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Abstract

Dynamic irregular triangulated meshes are used in adaptive grid partial di�erential

equation (PDE) solvers, and in simulations of random surface models of quantum grav-

ity in physics and cell membranes in biology. Parallel algorithms for random surface

simulations and adaptive grid PDE solvers require coloring of the triangulated mesh, so

that neighboring vertices are not updated simultaneously. Graph coloring is also used

in iterative parallel algorithms for solving large irregular sparse matrix equations. Here

we introduce some parallel graph coloring algorithms based on well-known sequential

heuristic algorithms, and compare them with some existing parallel algorithms. These

algorithms are implemented on both SIMD and MIMD parallel architectures and tested

for speed, e�ciency, and quality (the average number of colors required) for coloring

random triangulated meshes and graphs from sparse matrix problems.



1 Introduction

Many simulations in computational science discretize the continuum world as a triangulated

mesh. This is particularly common for partial di�erential equation (PDE) solvers [?, 6].

These meshes are irregular and often adaptive, that is, they change during the course of the

simulation [13]. For example, in computational 
uid dynamics, the simulation of air
ow

over an airplane would use a �ner mesh in turbulent regions and a coarser mesh in regions of

laminar 
ow. The positions of these regions are not known initially, but must be identi�ed

during the course of the simulation.

Such dynamic, irregular triangulated meshes also occur in models of 
uctuating two-

dimensional surfaces, such as cell membranes and lipid bilayers [21, 9, 4]. In this context the

mesh is referred to as a dynamically triangulated random surface (DTRS). The same type of

DTRS models have recently generated a lot of interest among physicists as discrete models

of string theory and quantum gravity that are amenable to numerical computation [9, 4, 2].

String theories are quantum �eld theories in which the fundamental particles are tiny one

dimensional strings, rather than points with no dimension. In this case the two-dimensional

surface modeled by the triangulated mesh is the world-sheet swept out by the string in some

higher dimensional space-time (the embedding space).

Numerical calculations for these models involve integrating over all possible instances

of the DTRS. This is done using a Monte Carlo technique [3, 17], which generates a new

DTRS at every iteration. If we describe the mesh in terms of an undirected graph with

vertices and edges, then the Monte Carlo update of the mesh is achieved using two basic

operations [2]: the update (or \
ip") of an edge of the graph, which changes the structure

of the graph (see Figure 1); and the update of the variables associated with a vertex of the

graph, which, for example, might be the position of the vertex in the embedding space, in

which case the update is just a \move" of the vertex (see Figure 2). These two updates are

su�cient to generate all possible triangulated meshes [2, 4].
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Figure 1: The operation of updating an edge, a \
ip".

In DTRS simulations, both the vertex and edge update operations are generally done

using the Metropolis Monte Carlo algorithm [2, 3, 17]. The update of the variables on

each vertex depends only on the values at neighboring vertices.1 The Metropolis algorithm

requires that dependent (neighboring in this case) values cannot be updated simultaneously

(i.e. in parallel).

1In general this will also depend on next-nearest neighbor vertices, but for simplicity we will consider

only the nearest neighbor problem. The general case is a simple extension of this problem.
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Figure 2: The operation of updating a vertex, a \move".

This is also the case for PDE solvers that use an iterative Gauss-Seidel algorithm,

which has much better convergence properties than a Gauss-Jacobi algorithm for which

all variables are updated simultaneously [6, 7, 14]. For a regular square grid, a parallel

Gauss-Seidel algorithm can be easily implemented by using a red/black (or checkerboard)

partitioning of the grid points, and updating (in parallel) all the black points, and then

all the red points [14]. For the case of an irregular triangulated mesh, a similar approach

requires partitioning the vertices into sets such that no set contains a pair of neighboring

vertices.

This is the well-known graph coloring problem. An undirected graph G is a set of vertices

V and a set of edges E. The edges are of the form (i; j) where i; j�V . A coloring of a graph

G is a mapping c : V ! f1; 2; : : : ; sg such that c(i) 6= c(j) for all edges (i; j)�E. c(i) is

referred to as the color of vertex i. Vertices i and j are said to be neighbors if (i; j)�E. The

number of vertices is denoted by V .

Note that for the DTRS simulations, we are updating both the vertices and the edges,

so for a parallel implementation we need a vertex coloring and an edge coloring. In this

paper we will concentrate solely on the problem of coloring the vertices of a graph.

We would like to speed up the graph coloring part of these algorithms by doing the

coloring in parallel. However our goal is to reduce the run-time for the whole computation.

There is a trade-o� here between the time spent in coloring the graph and in updating

the edges and vertices of the graph. For an adaptive grid PDE solver, many updates

will generally occur between adaptive re�nements of the graph which require a new graph

coloring. In this case the percentage of the time spent in coloring the graph is very small, so

it is worth spending more time to get a better coloring, which should improve the parallelism

and reduce the update time. However for a DTRS simulation, every iteration involves an

edge update, which changes the structure of the underlying graph, so the graph must be

re-colored after every iteration. The graph coloring could therefore provide a substantial

overhead unless it is much faster than the update time. In this case we are mainly interested

in speed, and may be willing to make do with a good coloring, rather than a better coloring

which takes much longer. We are therefore interested in studying and comparing a variety

of parallel graph coloring algorithms.

Graph coloring is also used in many other applications, such as time-tabling and schedul-

ing [27, 5], optimizing the calculation of sparse Jacobian matrices in PDE solvers [8], and

parallel Gauss-Seidel algorithms for solving non-linear algebraic equations on irregular grids

such as power networks [18]. Graph coloring can also be used to extract the greatest amount

of parallelism in computing and applying a pre-conditioner for parallel iterative sparse ma-
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trix algorithms such as conjugate gradient, and parallel coloring algorithms have been im-

plemented for this purpose [20, 19]. For these problems the graph to be colored does not

change, so the coloring only needs to be performed once.

For most of the applications mentioned above, �nding a good graph coloring with a

small number of colors is only part of the problem. We must also be concerned with load

balancing, since each coloring is followed by an update step in which the variables associated

with vertices of the same color are updated in parallel. Thus we need also to ensure that

the number of vertices of each color on every processor is approximately the same, in order

to obtain good load balance in the update step. Our goal is therefore not just to obtain a

good coloring, but to obtain a balanced coloring, that is, to minimize the number of colors

required taking into account the load balance constraint, that the number of vertices of

each color be approximately the same on every processor. It may be advantageous to make

do with a larger number of colors if this makes the load more evenly balanced. We will

concentrate on the �rst of these two goals, optimal graph coloring and suggest how the

algorithms presented may be modi�ed to achieve balanced graph coloring.

2 Graph Coloring Algorithms

2.1 Previous Work

The problem of sequentially coloring an arbitrary graph has been studied extensively [5,

22, 24]. A 4-coloring is known to exist for any planar graph [1], but non-planar graphs

may require a larger number of colors. Finding a coloring of a graph using the minimal

number of colors is known to be an NP{Hard problem [15]. A simpler problem is to color the

graph using a small number of colors, not necessarily the minimum. A number of sequential

polynomial-time algorithms exist for this problem, which use relatively few colors and have

good bounds on computational complexity.

Parallel algorithms have not been as extensively studied. Luby [23] gives a parallel

coloring algorithm for an n vertex graph that takes average time O(logn) for the P-RAM

model. Jones and Plassmann [20] improve this to give average time O(logn= log logn).

Here we show that some well-known sequential graph coloring algorithms, the Largest-

Degree-First algorithm [27] and the Smallest-Degree-Last algorithm [24], can be readily

parallelized. We compare their performance with that of Luby's Maximal Independent Set

algorithm and the Jones{Plassmann algorithm. Other good sequential algorithms, notably

the Saturation-Degree-Ordering [5] and Incidence-Degree-Ordering [8] algorithms, are not

well-suited to parallelization, and we do not consider them here.

Many results and specialized algorithms exist for the coloring of planar graphs. The

Smallest-Degree-Last algorithm is known to require no more than 6 colors for a planar

graph [22]. Diks [10] describes a complicated algorithm which 6-colors a planar graph in

O(log2 n) time using O(n4) processors in the P-RAM model. Lipton and Miller [22] give a

sequential algorithm which �nds a 5-coloring of a planar graph in O(n logn) time.

For the DTRS simulations, we have a two-dimensional triangulated mesh, where the

positions of the vertices are described in terms of an embedding space of arbitrary dimension.

If the embedding space is two-dimensional, the triangulated mesh forms a planar graph
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n = jV j

Choose a random permutation p(1); : : : ; p(n) of numbers 1; : : : ; n

U := V

for i = 1 to n do in sequence

v := p(i)

S := fcolors of all colored neighbors of vg

c(v) := smallest color not in S

U := U � fvg

end do

Figure 3: The sequential greedy algorithm for coloring a graph.

composed entirely of triangular regions.2 For higher dimensional embedding spaces, the

graph will in general not be planar, for example a mesh with the topology of a torus (the

common case of a two-dimensional mesh with periodic boundary conditions) is in general

non-planar, although a mesh with a spherical topology does give rise to a planar graph. For

sparse matrix problems, the graphs are almost always non-planar.

We therefore consider only algorithms that are completely general, that is, they will

work for any (possibly non-planar) graph. We will present results for the speci�c case of

planar randomly triangulated meshes, and non-planar graphs derived from two di�erent

sparse matrix problems.

2.2 The Sequential Greedy Algorithm

Before looking at parallel algorithms, it is helpful to consider a simple sequential algorithm,

the greedy algorithm. This proceeds as shown in Figure 3. Here U is the set of uncolored

vertices. It is not actually used in this algorithm, however we include it for reference to

later algorithms.

We can give a bound on the number of colors used by this algorithm. Let us suppose

that the highest-degree vertex in G has degree d. At each stage in the algorithm, the vertex

to be colored can have no more than d neighbors. Hence it must be possible to color this

vertex with one of the colors 1; 2; : : :d+1 and so the algorithm uses at most d+1 colors.

2.3 Parallel Graph Coloring Algorithms

Parallel algorithms for graph coloring are based on the simple observation that any in-

dependent set of vertices can be colored in parallel, where an independent set is a set of

vertices such that no two vertices are neighbors (i.e. share a common edge). The procedure

2Note that this type of graph is not what is referred to in the graph theory literature as a triangulated

graph, since triangulated graphs are de�ned to have other properties [16]. We will therefore refer to them

as triangulated meshes.
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U := V

while ( jU j > 0 ) do in parallel

Choose an independent set I from U

Color all vertices in I

U := U � I

end do

Figure 4: Procedure for coloring a graph in parallel.

is shown in Figure 4. The di�erences in the algorithms boil down to how the independent

set is chosen, and how its vertices are colored.

The strategy for coloring the vertices will depend on what is required from the coloring.

If the aim is an optimal coloring, usually the smallest available color is chosen, that is, the

smallest color not already being used by a neighboring vertex. If the aim is a balanced

coloring, the least used available color might instead be chosen, to balance the number of

vertices of each color.

Note that the independent set of vertices is constructed not using G, but rather the

induced subgraph G0 consisting only of the uncolored vertices U . An induced subgraph of G

is induced by some set of vertices V 0, V 0
� V , and consists of vertex set V 0 and edge set

E0 = fall (i; j) such that (i; j)�E, and i; j�V 0
g.

All of the algorithms presented here are local in the graph, in the sense that only infor-

mation from neighboring vertices is required. For e�cient implementation on distributed

memory parallel computers, the information must also be local in the processor grid, so

that the amount of communication is minimized. This means that the distribution of the

graph over processors must be such that the number of edges crossing processor boundaries

is minimized. This is the standard graph partitioning problem[]. This is outside the scope

of this paper, and will not be addressed here.

2.4 Maximal Independent Set

The Maximal Independent Set (MIS) algorithm [23] colors the graph by repeatedly �nding

the largest possible independent set of vertices in the graph. All vertices in the �rst such set

are given the same color and removed from the graph. The algorithm then �nds a new MIS

and gives these a second color, and continues �nding and coloring maximal independent

sets until all vertices have been colored. A sequential version of this algorithm �nds a MIS

by working through the vertices 1; 2; : : :n in order and putting a vertex in the set only if it

has no neighbors already in the set.

Luby has described a parallel version of the MIS algorithm [23]. The method for �nding

a maximal independent set is shown in Figure 5. It basically involves �nding an independent

set I 0, removing these vertices and their neighbors N(I 0) from the graph, and iterating this

procedure, accumulating the independent sets into a maximal independent set I that is

obtained when all vertices are removed.

6



I := fg

V 0 := V

while ( jV 0
j > 0 ) do

Choose an independent set I 0 from V 0

I := I + I 0

X := I 0 +N(I 0)

V 0 := V 0
�X

end do

Figure 5: Finding a Maximal Independent Set.

Luby proposed a Monte Carlo method for constructing the independent set in parallel.

All the other steps in the MIS algorithm in Figure 5 are obviously parallel and only require

local information. The independent sets are found by assigning a weight to each vertex.

The weights chosen by Luby were a random permutation of the integers 1; 2; : : : jU j. An

independent set can be constructed in parallel by choosing all vertices whose weights are

local maxima, i.e. vertices having a weight larger than any of their neighbors in the subgraph

induced by U .

The parallel MIS algorithm for graph coloring follows the basic method given in Figure 4,

with a maximal independent set being constructed in parallel at each step using Luby's

method. The coloring is done by giving each MIS a di�erent color.

2.5 Jones{Plassmann

Jones and Plassmann recently described a parallel coloring algorithm that improves upon

the parallel MIS algorithm [20]. They pointed out that it is not necessary to create a new

random permutation of the vertices every time an independent set needs to be calculated. A

single set of unique random weights can be constructed at the beginning and used through-

out the coloring algorithm. This can easily be done by assigning random numbers to each

of the vertices and using the unique vertex number to resolve a con
ict in the unlikely event

of neighboring vertices getting the same random number.

The Jones-Plassmann algorithm then proceeds very much like the MIS algorithm, except

that it does not �nd a maximal independent set at each step in Figure 4. It just �nds an

independent set in parallel using Luby's method of choosing vertices whose weights are local

maxima. The other di�erence is that the vertices in the independent set of Figure 4 are not

assigned the same new color, as they are in the MIS algorithm. Instead, the vertices are

colored individually using the smallest available color, i.e. the smallest color that has not

already been assigned to a neighboring vertex. This procedure is repeated using the standard

method shown in Figure 4 until the entire graph is successfully colored. A description of

the Jones{Plassmann algorithm is given in Figure 6.

An example of Jones{Plassmann coloring can be seen in Figure 7. The �nal coloring is

the same as the greedy algorithm would produce if it happened to choose the vertices in

order of their weights, largest-weight �rst.
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U := V

while ( jU j > 0 ) do

for all vertices v 2 U do in parallel

I := fv such that w(v) > w(u) 8 neighbors u 2 Ug

for all vertices v0
2 I do in parallel

S := fcolors of all neighbors of v0
g

c(v0) := minimum color not in S

end do

end do

U := U � I

end do

Figure 6: The parallel Jones{Plassmann algorithm for coloring a graph.
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Figure 7: Coloring of the vertices during the Jones{Plassmann Algorithm.

Jones and Plassmann also gave a more detailed description of how their algorithm can

work e�ciently on MIMD parallel machines. They showed how the amount of synchro-

nization required could be minimized, and also pointed out that a good sequential coloring

algorithm can be used to color all the vertices which have no neighbors on di�erent pro-

cessors, with the parallel algorithm being used to color the vertices with edges that cross

processor boundaries.

2.6 Largest-Degree-First

The Largest-Degree-First algorithm [27] can be parallelized using a very similar method to

the Jones{Plassmann algorithm. The only di�erence is that instead of using random weights

to create the independent sets, the weight is chosen to be the degree of the vertex in the

induced subgraph. Random numbers are only used to resolve con
icts between neighboring

vertices having the same degree. In this method, vertices are not colored in random order,
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Figure 8: Coloring of the vertices during the Largest-Degree-First Algorithm.

but rather in order of decreasing degree, with those of largest degree being colored �rst.

This approach aims to use fewer colors than the Jones{Plassmann algorithm. A vertex

with i colored neighbors will require at most color i+1. The Largest-Degree-First algorithm

aims to keep the maximum value of i as small as possible throughout the computation, so

that there is a better chance of using only a small number of colors.

An example of the Largest-Degree-First coloring algorithm can be seen in Figure 8.

2.7 Smallest-Degree-Last

The Smallest-Degree-Last algorithm [24] tries to improve upon the Largest-Degree-First

algorithm by using a more sophisticated system of weights. In order to achieve this the

algorithm operates in two phases, a weighting phase and a coloring phase.

The weighting phase begins by �nding all vertices with degree equal to the smallest

degree d presently in the graph. These are assigned the current weight and removed from

the graph, thus changing the degree of their neighbors. The algorithm repeatedly removes

vertices of degree d, assigning successively larger weights at each iteration. When there are

no vertices of degree d left, the algorithm looks for vertices of degree d+1. This continues

until all vertices have been assigned a weight.

This weighting process can be formalized by the parallel algorithm shown in Figure 9,

which assigns a weight w(v) to each vertex v. Let U be the set of unweighted vertices and

dU(v) be the number of vertices in U neighboring v, i.e. the degree of the vertex in the
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k := 1

i := 1

U := V

while ( jU j > 0 ) do

while f9 vertices v 2 U with dU(v) � kg do in parallel

S = fall vertices v with dU (v) � kg

for all vertices v 2 S, w(v) := i

U = U � S

i := i+ 1

end do

k := k + 1

end do

Figure 9: The assignment of weights for the Smallest-Degree-Last algorithm.

subgraph induced by U . Clearly the degree of a vertex will decrease as its neighbors are

removed from consideration. Note that the following code represents only half the coloring

algorithm; once the weights have been assigned, coloring proceeds as in the Jones-Plassmann

and Largest-Degree-First algorithms.

After the values of w(v) are assigned, the coloring proceeds by starting at the highest

value of w(v) and working backwards. This coloring procedure works using the weights

assigned by the �rst stage in the same way that the Largest-Degree-First algorithm uses

the degree of the vertices. In other words the coloring phase has each vertex look around

at its uncolored neighbors and when it discovers it has the highest weight (con
icts once

again being resolved by a random number), it colors itself using the lowest available color

in its neighborhood. A simple example of the weighting algorithm is shown in Figure 10,

with the corresponding coloring shown in Figure 11.
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Figure 10: Weighting of the vertices during the Smallest-Degree-Last Algorithm.
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Figure 11: Coloring of the vertices during the Smallest-Degree-Last Algorithm.

3 Implementation

We are interested in �nding the parallel graph coloring algorithms which give the best

colorings in the least possible time. The algorithms should also be scalable, in the sense

that problems of larger size (number of vertices) should be solvable just as rapidly by using

a larger number of processors. Also, we hope that the number of colors required will not

increase much as the number of vertices is increased.

To test the di�erent algorithms, a set of sample random triangulated meshes of varying

sizes were constructed by starting from a triangulated grid with spherical topology and


ipping edges at random. These planar graphs have average degree 6. The algorithms were

then run on this sample set of graphs to determine the average number of colors required to

color the graphs, as well as the time (and the number of passes of the algorithm) required

to arrive at the �nal coloring. All the results presented below are obtained by averaging

over 50 sample graphs for every di�erent problem size.

We have implemented both SIMD and MIMD versions of the algorithms. The MIMD

algorithms were written using Express Fortran, a portable message passing language [25],

and run on an Intel iPSC/860 computer. The SIMD algorithms were written using CM-

Fortran [26], and run on a 32-node Thinking Machines CM5. A similar program was also

run on a 16K node Maspar MP-1. It is interesting to see how the explicit message passing

MIMD approach of the Express Fortran version compares with the SIMD virtual processor

approach used with CMFortran. The MIMD algorithm does sequential coloring of vertices

whose neighbors are all on-processor [20].

4 Results

The algorithms were tested on meshes with from 256 to 16384 vertices. The results on

the CM5 and the MasPar MP-1 are generally similar. Figure 12 shows how the algorithms

compare in terms of coloring speed. The Jones-Plassmann (J-P) and Largest-Degree-First

(LDF) algorithms are signi�cantly faster than the other two algorithms. The MIS algorithm

was generally slower than these two, with the Smallest-Degree-Last (SDL) being slowest of

all. Figure 13 shows how the algorithms compare in terms of the number of colors used.

From the point of view of performance, the SDL was the most powerful, coloring with 5
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Figure 12: Processing time versus the number of vertices for the SIMD algorithm on a

32-node CM5.

colors irrespective of the graph size. The LDF algorithm was only slightly worse and the

J-P and MIS algorithm were typically one color worse than LDF. The LDF, J-P and MIS

algorithms all used increasing numbers of colors as the graph size increased.

Table 1 shows the results of running the various algorithms on sparse matrices from the

Boeing-Harwell test set[12, 11]. The table should be compared with table 5 in Ref. [8]. The

column \NP" refers to numbering given in that paper. All the colorings were performed

on a 32-node CM5, with the values given being the average over 10 runs. The results on

these graphs are similar to the results from the triangulated mesh problems, with SDL

being the most e�ective algorithm, LDF being slightly less e�ective and J-P and MIS being

roughly equal least e�ective. The results for ARC130, which is close to being a clique, are

anomalous, with J-P and MIS algorithms performing better than LDF and SDL algorithms.

Table 2 shows the time taken by the various algorithms to compute colorings for the

sparse matrices. As with the triangulated mesh problems, the SDL algorithm is clearly

slowest. The LDF algorithm seems to be slightly slower than J-P and the MIS algorithm is

similarly slightly slower than J-P. The results for ARC130 are again anomalous, with MIS

performing signi�cantly better than the other algorithms on this graph.

The graph in �gure 14 shows the number of colors required by the algorithms running

on an iPSC/860, a MIMD machine. As before, the SDL algorithm is most e�ective, with

LDF slightly less e�ective and J-P least e�ective. Figure 15 shows how the total time for
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Figure 13: The number of colors required as the number of vertices is varied for the SIMD

algorithm on a CM5.

the algorithms changes with the number of processors. This shows that algorithm actually

slows down as the number of processors increases!

5 Conclusions

The LDF algorithm appears to perform exceedingly well in both architectures. The pro-

cessing time required remains lower compared to many of the other algorithms even as

the size of the problem grows larger. In particular the SDL and MIS algorithms require

much more communication in each pass, which would account for their poor performance

at large problem sizes and with more parallel processors. Even noting that the communi-

cation required by the LDF algorithm is equivalent to that required by the J{P algorithm,

it consistently performs better. The LDF algorithm consistently achieves between 5 and 6

colors on planar graphs, which is excellent considering the NP{Hard nature of the optimal

4-coloring. The LDF algorithm is fairly easy to implement and to understand, which makes

it relatively easy to incorporate into many parallel architecture codes that may be written

at some point in the future.

For some algorithms, it may be important that there is no bias towards updating certain

vertices before others. This is known as the requirement for detailed balance [3, 17]. For

example, the LDF and SDL algorithms will both tend to color large-degree vertices �rst,
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Problem NP Order J-P MIS LDF SDL

LUNDA 1 147 28.9 29.4 25.0 23.7

LUNDB 2 147 29.7 30.2 25.0 24.1

GENT113 4 113 20.5 20.3 20.0 20.0

IBM32 5 32 9.3 9.0 8.0 8.0

CURTIS54 6 54 12.2 12.3 12.0 12.0

WILL57 7 57 11.0 11.0 11.0 11.0

WILL199 8 199 8.4 8.3 8.0 7.0

ARC130 11 130 124.0 124.0 125.0 125.0

ASH85 28 85 12.4 11.9 10.7 10.0

ASH292 29 292 16.4 16.9 15.0 16.3

Table 1: Average number of colors required for graphs from the Harwell sparse matrix test

collection.

Problem NP Order J-P MIS LDF SDL

LUNDA 1 147 3.0 2.5 4.2 5.2

LUNDB 2 147 3.1 2.5 4.1 5.1

GENT113 4 113 1.3 1.2 1.1 2.7

IBM32 5 32 0.17 0.19 0.18 0.27

CURTIS54 6 54 0.30 0.38 0.32 0.81

WILL57 7 57 0.17 0.23 0.20 0.35

WILL199 8 199 0.21 0.28 0.26 0.48

ARC130 11 130 47 18 47 53

ASH85 28 85 0.31 0.34 0.42 0.71

ASH292 29 292 1.1 1.1 1.9 5.9

Table 2: Time taken in seconds for coloring graphs from the Harwell sparse matrix test

collection on a 32-node CM5.
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Figure 14: The number of colors required as the number of vertices is varied on an iPSC/860

using 16 nodes.

assigning them as a small number \color". If the vertices are updated in color order, then

there will be a bias towards updating these vertices �rst. This problem can be avoided by

picking the color sets to be updated in random order. With the Jones-Plassmann and MIS

algorithms, this problem does not arise because there is no bias towards a particular set of

vertices.

For applications such as DTRS, which require regular re-coloring of the graph, the LDF

algorithm is probably the best to use, since it takes the same time as J-P, but requires fewer

colors. For applications such as PDEs, the SDL algorithm, which takes longer but uses

fewer colors, may well be preferable since the coloring is performed once only.

A further re�nement of the coloring algorithm is a balanced coloring, requiring that the

roughly equal numbers of vertices have each color. Having a small number of vertices of any

one color means that there is not much parallelism to be exploited in the update step for the

parallel application (such as a PDE solver or random surface simulation) that is using the

results of the graph coloring. A balanced distribution of colors makes it easier to load balance

the work of updating and e�ectively exploit a parallel machine. A simple modi�cation to

the sequential versions of the algorithms described here will achieve a balance of colors.

Instead of picking the smallest available color, one picks the least used of all available colors

[18]. This idea can be adapted readily to a MIMD implementation; each processor chooses

from the least used color in its local patch of vertices. In a SIMD implementation this is not
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Figure 15: The coloring time for 1024 vertices as the number of processors is varied on an

iPSC/860.

possible because each vertex knows only the colors of its neighbors. An alternative strategy

in this case would be to pick a color at random from the set of legal colors for a vertex. This

could result in a slight increase in the average number of colors required, however this cost

should be outweighed by the improved load balance. No experiments with color-balancing

were performed.

It was disappointing to �nd no speedup with the number of processors used on the

iPSC/860. One reason for this may be that the algorithms as coded sent the set of weights

for the whole graph to every processor and the set of colors for the whole graph to every

processor. We would like to have tried larger problem sizes, which might have produced

better results, but were prevented from doing so by memory limitations. It is possible that

the distributed algorithm running in a larger distributed code may still be more e�cient

than sending the data for the graph to one processor once the communication cost of doing

that is taken into account. We note that Jones and Plassmann [20] do not show a speedup,

but instead show that \the running time of the heuristic is only a slowly increasing function

of the number of processors used".

WE HAVE NOT DONE A GRAPH PARTITIONING!
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