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Machine learning

* Learning from data to make accurate
predictions in the future.
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Training
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Data science

* |nteresting ways of using data, often with
computers, to amaze and delight!

Training Computer Program

data program output




Sensitive training data

e Often, training data is comprised of
sensitive information about individuals.

Sex Age BT BPs BPd ..

Alice 1 25 |0 100 70
Bob 0 32 |2 140 | 90
Charlie ' O 65 |1 90 60

Private database
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machine learning + sensitive information = ?



Using sensitive training data

Sensitive information, f(training data),
want to keep private publicly released or deployed

Alice

Sex Age BT BPs BPd

1 25 0 100 70
Bob 0 32 2 140 90
CCCCCC 0 65 1 90 60

Examples: classify e-mails as spam/ham, detect fraud in credit
card transactions, predict disease susceptibility from DNA, etc.

Want to transform private information into public good!
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Outline for rest of talk

Is machine learning compatible with privacy?
Privacy expectations
Limits of privacy-preserving statistics and ML
Concluding remarks



1. IS MACHINE LEARNING
COMPATIBLE WITH PRIVACY?



Populations and samples

* Goal of machine learning: learn predictive
characteristics about a population.

— Don’t have access to data for entire population,
so use a representative sample (“training data”).

— Privacy risk is with respect to
individuals represented in the sample.
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Populations and samples

0.

Population Training data

P

Generalization: output of Iearningf(training data) is
predictive w.r.t. random individual from population.

Need not be predictive w.r.t. any
particular individual in training sample.



Privacy violations abound

Unfortunately, many standard applications of
machine learning and statistics will, by default,
compromise the privacy of individuals
represented in the sample.




Obvious privacy violations

* |f output includes training data points...

e © ©
e /©
\\OO ® Support
® o O vectors
e/© @
@

Nearest neighbor classifier Kernel-based SVM

Output reveals sensitive information of some (or all)
individuals in the training data.



Subtle privacy violations

* |f output is sensitive to outliers...

Alice 0.2 0.7 0.8 0.4 0.1 0.2

Bob 0.3 0.8 0.7 0.4 0.5 0.3

Charlie | 0.5 0.2 0.3 250 | 0.7 250

Dave 0.6 0.1 0.9 0.5 0.4 0.4

Eve 0.3 0.0 0.5 0.3 0.5 0.5

Mean: 0.38 0.36 0.64 50.32 0.44 50.28

Can reveal information about outlying individuals
(e.g., uniquely identifying features).



Very subtle privacy violations

Cancer group
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Published correlation statistics from GWAS

[Wang et al, 2009]: shows how published GWAS
results reveals whether specific individuals from

the study were in cancer group or




Why is privacy-preserving ML hard?

* Attackers may have access to side-information

* Attackers may have compromised the training
data (e.g., know every row except yours)

In fact, machine learning tools have been
used to compromise privacy!



Netflix challenge data set

e “Attackers” [Narayanan & Shmatikov, 2008] obtained
access to public IMDb movie ratings.

 Partial information about a user suffices to reconstruct
entire row in Netflix data set (all movie ratings).

* Machine learning technique: nearest-neighbor classifiers



2. PRIVACY EXPECTATIONS



What “privacy” can we expect?

 Motivation: “big data” is creating unexpected
privacy harms

— Releasing/deploying predictors trained on private
DBs that predict sensitive attributes.

» Dalenius (1977): access to f(DB) should not
change what an attacker can learn about an
individual in the database.

(DB = training data)



Power of side-information

Many sources of side-information already available to
prospective attackers — this is not going to change.

— e.g., data already available in public records,
prior knowledge/beliefs

Can generate privacy harm from “benign” information
+ side information

— Suppose | know that Alice’s salary is 2x the average salary
in her department.

— Learning about the average salary gives new information
about Alice’s salary.

Upshot: Dalenius’ criterion is not feasible.



Differential privacy

* [Dwork, McSherry, Nissim, & Smith, 2006]

e Similar to Dalenius’ criterion, but feasible.

— Attacker should not learn (much) more fromf(DB)
than fromf(DB — {Alice}).

— Limit increase in potential “privacy harm”.
— How “much” is quantifiable.



Use of randomness

* Critical idea: requirefto use randomization.

— On any input DB, f(DB) is a random variable:
specify a distribution over possible outputs, then
randomly draw from it.

density of f(DB)




Differential privacy (schematic)

w/ Alice’s data

w/ fake data I 22
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Differential privacy (definition)

* Formal definition:
Say f guarantees g-differential privacy if:
for all possible databases DB and DB’ differing

in a single row,

Pr[ f(DB) =t
(1-€) £ — < (1+¢€)
Pr[ f(DB’) =t ]

for all outputs t € range( f ).

[Technically, use exp(-€) and exp(g).]



Attacker’s perspective

If f guarantees differential privacy:

w/ Alice’s data

W - Inferences
about Alice

w/ fake data
Inferences
about Alice




Salary example

* DB := { employee salaries in Alice’s dept.,
each between SO and S1M }.

* dvg := average of salaries in DB.

i f(DB) = gvg not differentially private, trivially
because it is deterministic.



Adding random noise owns o

 What about f(DB) := dvg + random noise?
— Use noise w/ stddevo = SIM /(sn)  (n=|DB|)
— Convenient noise density (“Laplace dist.”):

p(z) o< exp(-|z|/o)
density of f(DB)

dvg



Adding random noise owns o

* This guarantees s-differentially private!

— Replacing Alice’s salary by arbitrary value in range
[0, 1M] can shift mean of f(DB) by < $1M/n.

— Density value can change by factor < exp(e) = 1+¢.

density of f(DB)




Alice’s perspective

If f guarantees differential privacy:

w/ Alice’s salary
Inferences

w A about Alice

w/ fake salary
Inferences
about Alice

Allce has plau5|ble deniability for any inferences
an attacker can make about her salary!




Statistical utility

* Privacy vs. statistical utility trade-offs:
— Best for privacy: just return noise!
— Best for utility: add no noise.

* |f DB is itself a random sample, expect
sampling error to be O(1/Vn).

* Extra noise for privacy has stddev = O(1/n).
— Lower-order than sampling error!

Is privacy essentially free?



Estimating linear classifiers

[Chaudhuri, Monteleoni, & Sarwate '11]
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Estimating principal components

[Chaudhuri, Sarwate, & Sinha ’12]
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3. LIMITS OF PRIVACY-PRESERVING
STATISTICS & ML



Unfortunately, many limits to what
can be done privately

1. Statistical estimation
2. Computational learning
3. Data release



Revisiting the use of random noise

e Recall:

— DB := {salaries, each between SO and S1M };
dvg := average of salaries in DB.;
f(DB) .= @dvg + random noise.

What if 95% of DB

* Noise stddevo = SIM /(e n) <= is < $50K ?
* Noise density: p(z) o< exp(-|z|/o)
density off(DB)

4 |

dvg



Too much noise

* Noise dependence on range can wash out
accuracy of original estimator.

density of f(DB)
95% of DB

dvg
 Some recent progress: “smooth sensitivity”

method, but only for weaker privacy guarantee
[Nissim, Raskhodnikova, & Smith, '07; Chaudhuri & H., ‘12]




Robustness is critical

 Many estimators (e.g., sample mean) are not
very robust.

* Rich literature on robust statistics provides

quantification of estimator robustness:
Gross Error Sensitivity

Theorem [Chaudhuri & H., ‘12]:
Every e-differentially private estimatorf(DB) has

expected error at least
GES /(e n) + inherent statistical error




Robust M-estimators

e Certain classes of M-estimators can be made
differentially-private [Rubenstein et al, ’09; Chaudhuri
et al,'11; Chaudhuri & H., "12].

* Examples: median, trimmed-mean

— Convergence rates of [Chaudhuri & H., ’12] nearly
match lower bounds.



Computational learning

* Probably Approximately Correct (PAC)
Learning [valiant, ‘84]: theoretical framework for
statistical / computational learning

— Together with Vapnik-Chervonenkis theory,
provides basis for almost all modern machine
learning theory

* Basic question: Is PAC Learning possible w/
differential privacy?



Limits of computational learning

* Q: Is PAC Learning possible w/ differential privacy?

— In some special cases, yes
[Kasiviswanathan et al, '08; Blum, Ligett, & Roth, '08;
Chaudhuri & Monteleoni, '08; ...]

— No, in general! [Chaudhuri & H.,’11]

* Key: being insensitive to individual data points (for

the purpose of protecting privacy) harms general
learning capabilities.



No private PAC learning in general

Task: learn a threshold function
h,(x)=1ifx>z, h,(x)=0ifx<z.

Two possible data distributions with
very different optimal threshold functions.

p— L
1 1

0O z 1 0 7z’ 1

A differentially private learning algorithm with
limited data must behave similarly in both cases:
. . fails in at least one of the cases.



Special cases where learning is possible

Low-dimensional problems: many near-
optimal methods for “nice” data distributions.

High-dimensional linear problems: Some

recent progress [Rubinstein, Bartlett, Huang, and Taft,

’09; Chaudhuri, Monteleoni, & Sarwate, '11; Kifer, Smith, &

Thakurta, '12; ...]

— But accuracy suffers significantly for high-
dimensional problems (unless € large).



Private data release

Goal: release “sanitized” version of training data
set (e.g., Netflix)

In some cases, information-theoretically
possible [Blum, Ligett, & Roth, ’08].

Many computational intractability results

[Dwork, Naor, Reingold, Rothblum, & Vadhan, '09; Ullman &
Vadhan, '11]

— Recent progress: [Hardt, Ligett, McSherry, '12]

Inherent limitation: must anticipate the types of
learning algorithms someone might want to run!



4. CONCLUDING REMARKS



Privacy as a first-order criterion

* Many privacy violations discovered in (previously)
unexpected scenarios.
— Lots of work trying to reform privacy law / regulations
to prevent and react to privacy harm.

* Also need technical solutions:
data analysis tools guaranteed to limit privacy
harm.
— Here, mathematical proofs of privacy are essential.

— Challenge: need to understand semantics!
(e.g., how to interpret €?)



Stronger notions of privacy

* Pan privacy [Dwork, Naor, Pitassi, Rothblum, &
Yekhanin, "10]

— Worried that memory of learning algorithm can
be compromised and exposed.

 Local privacy [Kasiviswanathan et al, ’08; Duchi, Jordan,
& Wainwright, "12]

— Don’t even trust the learning algorithm / “data
curator”.

What about weaker (but still non-broken)
notions of privacy?



Privacy and machine learning

 Statistical utility vs. privacy trade-offs
 But there is a third-component: data set size

privacy

statistical utility /\ sample size

— More data = smaller noise — more stat. utility

— How to get more data?
Incentives w/ privacy guarantees?



Questions?



