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Machine Learning Meta-Challenges

‣ Increasing Model Complexity  
More flexible models have more parameters.!

‣ More Sophisticated Fitting Procedures  
Non-convex optimization has many knobs to turn.!

‣ Less Accessible to Non-Experts  
Harder to apply complicated techniques.!

‣ Results Are Less Reproducible  
Too many important implementation details are missing.  



Example: Deep Neural Networks

‣ Resurgent interest in large neural networks.!
‣ When well-tuned, very successful for visual object 

identification, speech recognition, comp bio, ...!
‣ Big investments by Google, Facebook, Microsoft, etc.!
‣ Many choices: number of layers, weight regularization, 

layer size, which nonlinearity, batch size, learning rate 
schedule, stopping conditions



Search for Good Hyperparameters?

‣ Define an objective function.  
Most often, we care about generalization performance.  
Use cross validation to measure parameter quality.!

‣ How do people currently search? Black magic.  
Grid search  
Random search  
Grad student descent!

‣ Painful! 
Requires many training cycles.  
Possibly noisy.



Can We Do Better? Bayesian Optimization

‣ Build a probabilistic model for the objective.  
Include hierarchical structure about units, etc.!

‣ Compute the posterior predictive distribution.  
Integrate out all the possible true functions.  
We use Gaussian process regression.!

‣ Optimize a cheap proxy function instead.  
The model is much cheaper than that true objective.

The main insight:!
Make the proxy function exploit uncertainty to balance 

exploration against exploitation.
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Today’s Topics

‣ Review of Gaussian process priors!
‣ Bayesian optimization basics!
‣ Managing covariances and kernel parameters!
‣ Accounting for the cost of evaluation!
‣ Parallelizing training!
‣ Sharing information across related problems!
‣ Better models for nonstationary functions!
‣ Random projections for high-dimensional problems!
‣ Accounting for constraints!
‣ Leveraging partially-completed training runs

Jonathan Lorraine

Jonathan Lorraine
The crossed out material is not necessary to cover in tutorial. 



Gaussian Processes as Function Models

Nonparametric prior on functions specified in 
terms of a positive definite kernel.
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Gaussian Processes

‣ Gaussian process (GP) is a distribution on functions.!

‣ Allows tractable Bayesian modeling of functions 
without specifying a particular finite basis.!

‣ Input space (where we’re optimizing) !

‣ Model scalar functions  !

‣ Positive definite covariance function!

‣ Mean function   

X

f : X ! R

C : X ⇥ X ! R

m : X ! R



Gaussian Processes

Any finite set of      points in    ,                induces a 
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on      , taken to be the distribution on   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Gaussian Processes

‣ Due to Gaussian form, closed-form solutions for many 
useful questions about finite data.!

‣ Marginal likelihood:!

!

‣ Predictive distribution at test points                 :!

!

!

‣ We compute these matrices from the covariance:

ln p(y |X, ✓) = �N

2
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Examples of GP Covariances
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GPs Provide Closed-Form Predictions
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Using Uncertainty in Optimization

‣ Find the minimum:!

‣ We can evaluate the objective pointwise, but do not 
have an easy functional form or gradients. !

‣ After performing some evaluations, the GP gives us 
easy closed-form marginal means and variances.!

‣ Exploration: Seek places with high variance.!

‣ Exploitation: Seek places with low mean.!

‣ The acquisition function balances these for our proxy 
optimization to determine the next evaluation.

x? = argmin
x2X

f(x)



Closed-Form Acquisition Functions

‣ The GP posterior gives a predictive mean function           
and a predictive marginal variance function  !

!

‣ Probability of Improvement (Kushner 1964):!

‣ Expected Improvement (Mockus 1978):!

‣ GP Upper Confidence Bound (Srinivas et al. 2010):

aPI(x) = �(�(x))

�(x) =
f(xbest)� µ(x)

�(x)

aEI(x) = �(x)(�(x)�(�(x)) +N(�(x) ; 0, 1))

µ(x)

�2(x)

aLCB(x) = µ(x)� �(x)



Probability of Improvement
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Expected Improvement
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GP Upper (Lower) Confidence Bound
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Distribution Over Minimum (Entropy Search)
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Illustrating Bayesian Optimization
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Why Doesn’t Everyone Use This?

‣ Fragility and poor default choices.  
Getting the function model wrong can be catastrophic.!

‣ There hasn’t been standard software available.  
It’s a bit tricky to build such a system from scratch.!

‣ Experiments are run sequentially.  
We want to take advantage of cluster computing.!

‣ Limited scalability in dimensions and evaluations.  
We want to solve big problems.

These ideas have been around for decades.!
Why is Bayesian optimization in broader use?



Fragility and Poor Default Choices

‣ Covariance function selection 
This turns out to be crucial to good performance.  
The default choice for regression is way too smooth.  
Instead: use adaptive Matèrn 3/5 kernel.!

‣ Gaussian process hyperparameters  
Typical empirical Bayes approach can fail horribly.  
Instead: use Markov chain Monte Carlo integration.  
Slice sampling means no additional parameters!

Ironic Problem:!
Bayesian optimization has its own hyperparameters!



Covariance Function Choice
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Choosing Covariance Functions

Structured SVM for Protein Motif Finding  
Miller et al (2012)
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MCMC for GP Hyperparameters
‣ Covariance hyperparameters are often optimized rather than 

marginalized, typically in the name of convenience and efficiency.!
‣ Slice sampling of hyperparameters (e.g., Murray and Adams 2010) is 

comparably fast and easy, but accounts for uncertainty in length 
scale, mean, and amplitude.!

‣ Integrated Acquisition Function:!
!

!

!

!

‣ For a theoretical discussion of the implications of inferring 
hyperparameters with BayesOpt, see recent work by Wang and de 
Freitas (http://arxiv.org/abs/1406.7758)

â(x) =

Z
a(x ; ✓) p(✓ | {xn, yn}Nn=1) d✓

⇡ 1

K

KX

k=1

a(x ; ✓(k)) ✓(k) ⇠ p(✓ | {xn, yn}Nn=1)

Snoek, Larochelle & RPA, NIPS 2012

http://arxiv.org/abs/1406.7758


Integrating Out GP Hyperparameters

Posterior samples 
with three different 

length scales

Length scale specific 
expected improvement

Integrated expected 
improvement



MCMC for Hyperparameters
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Jonathan Lorraine
The original source for these slides has advanced topics beyond this point.  If interested please reference: 

https://www.iro.umontreal.ca/~bengioy/cifar/NCAP2014-summerschool/slides/Ryan_adams_140814_bayesopt_ncap.pdf


