
Partial Fractions

Combining fractions over a common denominator is a familiar operation from algebra:

(1)

From the standpoint of integration, the left side of Equation 1 would be much easier to
work with than the right side. In particular,

So, when integrating rational functions it would be helpful if we could undo the simplifica-
tion going from left to right in Equation 1. Reversing this process is referred to as finding
the partial fraction decomposition of a rational function.

Getting Started

The method for computing partial fraction decompositions applies to all rational functions
with one qualification:

The degree of the numerator must be less than the degree of the denomi-
nator.

One can always arrange this by using polynomial long division, as we shall see in the
examples.

Looking at the example above (in Equation 1), the denominator of the right side is
. Factoring the denominator of a rational function is

the first step in computing its partial fraction decomposition. Note, the factoring must be
complete (over the real numbers). In particular this means that each individual factor must
either be linear (of the form ) or irreducible quadratic (of the form ).

When is a quadratic polynomial irreducible? If a quadratic polynomial factors, such as
, then it has at least one root. Similarly, if it has a root , then

it must have a factor of . Thus, a quadratic polynomial is irreducible iff it has no real
roots. This is easy to determine using the quadratic formula: the roots of are

and these are real numbers iff . Thus, this quadratic polynomial is irreducible
iff its discriminant .
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Finding the right form

An important step in this process is to know the right form of the decomposition. It will
be a sum of terms in which the numerators contain coefficients (such as the , , and

above). In fact, the number of these unknown coefficients will always be equal to the
degree of the denominator.

After the denominator is factored and like terms are collected, we can use the following
rules to determine the terms in the decomposition.

For a linear term we get a contribution of .

For a repeated linear term, such as , we get a contribution of

We have three terms which matches that occurs to the third power.

For a quadratic term we get a contribution of .

For a repeated quadratic term such as we get a contribution of

These rules can be mixed together in any way.

Here we give several rational functions and the form of their partial fraction decompo-
sitions.

Example 1.

Example 2.

Example 3.

Example 4.

In the last example we needed to factor the denominator further.
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Computing the coefficients

Once we have determined the right form for the partial fraction decomposition of a rational
function, we need to compute the unknown coefficients , , , . There are basically
two methods to choose from for this purpose. We will now look at both methods for the
decomposition of

By the rules above, its partial fraction decomposition takes the form

Setting these equal and multiplying by the common denominator gives

(2)

Our first method is to substitute different values for into Equation 2 and deduce the
values of , , and . It helps to start with values of which are roots of the original
denominator since they will make some of the terms on the right side vanish.

Using gives . Thus, .

From , we learn that , and so .

We have run out of roots of the denominator, and so we pick a simple value of to
finish off. From we find . Using our values for and

, this becomes and so .

Therefore,

The second method is used in the textbook (pp. 371–372). After setting up the decom-
position, again we clear denominators to produce Equation 2. However, this time we will
expand the right side and collect like terms:

For these polynomials to be equal, their coefficients must be equal, leading us to the system
of equations:

from the terms
from the terms
from the constant terms

We now have to solve these three equations with three unknowns. You may use any stan-
dard method for solving the systems of equations. Here, we will use substitution.
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From the first equation, . Substituting into the other equation yields

Solving the first equation for gives . Substituting this into the second
equation yields

so , or . Then gives and gives .
One advantage of this method is that it proves that the given decomposition is correct.

By contrast, the first method of determining the coefficients assumes that we have set up
the decomposition correctly.

Examples

Here we use partial fractions to compute several integrals:

Example 5.

Solution: Factoring the denominator completely yields , and so

Clearing denominators gives the equation:

Since the denominator has distinct roots, the quickest way to find , , and will be to
plug in the roots of the original denominator:

gives

gives

gives

Putting it all together, we find

Note, we use here for the constant of integration even though has occured earlier in
the problem as a coefficient. However, it is unlikely that confusion will arise by re-using
in this way.

4



Example 6.

Solution: We first check that the quadratic factor is irreducible by computing its discrimi-
nant: . Thus, the denominator is already factored completely and
we are ready to set up the partial fractions:

Clearing denominators leads to the equation:

(3)

Evaluating both sides at gives one coefficient:

Next, we try in Equation 3:

Finally, we use another simple value of in Equation 3, namely :

Thus,

To integrate , we complete the square , and make a
substitution (so and ) to get

From a table of integrals, we can now evaluate this to be
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We dropped the absolute value bars from the natural log since its argument was never
negative. The final answer is

Example 7.

Solution: The first thing we should notice is that the degree of the numerator is not less
than the degree of the denominator. Applying polynomial long division, we learn that the
quotient is and that remainder is . Thus,

We now find the partial fraction decomposition of the last term. The denominator factors
as , and so

Clearing denominators leads to

(4)

We can quickly determine by evaluating at , which leads to
, and so . We now pick two simple values of to obtain relations between

and . From , we find

and from , we find

Adding these equations together, we find that and so . Substituting this
back into yields . Thus

Exercises

Compute the following integrals using partial fraction expansions.
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1.

2.

3.

4.

5.

6.

7.

8.
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