 
a new column for the concatenation of the strings is 
fairly straightforward: You simply replace every 
entry of one column with the result of using that 
entry to index into the other column. 

Since this composition operation is associative, we 
may compute the automaton state after every char- 
acter in a string as follows: 

Replace every character in the string with the 
array representation of its state-to-state function. 
Perform a parallel-prefix operation. The combin- 
ing function is the composition of arrays as 
described above. The net effect is that, after this 
step, every character c of the original string has 
been replaced by an array representing the state- 
to-state function for that prefix of the original 
string that ends at (and includes) c. 
Use the initial automaton state (N in our exam- 
ple) to index into all these arrays. Now every 
character has been replaced by the state the 
automaton would have after that character. 

If we implement this algorithm on a Connection 
Machine system and allot one processor per charac- 
ter, the first and third steps will take constant time, 
and the second step will take time logarithmic in the 
length of the string. Naturally, this algorithm per- 
forms much more computation per character than 
the straightforward serial algorithm using the two- 
dimensional array, but, for sufficiently large 
amounts of text, the parallel algorithm will be faster 
because its time complexity is logarithmic instead of 
linear. An implementation of this algorithm in Con- 
nection Machine Lisp can be found in [24]. 

1176 Communications of the ACM December 1986 Volume 29 Number 12 



PARALLEL PROCESSING OF POINTERS 

Processor-cons 
To illustrate pointer manipulation algorithms, we 
will consider the implementation of the processor- 
cons primitive, which allows a set of processors to 
establish pointers to a set of new processors allo- 
cated from free storage. In a serial computer, the 
equivalent problem is usually solved by keeping the 
free storage in an ordered list and allocating new 
storage from the beginning of the list. In the Connec- 
tion Machine, this would not suffice since we wish 
to allocate many elements concurrently. Instead, the 
processor-cons primitive is implemented in terms of 
enumerate by using a rendezvous technique: Two 
sets of m processors are brought into one-to-one 
communication by using the processors numbered 0 

through m - 1 as rendezvous points. 
Assuming that every processor has a Boolean vari- 

able called free, freek becomes true if processor k is 
available for allocation and false otherwise. Every 
selected processor is to receive, in a variable called 
new-processor, the number of a distinct free proces- 
sor. Free processors that are so allocated have their 
free bits reset to false in the process. If there are 
fewer free processors than selected processors, then 
as many requests are satisfied as possible, and some 
selected processors will have their new-processor 
variables set to null instead of the number of a free 
processor, as shown below. 

for all k in parallel do 
required := count 
unconditionally 

if free [k] then 
available := count 
free-processor[k] := enumerate 
if free-processor[k] < required then 

free[k] := false 
fi 
rendezvous Ifree-processor[k]] := k 

requestor[k] := enumerate 
fi 

yllanoitidnocnu 
if requestor[k] < available then 

new-processor := rerzdezvous[requestor[k]] 
else 

new-processor := null 
fi 

od 

In this way, the total number of processors is man- 
aged as a finite resource, but with an interface that 
presents the illusion of creating new processors on 
demand. (Of course, we have not indicated how 
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TABLE I. A Finite-State Automaton for Recognizing Tokens 

Old Character Read 
State 

New 
. A B Y Z + - * < > = ” Space line 

N AA 
A 22 
2 zz 

A A 
:: AA 
= AA 

Q SS 
s ss 
E EE 

AA* * *<<*Q N N 
zz* * *<<*Q N N 
zz* * *<<*Q N N 
AA* * *<<:Q N N 
AA* * *<<=Q N N 
AA* * *<<*Q N N 
SSSSSSSSE S S 
SSSSSSSSE S S 
EE*t*<<tS N N 

processors are returned to the pool of free proces- 
sors. Some technique such as reference counting or 
garbage collection must also be designed and coded.) 
Other algorithms for processor-cons are described in 
p-4 101. 

Parallel Combinator Reduction 
A topic of much current interest in the area of func- 
tional programming is parallel combinator reduction 
[25]. It is also particularly interesting in this context 
because it shows how data parallel algorithms can 
be used to simulate control parallelism, or, equiva- 
lently, how SIMD machines with general communi- 
cation can simulate MIMD machines. 

Combinators are a way of encoding an applicative 
language. Their appeal lies in the fact that a program 
can be executed simply by performing successive 
local transformations on a tree structure, moreover, 
it is possible to perform many independent transfor- 
mations simultaneously in the same tree. A combi- 
nator tree is made up of pairs, where each of the 
left and right components of a pair may point to 
another pair or else be an atom, the name of a com- 
binator. Standard names for combinators include S, 
K, I, B, and C. Figure 3 (next page) shows one possi- 
ble set of four transformations that suffices for pro- 
gram interpretation. When a subtree is transformed, 
the root pair of the subtree is used as the root pair of 
the result (by altering its components), but it is not 
permissible to alter any of the other pairs involved; 
therefore, the transformation involving the S combi- 
nator requires the allocation of fresh pairs. For our 
purposes, we ignore the semantics of the combina- 
tors and simply observe that such graph transforma- 
tions can easily be carried out in parallel by a Con- 
nection Machine system by letting each processor 
contain one pair, and using processor-cons to allo- 
cate new pair-processors as needed. 
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while want OY need to reduce some more do 
for all k in parallel do 

lf := left [k] 
if pair(lf) th’en 

if left[lf] == ‘K’ then 
leff[k] ::= ‘I’ 

fi 
if left[If] == ‘I’ then 

left[k] :I= right[lf] 
fi 
if pair(left[lf]) and Zeft[left[lf]] = ‘S’ then 

p := processor-cons 
q := pracessor-cons 
if p # ml1 and q # null then 

left[p] := right[Zeft[Zf]] 
right[ p] := right[Zf] 
left[qII := right[left[lf]] 
right [q] := right[k] 
Zeft[k] := p 
right[k] := q 

fi 
fi 

fi 
rt := right[k] 
if pair(rt) and left[rt] = ‘I’ then 

right[k] := right[rt] 
fi 

od 
possibly perform garbage collection 

od 

It is easy to write such parallel code as a Connec- 
tion Machine program. However, there are some dif- 
ficult resource-management issues that have been 
glossed over, such as when a garbage collection 
should occur; whether, at any given time, one 
should prefer to reduce S combinators or K combi- 
nators; and, given that S combinators are to be 
reduced, which ones should be given preference. 
(The issues are that there may be more of one kind 
of combinator than the other at any instant. One 
idea is to process whichever kind is preponderant, 
but S combinators consume pairs and K combinators 
may release pairs, so the best processing strategy 
may need to take the number of free processors 
available for allocation into account. Furthermore, if 
there are not enough free processors to satisfy all 
outstanding S combinators at once, then the compu- 
tation may diverge-even if normal-order serial re- 
duction would converge-if preference is consist- 
ently given to the wrong ones.) 

Finding the End of a Linked List 
When we first began to work with pointer structures 
in the Connection Machine model, we believed that 
balanced trees would be important because informa- 
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tion can be propagated from the root of a tree to its 
leaves-or from the leaves to the root-by parallel 
methods that take time logarithmic in the number of 
leaves. This was correct. However, our intuition also 
told us that linear linked lists would be useless. We 
could understand how to process an array in loga- 
rithmic time, because one can use address arith- 
metic to compute the number of any processor and 
then communicate with it directly, but it seemed to 
us that a linked list must be processed serially 
because in general one cannot compute the address 
of the ninth processor in a list without following all 
eight of the intervening pointers. 

As is so often true in computer science, intuition 
was misleading: Essentially, we overlooked the 
power of having many processors working on the 
problem at once. It is true that one must follow all 
eight pointers, but by using many processors one can 
still achieve this in time logarithmic in the number 
of pointers to be traversed. Although we found this 
algorithm surprising, it had been discovered in other 
contexts several times before (e.g., see chapter 9 of 
POD 

As a simple example, consider finding the last cell 
of a linearly linked list. Imagine each cell to have a 
next pointer that points to the next cell in the list, 

Y 

EII!!? K x 

Y 

d!? 
I x 

FIGURE 3. Patterns of Combinator Reduction 
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1 

FIGURE 4. Finding the End of a Serially Linked List 

while the last cell has the special value null in its 
next component. To accommodate other information 
as well, we will assume that in each cell there is 
another pointer component called chum that may be 
used for temporary purposes. 

The basic idea is as follows: Each processor sets its 
chum component equal to a copy of its next compo- 
nent, so chum points to the next cell in the list. Each 
processor then repeatedly replaces its chum by its 
chum‘s chum. However, if its chum is null, then it 
remains null.) Initially, the chum of a processor is the 
next cell in the list; after the first step, its chum is 
the second cell following; after the second step, its 
chum is the fourth cell following; after the third step, 
its chum is the eighth cell following; and so on. 

To ensure that the first cell of a list finds the last 
cell of a list, we carry out this procedure with the 
modification that a processor does not change its 

chum if its chum’s chum is null, as shown below. The 
process is illustrated graphically in Figure 4. 

for all k in parallel do 
chum[k] := next [k] 
while chum [k] # null and chum [chum [k]] # null do 

chum [k] := chum [chum[k]] 
od 

od 

The meaning of the while loop is that at each 
iteration a processor becomes deselected if it com- 
putes false for the test expression; the loop termi- 
nates when all processors have become deselected 
(whereupon the original context, as of the beginning 
of the loop, is restored). When this process termi- 
nates, every cell of the list except the last will have 
the last cell as its chum. If there are many lists in the 
machine, they can all be processed simultaneously, 
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and the total prlocessing time will be proportional to 
the logarithm of the length of the longest such list. 

All Partial Sums of a Linked List 
The partial sums of a linked list may be computed 
by the same technique 

for all k in parallel do 
chum [k] := ne.xt [k] 
while chum[k] # null do 

value[chum~~k]] := vaZue[k] + value[chum[k]] 
chum [k] := chum [chum [k] ] 

od 
od 

as illustrated in Figure 5. Comparing Figure 5 to 
Figure 2 (computing partial sums), we see that the 

same patterns of pointers among elements are con- 
structed on the fly by using address arithmetic in 
the case of an array and by following pointer chains 
in the case of a linked list. An advantage of the 
linked-list representation is that it can simultane- 
ously process many linked lists of different lengths 
without any change to the code. 

Matching Up Elements of Two Linked Lists 
An even more exotic effect is obtained by the fol- 
lowing algorithm, which matches up corresponding 
elements in two linked lists. If we will call corre- 
sponding elements of a list “friends”, this algorithm 
assigns to each list cell a pointer to its friend in the 
other list; of course, the result is obtained in loga- 
rithmic time. 

X0 Xl x2 x3 x4 XS X6 X? 

.a---) cj a-+ c-+ 4-j 0-e a-j . 

. . . . . . . . 
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FIGURE 5. Computing Prefix Sums of a Serially Linked List 
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for all k in parallel do 
friend[k] := null 

od 
friend[listZ] := list2 
friend[list2] := list1 
for all k in parallel 

chum [k] := next [k] 
while chum [k] # null do 

if friend[k] # null then 
friend[chum[k]] := chum [friend[k]] 

chum [k] := chum [ckum[k]] 
fi 

od 
od 

The first part of the above algorithm is initializa- 
tion: The component named friend is initialized to 
null in every cell; then the first cells of the two lists 
are introduced, so that they become friends. The sec- 
ond part plays the familiar logarithmic chums game, 
but at every iteration, a cell that has both a chum 
and a friend will cause its friend’s chum to become its 
chum’s friend. Believe it or not, when the dust has 
finally settled, the desired result does appear. 

This algorithm has three additional interesting 
properties: First, it is possible to match up two lists 
of unequal length; the algorithm simply causes each 
extra cell at the end of the longer list to have no 
friend (that is, a null friend) (see Figure 6). Second, if, 
in the initialization, one makes the first cell of list2 
the friend of the first cell of listl, but not vice versa, 
then at the end all the cells of listl will have 
pointers to their friends, but the cells of list2 are 
unaffected (their friend components remain null). 
Third, like the other linked-list algorithms, this one 
can process many lists (or pairs of lists) simultane- 
ously. 

With this primitive, one can efficiently perform 
such operations as componentwise addition of two 
vectors represented as linked lists. 

Region Labeling 
How are linked-list operations used in practical 
applications? One such application is region label- 
ing, where, given a two-dimensional image (a grid of 
pixel values), one must identify and uniquely label 
all regions. A region is a maximal set of pixels that 
are connected and all have the same value. Each 
region in the image must be assigned a different 
label, and this label should be distributed to every 
pixel in the region. 

An obvious approach is to let each processor of a 
parallel computer hold one pixel. On a parallel com- 
puter with N processors communicating in a fixed 
two-dimensional pattern, so that each processor can 

nnnnnnnn 

FIGURE 6. Matching Up Components of Two Lists 

communicate directly only with its four neighbors, 
this problem can be solved simply for an N-pixel 
image in the following manner: Since every proces- 
sor has an address and knows its own address, a 
region will be labeled with the largest address of any 
processor in that region. To begin with, let each 
processor have a variable called largest, initialized 
to its own address, and then repeat the following 
step until there is no overall change of state. Each 
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processor trades largest values with all neighbors 
that have the same pixel value, and replaces its own 
largest value with the maximum of its previous 
value and any values received from neighbors. The 
address of the largest processor in a region therefore 
spreads out to fill the region. 

Although the idea is simple, the algorithm takes 
time O(fi) in simple cases, and time O(N) in the 
worst case (for images that contain a long “snake” 
that fills the picture). Lim [19] has devised algo- 
rithms for the Connection Machine that use linked- 
list techniques to solve the problem in time O(log N). 
In one of these algorithms, the basic idea is that 
every pixel can determine by communication with 
its two-dimensional neighbors whether it is on the 
boundary of its region, and, if so, which of its neigh- 
bors are also on the boundary. Each boundary pixel 
creates a pointer to each neighbor that is also a 
boundary pixel, and voila: Every boundary has be- 
come a linked list (actually, a doubly linked list) of 
pixels. If the processor addresses are of the obvious 
form x + Wy, where x and y are two-dimensional 
coordinates and W is the width of the image, then 
the processor with the largest address for any region 
will be on its boundary. Using logarithmic-time 
linked-list algorithms, all the processors on a region 
boundary can agree on what the label for the region 
should be (by performing a maximum reduction on 
the linked list and then spreading the result back 
over the list). Since all the boundaries can be pro- 
cessed in parallel, it is then simply a matter of prop- 
agating the labels inward from boundaries to interior 
pixels. This is accomplished by a process similar to a 
parallel-prefix computation on the rows of the im- 
age. (There are many nasty details having to do with 
orienting the boundaries so that each boundary 
pixel knows which side is the interior and handling 
the possibility that regions may be nested within 
other regions, but these details can also be handled 
in logarithmic time.) 

This application has the further property that the 
linked-list structure is not preexistent; rather, it is 
constructed dynamically as a function of the content 
of the image being processed. There is therefore no 
way to cleverly allocate or encode the structure 
ahead of time (e.g., as an array). The general com- 
munication facility of the Connection Machine 
model is therefore essential to the efficient execu- 
tion of the algorithm. 

Recursive Data Parallelism 
We have often found situations where data parallel- 
ism can be applied recursively to achieve multiplica- 
tive effects. To multiply together a long chain of 

large matrices (a commonplace calculation in the 
study of systems modeled by Markov processes), 
we can use the associative scan operation to 
multiply together N matrices with log N matrix 
multiplications. In each matrix multiplication, the 
opportunity for parallelism is obvious, since matrix 
multiplication is defined in terms of operations on 
vectors. Another possibility would be to multiply the 
matrices using a systolic array-type algorithm [18], 
which will always run efficiently on a computer of 
the Connection Machine type. If the matrices are 
sparse, then we use the Pan-Reif algorithm [Zl], a 
data parallel algorithm that multiplies sparse matri- 
ces represented as trees. This algorithm fits well on a 
fine-grained parallel computer as long as it has capa- 
bilities for general communications. If the entries of 
the matrices contain high-precision numbers, there 
is yet another opportunity for parallelism within 
the arithmetic operations themselves. For example, 
using a scan-type algorithm for carry propagation, 
we can add two n-digit numbers in O(log n) time. 
Using a pipelined carry-save addition scheme [17], 
we can multiply in linear time, again by performing 
operations on all the data elements (digits) in 
parallel. 

Summary and Conclusions 
In discussing what kinds of computations are appro- 
priate for data parallel algorithms, we initially 
assumed-when we began our work with the Con- 
nection Machine-that data parallel algorithms 
amounted to very regular calculations in simulation 
and search. Our current view of the applicability of 
data parallelism is somewhat broader. That is, we 
are beginning to suspect that this is an appropriate 
style wherever the amount of data to be operated 
upon is very large. Perhaps, in retrospect, this is a 
trivial observation in the sense that, if the number of 
lines of code is fixed and the amount of data is 
allowed to grow arbitrarily, then the ratio of code to 
data will necessarily approach zero. The parallelism 
to be gained by concurrently operating on multiple 
data elements will therefore be greater than the 
parallelism to be gained by concurrently executing 
lines of code. 

One potentially productive line of research in this 
area is searching for counterexamples to this rule: 
that is, computations involving arbitrarily large data 
sets that can be more efficiently implemented in 
terms of control parallelism involving multiple 
streams of control. Several of the examples pre- 
sented in this article first caught our attention as 
proposed counterexamples. 

It is important to recognize that this question of 
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programming style is not synonymous with the 
hardware design issue of MIMD versus SIMD com- 
puters. MIMD computers can be well suited for exe- 
cuting data parallel programs: In fact, depending on 
engineering details like the cost of synchronization 
versus the cost of duplication, they may be the best 
means of executing data parallel programs. Simi- 
larly, SIMD computers with general communication 
can execute control-style parallelism by interpreta- 
tion Whether such interpretation is practical de- 
pends on the details of costs and requirements. 
While interesting and important in their own right, 
these questions are largely independent of the data 
parallel versus control parallel programming styles. 

Having one processor per data element changes 
the way one thinks. We found that our serial intui- 
tions did not always serve us well in parallel con- 
texts. For example, when sorting is fast enough, the 
order in which things are stored is often unimpor- 
tant. Then again, if searching is fast, then sorting 
may be unimportant. In a more general sense, it 
seems that the selection of one data representation 
over another is less critical on a highly parallel ma- 
chine than on a conventional machine since con- 
verting all the memory from one representation to 
another does not take a large amount of time. One 
case where our serial intuitions misled us was our 
expectation that parallel machines would dictate the 
use of binary trees [la]. It turns out that linear linked 
lists serve almost as well, since they can be easily 
*converted to balanced binary trees whenever neces- 
sary and are far more convenient for other purposes. 

Our own transition from serial to parallel thinkers 
is far from complete, and we would be by no means 
surprised if some of the algorithms described in this 
article begin to look quite “old-fashioned” in the 
years to come. 

REFERENCES 
1. 

2. 

3. 

4. 

5. 

6. 

7. 

Backus. 1. Can programming be liberated from the van Neumann 
style? A functional style and its algebra of programs (1977 ACM 
Turing Award Lecture). Con~nruu. ACM 21, 8 (Aug. 1978), 613-641. 
Batcher. K.E. Sorting networks and their applications. In Proceedings 
of fhe 1968 Sprirlg Joirlf Compufer Corlferetxe (Reston, Va.. Apr.) 
AFIPS, Reston. Va.. 1968, pp. 307-314. 
Batcher. K.E. Design of a massively parallel processor. IEEE Trans. 
Coqmf. C-29, 9 (Sept. 1980). 836-840. 
Bawden. A. A programming language for massively parallel com- 
puters. Master’s thesis. Dept. of Electrical Engineering and Com- 
puter Science. MIT, Cambridge. Mass.. Sept. 1984. 
Bawden. A. Connection graphs. In Proceedings of fhe 1986 ACM Con- 
ftwrm ou Lisp arld Furrfioml Programming. ACM, (Cambridge, Mass., 
Aug. 4-6). New York. 1986. pp. 258-265. 
Blelloch. G. AFL-I: A programming language for massively concur- 
rent computers. Master’s thesis, Dept. of Electrical Engineering and 
Computer Science, MIT, Cambridge, Mass., June 1986. 
Blelloch, G. Parallel prefix versus concurrent memory access. Tech. 
Rep.. Thinking Machines Corp., Cambridge, Mass.. 1986. 

8. 

9. 

10. 

11. 

12. 

13. 

14. 

15. 
16. 

17. 

18. 

19. 

20. 

21. 

22. 

23. 

24. 

25. 

Special Issue 

Bouknight, W.J., Denenberg, S.A., McIntyre. D.E.. Randall, 1.M.. 
Sameh, A.H.. and Slotnick, D.L. The ILLIAC IV system. Proc. IEEE 
60.4 (Apr. 1972). 369-388. 
Christman. D.P. Programming the Connection Machine. Master’s 
thesis. Dept. of Electrical Engineering and Computer Science, MIT, 
Cambridge. Mass., Jan. 1983. 
Christman, D.P. Programming the Connection Machine. Tech. Rep. 
ISL-84-3, Xerox Palo Alto Research Center, Palo Alto, Calif.. Apr. 
1984. (Reprint of the author’s master’s thesis at MIT.) 
Falkoff. A.D., and Orth. D.L. Development of an APL standard. In 
APL 79 Cmfemce Proceedings (Rochester. N.Y., June). ACM, New 
York. pp. 409-453. Published as APL Quote Quad 9.4 (June 1979). 
Flanders, P.M., et al. Efficient high speed computing with the dis- 
tributed array processor. In High Speed Computer and Algorithm Orga- 
rlizafiorr. Koch, Lawrie. and Sameh. Eds. Academic Press, New York, 
1977, pp. 113-127. 
Haynes, L.S.. Lao. R.L.. Siewiorek. D.P., and Mizell. D.W. A survey 
of highly parallel computing. Compufer ()an. 1982). 9-24. 
Hillis, W.D. Tile Comertim Machine. MIT Press, Cambridge, Mass.. 
1985. 
Iverson, K.E. A Progranmrit~g Language. Wiley. New York, 1962. 
Knuth. D.E. The Arf of Con~pufer Programmi?~g. Vol. 3. Sorfing and 
Searrhirig. Addison-Wesley, Reading, Mass.. 1973. 
Knuth, D. E. Tile Art of Compufer Progranmif~g. Vol. 2, Semitwnerical 
Algorifhm (Sccmd Edifim). Addison-Wesley, Reading, Mass.. 1981. 
Kong. H.T., and Lieserson. C.E. Algorithms for VLSI processor 
arrays. In Infroducfiorf fo VLSI Systems, L. Carver and L. Conway. 
Eds. Addison-Wesley, New York. 1980. pp. 271-292. 
Lim, W. Fast algorithms for labeling connected components in 2-D 
arrays. Tech. Rep. 86.22, Thinking Machines Corp., Cambridge, 
Mass., July 1986. 
Minsky. M.. and Papert. S. Percepfrorrs. 2nd ed. MIT Press, Cam- 
bridge, Mass.. 1979. 
Pan, V., and Reif. J. Efficient parallel solution of linear systems. 
Tech. Rep. TR-02-85. Aiken Computation Laboratory, Harvard 
Univ.. Cambridge. Mass., 1985. 
Schwartz. J.T. Ultracomputers. ACM Trans. Progran~. Lang. Sysf. 2, 4 
(Oct. 1980). 484-521. 
Shaw. D.E. Tire NON-VON Supercomputer. Tech. Rep., Dept. of Com- 
puter Science, Columbia Univ.. New York. Aug. 1982. 
Steele, G.L.. Jr.. and Hillis. W.D. Connection machine Lisp: Fine- 
grained parallel symbolic processing. In Proceedings of fhe 1986 ACM 
Cmfmwe on Lisp and Fmcfimal Programming (Cambridge, Mass.. 
Aug. 4-6). ACM, New York. 1986. pp. 279-297. 
Turner. D.A. A new implementation technique for applicative lan- 
guages. Soffw. Pracf. &per. 9 (1979). 31-49. 

CR Categories and Subject Descriptors: B.2.1 [Arithmetic and Logic 
Structures]: Design Styles-parallel; C.1.2 [Processor Architectures]: 
Multiple Data Stream Architectures (Multiprocessors)-parallel proces- 
sors; D.1.3 [Programming Techniques]: Concurrent Programming; 
D.3.3 [Programming Languages]: Language Constructs--co,rcurre?lt 
progranrwirrg strurtures: E.2 [Data Storage Representations]: lit&d 
represmfafium: F.1.2 [Computation by Abstract Devices]: Modes of 
Computation-parallelisl,t; Cl.0 [Numerical Analysis]: General- 
parallel algorithm 

General Terms: Algorithms 
Additional Key Words and Phrases: Combinator reduction. combina- 

tow, Connection Machine computer system, log-linked lists, parallel 
prefix. SIMD. sorting. Ultracomputer 

Authors’ Present Address: W. Daniel Hillis and Guy L. Steele, Jr.. Think- 
ing Machines Corporation. 245 First Street. Cambridge, MA 02142-1214. 

Permission to copy without fee all or part of this material is granted 
provided that the copies are not made or distributed for direct commer- 
cial advantage. the ACM copyright notice and the title of the publication 
and its date appear. and notice is given that copying is by permission of 
the Association for Computing Machinery. To copy otherwise, or to 
republish. requires a fee and/or specific permission. 

December 1986 Vohnre 29 Number 12 Commukcations of the ACM 1183 


