LECTURE 12: HOPF ALGEBRA U,(sl,)

IVAN LOSEV

INTRODUCTION

In this lecture we start to study quantum groups U,(g), certain deformations of the uni-
versal enveloping algebras U(g). The algebras U,(g) are Hopf algebras that basically means
that we can take tensor products and duals of their representations. In Section 1 we define
Hopf algebras.

In Section 2 we start discussing quantum groups themselves concentrating mostly on
the simplest case, U,(slz). An important feature here is that the tensor product is not
commutative in a naive sense. This is a feature and not a bug, this is one of the main
reasons why the quantum groups were introduced.

1. HOPF ALGEBRAS

1.1. Tensor products and duals. Recall that for a group G and two G-modules Vi, V, we
can define G-module structures on V; ® V5, and V" by

g-(v1 ® va) == gu1 @ guy, (9., v1) == (o, g~ vn).
We also have the trivial one-dimensional module C, where g € G acts by 1.

Similarly, for a Lie algebra g and two g-modules V, V5, we can define g-module structures
on V; ® Vo and V" by

z.(v1 ® V) = (T.v1) @ vy + V1 ® (T.02), (x.a, v1) = — (v, T.v7).

And we have the trivial one-dimensional module C, where x € g acts by 0.

Recall also that a G-module (resp., g-module) is the same thing as a module over the
group algebra CG (resp., over the universal enveloping algebra U(g)). Both CG,U(g) are
associative algebras. Note, however, that if A is an associative algebra, then we do not
have natural A-module structures on V; ® V5, V", C (where Vi, V5 are A-modules). Indeed,
Vi ® V4 carries a natural structure of A ® A-module by (a ®b).(v; ® v2) = (avy) @ (bvg). The
dual space V}* is naturally a module over the opposite algebra A°?, which is the same vector
space as A but with opposite multiplication: a - b := ba. An A°’-module is the same thing
as a right A-module, and we set (aa)(vy) := a(avy). Finally, C is naturally a C-module.
We could equip V; ® V5 with an A-module structure if we have a distinguished algebra
homomorphism A : A — A® A (then we just pull the A ® A-module structure back to A).
This homomorphism A is called a coproduct. Similarly, to equip V;* and C with A-module
structures we need algebra homomorphisms S : A — A (antipode) and 1 : A — C (counit).

Let us construct these homomorphisms for A = CG and A = U(yg).

Example 1.1. For A = CG, we have A(g) :=g®g¢,S(9) =g ',n(g) =1 for g € G.

Example 1.2. Let A = U(g). Since A, S,n are supposed to be algebra homomorphisms, it
is enough to define them on g. We set A(z) =2z ® 1+ 1®x,5(x) = —z,n(x) = 1, where
T Eg.
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1.2. Coassociativity. We need some additional assumptions on A, S, ¢ in order to guar-
antee some natural properties of tensor products such as associativity. Axiomatizing these
properties, we arrive at the definition of a Hopf algebra.

First, let us examine the associativity of the tensor product. We have a natural iso-
morphism (V; @ V) @ V5 — V1 @ (12 @ V3), (11 ® 12) @ vz — v @ (v2 @ v3). We want
this isomorphism to be A-linear. We have two homomorphisms A — A®3 produced from
A. First, we have (A ® id) o A. The algebra A acts on (V; ® V5) ® V3 via this ho-
momorphism A — A®. Indeed, if A(a) = Y5, a! ® a2, then a.((v; ® vy) @ vg) =
S al (@) @aduy = Y1) Aal) (1 @ vs) ®atvs, and (A®id)oA(a) = Y1, Ale}) ®@a?.
Similarly, A acts on V; ® (Vo ® V3) via (id®A)o A : A — A®3. So, if we want to the iso-
morphism (v; ® vy) ® v3 — v; ® (vy ® v3) to be A-linear, it is natural to require that
(A®id) o A = (id®A) o A. In other words, we want the following diagram to be commu-
tative.

AR A dodA A AR A
A A®id
A A -A® A

If this holds, then we say that A is coassociative.

Let us motivate the terminology (“coproduct” and “coassociative”). Let A be a finite
dimensional algebra. Let us write m : A ® A — A for the product. Then m is associative
(i.e., m(m(a®b)®c) = m(a®@m(b®c))) if and only if the following diagram is commutative.

AR A< idgm AR AR A
m m id
A m A® A

Now let us dualize. We get the space A* together with the map m* : A* — A* ® A* that
is natural to call a coproduct. Clearly, m is associative if and only if m* is coassociative.

1.3. Axioms of Hopf algebras. We need to axiomatically describe two more maps: the
counit 7 : A — C and the antipode S : A — A°P.
An axiom of a counit should be dual to that of the unit, e : C — A, z + z-1. The element
e(1) is a unit if and only if the following diagram is commutative.
AR A

e®id id ®e
m

CRA-—Z=+ A<= A®C

Dualizing this diagram we get the counit axiom: the following diagram is commutative.
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A®A

n®id id @n
A

CRA~—-— A=+ AC

Finally, the antipode axiom is the commutativity of the following diagram.

AR A 524, A A

A A 120, AgA
Let us illustrate this axiom in the example of A = CG, where S(g) = g~!. There A(g) =
g® g, S@idlgeg) =g @9, mg— @g)=1=-eon(g).

Definition 1.3. By a Hopf algebra we mean a C-vector space A with five maps (m, e, A, n, S),
where m: A A— Ae:C—-A A A—>ARAn: A—C,S: A— A such that:

(1) (A,m,e) is an associative unital algebra.

(2) A:A—-A®AS:A— A% n: A — C are algebra homomorphisms.
(3) A is coassociative, and 7 satisfies the counit axiom.

(4) S satisfies the antipode axiom.

Remark 1.4. In fact, once m, e, A are specified, S and 7 are recovered in at most one way.

It is straightforward to check that CG and U(g) are Hopf algebras.

1.4. Duality of Hopf algebras. Now let (A, m,e, A,;n,S) be a finite dimensional Hopf
algebra. One can show that (A*, A* n*, m* e*, S*) is a Hopf algebra as well.

Example 1.5. Let us describe (CG)*. As a vector space, (CG)* is the algebra of functions
on G, to be denoted by C[G]. The map A : CG — CG ® CG sends g to g ® g. So
A (a®B)(g) =a® B(g®g) = alg)B(g) is the usual multiplication of functions. Similarly,
n* sends 1 to the identity function. The map m* : C[G] — C|G] ® C[G] = C|G x G] sends
a € C[G] to m*(a)(g,h) := a(gh). The map e* : C[G] — C maps « to a(1). Finally, we
have (S*a)(g) = a(g™).

1.5. Cocommutativity. In the cases of A = U(g), CG the isomorphism V; ® V5 SVheW
is that of A-modules. The reason for this is that the opposite coproduct A°? := o o A, where
o:A®? — A®? 4 @b b®a, coincides with A. The Hopf algebras with A = A are called
cocommutative. However, there are Hopf algebras that are not cocommutative, e.g. C[G].

The Hopf algebras we have encountered so far are commutative as algebras (C[G]) or
cocommutative (CG,U(g)). Of course, one can cook a Hopf algebra that is neither commu-
tative nor cocommutative: the tensor product of two Hopf algebras carries a natural Hopf
algebra structure and we can take the tensor product of a non-commutative Hopf algebra
with a non-cocommutative one. But this is very boring. In the next section, we will study
a far more interesting example.
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2. Uq(E[Q)

2.1. U,(sly) as a Hopf algebra. We will define the “quantum sl,” by generators and rela-
tions (as an algebra) and then define A, 7, S on the generators.

Let ¢ € C\ {0,£1} (we can also take ¢ to be an independent variable in the field of
rational functions C(gq)). We define the algebra U,(sly) generated by E, F, K, K~' subject
to the following relations:

K—-K!

¢—q"'
Note that the algebra U := U,(sly) is spanned by the monomials F*K*E™, where k,m € Zx,,
and ¢ € Z. In fact, these monomials are linearly independent (the PBW theorem).

Now let us define the Hopf algebra structure. We set

AEY=E®1+K®FE, AF)=FK '+1®F AK)=K®K,
(2.1) n(E) =n(F) =0, n(K)=1,
S(E)=-K'E,S(F)=-FK,S(K)= K.

KK '=K'K=1, KEK'=¢{E, KFK'=¢?F FEF-FE=

Proposition 2.1. A, n, S extend to required algebra homomorphisms. Moreover, U becomes
a Hopf algebra.

Proof. This is a mighty tedious check... What we need to verify is that A, S, n respect
the relations in U and that the axioms (3),(4) in the definition of a Hopf algebra hold on
the generators E, K, F. Let us check that A([E, F|) = [A(E), A(F)], which is the hardest
relation to check. We have

AE.F) =4 (

K-K' KeK-K'®@K!

q—q”>_ q—q!

On the other hand,
AE),A(F)=[E®1+KQEFRK'+1®F|=[E,Fle K'+ K ®[E, F]+

(K-K)oK' Kg(K-K")
q—qt q—q*

KoK-K'o@K!
& 1® +KF® EK' — (?KF)® (¢ *EK™") =
q—q-

+[KQE FR K= +KF®@ EK'—

—FKQ K'E =

KK-K ' Kt
q—q! '

O

We note that A # A°. In particular, the map v; ® vy — vy ® v; does not give an
isomorphism V; ® Vo, — V5, ® Vi, in general. However, in the next lecture we will find
an element R € U,(sly) ® U,(sly) (this is a slight lie, we need a certain completion) with
R7'A(u)R = A°(u). This element, called the universal R-matrix, is extremely important.
In particular, it will allow us to construct link invariants, such as the Jones polynomial.

2.2. Uy(sly) vs U(sly). The algebra U,(slz) should be thought as a deformation of U(sly)
(the latter corresponds to ¢ = 1). This however requires some care, we cannot put ¢ = 1
in the definition of U,(slz). In order to make the claim about the deformation more precise,

we will need to consider the formal version of U,(sl;), we will call it U;(sly). This will be an
algebra over C[[A]].
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By definition, as an algebra, Uy (sly) is the quotient of T'(sly)[[%]] by the relations
exp(hh) — exp(—hh)

exp(h) — exp(—h) -
Note that % is a formal power series in A, modulo 7 it equals h. It follows that
Un(sl2)/(h) = Ul(sl).

One can show that 7 is not a zero divisor in Uy(sly). Note that £ = e, F = f, K =
exp(hh), ¢ = exp(h) satisfy the relations of U,(sly). Indeed, for example, we get

exp(hh)e exp(—hh) = exp(had(h))e = exp(2h)e.

[h7€]:26a [ha.ﬂ _2f [ f]

One can introduce the Hopf algebra structure on Uj(sly) but one needs to extend the
definition to allow A to be a homomorphism Uy (sly) — Uh(slg)@)@[[h}] Up(sly). Here ® denotes
the completed tensor product. While the usual tensor product consists of all finite sums
of decomposable tensors, the completed product consists of all converging (in the h-adic
topology) infinite sums.

2.3. Algebras U,(g). We can define quantum groups U,(g) for any semisimple Lie algebra
g (or, more generally, any Kac-Moody algebra g(A) for a symmetrizable Cartan matrix A).
Let us start with g = sl,;.

Recall that the usual universal enveloping algebra U (sl,,) is defined by the generators
e, hi, fi, i =1,...,n, and the following relations:
() [h’nez] - 2617 [h‘l; fl] == _2fl7 [e’i?fi] = hl
ii) [hi, hy] =
( 11) [h“ 6]} aljejv [h“ f]] aijfj'
(V) zf] fje’b)l#‘]
(v) eiej = eje;, if a;; =0, and eZe; — 2e;eje; + eje? = 0, if a;; = —1.

(VI) fzf] _fjfza lf azj 0 and f2fj 2flfjfz+f]f2 7 if aij - _1-
Recall that here a;; = —1if |[i — j| =1 and a;; =0 if |[i — j| > L.

The quantum group U,(sl,+1) is defined by the generators E;, K;*', Fj,i = 1,...,n, with
relations

() KB = B KFK = q 728, (B, B = S

(llq) [Kza Kj] =0.

(lllq) K,LE]Kfl = qa”Ej,KlF]K;1 = q_aijF}‘.
(ivg) Eily = FiE;, 1 # 3.
)
)

(vq) EiE; = E,E; if a;; = 0 and E2E; — [2), BB, E; + E;E? = 0 if ayy = —1.
(vig FF F; F if a;; = 0 and F2F 2], FiF;F; + FjE? =0 if a;; = —1.

Here [2], denotes the “quantum 27, ie., ¢+ ¢!

The similar definition will work for any simply laced Cartan matrix A (meaning that
a;; € {0,—1} if ¢ # j). When A is not simply laced (e.g., of type B,,C,, Fy, G2), the
definition is more technical, one needs to use different ¢’s for the “sly-subalgebras” of U,(g)
according the length of the corresponding root. Namely, when g is finite dimensional, we
define d; € {1,2,3} as (i, a;)/2, where (-,-) is a W-invariant form on h* normalized in such
a way that (o, ) = 2 for the short roots (we have two different root lengthes). This can
be generalized to an arbitrary symmetrizable Kac-Moody algebra but we are not going to
explain that.
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Now set ¢; := q% (so that ¢ = ¢). We also define the quantum integer [n], = ¢/ ' +
¢ 2+ ...+ ¢ ", and the quantum factorial [n],,! = [1],, ... [n],. We set

K3

(), ~

Now we define Uy(g) as the algebra generated by E;, K;, F; subject to the relations
() KiEK ' = @B, KK\ = ¢ 2 F, [B;, Fy] = S50

py
qi—4q;

)
)
1—0,,']' —Q4j l—ai]‘—k‘ _
) 2k=o (_1)k(1 k )qEZ E;Ef =0.

. 1—a;; —aij 1—a;;—k o
(Vig) 2k—o <_1)k(1 k )tii FiFF=0.

Note that they are obtained from the relations for U(g) in the same fashion as the relations
for U,(sl,41) are obtained from those for U(sl,41).

The Hopf algebra structure on U,(g) is introduced as follows: we just define A,S,n on
Ei,ﬂ, Kz as in qu(ﬁlg).



