
SPECIAL ISSUE

Articles

DATA PARALLEL ALGORITHMS

Parallel computers with tens of thousands of processors are typically
programmed in a data parallel style, as opposed to the control parallel style
used in multiprocessing. The success of data parallel algorithms-even on
problems that at first glance seem inherently serial-suggests that this style
of programming has much wider applicability than was previously thought.

W. DANIEL HILLIS and GUY L. STEELE, JR.

In this article we describe a series of algorithms ap-
propriate for fine-grained parallel computers with
general communications. We call these algorithms
data parallel algorithms because their parallelism
comes from simultaneous operations across large
sets of data, rather than from multiple threads of
control. The intent is not so much to present new
algorithms (most have been described earlier in
other contexts), but rather to demonstrate a style of
programming that is appropriate for a machine with
tens of thousands or even millions of processors. The
algorithms described all use O(N) processors to solve
problems of size N, typically in O(log N) time. Some
of the examples solve problems that at first sight
seem inherently serial, such as parsing strings and
finding the end of a linked list. In many cases, we
include actual run times measured on the 65,536-
processor Connection Machine*’ system. A key fea-
ture of this hardware is a general-purpose communi-
cations network connecting the processors that frees
the programmer from detailed concerns of the map-
ping between data and hardware.

MODEL OF THE MACHINE
Our model of a fine-grained parallel machine with
general-purpose communication is based on the

Connection Machine is a registered trademark of Thinking Machines
Corporation.

0 1966 ACM OOOl-0782/~S/lZOO-1170 750

Connection Machine system [14]. Current Connec-
tion Machine systems have either 16,384 or 65,536

processors, each with 4,096 bits of memory. There is
nothing special about these particular numbers,
other than being powers of two, but they are indica-
tive of the scale of the machine. (The model is more
sensible with thousands rather than tens of proces-
sors.) The system has two parts: a front-end com-
puter of the usual von Neumann style, and an array
of Connection Machine processors. Each processor in
the array has a small amount of local memory, and
to the front end, the processor array looks like a
memory. A typical front-end processor is a VAX@ or
a Symbolics 36OOe.

The processor array is connected to the memory
bus of the front end so that the local processor mem-
ories can be random accessed directly by the front
end, one word at a time, just as if it were any other
memory. This section of the memory on the front
end, however, is “smart” in the sense that the front
end can issue special commands that cause many
parts of the memory to be operated upon simultane-
ously, or cause data to move around within the
memory. The processor array therefore effectively
extends the instruction set of the front-end processor
to include instructions that operate on large

VAX is a trademark of Digital Equipment Corporation.

Symbolics 3600 is a trademark of Symbol&, Inc.

1170 Communications of the ACM December 1986 Volume 29 Number 12

Special Issue

amounts of data simultaneously. In this way, the
processor array serves a function similar to a
floating-point accelerator unit, except that it accel-
erates general parallel computation and not just
floating-point arithmetic.

The control structure of a program running on a
Connection Machine system is executed by the front
end in the usual way. An important practical bene-
fit of this approach is that the program is developed
and executed within the already-familiar program-
ming environment of the front end. The program
can perform computations in the usual serial way
on the front end and also issue commands to the
processor array.

The processor array executes commands in SIMD
fashion. There is a single instruction stream coming
from the front end; these instructions act on multi-
ple data items, on the order of one (or a few) per
processor. Most instructions are executed condition-
ally: That is, each processor has state bits that deter-
mine which instructions the processor will execute.
A processor whose state bit is set is said to be
selected. The state bit is called the confext flag be-
cause the set of selected processors is often referred
to as the context within which instructions are exe-
cuted. For example, the front end might arrange for
all odd-numbered processors to have their context
flags set, and even-numbered processors to have
their context flags cleared; issuing an ADD instruc-
tion would then cause each of the selected proces-
sors (the odd-numbered ones) to add one word of
local memory into another word. The deselected
(even-numbered) processors would do nothing, and
their local memories would remain unchanged.

Contexts may be saved in memory and later re-
stored, with each processor saving or restoring its
own bit in parallel with the others. There are a few
instructions that are unconditional: They are exe-
cuted by every processor regardless of the value of
the context flag. Such instructions are required for
saving and restoring contexts.

A context, or a set of values for all the context
flags, represents a set: namely, a set of selected pro-
cessors. Forming the intersection, union, or comple-
ment of such sets is simple and fast; it requires only
a one-bit logical AND, OR, or NOT operation issued
to the processors. Locally viewed, each processor
performs just one logical operation on one or two
single-bit operands: viewed globally, an operation on
sets is performed. (On the current Connection Ma-
chine hardware, such an operation takes about a
microsecond.)

The processors can individually perform all the
usual operations on logical, integer, and floating-

point operands: add, subtract, multiply, divide, com-
pare, max, min, not, and, or, exclusive or, shift,
square root, and so on. In addition, single values
computed in the front end can be broadcast from the
front end to all processors at once (essentially by
including them as immediate data in the instruction
stream).

A number of other computing systems have been
constructed with the characteristics we have already
described, namely, a large number of parallel proc-
essors, each of which has local memory and the abil-
ity to execute instructions of more or less the usual
sort, as broadcast from a master controller. These
include ILLIAC IV [8], the Goodyear MPP [3], the
Non-Von [23]; and the ICL DAP [12]; among others
[13]. There are two additional characteristics of the
Connection Machine programming model, however,
which distinguish it from these other systems: gen-
eral, pointer-based communication, and virtual proces-
SOYS.

Previous parallel computing systems of this fine-
grained SIMD style have restricted interprocessor
communication to certain patterns wired into the
hardware; typically this pattern is a two-dimensional
rectangular grid, or a tree. The Connection Machine
model allows any processor to communicate directly
with any other processor in unit time, while other
processors also communicate concurrently. Commu-
nication is implemented via a SEND instruction.

Within each processor, the SEND instruction
takes two operands: One addresses-within the
processor-the field that contains the data to be
sent; the other addresses a processor pointer (i.e., the
number of the processor to which the datum is to be
sent and the destination field within that processor,
into which the data will be placed). The communi-
cations system is very much like a postal system,
where you can send a message to anyone else di-
rectly, provided you know the address, and where
many letters can be routed at the same time. The
SEND instruction can also be viewed as a parallel
“store indirect” instruction that allows each proces-
sor to store anywhere in the entire memory, not just
in its own local memory.

The SEND instruction can also take one additional
operand that specifies what happens if two or more
messages are sent to the same destination. The op-
tions are to deliver to the destination the sum, maxi-
mum, minimum, bitwise AND, or bitwise OR of the
messages; to deliver one message and discard all
others; or to produce an error.

From a global point of view, the SEND instruction
performs something like an arbitrary permutation
on an array of items, although it is actually more

December 1986 Volume 29 Number 12 Communications of the ACM 1171

Special Issue

general than a permutation because more than one
item may be sent to the same destination. The pat-
tern is not wired into the hardware, but is encoded
as an array of pointers, and is completely under soft-
ware control; the same encoding, once constructed,
can be used over and over again to transfer data
repeatedly in the same pattern. To implement a
regular communication pattern, such as a two-
dimensional grid, the pointers are typically com-
puted when needed rather than stored.

The Connection Machine programming model is
carefully abstracrted from the details of the hardware
that supports it, and, in particular, the number and
size of its hardware processors. Programs are de-
scribed in terms of virtual processors. In actual im-
plementations, hardware processors are multiplexed
as necessary to support this abstraction; indeed, the
abstraction is supported at a very low level by a
microcoded controller interposed between the front
end and the processor array, so that the front end
always deals in virtual processors.

The benefits of the virtual processor abstraction
are twofold. The first is that the same program can
be run unchanged on different sizes of the Connec-
tion Machine system, notwithstanding the linear
trade-off between the number of hardware proces-
sors and execution time. For example, a program
that requires 216 virtual processors can run at top
speed on a system with the same number of hard-
ware processors, but it can also be executed on one-
fourth that amount of hardware (214 processors) at
one-fourth the speed, provided it can fit into one-
fourth the amount of memory as well.

The second benefit is that for many purposes the
number of processors may be regarded as expanda-
ble rather than fixed, so that it becomes natural to
write programs using the Lisp, Pascal, or C style of
storage allocation rather than the Fortran style. By
this we mean that there is a procedure one can call
to allocate a “fresh” processor as if from thin air
while the program is running. In Fortran, all storage
is preallocated before program execution begins,
whereas Lisp has the cons operation to allocate a
new list cell (as well as other operations for con-
structing other objects); Pascal has the new opera-
tion; and C has the malloc function. In each case, a
new object is allocated and a pointer to this new
object is returned. Of course, in the underlying im-
plementation, the address space (physical or virtual)
is actually a fixed resource pool from which all such
requests are satisfied, but the point is that the lan-
guage supports the abstraction of newly created stor-
age. In the Connection Machine model, one may
similarly allocate fresh storage using the operation

processor-cons; the difference is that the newly allo-
cated storage comes with its own processor attached.

In the ensuing discussion, we shall assume that
the size and number of processors are sufficient to
allocate one processor for each data element in the
problem being solved. This allows us to adopt a
model of the machine in which the following are
counted as unit-time operations:

l any conventional word-at-a-time operation;

l any such operation applied to all the data ele-
ments concurrently, or to some selected subset;

l any communications step that involves the broad-
cast of information to all data elements;

l any communications step that involves no more
than a single message transmission from each data
element.

For purposes of analysis, it is also often useful to
treat processor-cons as a unit-time operation,
although it may be implemented in terms of more
primitive operations, as described in more detail on
page 1176.

EXAMPLES OF PARALLEL PROGRAMMING
To show some of the possibilities of data-parallel
programming, we present here several algorithms
currently in use on the Connection Machine system.
Most of these algorithms are not new: Some of the
ideas represented here appear in the languages APL
[ll, 151 and FP [l], while others are based on algo-
rithms designed for other parallel machines, in par-
ticular, the Ultracomputer [z], and still others have
been developed by our coworkers on the Connection
Machine [4, 5, 7, 9, 10, 191.

Beginning with some very simple examples to
familiarize the reader with the model and the nota-
tion, we then proceed to more elaborate and less
obvious examples.

Sum of an Array of Numbers
The sum of n numbers can be computed in time
O(log n) by organizing the addends at the leaves of a
binary tree and performing the sums at each level of
the tree in parallel. There are several ways of orga-
nizing an array into a binary tree. Figure 1 illus-
trates one such method on an array of 16 elements
named x0 through x15. In this algorithm, for purposes
of simplicity, the number of elements to be summed
is assumed to be an integral power of two. There are
as many processors as elements, and the statement
for all k in parallel do s od causes all processors to
execute the same statement s in synchrony, but the
variable k has a different value for each processor,

1172 Communications of the ACM December 1986 Volume 29 Number 12

Special issue

FIGURE 1. Computing the Sum of an Array of 16 Elements

namely, the index of that processor within the array.

for j := I to log,n do
for all k in parallel do

if ((k + 1) mod 2j) = 0 then
x[k] := x[k - 2+] + x[k]

fi
od

od

At the end of the process, x,,-1 contains the sum of
the n elements. On the Connection Machine, an op-
timized version of this algorithm for 65,536 elements
takes about 200 microseconds.

All Partial Sums of an Array
A frequently useful operation is computing all par-
tial sums of an array of numbers. In APL, this com-
putation is called a plus-scan; in other contexts, it is
called the “sum-prefix” operation because it com-
putes sums over all prefixes of the array. For exam-
ple, if you put into an array your initial checkbook
balance, followed by the amounts of the checks you
have written as negative numbers and deposits as
positive numbers, then computing the partial sums
produces all the intermediate and final balances.

It might seem that computing such partial sums is
an inherently serial process, because one must add
up the first k elements before adding in element

k + 1. Indeed, with only one processor, one might as
well do it that way, but with many processors one
can do better, essentially because in log n time with
n processors one can do n log n individual additions;
serialization is avoided by performing logically re-
dundant additions.

Looking again at the simple summation algorithm
given on the facing page, we see that most of the
processors are idle most of the time: During iteration
j, only n/21 processors are active, and, indeed, half of
the processors are never used. However, by putting
the idle processors to good use by allowing more
processors to operate, the summation algorithm can
compute all partial sums of the array in the same
amount of time it took to compute the single sum. In
defining 1: to mean C!=j x,, note that Cf + CF+i =
Cr. The partial-sums algorithm replaces each xk by
xi: that is, the sum of all elements preceding and
including &. In Figure 2 (on the following page), this
process is illustrated for an array of 16 elements.

for j := I to log,n do
for all k in parallel do

if k 2 2i then
x[k] := x[k - 2’-‘1 + x[k]

fi
od

od

December 1986 Volume 29 Number 12 Communications of the ACM 1173

Special Issue

FIGURE 2. Computing Partial Sums of an Array of 16 Elements

The only difference between this algorithm and
the earlier one is the test in the if statement in the
partial-sums algorithm that determines whether
a processor will perform the assignment. This
algorithm keeps more processors active: Dur-
ing step j, n - 2’-’ processors are in use; after step
j, element number k has become Ci where a =
max(O, k - 2j + 1).

This technique can be generalized from summa-
tion to any associ.ative combining operation. Some
obvious choices are product, maximum, minimum,
and logical AND, OR, and EXCLUSIVE OR. Some
programming languages provide such reduction and
parallel-prefix operations on arrays as primitives.
The current proposal for Fortran 8x, for example,
provides reduction operations called SUM,
PRODUCT, MAXVAL, MINVAL, ANY, and ALL.
The corresponding reduction functions in APL are
+/, x/, [/, 1 /, V/. and A/; APL also provides
other reduction operations and all the corresponding
scan (prefix) operations. The combining functions for
all these operations happen to be commutative as
well, but the algorithm does not depend on commu-
tativity. This was no accident; we took care to write

x[k] := x[k - 2+] + x[k]

instead of the more usual

x[k] := x[k] + x[k - 2j-‘1

precisely in order to preserve the correctness of the
algorithm when + is replaced by an associative but
noncommutative operator. Under “Parsing a Reg-
ular Language” (facing page), we discuss the use of
parallel-prefix computations with a noncommutative
combining function for a nonnumerical application,
specifically, the division of a character string into
tokens. Another associative noncommutative opera-
tor of particular practical importance is matrix mul-
tiplication. We have found this technique useful in
multiplying long chains of matrices.

Counting and Enumerating Active Processors
After some subset of the processors has been
selected according to some condition (i.e., by using
the result of a test to set the context flags), two
operations are frequently useful: determining how
many processors are active, and assigning a distinct
integer to each processor. We call the first operation
count and the second enumerate: Both are easily
implemented in terms of summation and sum-prefix.

1174 Communications of the ACM December 1986 Volume 29 Number 12

Special Issue

To count the active processors, we have every
processor unconditionally examine its context flag
and compute the integer 1 if the flag is set and 0 if it
is clear. (Remember that an unconditional operation
is performed by every processor regardless of
whether or not its context flag is set.) We then per-
form an unconditional summation of these integer
values.

To enumerate the active processors, we have
every processor unconditionally compute a 1 or 0 in
the same manner, but then we perform an uncondi-
tional sum-prefix calculation with the result that
every processor receives a count of the number of
active processors that precede it (including itself) in
the ordering. We then revert to conditional opera-
tion; in effect, the selected processors have received
distinct integers, and values computed for the dese-
lected processors are henceforth simply ignored.
Finally, it is technically convenient to have every
selected processor subtract one from its value, so
that the n selected processors will receive values
from 0 to n - 1 rather than from 1 to n.

These operations each take about 200 microsec-
onds on a Connection Machine of 65,536 elements.
Because these operations are so fast, programming
models of the Connection Machine have been sug-
gested that treat counting and enumeration as unit-
time operations [6, 71.

Radix Sort
Sorting is a communications-intensive operation. In
parallel computers with fixed patterns of communi-
cation, the pattern of physical connections usually
suggests the use of a particular sorting algorithm. For
example, Batcher’s bitonic sort [2] fits nicely on
processors connected in a perfect shuffle pattern,
bubble sorts [16] work well on one-dimensionally
connected processing, and so on. In the Connection
Machine model, the ability to access data in parallel
in any pattern often eliminates the need to sort data.
When it is necessary to sort, however, the generality
of communications provides an embarrassment of
riches.

Upon implementing several sorting algorithms on
the Connection Machine and comparing them for
speed, we found that, for the current hardware
implementation, Batcher’s method has good perfor-
mance for large sort keys, whereas for small sort keys
a version of radix sort is usually faster. (The break-
even point is for keys about 25 to 32 bits in length.
With either algorithm, sorting 65, 536 32-bit num-
bers on the Connection Machine takes about 30
milliseconds.)

To illustrate the use of count and enumerate, we
present here the radix sort algorithm. In the inter-
est of simplicity, we will assume that all processors
(n) are active, that sort keys are unsigned integers,
and that maxint is the value of the largest represent-
able key value.

for j := I to I + tlog, maxintJ do
for all k in parallel do

if (x[k] mod 2’) c 2j-’ then
comment The bit with weight 2j-’ is zero.
tnemmoc
y [k] := enumerate
c := count

fi
if (x[k] mod 2’) 2 2j-’ then

comment The bit with weight 2j-’ is one.
tnemmoc
y [k] := enumerate + c

fi

X[Y PI1 := +I
od

od

At this point, an explanation of a fine point concern-
ing the intended semantics of our algorithmic nota-
tion is in order. An if statement that is executed for
all processors is always assumed to execute its then
part, even if no processors are selected, because
some front-end computations (such as count) might
be included. When the then part is executed, the
active processors are those previously active proces-
sors that computed true for the condition.

The radix sort requires a logarithmic number of
passes, where each pass essentially examines one bit
of each key. All keys that have a 0 in that bit are
counted (call the count c) and then enumerated in
order to assign them distinct integers yk ranging from
0 to c - 1. All keys that have a 1 in that bit are then
enumerated, and c is added to the result, thereby
assigning these keys distinct integers yk ranging from
c to n - I. The values yk are then used to permute
the keys so that all keys with a 0 bit precede all keys
with a I bit. (This is the step that takes particular
advantage of general communication.) This permuta-
tion is stable: The order of any two keys that both
have 0 bits or both 1 bits is preserved. This stability
property is important because the keys are sorted by
least significant bit first and most significant bit last.

Parsing a Regular Language
To illustrate the use of a parallel-prefix computation
in a nonnumerical application, consider the problem
of parsing a regular language. For a concrete practi-
cal instance, let us consider the problem of breaking

Decenrber 1986 Volume 29 Number 12 Communications of the ACM 1175

Special Issue

up a long string of characters :into tokens, which is
usually the first thing a compiler does when process-
ing a program. A string of characters such as

if x <=n then print (“>c = “) x) ;

must be broken up into the following tokens, with
redundant white space eliminated:

This process is sometimes called Zexing a string.
Any regular language of this type can be parsed by

a finite-state automaton that begins in a certain state
and makes a transition from one state to another
(possibly the same one) as each character is read.
Such an automat.on can be represented as a two-
dimensional array that maps the old state and the
character read to the new state. Some of the states
correspond to the start of a token; if the automaton
is in one of those states just after reading a charac-
ter, then that character is the first character of a
token. Some characters may not be part of any to-
ken; White-space characters, for example, are typi-
cally not part of a token unless they occur within a
string; such delimiting characters may also be iden-
tified by the automaton state just after the character
is read. To divide a string up into tokens, then,
means merely determining the state of the automa-
ton after each character has been processed.

Table I shows the automaton array for a simple
language in which a token may be one of three
things: a sequence of alphabetic characters, a string
surrounded by double quotes (where an embedded
double quote is represented by two consecutive dou-
ble quotes), or any of +, -, *, =, C, >, <=, and >=.
Spaces and newlines delimit tokens, but are not part
of any token except quoted strings. The automaton
has nine states: N is the initial state; A is the start of
an alphabetic token; Z is the continuation of an al-
phabetic token; 1: is a single-special-character token;
< is a < or > character; = is an = that follows a < or
> character (an = that does not follow < or > will
produce state *); Q is the double quote that starts a
string; S is a character within a string; and E is the
double quote that ends a string, or the first of two
that indicate an embedded double quote. The states
A, *, <, and Q indicate that the character just read is
the first character of a token.

Although, like the computation of partial sums,
this may appear at first glance to be an inherently
serial process, it too can be put into the form of a
parallel-prefix computation. Rather than regarding

the lexing automaton as a monolithic process, let us
regard the individual characters of the string as
unary functions that map an automaton state onto
another state. By indicating the application of the
character Y to state N as NY, we may then write
NY = A. By extension, it is also possible to regard a
string as a function that maps a state p to another
state 4; 4 is the state you end up in if you start the
automaton in state p and then let the automaton
read the entire string one character at a time. The
result of applying the string Y “+ to the state Z may
be written as ZY”+ = ((ZY)“)+ = (Z”)+ = Q+ = S. It
is not too hard to see that the function correspond-
ing to a string is simply the composition of the func-
tions for the individual characters.

A function from a state to a state can be repre-
sented as a one-dimensional array indexed by states
whose elements are states. The columns of the array
in Table I are in fact exactly such representations for
the functions for individual characters. Composing
the columns for two characters or strings to produce
a new column for the concatenation of the strings is
fairly straightforward: You simply replace every
entry of one column with the result of using that
entry to index into the other column.

Since this composition operation is associative, we
may compute the automaton state after every char-
acter in a string as follows:

Replace every character in the string with the
array representation of its state-to-state function.
Perform a parallel-prefix operation. The combin-
ing function is the composition of arrays as
described above. The net effect is that, after this
step, every character c of the original string has
been replaced by an array representing the state-
to-state function for that prefix of the original
string that ends at (and includes) c.
Use the initial automaton state (N in our exam-
ple) to index into all these arrays. Now every
character has been replaced by the state the
automaton would have after that character.

If we implement this algorithm on a Connection
Machine system and allot one processor per charac-
ter, the first and third steps will take constant time,
and the second step will take time logarithmic in the
length of the string. Naturally, this algorithm per-
forms much more computation per character than
the straightforward serial algorithm using the two-
dimensional array, but, for sufficiently large
amounts of text, the parallel algorithm will be faster
because its time complexity is logarithmic instead of
linear. An implementation of this algorithm in Con-
nection Machine Lisp can be found in [24].

1176 Communications of the ACM December 1986 Volume 29 Number 12

PARALLEL PROCESSING OF POINTERS

Processor-cons
To illustrate pointer manipulation algorithms, we
will consider the implementation of the processor-
cons primitive, which allows a set of processors to
establish pointers to a set of new processors allo-
cated from free storage. In a serial computer, the
equivalent problem is usually solved by keeping the
free storage in an ordered list and allocating new
storage from the beginning of the list. In the Connec-
tion Machine, this would not suffice since we wish
to allocate many elements concurrently. Instead, the
processor-cons primitive is implemented in terms of
enumerate by using a rendezvous technique: Two
sets of m processors are brought into one-to-one
communication by using the processors numbered 0

through m - 1 as rendezvous points.
Assuming that every processor has a Boolean vari-

able called free, freek becomes true if processor k is
available for allocation and false otherwise. Every
selected processor is to receive, in a variable called
new-processor, the number of a distinct free proces-
sor. Free processors that are so allocated have their
free bits reset to false in the process. If there are
fewer free processors than selected processors, then
as many requests are satisfied as possible, and some
selected processors will have their new-processor
variables set to null instead of the number of a free
processor, as shown below.

for all k in parallel do
required := count
unconditionally

if free [k] then
available := count
free-processor[k] := enumerate
if free-processor[k] < required then

free[k] := false
fi
rendezvous Ifree-processor[k]] := k

requestor[k] := enumerate
fi

yllanoitidnocnu
if requestor[k] < available then

new-processor := rerzdezvous[requestor[k]]
else

new-processor := null
fi

od

In this way, the total number of processors is man-
aged as a finite resource, but with an interface that
presents the illusion of creating new processors on
demand. (Of course, we have not indicated how

Special Issue

TABLE I. A Finite-State Automaton for Recognizing Tokens

Old Character Read
State

New
. A B Y Z + - * < > = ” Space line

N AA
A 22
2 zz

A A
:: AA
= AA

Q SS
s ss
E EE

AA* * *<<*Q N N
zz* * *<<*Q N N
zz* * *<<*Q N N
AA* * *<<:Q N N
AA* * *<<=Q N N
AA* * *<<*Q N N
SSSSSSSSE S S
SSSSSSSSE S S
EE*t*<<tS N N

processors are returned to the pool of free proces-
sors. Some technique such as reference counting or
garbage collection must also be designed and coded.)
Other algorithms for processor-cons are described in
p-4 101.

Parallel Combinator Reduction
A topic of much current interest in the area of func-
tional programming is parallel combinator reduction
[25]. It is also particularly interesting in this context
because it shows how data parallel algorithms can
be used to simulate control parallelism, or, equiva-
lently, how SIMD machines with general communi-
cation can simulate MIMD machines.

Combinators are a way of encoding an applicative
language. Their appeal lies in the fact that a program
can be executed simply by performing successive
local transformations on a tree structure, moreover,
it is possible to perform many independent transfor-
mations simultaneously in the same tree. A combi-
nator tree is made up of pairs, where each of the
left and right components of a pair may point to
another pair or else be an atom, the name of a com-
binator. Standard names for combinators include S,
K, I, B, and C. Figure 3 (next page) shows one possi-
ble set of four transformations that suffices for pro-
gram interpretation. When a subtree is transformed,
the root pair of the subtree is used as the root pair of
the result (by altering its components), but it is not
permissible to alter any of the other pairs involved;
therefore, the transformation involving the S combi-
nator requires the allocation of fresh pairs. For our
purposes, we ignore the semantics of the combina-
tors and simply observe that such graph transforma-
tions can easily be carried out in parallel by a Con-
nection Machine system by letting each processor
contain one pair, and using processor-cons to allo-
cate new pair-processors as needed.

December 1986 Volume 29 Number 12 Communications of the ACM 1177

Special Issue

while want OY need to reduce some more do
for all k in parallel do

lf := left [k]
if pair(lf) th’en

if left[lf] == ‘K’ then
leff[k] ::= ‘I’

fi
if left[If] == ‘I’ then

left[k] :I= right[lf]
fi
if pair(left[lf]) and Zeft[left[lf]] = ‘S’ then

p := processor-cons
q := pracessor-cons
if p # ml1 and q # null then

left[p] := right[Zeft[Zf]]
right[p] := right[Zf]
left[qII := right[left[lf]]
right [q] := right[k]
Zeft[k] := p
right[k] := q

fi
fi

fi
rt := right[k]
if pair(rt) and left[rt] = ‘I’ then

right[k] := right[rt]
fi

od
possibly perform garbage collection

od

It is easy to write such parallel code as a Connec-
tion Machine program. However, there are some dif-
ficult resource-management issues that have been
glossed over, such as when a garbage collection
should occur; whether, at any given time, one
should prefer to reduce S combinators or K combi-
nators; and, given that S combinators are to be
reduced, which ones should be given preference.
(The issues are that there may be more of one kind
of combinator than the other at any instant. One
idea is to process whichever kind is preponderant,
but S combinators consume pairs and K combinators
may release pairs, so the best processing strategy
may need to take the number of free processors
available for allocation into account. Furthermore, if
there are not enough free processors to satisfy all
outstanding S combinators at once, then the compu-
tation may diverge-even if normal-order serial re-
duction would converge-if preference is consist-
ently given to the wrong ones.)

Finding the End of a Linked List
When we first began to work with pointer structures
in the Connection Machine model, we believed that
balanced trees would be important because informa-

i 178 Communications of the ACM

tion can be propagated from the root of a tree to its
leaves-or from the leaves to the root-by parallel
methods that take time logarithmic in the number of
leaves. This was correct. However, our intuition also
told us that linear linked lists would be useless. We
could understand how to process an array in loga-
rithmic time, because one can use address arith-
metic to compute the number of any processor and
then communicate with it directly, but it seemed to
us that a linked list must be processed serially
because in general one cannot compute the address
of the ninth processor in a list without following all
eight of the intervening pointers.

As is so often true in computer science, intuition
was misleading: Essentially, we overlooked the
power of having many processors working on the
problem at once. It is true that one must follow all
eight pointers, but by using many processors one can
still achieve this in time logarithmic in the number
of pointers to be traversed. Although we found this
algorithm surprising, it had been discovered in other
contexts several times before (e.g., see chapter 9 of
POD

As a simple example, consider finding the last cell
of a linearly linked list. Imagine each cell to have a
next pointer that points to the next cell in the list,

Y

EII!!? K x

Y

d!?
I x

FIGURE 3. Patterns of Combinator Reduction

December 1986 Volume 29 Number 12

Special Issue

1

FIGURE 4. Finding the End of a Serially Linked List

while the last cell has the special value null in its
next component. To accommodate other information
as well, we will assume that in each cell there is
another pointer component called chum that may be
used for temporary purposes.

The basic idea is as follows: Each processor sets its
chum component equal to a copy of its next compo-
nent, so chum points to the next cell in the list. Each
processor then repeatedly replaces its chum by its
chum‘s chum. However, if its chum is null, then it
remains null.) Initially, the chum of a processor is the
next cell in the list; after the first step, its chum is
the second cell following; after the second step, its
chum is the fourth cell following; after the third step,
its chum is the eighth cell following; and so on.

To ensure that the first cell of a list finds the last
cell of a list, we carry out this procedure with the
modification that a processor does not change its

chum if its chum’s chum is null, as shown below. The
process is illustrated graphically in Figure 4.

for all k in parallel do
chum[k] := next [k]
while chum [k] # null and chum [chum [k]] # null do

chum [k] := chum [chum[k]]
od

od

The meaning of the while loop is that at each
iteration a processor becomes deselected if it com-
putes false for the test expression; the loop termi-
nates when all processors have become deselected
(whereupon the original context, as of the beginning
of the loop, is restored). When this process termi-
nates, every cell of the list except the last will have
the last cell as its chum. If there are many lists in the
machine, they can all be processed simultaneously,

December 1986 Volume 29 Number 12 Communications of the ACM 1179

Special hue

and the total prlocessing time will be proportional to
the logarithm of the length of the longest such list.

All Partial Sums of a Linked List
The partial sums of a linked list may be computed
by the same technique

for all k in parallel do
chum [k] := ne.xt [k]
while chum[k] # null do

value[chum~~k]] := vaZue[k] + value[chum[k]]
chum [k] := chum [chum [k]]

od
od

as illustrated in Figure 5. Comparing Figure 5 to
Figure 2 (computing partial sums), we see that the

same patterns of pointers among elements are con-
structed on the fly by using address arithmetic in
the case of an array and by following pointer chains
in the case of a linked list. An advantage of the
linked-list representation is that it can simultane-
ously process many linked lists of different lengths
without any change to the code.

Matching Up Elements of Two Linked Lists
An even more exotic effect is obtained by the fol-
lowing algorithm, which matches up corresponding
elements in two linked lists. If we will call corre-
sponding elements of a list “friends”, this algorithm
assigns to each list cell a pointer to its friend in the
other list; of course, the result is obtained in loga-
rithmic time.

X0 Xl x2 x3 x4 XS X6 X?

.a---) cj a-+ c-+ 4-j 0-e a-j .

.

1180 Communicatior~s of rhe ACM

FIGURE 5. Computing Prefix Sums of a Serially Linked List

December 1986 Volume 29 Number 12

Special Issue

for all k in parallel do
friend[k] := null

od
friend[listZ] := list2
friend[list2] := list1
for all k in parallel

chum [k] := next [k]
while chum [k] # null do

if friend[k] # null then
friend[chum[k]] := chum [friend[k]]

chum [k] := chum [ckum[k]]
fi

od
od

The first part of the above algorithm is initializa-
tion: The component named friend is initialized to
null in every cell; then the first cells of the two lists
are introduced, so that they become friends. The sec-
ond part plays the familiar logarithmic chums game,
but at every iteration, a cell that has both a chum
and a friend will cause its friend’s chum to become its
chum’s friend. Believe it or not, when the dust has
finally settled, the desired result does appear.

This algorithm has three additional interesting
properties: First, it is possible to match up two lists
of unequal length; the algorithm simply causes each
extra cell at the end of the longer list to have no
friend (that is, a null friend) (see Figure 6). Second, if,
in the initialization, one makes the first cell of list2
the friend of the first cell of listl, but not vice versa,
then at the end all the cells of listl will have
pointers to their friends, but the cells of list2 are
unaffected (their friend components remain null).
Third, like the other linked-list algorithms, this one
can process many lists (or pairs of lists) simultane-
ously.

With this primitive, one can efficiently perform
such operations as componentwise addition of two
vectors represented as linked lists.

Region Labeling
How are linked-list operations used in practical
applications? One such application is region label-
ing, where, given a two-dimensional image (a grid of
pixel values), one must identify and uniquely label
all regions. A region is a maximal set of pixels that
are connected and all have the same value. Each
region in the image must be assigned a different
label, and this label should be distributed to every
pixel in the region.

An obvious approach is to let each processor of a
parallel computer hold one pixel. On a parallel com-
puter with N processors communicating in a fixed
two-dimensional pattern, so that each processor can

nnnnnnnn

FIGURE 6. Matching Up Components of Two Lists

communicate directly only with its four neighbors,
this problem can be solved simply for an N-pixel
image in the following manner: Since every proces-
sor has an address and knows its own address, a
region will be labeled with the largest address of any
processor in that region. To begin with, let each
processor have a variable called largest, initialized
to its own address, and then repeat the following
step until there is no overall change of state. Each

December 1986 Volume 29 Number 12 Communications of the ACM 1181

Special Issue

processor trades largest values with all neighbors
that have the same pixel value, and replaces its own
largest value with the maximum of its previous
value and any values received from neighbors. The
address of the largest processor in a region therefore
spreads out to fill the region.

Although the idea is simple, the algorithm takes
time O(fi) in simple cases, and time O(N) in the
worst case (for images that contain a long “snake”
that fills the picture). Lim [19] has devised algo-
rithms for the Connection Machine that use linked-
list techniques to solve the problem in time O(log N).
In one of these algorithms, the basic idea is that
every pixel can determine by communication with
its two-dimensional neighbors whether it is on the
boundary of its region, and, if so, which of its neigh-
bors are also on the boundary. Each boundary pixel
creates a pointer to each neighbor that is also a
boundary pixel, and voila: Every boundary has be-
come a linked list (actually, a doubly linked list) of
pixels. If the processor addresses are of the obvious
form x + Wy, where x and y are two-dimensional
coordinates and W is the width of the image, then
the processor with the largest address for any region
will be on its boundary. Using logarithmic-time
linked-list algorithms, all the processors on a region
boundary can agree on what the label for the region
should be (by performing a maximum reduction on
the linked list and then spreading the result back
over the list). Since all the boundaries can be pro-
cessed in parallel, it is then simply a matter of prop-
agating the labels inward from boundaries to interior
pixels. This is accomplished by a process similar to a
parallel-prefix computation on the rows of the im-
age. (There are many nasty details having to do with
orienting the boundaries so that each boundary
pixel knows which side is the interior and handling
the possibility that regions may be nested within
other regions, but these details can also be handled
in logarithmic time.)

This application has the further property that the
linked-list structure is not preexistent; rather, it is
constructed dynamically as a function of the content
of the image being processed. There is therefore no
way to cleverly allocate or encode the structure
ahead of time (e.g., as an array). The general com-
munication facility of the Connection Machine
model is therefore essential to the efficient execu-
tion of the algorithm.

Recursive Data Parallelism
We have often found situations where data parallel-
ism can be applied recursively to achieve multiplica-
tive effects. To multiply together a long chain of

large matrices (a commonplace calculation in the
study of systems modeled by Markov processes),
we can use the associative scan operation to
multiply together N matrices with log N matrix
multiplications. In each matrix multiplication, the
opportunity for parallelism is obvious, since matrix
multiplication is defined in terms of operations on
vectors. Another possibility would be to multiply the
matrices using a systolic array-type algorithm [18],
which will always run efficiently on a computer of
the Connection Machine type. If the matrices are
sparse, then we use the Pan-Reif algorithm [Zl], a
data parallel algorithm that multiplies sparse matri-
ces represented as trees. This algorithm fits well on a
fine-grained parallel computer as long as it has capa-
bilities for general communications. If the entries of
the matrices contain high-precision numbers, there
is yet another opportunity for parallelism within
the arithmetic operations themselves. For example,
using a scan-type algorithm for carry propagation,
we can add two n-digit numbers in O(log n) time.
Using a pipelined carry-save addition scheme [17],
we can multiply in linear time, again by performing
operations on all the data elements (digits) in
parallel.

Summary and Conclusions
In discussing what kinds of computations are appro-
priate for data parallel algorithms, we initially
assumed-when we began our work with the Con-
nection Machine-that data parallel algorithms
amounted to very regular calculations in simulation
and search. Our current view of the applicability of
data parallelism is somewhat broader. That is, we
are beginning to suspect that this is an appropriate
style wherever the amount of data to be operated
upon is very large. Perhaps, in retrospect, this is a
trivial observation in the sense that, if the number of
lines of code is fixed and the amount of data is
allowed to grow arbitrarily, then the ratio of code to
data will necessarily approach zero. The parallelism
to be gained by concurrently operating on multiple
data elements will therefore be greater than the
parallelism to be gained by concurrently executing
lines of code.

One potentially productive line of research in this
area is searching for counterexamples to this rule:
that is, computations involving arbitrarily large data
sets that can be more efficiently implemented in
terms of control parallelism involving multiple
streams of control. Several of the examples pre-
sented in this article first caught our attention as
proposed counterexamples.

It is important to recognize that this question of

1182 Con~mur~ications of the ACM December 1986 Volume 29 Number 12

programming style is not synonymous with the
hardware design issue of MIMD versus SIMD com-
puters. MIMD computers can be well suited for exe-
cuting data parallel programs: In fact, depending on
engineering details like the cost of synchronization
versus the cost of duplication, they may be the best
means of executing data parallel programs. Simi-
larly, SIMD computers with general communication
can execute control-style parallelism by interpreta-
tion Whether such interpretation is practical de-
pends on the details of costs and requirements.
While interesting and important in their own right,
these questions are largely independent of the data
parallel versus control parallel programming styles.

Having one processor per data element changes
the way one thinks. We found that our serial intui-
tions did not always serve us well in parallel con-
texts. For example, when sorting is fast enough, the
order in which things are stored is often unimpor-
tant. Then again, if searching is fast, then sorting
may be unimportant. In a more general sense, it
seems that the selection of one data representation
over another is less critical on a highly parallel ma-
chine than on a conventional machine since con-
verting all the memory from one representation to
another does not take a large amount of time. One
case where our serial intuitions misled us was our
expectation that parallel machines would dictate the
use of binary trees [la]. It turns out that linear linked
lists serve almost as well, since they can be easily
*converted to balanced binary trees whenever neces-
sary and are far more convenient for other purposes.

Our own transition from serial to parallel thinkers
is far from complete, and we would be by no means
surprised if some of the algorithms described in this
article begin to look quite “old-fashioned” in the
years to come.

REFERENCES
1.

2.

3.

4.

5.

6.

7.

Backus. 1. Can programming be liberated from the van Neumann
style? A functional style and its algebra of programs (1977 ACM
Turing Award Lecture). Con~nruu. ACM 21, 8 (Aug. 1978), 613-641.
Batcher. K.E. Sorting networks and their applications. In Proceedings
of fhe 1968 Sprirlg Joirlf Compufer Corlferetxe (Reston, Va.. Apr.)
AFIPS, Reston. Va.. 1968, pp. 307-314.
Batcher. K.E. Design of a massively parallel processor. IEEE Trans.
Coqmf. C-29, 9 (Sept. 1980). 836-840.
Bawden. A. A programming language for massively parallel com-
puters. Master’s thesis. Dept. of Electrical Engineering and Com-
puter Science. MIT, Cambridge. Mass.. Sept. 1984.
Bawden. A. Connection graphs. In Proceedings of fhe 1986 ACM Con-
ftwrm ou Lisp arld Furrfioml Programming. ACM, (Cambridge, Mass.,
Aug. 4-6). New York. 1986. pp. 258-265.
Blelloch. G. AFL-I: A programming language for massively concur-
rent computers. Master’s thesis, Dept. of Electrical Engineering and
Computer Science, MIT, Cambridge, Mass., June 1986.
Blelloch, G. Parallel prefix versus concurrent memory access. Tech.
Rep.. Thinking Machines Corp., Cambridge, Mass.. 1986.

8.

9.

10.

11.

12.

13.

14.

15.
16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

Special Issue

Bouknight, W.J., Denenberg, S.A., McIntyre. D.E.. Randall, 1.M..
Sameh, A.H.. and Slotnick, D.L. The ILLIAC IV system. Proc. IEEE
60.4 (Apr. 1972). 369-388.
Christman. D.P. Programming the Connection Machine. Master’s
thesis. Dept. of Electrical Engineering and Computer Science, MIT,
Cambridge. Mass., Jan. 1983.
Christman, D.P. Programming the Connection Machine. Tech. Rep.
ISL-84-3, Xerox Palo Alto Research Center, Palo Alto, Calif.. Apr.
1984. (Reprint of the author’s master’s thesis at MIT.)
Falkoff. A.D., and Orth. D.L. Development of an APL standard. In
APL 79 Cmfemce Proceedings (Rochester. N.Y., June). ACM, New
York. pp. 409-453. Published as APL Quote Quad 9.4 (June 1979).
Flanders, P.M., et al. Efficient high speed computing with the dis-
tributed array processor. In High Speed Computer and Algorithm Orga-
rlizafiorr. Koch, Lawrie. and Sameh. Eds. Academic Press, New York,
1977, pp. 113-127.
Haynes, L.S.. Lao. R.L.. Siewiorek. D.P., and Mizell. D.W. A survey
of highly parallel computing. Compufer ()an. 1982). 9-24.
Hillis, W.D. Tile Comertim Machine. MIT Press, Cambridge, Mass..
1985.
Iverson, K.E. A Progranmrit~g Language. Wiley. New York, 1962.
Knuth. D.E. The Arf of Con~pufer Programmi?~g. Vol. 3. Sorfing and
Searrhirig. Addison-Wesley, Reading, Mass.. 1973.
Knuth, D. E. Tile Art of Compufer Progranmif~g. Vol. 2, Semitwnerical
Algorifhm (Sccmd Edifim). Addison-Wesley, Reading, Mass.. 1981.
Kong. H.T., and Lieserson. C.E. Algorithms for VLSI processor
arrays. In Infroducfiorf fo VLSI Systems, L. Carver and L. Conway.
Eds. Addison-Wesley, New York. 1980. pp. 271-292.
Lim, W. Fast algorithms for labeling connected components in 2-D
arrays. Tech. Rep. 86.22, Thinking Machines Corp., Cambridge,
Mass., July 1986.
Minsky. M.. and Papert. S. Percepfrorrs. 2nd ed. MIT Press, Cam-
bridge, Mass.. 1979.
Pan, V., and Reif. J. Efficient parallel solution of linear systems.
Tech. Rep. TR-02-85. Aiken Computation Laboratory, Harvard
Univ.. Cambridge. Mass., 1985.
Schwartz. J.T. Ultracomputers. ACM Trans. Progran~. Lang. Sysf. 2, 4
(Oct. 1980). 484-521.
Shaw. D.E. Tire NON-VON Supercomputer. Tech. Rep., Dept. of Com-
puter Science, Columbia Univ.. New York. Aug. 1982.
Steele, G.L.. Jr.. and Hillis. W.D. Connection machine Lisp: Fine-
grained parallel symbolic processing. In Proceedings of fhe 1986 ACM
Cmfmwe on Lisp and Fmcfimal Programming (Cambridge, Mass..
Aug. 4-6). ACM, New York. 1986. pp. 279-297.
Turner. D.A. A new implementation technique for applicative lan-
guages. Soffw. Pracf. &per. 9 (1979). 31-49.

CR Categories and Subject Descriptors: B.2.1 [Arithmetic and Logic
Structures]: Design Styles-parallel; C.1.2 [Processor Architectures]:
Multiple Data Stream Architectures (Multiprocessors)-parallel proces-
sors; D.1.3 [Programming Techniques]: Concurrent Programming;
D.3.3 [Programming Languages]: Language Constructs--co,rcurre?lt
progranrwirrg strurtures: E.2 [Data Storage Representations]: lit&d
represmfafium: F.1.2 [Computation by Abstract Devices]: Modes of
Computation-parallelisl,t; Cl.0 [Numerical Analysis]: General-
parallel algorithm

General Terms: Algorithms
Additional Key Words and Phrases: Combinator reduction. combina-

tow, Connection Machine computer system, log-linked lists, parallel
prefix. SIMD. sorting. Ultracomputer

Authors’ Present Address: W. Daniel Hillis and Guy L. Steele, Jr.. Think-
ing Machines Corporation. 245 First Street. Cambridge, MA 02142-1214.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct commer-
cial advantage. the ACM copyright notice and the title of the publication
and its date appear. and notice is given that copying is by permission of
the Association for Computing Machinery. To copy otherwise, or to
republish. requires a fee and/or specific permission.

December 1986 Vohnre 29 Number 12 Commukcations of the ACM 1183

