
LECTURE 12: HOPF ALGEBRA Uq(sl2)

IVAN LOSEV

Introduction

In this lecture we start to study quantum groups Uq(g), certain deformations of the uni-
versal enveloping algebras U(g). The algebras Uq(g) are Hopf algebras that basically means
that we can take tensor products and duals of their representations. In Section 1 we define
Hopf algebras.

In Section 2 we start discussing quantum groups themselves concentrating mostly on
the simplest case, Uq(sl2). An important feature here is that the tensor product is not
commutative in a naive sense. This is a feature and not a bug, this is one of the main
reasons why the quantum groups were introduced.

1. Hopf algebras

1.1. Tensor products and duals. Recall that for a group G and two G-modules V1, V2 we
can define G-module structures on V1 ⊗ V2 and V ∗

1 by

g.(v1 ⊗ v2) := gv1 ⊗ gv2, ⟨g.α, v1⟩ := ⟨α, g−1v1⟩.
We also have the trivial one-dimensional module C, where g ∈ G acts by 1.

Similarly, for a Lie algebra g and two g-modules V1, V2, we can define g-module structures
on V1 ⊗ V2 and V ∗

1 by

x.(v1 ⊗ v2) = (x.v1)⊗ v2 + v1 ⊗ (x.v2), ⟨x.α, v1⟩ = −⟨α, x.v1⟩.
And we have the trivial one-dimensional module C, where x ∈ g acts by 0.

Recall also that a G-module (resp., g-module) is the same thing as a module over the
group algebra CG (resp., over the universal enveloping algebra U(g)). Both CG,U(g) are
associative algebras. Note, however, that if A is an associative algebra, then we do not
have natural A-module structures on V1 ⊗ V2, V

∗
1 ,C (where V1, V2 are A-modules). Indeed,

V1⊗V2 carries a natural structure of A⊗A-module by (a⊗ b).(v1⊗ v2) = (av1)⊗ (bv2). The
dual space V ∗

1 is naturally a module over the opposite algebra Aop, which is the same vector
space as A but with opposite multiplication: a · b := ba. An Aop-module is the same thing
as a right A-module, and we set (αa)(v1) := α(av1). Finally, C is naturally a C-module.
We could equip V1 ⊗ V2 with an A-module structure if we have a distinguished algebra
homomorphism ∆ : A → A⊗ A (then we just pull the A⊗ A-module structure back to A).
This homomorphism ∆ is called a coproduct. Similarly, to equip V ∗

1 and C with A-module
structures we need algebra homomorphisms S : A → Aop (antipode) and η : A → C (counit).

Let us construct these homomorphisms for A = CG and A = U(g).

Example 1.1. For A = CG, we have ∆(g) := g ⊗ g, S(g) = g−1, η(g) = 1 for g ∈ G.

Example 1.2. Let A = U(g). Since ∆, S, η are supposed to be algebra homomorphisms, it
is enough to define them on g. We set ∆(x) = x ⊗ 1 + 1 ⊗ x, S(x) = −x, η(x) = 1, where
x ∈ g.
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1.2. Coassociativity. We need some additional assumptions on ∆, S, ϵ in order to guar-
antee some natural properties of tensor products such as associativity. Axiomatizing these
properties, we arrive at the definition of a Hopf algebra.

First, let us examine the associativity of the tensor product. We have a natural iso-
morphism (V1 ⊗ V2) ⊗ V3 → V1 ⊗ (V2 ⊗ V3), (v1 ⊗ v2) ⊗ v3 7→ v1 ⊗ (v2 ⊗ v3). We want
this isomorphism to be A-linear. We have two homomorphisms A → A⊗3 produced from
∆. First, we have (∆ ⊗ id) ◦ ∆. The algebra A acts on (V1 ⊗ V2) ⊗ V3 via this ho-

momorphism A → A⊗3. Indeed, if ∆(a) =
∑k

i=1 a
1
i ⊗ a2i , then a.((v1 ⊗ v2) ⊗ v3) =∑k

i=1 a
1
i .(v1⊗v2)⊗a2i v3 =

∑k
i=1 ∆(a1i )(v1⊗v2)⊗a2i v3, and (∆⊗ id)◦∆(a) =

∑k
i=1∆(a1i )⊗a2i .

Similarly, A acts on V1 ⊗ (V2 ⊗ V3) via (id⊗∆) ◦ ∆ : A → A⊗3. So, if we want to the iso-
morphism (v1 ⊗ v2) ⊗ v3 7→ v1 ⊗ (v2 ⊗ v3) to be A-linear, it is natural to require that
(∆ ⊗ id) ◦∆ = (id⊗∆) ◦∆. In other words, we want the following diagram to be commu-
tative.

A

A⊗ A

A⊗ A

A⊗ A⊗ A

-

-

6 6
∆

∆

∆⊗ id

id⊗∆

If this holds, then we say that ∆ is coassociative.
Let us motivate the terminology (“coproduct” and “coassociative”). Let A be a finite

dimensional algebra. Let us write m : A ⊗ A → A for the product. Then m is associative
(i.e., m(m(a⊗b)⊗c) = m(a⊗m(b⊗c))) if and only if the following diagram is commutative.

A

A⊗ A

A⊗ A

A⊗ A⊗ A

�

�

? ?

m

m

m⊗ id

id⊗m

Now let us dualize. We get the space A∗ together with the map m∗ : A∗ → A∗ ⊗ A∗ that
is natural to call a coproduct. Clearly, m is associative if and only if m∗ is coassociative.

1.3. Axioms of Hopf algebras. We need to axiomatically describe two more maps: the
counit η : A → C and the antipode S : A → Aop.

An axiom of a counit should be dual to that of the unit, e : C → A, z 7→ z ·1. The element
e(1) is a unit if and only if the following diagram is commutative.

C⊗ A A A⊗ C

A⊗ A

- �
�
�
�
��

@
@

@
@I

?
m

e⊗ id id⊗e

∼= ∼=

Dualizing this diagram we get the counit axiom: the following diagram is commutative.
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C⊗ A A A⊗ C

A⊗ A

� -

�
�

�
�	

@
@
@
@R

6

∆

η ⊗ id id⊗η

∼= ∼=

Finally, the antipode axiom is the commutativity of the following diagram.

A

A⊗ A

A⊗ A

A⊗ A

A⊗ A

AC
�
�
���

@
@
@@R

-

-

-

@
@
@@R

�
�
���
-η e

∆

∆

S ⊗ id

id⊗S

m

m

Let us illustrate this axiom in the example of A = CG, where S(g) = g−1. There ∆(g) =
g ⊗ g, S ⊗ id(g ⊗ g) = g−1 ⊗ g, m(g−1 ⊗ g) = 1 = e ◦ η(g).

Definition 1.3. By a Hopf algebra we mean a C-vector spaceA with five maps (m, e,∆, η, S),
where m : A⊗ A → A, e : C → A,∆ : A → A⊗ A, η : A → C, S : A → A such that:

(1) (A,m, e) is an associative unital algebra.
(2) ∆ : A → A⊗ A, S : A → Aop, η : A → C are algebra homomorphisms.
(3) ∆ is coassociative, and η satisfies the counit axiom.
(4) S satisfies the antipode axiom.

Remark 1.4. In fact, once m, e,∆ are specified, S and η are recovered in at most one way.

It is straightforward to check that CG and U(g) are Hopf algebras.

1.4. Duality of Hopf algebras. Now let (A,m, e,∆, η, S) be a finite dimensional Hopf
algebra. One can show that (A∗,∆∗, η∗,m∗, e∗, S∗) is a Hopf algebra as well.

Example 1.5. Let us describe (CG)∗. As a vector space, (CG)∗ is the algebra of functions
on G, to be denoted by C[G]. The map ∆ : CG → CG ⊗ CG sends g to g ⊗ g. So
∆∗(α⊗ β)(g) = α⊗ β(g ⊗ g) = α(g)β(g) is the usual multiplication of functions. Similarly,
η∗ sends 1 to the identity function. The map m∗ : C[G] → C[G] ⊗ C[G] = C[G × G] sends
α ∈ C[G] to m∗(α)(g, h) := α(gh). The map e∗ : C[G] → C maps α to α(1). Finally, we
have (S∗α)(g) = α(g−1).

1.5. Cocommutativity. In the cases of A = U(g),CG the isomorphism V1⊗V2
∼−→ V2⊗V1

is that of A-modules. The reason for this is that the opposite coproduct ∆op := σ ◦∆, where
σ : A⊗2 → A⊗2, a⊗ b 7→ b⊗ a, coincides with ∆. The Hopf algebras with ∆ = ∆op are called
cocommutative. However, there are Hopf algebras that are not cocommutative, e.g. C[G].

The Hopf algebras we have encountered so far are commutative as algebras (C[G]) or
cocommutative (CG,U(g)). Of course, one can cook a Hopf algebra that is neither commu-
tative nor cocommutative: the tensor product of two Hopf algebras carries a natural Hopf
algebra structure and we can take the tensor product of a non-commutative Hopf algebra
with a non-cocommutative one. But this is very boring. In the next section, we will study
a far more interesting example.
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2. Uq(sl2)

2.1. Uq(sl2) as a Hopf algebra. We will define the “quantum sl2” by generators and rela-
tions (as an algebra) and then define ∆, η, S on the generators.

Let q ∈ C \ {0,±1} (we can also take q to be an independent variable in the field of
rational functions C(q)). We define the algebra Uq(sl2) generated by E,F,K,K−1 subject
to the following relations:

KK−1 = K−1K = 1, KEK−1 = q2E, KFK−1 = q−2F, EF − FE =
K −K−1

q − q−1
.

Note that the algebra U := Uq(sl2) is spanned by the monomials F kKℓEm, where k,m ∈ Z>0,
and ℓ ∈ Z. In fact, these monomials are linearly independent (the PBW theorem).

Now let us define the Hopf algebra structure. We set

∆(E) = E ⊗ 1 +K ⊗ E, ∆(F ) = F ⊗K−1 + 1⊗ F, ∆(K) = K ⊗K,

η(E) = η(F ) = 0, η(K) = 1,

S(E) = −K−1E, S(F ) = −FK, S(K) = K−1.

(2.1)

Proposition 2.1. ∆, η, S extend to required algebra homomorphisms. Moreover, U becomes
a Hopf algebra.

Proof. This is a mighty tedious check... What we need to verify is that ∆, S, η respect
the relations in U and that the axioms (3),(4) in the definition of a Hopf algebra hold on
the generators E,K, F . Let us check that ∆([E,F ]) = [∆(E),∆(F )], which is the hardest
relation to check. We have

∆([E,F ]) = ∆

(
K −K−1

q − q−1

)
=

K ⊗K −K−1 ⊗K−1

q − q−1

On the other hand,

[∆(E),∆(F )] = [E ⊗ 1 +K ⊗ E,F ⊗K−1 + 1⊗ F ] = [E,F ]⊗K−1 +K ⊗ [E,F ]+

+ [K ⊗ E,F ⊗K−1] =
(K −K−1)⊗K−1

q − q−1
+

K ⊗ (K −K−1)

q − q−1
+KF ⊗ EK−1−

− FK ⊗K−1E =
K ⊗K −K−1 ⊗K−1

q − q−1
+KF ⊗ EK−1 − (q2KF )⊗ (q−2EK−1) =

=
K ⊗K −K−1 ⊗K−1

q − q−1
.

�
We note that ∆ ̸= ∆op. In particular, the map v1 ⊗ v2 7→ v2 ⊗ v1 does not give an

isomorphism V1 ⊗ V2 → V2 ⊗ V1, in general. However, in the next lecture we will find
an element R ∈ Uq(sl2) ⊗ Uq(sl2) (this is a slight lie, we need a certain completion) with
R−1∆(u)R = ∆op(u). This element, called the universal R-matrix, is extremely important.
In particular, it will allow us to construct link invariants, such as the Jones polynomial.

2.2. Uq(sl2) vs U(sl2). The algebra Uq(sl2) should be thought as a deformation of U(sl2)
(the latter corresponds to q = 1). This however requires some care, we cannot put q = 1
in the definition of Uq(sl2). In order to make the claim about the deformation more precise,
we will need to consider the formal version of Uq(sl2), we will call it U~(sl2). This will be an
algebra over C[[~]].
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By definition, as an algebra, U~(sl2) is the quotient of T (sl2)[[~]] by the relations

[h, e] = 2e, [h, f ] = −2f, [e, f ] =
exp(~h)− exp(−~h)
exp(~)− exp(−~)

.

Note that exp(~h)−exp(−~h)
exp(~)−exp(−~) is a formal power series in ~, modulo ~ it equals h. It follows that

U~(sl2)/(~) = U(sl2).
One can show that ~ is not a zero divisor in U~(sl2). Note that E = e, F = f,K =

exp(~h), q = exp(~) satisfy the relations of Uq(sl2). Indeed, for example, we get

exp(~h)e exp(−~h) = exp(~ ad(h))e = exp(2~)e.

One can introduce the Hopf algebra structure on U~(sl2) but one needs to extend the
definition to allow ∆ to be a homomorphism U~(sl2) → U~(sl2)⊗̂C[[~]]U~(sl2). Here ⊗̂ denotes
the completed tensor product. While the usual tensor product consists of all finite sums
of decomposable tensors, the completed product consists of all converging (in the ~-adic
topology) infinite sums.

2.3. Algebras Uq(g). We can define quantum groups Uq(g) for any semisimple Lie algebra
g (or, more generally, any Kac-Moody algebra g(A) for a symmetrizable Cartan matrix A).
Let us start with g = sln+1.

Recall that the usual universal enveloping algebra U(sln+1) is defined by the generators
ei, hi, fi, i = 1, . . . , n, and the following relations:

(i) [hi, ei] = 2ei, [hi, fi] = −2fi, [ei, fi] = hi.
(ii) [hi, hj] = 0.
(iii) [hi, ej] = aijej, [hi, fj] = −aijfj.
(iv) eifj = fjei, i ̸= j.
(v) eiej = ejei, if aij = 0, and e2i ej − 2eiejei + eje

2
i = 0, if aij = −1.

(vi) fifj = fjfi, if aij = 0, and f 2
i fj − 2fifjfi + fjf

2
i = 0, if aij = −1.

Recall that here aij = −1 if |i− j| = 1 and aij = 0 if |i− j| > 1.
The quantum group Uq(sln+1) is defined by the generators Ei, K

±1
i , Fi, i = 1, . . . , n, with

relations

(iq) KiEiK
−1
i = q2Ei, KiFiK

−1
i = q−2Fi, [Ei, Fi] =

Ki−K−1
i

q−q−1 .

(iiq) [Ki, Kj] = 0.
(iiiq) KiEjK

−1
i = qaijEj, KiFjK

−1
i = q−aijFj.

(ivq) EiFj = FjEi, i ̸= j.
(vq) EiEj = EjEi if aij = 0 and E2

i Ej − [2]qEiEjEi + EjE
2
i = 0 if aij = −1.

(viq) FiFj = FjFi if aij = 0 and F 2
i Fj − [2]qFiFjFi + FjF

2
i = 0 if aij = −1.

Here [2]q denotes the “quantum 2”, i.e., q + q−1.
The similar definition will work for any simply laced Cartan matrix A (meaning that

aij ∈ {0,−1} if i ̸= j). When A is not simply laced (e.g., of type Bn, Cn, F4, G2), the
definition is more technical, one needs to use different q’s for the “sl2-subalgebras” of Uq(g)
according the length of the corresponding root. Namely, when g is finite dimensional, we
define di ∈ {1, 2, 3} as (αi, αi)/2, where (·, ·) is a W -invariant form on h∗ normalized in such
a way that (α, α) = 2 for the short roots (we have two different root lengthes). This can
be generalized to an arbitrary symmetrizable Kac-Moody algebra but we are not going to
explain that.
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Now set qi := qdi (so that q1 = q). We also define the quantum integer [n]qi = qn−1
i +

qn−2
i + . . .+ q1−n

i , and the quantum factorial [n]qi ! = [1]qi . . . [n]qi . We set(
n

k

)
qi

=
[n]qi !

[k]qi ![n− k]qi !
.

Now we define Uq(g) as the algebra generated by Ei, Ki, Fi subject to the relations

(iq) KiEiK
−1
i = q2iEi, KiFiK

−1
i = q−2

i Fi, [Ei, Fi] =
Ki−K−1

i

qi−q−1
i

.

(iiq) [Ki, Kj] = 0.

(iiiq) KiEjK
−1
i = q

aij
i Ej, KiFjK

−1
i = q

−aij
i Fj.

(ivq) EiFj = FjEi, i ̸= j.

(vq)
∑1−aij

k=0 (−1)k
(
1−aij

k

)
qi
E

1−aij−k
i EjE

k
i = 0.

(viq)
∑1−aij

k=0 (−1)k
(
1−aij

k

)
qi
F

1−aij−k
i FjF

k
i = 0.

Note that they are obtained from the relations for U(g) in the same fashion as the relations
for Uq(sln+1) are obtained from those for U(sln+1).

The Hopf algebra structure on Uq(g) is introduced as follows: we just define ∆, S, η on
Ei, Fi, Ki as in Uqi(sl2).


