Section 7.1 The Law of Sines
Law of Sines

If A, B, and C are the measures of the angles of a triangle, and a, b, and ¢
are the lengths of the sides opposite these angles, then
sinA_sinB _sinC

a b C

The ratio of the length of the side of any triangle to the sine of the angle
opposite that side is the same for all three sides of the triangle.

Example 92  Solve triangle ABC if A = 50°, C = 33.5° and b = 76.

Solution We begin by drawing a picture of triangle ABC and labeling it with the given
information. The figure shows the triangle that we must solve. We begin by finding B

(‘u

The sum of the measurements of a

A+ B+ =180 triangle’s interior anglesis 180°.
SO0+ B4 33 57°= 180" A =30°and ¢ = 33.5°,
SIS+ B=180" Add.
B =96 3" Subtract 83.5° from both sides.

Keep in mind that we must be given one of the three ratios to apply the Law of Sines. In this
example, we are given that b = 76 and we found that B = 96.5°. Thus, we use the ratio bssin B, or
76/sin96.5", to find the other two sides. Use the Law of Sines to find a and c.



Find «: Find ¢:

Thisis the known ratio.
a b
sind  sinB c _ b
a 76 sinC sinB
sin50°  sin96.5° c ___76
76sin 50° sin33.5° sin9%6.5°
=——— 559 ] .
sin 96.5° 76smn33.5
c=—T"T"—""=42
sin 96 .5°
The solutton 1 =965, =59 and ¢ = 42
Example 93 Solve a triangle with A = 46°, C = 63°, and ¢ = 56 inches.
Consider a triangle in which a, b, and A are given. This information may result in:
No Triangle One Right Triangle
@ 1% less than A T @ =k and 1% just &
and not long b @ hebsi the right length b T
enough to form =osmA 4o roima right a hA=bsinA
atrianzle. l trianele. l
4 -
Two Triangles One Tedan gle
@ 1% greater than /2 T @ 1% greater than A
and @ 13 less than b and @ 13 greater b a
b Two distct a @ h=hsmA than # One
triangles are l triangle 1s formed.
tormed.

A A




Example 94

Solve the triangle shown with A=36°, B=88° and c=29 feet.

sin36 _ sin88 _ sin56

a b 29
59_1_8
a b 29
l = E so .83b=29 b=3494
b 29
2:ﬁ so .83a=17.11 a=20.61
a 29

Example 95 (no solution)
Solve triangle ABCis A = 75°,a=51,and b="71.
Example 96 (two solutions)

Solve triangle ABC is A = 40°, a= 54, and b = 62.

Area of An Oblique Triangle

The area of a triangle equals one-half the product of the lengths of two sides times the sine of
their included angle. In the following figure, this wording can be expressed by the formulas:

Area =lbcsinA=labsinC =lacsinB
2 2 2

Example 97

Find the area of a triangle having two sides of lengths 24 meters and 10 meters and an included
angle of 62°



Solution The triangle 1s shown m the following tigure Its area 1s halt the
product of the lengths of the two sides tumes the sme of the mcluded angle.

Area= 1 221 0Wsn1 627y =106

the area of the triangle 15 approximately 1 06 square meters.

C

D= 10 meters
027
1
¢ =21 meters

Example 98

Find the area of a triangle having two sides of lengths 12 ft. and 20 ft. and an included angle of
57°.

Solution: 1 1
Area = Ebc sin A = E (12)(20)sin 57

=120*.84 =100.8sq. ft.

Section 7.2 The Law of Cosines

If A, B, and C are the measures of the angles of a
triangle, and a, b, and c are the lengths of the
sides opposite these angles, then

a?=b%?+c?—2bccos A
b?=qg?+c?—2accos B
c2=a?+ b?2—2agb cos C.

The square of a side of a triangle equals the sum of
the squares of the other two sides minus twice
their product times the cosine of their included
angle.

Solving an SAS Triangle



1. Use the Law of Cosines to find the side opposite
the given angle.

2. Use the Law of Sines to find the angle opposite
the shorter of the two given sides. This angle is
always acute.

3. Find the third angle. Subtract the measure of
the given angle and the angle found in step 2
from 180¢.

Example 99

Solve the triangle shown with A = 60°, b = 20, and ¢ = 30.

Stepl  Use the Law of Cosines to find the side opposite the given angle.
Thus. we will find «

a-=h*+ ¢ — 2hccos d Applythe Law of
Cosines to find .

a®= 2074 30— 2(20)30) cos 6O 46=120,2=30,and 4=60°.

= 400+ 900 — 12000 5= "00 Perform the indicated operations.



a= "00 =26 Take the square root of both sides and salve for 2.

Step2 Use the Law of Sines to find the angle opposite the shorter
of the two given sides. This angle is always acute. The shorter ot the
twogivensides s h =20 Thus.we will find acute angle B

b a

sinB sinA

20 /700

sinB  sin60°

<700 sin B = 20sin 60°

20s1in60°
sin B = =~ (.6547
V700
B=4T

Step3 Find the third angle. Subtract the measure of the given angle and
the angle found in step 2 from 180°.

C=180"—4—B=180"—60"= 4= "9
Thesolutionis g =26.B=41". and ("= "9~

Solving an SSS Triangle

1. Use the Law of Cosines to find the angle
oppositethe longest side.

2. Usethe Law of Sines to find either of the
two remaining acute angles.

3. Findthe third angle. Subtract the
measures of the angles found in steps 1
and 2 from 180¢.



Example 100
Solve the triangle ABCifa=6,b=9,c=4.

Step 1: Use the Law of Cosines to find the angle opposite the longest side.

b* =a*+c*—2accos B Solve for cosB
2 2 2
a +c —-b ) .
cosB=—— Enter your given side values
2ac
29 ) . ) .
cosB = _E Since the cosine is negative, B is obtuse

B=cos™ (—gj =127.2
48

Step 2: Apply the Law of Sines

Step 3: Find the third angle by subtraction.
Example 101 Applying Law of Cosines
Two airplanes leave an airport at the same time on different runways. One flies at a bearing of

N66°W at 325 miles per hour. The other airplane flies at a bearing of S26°W at 300 miles per
hour. How far apart will the airplanes be after two hours?

Solution After two hours the plane tlving at 325 TN

miles per hour travels 325 - 2 muiles. or 6530 muiles. W«—{——E
Suntlarly the plane tlving at 300 muiles per hour S
travels 600 miles. The situationis llustrated inthe L N
figure.

Let b = the distance between the planes atter two
hours We canuse a north—south line to tind angle B L
mtriangle 4BC Thus. i koI
s

=
600 miles

B=180"— 66" — 2G% = 88"

We now have g = 630, ¢ = 600, and B = 88+,



Solution We use the Law of Cosines to find A m thus SAS situation

h=a*+c?—2accos B Applythe Law of Cosines.
h = G307+ GO — 260G cos S8 Substitute:a= 650,c¢ =600, and B=88°.

After two hours. the planes are approximately 869 miles apart.

Heron’s Formula

The area of a triangle with sides a, b, and c is

Area = \/s(s —a)(s—b)(s—c)

1
s=—(a+b+c
2( )

Example 102 Using Heron’s Formula

Use Heron’s formula to find the area of the given triangle:
a=10m, b=8m, c=4m

1
SZE(aJ’bJrC) Areaz\/s(s—a)(s—b)(s—c)
5= (10+8+4) =11(11-10)(11-8)(11~4)

5= l(22) =11 = \/1 1(DB)(7) =231 sq.m.
2




Section 7.3 Polar Coordinates

nole i
| polar_xis

Polar axis
= -

The Sign of r and a Point’s Location in Polar Coordinates:

The point P = (r, 6) is located Il units from the pole. If » > 0, the point lies on the terminal side
of 8. If r < 0 the point lies along the ray opposite the terminal side of 8. If » = 0 the point lies at
the pole, regardless of the value of 6.

Example 103

Plot the points with the following polar coordinates:
a. (2, 135°)

Solution 90°

a. To plotthe powmt (7. 6) = (2. 1357,
begiwiththe | 357 angle Because
135715 a posttive angle. draw 6=
1357 counterclockwise from the

polaraxis. Now considerr= 2.

Because s -0, plot the pomt by
going out twounits on the terminal
side of & Frgure (a) shows the
point.

270°




Multiple Representations of Points

In the rectangular coordinate system a point is uniquely represented by its x and y
coordinates; however, this is not true for polar points. They have many representations:

If n is any integer, the point (r, ) can be represented as

r,0=@r,60+2nn) or (r,O=(r,0+n+2nm

Example 104 Find another representation of (5,%) in which:

a. r >0and 2r<@<4rx
b. r<0and 0<8<27

Relations between Polar and Rectangular Coordinates

 COS (L) y P=(r.&=(xy)

X

-
-

y=rsin 6 ,

¥+ yz _ 0 9
)
tan &="/x ¥

Example 105 Find the rectangular coordinates for the following polar points:

a. (3.7)

b, (—mﬂj
6



Converting a Point from Rectangular to Polar Coordinates
(r>0and 0<0<2m)

1. Plot the point (x, y).

2. Find r by computing the distance from the origin to (X, y).

3. Find 0 using tan 0= y/x with 6 lying in the same quadrant as (x, y).
Example 106

Find the polar coordinates of a point whose rectangular coordinates are (2, 4)

Solution:

1":\/Jt'2+y2 22+ 4% = J20=2.5

ang-2 -4 -2
x 2

=11
(24/5,1.1)

Example 107

Find the polar coordinates of a point whose rectangular coordinates are (0, -4)

Example 108 Converting an equation from Rectangular to Polar Coordinates

Convert 2x-y=1 to a polar equation.

Solution: Ix — y = 1
2rcos@ —rsmmd =1
r(2cos@ —smmd)=1
B 1
- 2cos0—sin0

¥



Converting Equations from Polar to Rectangular Form

Recall: )
X =1rcos 7
y=rsmnd
s =g
tan #="/x

We will use the above relationships to rewrite polar equations into rectangular form.
Example 109 Convert each polar equation to a rectangular equation in x and y:

a. r=4
b. 0:3—”
4

c. r=secl
Section 7.4 Graphs of Polar Equations
Using Polar Grids to Graph Polar Equations

Recall that a polar equation is an equation whose variables are r and e. The graph of a polar
equation is the set of all points whose polar coordinates satisfy the equation. We use polar grids
like the one shown to graph polar equations. The grid consists of circles with centers at the pole.
This polar grid shows five such circles. A polar grid also shows lines passing through the pole, In
this grid, each fine represents an angle for which we know the exact values of the trigonometric
functions.




One method of graphing polar equations is to use point plotting. We will create a table of values
just as we do with graphs in x and y.

Example 110

Graph the polar equation r = 4 cos @with @in radians.

Solution We construct a partial table of coordimates usimg multiples of * 6.
Thenwe plot the pomts and jom them with a smooth curve, as shown.

o r=4cos @ (r. &

0 dcosO=4+1=4 +.0)

6 | Jeogmoe =43 2=2 3=35% (3.5.76)

3 | deosma=4e12=4 (2.73)

n2 | dcosma=4+0=0 (0.7 2)

Ypa | dcos2ma=4(-12)=-2 (-2 23

Spe | 4cosSmoe=d(- i3 2)=2 3=-3% (-3.3.576)
eos m=H-1)= -4 (4. m)




Circles in Polar Coordinates

The graphs of
r=acos @and r=asmé
Are circles.
r=acos 6@ r=asmé

2 2
A 4

o

Testing for Symmetry in Polar Coordinates (failure does not indicate a lack of symm.)

To test or symmetry with respect to the x-axis, replace 8 with —6.

To test or symmetry with respect to the y-axis, replace (r,8)with (-r,—8).
To test or symmetry with respect to the origin, replace r with —r.
Example 111

Check for symmetry and then graph the polar equation: r = 1 - cos 6.

Solution We apply each of the tests tor svnunetiv



Polar Axis: Replace 8bv— Gmr=1- cos 6

r=1-—cos(— &) Replace & by — @inr =1 — cos 8.

r=1— cos & The cosine function is even: cos (— #)=cos 6.
Because the polarequation does not change when @1s replaced by — 6. the
graplis svmmetric withrespect to the polaraxis.

The Line 6= "/2: Replace (r. O by (—.— O mr=1—cos @

—r=1— cos(—6) Replace rby —rand @by —@in —r= 1 — cos(— 8).
—r=1—cos 6 cos(— @)= cos 8.
r=cos 8- 1 Multiply both sides by —1.

Because the polarequationr =1 — cos Gchangestor=cos @— | when (r. 0)1s
replaced by (—r. — @), the equation fails this symmetiy test. The graphmay of

may not be svnunetrie withrespect to the line 8= /2.

The Pole: Replacer by —rmr=1-cos 6

—r=1-cos @ Replace r by -1,

r=cos 6—1 Multiply both sides by —1.
Because the polarequationr =1 — cos Ochanges tor = cos - | whenr s
replaced by —r. the equation fatls this svmmetry test. The graphmay or may
not be svmmetric withrespect to the pole.

Nowwe are ready to graphir = | — cos @ Because the period of the
cosine tunction s 2r, we need not consider values of @beyvond 2. Recall that
we discoveredthe graph of the equationr =1 — cos Ghas svmmetiy with
respect to the polaraxis. Because the graph has symmetiy. we may be able to
obtaina complete graphwithout plotting poits generated by values of 8trom
Oto 2m Let's start by finding the values ot 7 for values of @trom O to



0|0 lns |73 |m: |27 |*ne | @
¥ O [013 |00 [ L0 | L5350 |1

e
-1
-+

The values tor r and @are m the

table. Examune the graph. Keep i mund
that the graphimust be symmetric with
respect to the polar axis,

Thus. it we retlect the grapl from the last slide about the polar axis, we will
obtamna complete graphof =1 — cos 6. shown below

T
ot ol
ig 3 3
4 4
T T
6 6
T > 0
3 s
6 6
i il
4 4z sq o
3 3

i
2

Example 112 Graph r =1+2sin @ (use symmetry to assist you)



LLimacons

The graphs of
r=a+bsm6 r=a—-bsmnéb,
r=a+bcos@ r=a—bcos@ a>0,b>0
are called limacons. The ratio “/» determines a limacon's shape.

Inner loop if 4/5<1 Heart shapedif%/6=1 Dimpledwithnoinner No dimpleandno inner
and called cardiods loopifl<%/p<2 loop if%/b > 2.
H ¥ ¥ 3
Ei 3 5 il

Example 113

Graph the polar equation
y=2+3cos6



Rose Curves

The graphs of

r=asmn@ and r=acos n@, adoesnotequal,
are called rose curves. If 7 1s even, the rose has 2 petals. If 7 1s odd, the
rose has n petals.

r=asmnloé r=acos 36 r=acos 46 r=asmso
Rosecurve Rogecurve Rogecurve Rogecurve
with 4 petals with 3 petals with 8 petals with 5 petals
7 7 7
Y b
n=4
QO N
g9 . |
n= 2 1|
5 5 il

Example 114

Graph the polar equation y=3sin20



LLemniscates

e Thegraphsofr’=a?sin2¢ andr’ = a?
cos 26 are called lemniscates

S Sa

Lemnisgate:

r2=a2cos 20

Example 115

Graph r* =4sin 26



Section 7.5 Complex Numbers in Polar Form; DeMoivre’s Theorem

The Complex Plane

We know that a real number can be representedas a pownt ona number line.
By contrast, a complex number = = a + b7 15 represented as a powt (. h) i a
coordmate plane, shownbelow The horizontal axis ot the coordinate plane 13
called the realaxis. The vertical axis 1s called the imaginary axis. The
coordmate svstem ts called the complex plane Every LOlllPlC\ number
corresponds toa point 1 the complex plane and every point 1 the complex
plane corresponds to a complex number.

Doagmary
axis
4

f > Real axis

I3

Example 116

Plot m the complex plane:
a z=3+4 b -=-1-24

Solution

o  Weplotthe complex numberz =3+ 4i <t

the same way we plot (3. 4) 1 the
rectangular coordmate system. We
move three units to the right on the real
axts and tour unats up palallel to the

— kR ke th
3

—
—
e
[
=

L]

unauulan axiIs. a4 o3

e Thecomplex numberz=-1 —2j

corresponds to the powmt (-1, -2) m the
rectangular coordmate system Plot the v
t.0111ple\ number by mov g one unit

to the left on the real axis and two
units down parallel to the magimary
ax1s.

' | i
hode M




The Absolute Value of a
Complex Number

e The absolute value of the complex number
a+biis

Z|:|a+bi|:\/az+b2

Example 117

Determine the absolute value of of each of the following complex numbers:

a. z=5+12i
b. z=2-3i
Example 118

Determine the absolute value of z=2-4i

|z| =|a+bi|=\/a2 +b’
=22+ (—4)? =4 +16
=420=2V5



Polar Form of a Complex
Number

The complex number a + bi is written in polar form as
z=r(cos f+isin O)
whereg=rcos &,b=rsin &, r=+a +b”and tan
t=b/a The value of ris called the modulus (plural:
moduli) of the complex number z, and the angle ¢

is called the argument of the complex number z,

withO< < 2rx

Example 119
Plot - = -2 — 27 1 the complex plane. Thenwrite - m polar form.
Solution The complex number - = -2 — 27, graphed below. 15 1 rectangular

torma + A7, witha = -2 and b = -2 By detuution. the polar form of = 15 r(cos
H+17 s &) We need to determine the value tor r and the value tor ¢.
wcluded i the tigure below.

Imagmary
axis

A

v 4

:/-:\e= . : . Real

T oaxis

(]
[




r=Nat+b> =(=2) +(=2) =Jd+4 =8=242

5 5
z=r(cos@+isinf) = 2@(608% +isinf)

Example 120 Writing a complex number in rectangular form:
Write z= 4(Cos 30°+isin 30°) in rectangular form.

Solution: The complex number z is in polar form, with r =4 and @ =30°. All we have to do is to
evaluate the trigonometric functions in Z to get the rectangular form.

Thus z =4(cos30°+isin30°) = 4(§+i%] =23 +2i



Product of Two Complex

Numbers in Polar Form
Let z, = r, (cos O+ isin @ ;) and
Z,=1r,(cos @,+isin @) be two
complex numbers in polar form. Their
product, z,z,, is
Z,Z,=ryr,(cos(0,+0,)+isin(0,+0),))
To multiply two complex numbers,
multiply moduli and add arguments.

Example 121

Find the product of the complex numbers Leave the answer in polar form.
5= Heos SO07+7smd07) o, = T{cos 100+ 7 s 1007)

Solution
-1-2

= [Hcos 307+ 7 s SON][T(cos LOO"+7 511 1007)]
= (4 D[cos (307+ 1007+ 7 s (307 + [00™)]

= 28(cos 1307+ 7 sin 1 507



Quotient of Two Complex
Numbers in Polar Form
Letz, = r; (cos &, +isin &) andz, = r, (cos &,
+1isin &,) be two complex
numbersin polar form. Their quotient, z,/z,,

Zis_ h [cos(6, —O,)+isin(6, —6,)]

Z, K

To divide two complex numbers, divide
moduli and subtract arguments.

Example 122

Find the quotient of the complex numbers and leave your answer in polar form:

Z =50(c0s4—”+isin4—ﬁj and z, =5(cos£+isin£j
3 3 3 3



DeMoivre's Theorem

e Letz=r(cos &+isin ¢) beacomplex
numbersin polarform. If nis a positive
integer, z to the nth power, 2", is

z" =|r(cos @ +isin O)|"

=r"(cos n@+isin no)

Example 123

Find [2 (cos LO7+7 s LOTY]® Wiite the answer m rectangular forma + b
Solution By Delloivre’s Theoren,

[2(cos 07 +7sm 10M)]°

Raise the modulug to the 6 power and multiply

= 20cos (6 10N +7sm(6 - 107)] the arqument by 6.

= G4 cos 607+ 7 511 607) Sumplify-
A3
=64 E+ '? Write the answer i rectaneular form.
=32+32 -\/51' Multiphy and express the answer m « + bi form
Example 124

\8 . .
Find (1+l) and write your answer in rectangular form.



DeMoivre’s Theorem for
Finding Complex Roots

e Let m=r(cost+isint}) be a complex number
in polar form. If ®=0, ®» has n distinct
complex nth roots given by the formula

] 0+360k) . (0+360k
zkzx/; cos| ——— [+ism| ———

n n
where k=0123,...n—1

Example 125

Find all the complex fourth roots of 81(cos602+isin602)

Solution:
. :W{Cos(tsw360kj+isin(0+360kﬂ

n n
* *
:@{Cos(wiw 0j+ism(6o+’i6o oﬂ

=3(cos15 +isinl5%)

* *
={‘/ﬁ{cos(60+i60 1j+isin(6o+z6o 1)}

=3(cos105° +isin105%)
=3(cos195° +isin195%)
=3(cos 285" +isin285")




Example 126
Find all of the cube roots of 8 and express your answers in rectangular form.

Solution: Since DeMoivre’s Theorem applies for the roots of complex numbers in polar form, we need
to first write 8 into polar form.

8=r(cos@+isin@)=38(cos0°+isin0°)

% %k
2 zi/g[cos(—o—i_z;[ Oj+isin(—0+237[ 0

| I

% %k
Z zi/g[cos(—o—i_if[ 1j+isin(—0+237[ 1)

%k %k
Z, zi/g{cos(—o-l_z;’ 2j+isin(—0+23ﬂ- 2

I

Section 7.6 Vectors



Directed Line Segments and
Geometric Vectors

Alme segment to wlich a direction has been assigned 1s called a directed Line
segment. "The tigure below shows a directed line aeument form P to @ We call
P the initial point and O the terminal point. We denote this directed [ie

segment by O
Q
PG

f - . . . - -
The maguitude of the directed line segment 2O 1s 1ts length We
denote thus by || PO Thus, || PO 1s the distance from pomt 2 to pomt O
Because distance 1s nonnegative. vectors donot have negative magnitudes.

Geometrically. a vector s a directed line segment. Vectors are often
denoted by a boldface letter. such as v If a vector v hias the same magnitude
and the same direction as the directed line segment PO we write

verg

The direction of a vector is determined by the slope of the line segment that connects the initial and
terminal points of the directed line segment, so in order to find the direction of a vector, use the slope

formula:

Direction of a vector =

Example 127

Vector U has initial point ( -3, -3) and terminal point (0, 3). Vector V has initial point ( 0, 0) and terminal
point ( 3, 6). Show that vectors V and U are equal (i.e. -show they have the same magnitude and

direction).

Component form of a Vector

Since for each vector there are an infinite number of equivalent vectors (vectors that have the same
magnitude and direction), it is convenient to be able to use one vector to represent all of them. We will



position this representative vector’s initial point at the origin. We will call this placement standard
position.

Since every vector in standard position will have initial point (0, 0), vectors in standard position can be
uniquely represented by their terminal point. This we will call the component form of the vector v.

Component form of vector v = <vl, v2>
*Note the zero vector is denoted by 0 = <0,0>

To write a vector into component form, simply subtract the x values of the terminal points and the initial
points to get the x component of the vector, and then do the same for the y values:

Component Form of a Vector

The component form of a vector with initial point P = (pl, pz) and terminal point Q =

(ql’qZ) is given by @:<ql — DP9 —p2>=<vl,v2>=v

The magnitude then becomes: ||v|| = \/vlz + \/22

Note: if the magnitude of a vector is equal to one, it is said to be a unit vector.

Example 128 Find the component form and magnitude of the vector v that has initial point (4, -7) and
terminal point (-1, 5).

Vector Operations:

Two common operations performed on vectors are scalar multiplication and vector addition.

Addition
Let u :<ul,u2>and v:<vl,v2>
The sumofu+v= <u1+Vl,”z+Vz>

Scalar Multiplication

Let k be a scalar (some real number)

Then k times u is the vector ku = <ku1,ku2>




Vector Multiplication

If kis a real number and v a vector, the vector kv is
called a scalar multiple of the vector v. The
magnitude and direction of kv are given as
follows:

The vector kv has a magnitude of |k| | |v|]. We
describe this as the absolute value of k times the
magnitude of vector v.

The vector kv has a direction that is:
the same as the direction of vif kK > 0, and
opposite the direction of vif k <0

The Geometric Method for
Adding Two Vectors

A geometric method for addmg two vectors 1s shown below The sum ot u+ v
s called the resultant vector Here 1s how we find this vector

1. Positionu and v so the terminal point of w extends from the mitial
powmfofv.

Lo

The resultant vector. u + v, extends trom the mitial pomt ot u to the
terminal pomtotv.

Resultant vector
.,'Y.
Terminal point of v |

u+v

& u



Example 129 Let v = <—2,5> andw= <3, 4> , and find each of the following vectors.

a. 2v b.w-v C.V+2w d.2v-3w

Properties of Vector Addition and Scalar Multiplication
1. u+v=v+u
2. (U+v)+w=u+(v+w)
3. u+0=u
4., u+(-u)=0
5. c(du) = (cd)u
6. (c+d)u=cu+du
7. c(u+v)=cu+cv

8. 1(u)=u,0(u)=0

Yo

 Jevl=lellM

Unit Vectors

In many applications of vectors it is useful to find something called a unit vector that has the
same direction as some given vector. Recall that a unit vector is just a vector that has a
magnitude of one. To find a unit vector in the same direction as some other vector, v, we

simply divide v by its magnitude (think scalar multiplication by 1/||v||) .

Unit vector in the direction of v= — —<vl,v2>

v

% 1
|

Example 130 Find a unit vector in the direction of v=<-2, 5 > and verify it has a magnitude of 1.



The unit vectors <1, 0> and <0, 1> are called the standard unit vectors and are denoted by:

i=(1,0) and j=(0,1)

e
T

Any vector can be written as a linear combination of the i and j vectors, for example:

v=<vl,v2>=v1 <1,O>+v2 <0,1>=vli+v2j

The scalars v, and v, are called the horizontal and vertical components of v respectively.

***Note: a linear combination is an expression constructed from a set of terms by multiplying each term
by a constant and adding the results together.
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maltiple of i. Figure 6.55 Using vector addition, vector v

iz represented as v o= mi + 4j

Representing Yectors in Rectangular Coordinates
Vector v, from (0, 0) to (a, £, is represented as
v = agi + bj.
The real numbers a and b are called the scalar componenis of v. Mote that
= g is the horizontal component of v, and
= b is the vertical component of v.

The vector sum ai + 5j 1s called a limear combination of the vectors i and j.
The magnitude of v = gi + bj is given by

vl = VW a® + b2.

Example 131 Let u be the vector with initial point (5, 9) and terminal point (-1, 4), write u as a linear

combination of the i and j vectors.

Adding and Subtracting Vectors in Terms of i and |
Ifv = aji + byjand w = gsi + hsj, then

v+w=(a +ali+ (b +hl)
YW= Ila —ai+ (b — &)

Example 132 Let u =—3i+7j and v =3i—8j then Find 2u - 4v



Direction Angles

If u= <x, y> is a unit vector such that @is the angle measured from the positive x —axis to u, the

terminal point of u lies on the unit circle and you have:

u= <x, y> = <cos 6,sin 49> =(cos@)i+(sinf)j

1 (x,y) =
(cosO,sinB)
F
L y
0
1 x 1
1

If v =ai+ bjis any vector with direction angle @ measured from the positive x —axis, we can write:

v=ai+bj= ||v|| <cos 0,sin 49> = ||v|| (cos 0)i + ||v|| (sin@)j

Since v=ai+bj= ||v||<cos 0,sin 6’> = ||v||(cos 0)i +||v|| (sin @) j , we can see that the direction angle 8

sinf ||v|| (sin) b
cos@ ||v||(cos o) a

for v can be found by using the expression : tan @ =

Thus by using inverse tangent we get theta: tan™'(b/a) =6

Example 133 Find the direction angle for each of the vectors: v = 2i + 2j and w = 3i — 4j



Writing a Vector in Terms of Its Magnitude and Direction

Let v be a nonzero vector. If 818 the direction angle measured trom the positive
x-axis to v, then the vector can be expressed in terms of its magnitude and
direction angle as

v = |v| cos #i + |v| sin 8.

Applications

Example 134 Find the component form of the vector that represents the velocity of an airplane
descending at a speed of 100 miles per hour at an angle of 30 degrees below the horizontal.

Solution: 100(cos210)i + 100(sin2109)j = <—50J§,—50>



