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ABSTRACT

The Riemann zeta function is defined as ζ(s) =
∑∞

n=1
1
ns

=
∏

p∈P (1− p−s)−1 for com-

plex numbers s with <(s) > 1, and it can be analytically continued to the whole complex

plane C except at s = 1. Furthermore, the values of ζ(2k) at positive integers k can be de-

scribed in terms of Bernoulli numbers and π2k. This note details the properties of ζ(s) and

Bernoulli numbers, delineates a newly published method for evaluating ζ(2k), and summa-

rizes properties of Dirichlet L-functions.
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CHAPTER 1
INTRODUCTION

This note gives a robust understanding of the Riemann zeta function and a connection to a
generalization of it.

In the mid-seventeenth century, Leonhard Euler first encountered the Riemann zeta func-
tion (known then as the “zeta function”) as the following series for a natural number s,

ζ(s) =
∞∑
n=1

1

ns
,

when he solved the Basel Problem that ζ(2) =
∑∞

n=1
1
n2 = π2

6
. Euler later showed that ζ(s)

has the identity

ζ(s) =
∞∑
n=1

1

ns
=
∏
p∈P

(
1− p−s

)−1
,

where P is the set of all primes, thus relating the Riemann zeta function to prime numbers.
Although Chebyshev showed that the series representation of ζ(s) holds only for complex
numbers s with <(s) > 1, Bernhard Riemann further demonstrated that it accepts an ana-
lytic continuation to the whole complex plane with a simple pole at s = 1 and satisfies the
functional equation. Chapters 2 and 3 detail this history.

In addition, we can evaluate “special values” of ζ(2k) for positive integers k. More pre-
cisely, if B2k denotes the 2k-th Bernoulli number, then

ζ(2k) =
(−1)k+1(2π)2k

2(2k)!
B2k.

Chapter 4 establishes properties for Bernoulli numbers and polynomials. Two ways of evaluat-
ing ζ(2k) are explained in Chapter 5. In particular, Section 5.1 describes the classical method
of evaluating ζ(2k) using complex analysis, and Section 5.2 details a new method, which was
shown by Ciaurri, Navas, Ruiz, and Varona in their recent paper [11], that uses only properties
of Bernoulli polynomials and telescoping series.

One way to generalize the Riemann zeta function is to “twist” each term of the series by a
nice sequence. In 1837, Johann Dirichlet first defined the Dirichlet L-function by assigning a
Dirichlet character χ to the numerator of the series

L(χ, s) =
∞∑
n=1

χ(n)

ns
.

Chapter 6 summarizes properties of Dirichlet L-functions that are analogous to properties of
the Riemann zeta function. Our main goal is to generalize some of the method introduced in
[11] to the setting of Dirichlet L-functions. It is still in progress, so it is not included in this
submission.
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CHAPTER 2
RIEMANN ZETA FUNCTION

The Riemann zeta function is a famous function that was introduced as a series representation
of the form

∑∞
n=1

1
nk

with a natural number k. Leonhard Euler observed its deep connection
to the prime numbers and evaluated its values for some positive integers k. Later on, Bernhard
Riemann extended it as a function on the whole complex plane (except at 1). The aim of this
chapter is to explain some of its important properties and to state its analytic continuation and
special values, which will be described later. This expository note primarily references [17],
[2], and [22].

Definition 2.0.1 Let s be a complex number with <(s) > 1. We define the Riemann zeta
function ζ(s) as the following series:

ζ(s) :=
∞∑
n=1

1

ns
.

To further proceed, we introduce the definition of absolute convergence, which is crucial to
our study. An infinite series

∑∞
i=1 ai is said to be absolutely convergent if there exists L

in R≥0 such that
∑∞

i=1 |ai| = L. It is a well-known property in elementary analysis that an
absolutely convergent series converges to the same value when terms are rearranged.

If k is a real number greater than 1, it is known that
∑∞

n=1
1
nk

converges absolutely, which
follows from an application of the integral test. Indeed, it is observed that, if k > 1 is real,

∞∑
n=1

∣∣∣∣∣ 1

nk

∣∣∣∣∣ =
∞∑
n=1

1

nk
≤ 1 +

∫ ∞
1

1

xk
dx = 1 +

1

k − 1
.

We now aim to extend this property for any complex numbers s with <(s) > 1. See the
following proposition.

Proposition 2.0.2 ζ(s) =
∑∞

n=1
1
ns

converges absolutely for <(s) > 1.

Proof. Let s = x + iy with x > 1. Then ns = nxniy = nxeiy log(n), and therefore |ns| =∣∣nx∣∣∣∣eiy log(n)
∣∣ = nx · 1. Hence,

∞∑
n=1

1

|n(x+iy)|
=
∞∑
n=1

1

nx
= ζ(x).

Since ζ(x) is absolutely convergent, the result follows.
Another interesting (and very important) property of ζ(s) is a connection with all prime

numbers, which was first proved by Euler. In what follows, we show interesting properties of
prime numbers using the “Euler product” and elementary number theory.
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Proposition 2.0.3 (Euler Product of the Riemann Zeta Function) The Riemann zeta func-
tion can be written as a product of prime factors, called the Euler product. Let s be a complex
number with <(s) > 1, and let P be the set of prime numbers. Then

ζ(s) =
∞∑
n=1

1

ns
=
∏
p∈P

1

1− p−s
. (2.0.1)

Proof. There are two easy ways to see this. First, consider the right hand side, since p−s < 1,
then we can write 1

1−p−s as a geometric series. That is,

∏
p∈P

1

1− p−s
=
∏
p∈P

∞∑
k=0

p−ks =
∏
p∈P

(
1 +

1

ps
+

1

p2s
+

1

p3s
+ · · ·

)
,

= 1 +
∞∑
a=0

∑
p∈P

1

pas
+

∞∑
a1,a2=0

∑
p1,p2∈P

1

pa1s1 pa2s2

+ · · · .

By the unique factorization theorem, we have∏
p∈P

1

1− p−s
= ζ(s).

For the second method, let us first consider the following: since

1

2s
ζ(s) =

1

2s
+

1

4s
+

1

6s
+

1

8s
+

1

10s
+ · · · ,

we observe that

ζ(s)− 1

2s
ζ(s) =

(
1 +

1

2s
+

1

3s
+

1

4s
+

1

5s
+ · · ·

)
−
(

1

2s
+

1

4s
+

1

6s
+

1

8s
+

1

10s
+ · · ·

)
.

Since ζ(s) is absolutely convergent when <(s) > 1, we may interchange terms accordingly,
and take out terms with even denominators, that is,

ζ(s)

(
1− 1

2s

)
= 1 +

1

3s
+

1

5s
+

1

7s
+

1

9s
+ · · · =

∞∑
n=1
2-n

1

ns
.
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Now consider multiplying the equation by 1− 1
3s

, which gives

ζ(s)

(
1− 1

2s

)(
1− 1

3s

)
=
∞∑
n=1
2-n

1

ns
−
∞∑
n=1
2-n

1

(3n)s
=
∞∑
n=1
2-n
3-n

1

ns
.

Inductively, we have

ζ(s)

(
1− 1

2s

)(
1− 1

3s

)(
1− 1

5s

)
· · · = ζ(s)

∏
p∈P

(
1− 1

ps

)
=

∞∑
n=1

∀p∈P, p-n

1

ns
= 1.

Thus we get our desired result. One direct result we can see from the Euler product is the
infinitude of prime numbers.

Corollary 2.0.4 There are infinitely many primes.

Proof. Suppose there are finitely many prime numbers. Then |P | is finite and so ζ(1) =∏
p∈P

(
1− 1

p

)−1

would converge. It contradicts because it is known that ζ(1) =
∑∞

n=1
1
n

diverges. Further observation of ζ(s) provides more information on prime numbers. For
instance, we can show that the number of prime numbers is greater than the number of square
numbers. This can be viewed by the following steps. First take the logarithm of both sides of
Equation (2.0.1) and see

log ζ(s) = log

(∏
p∈P

1

1− p−s

)
=
∑
p∈P

log

(
1

1− p−s

)
.

We note that the Taylor expansion of log 1
1−x is

∑∞
n=1

xn

n
for |x| < 1. Since

∣∣ 1
1−p−s

∣∣ < 1 if
<(s) > 1, we may write

log ζ(s) =
∑
p∈P

∞∑
n=1

(
p−s
)n

n
=
∑
p∈P

∞∑
n=1

1

npns
.

Let us now put P (s) =
∑

p∈P
1
ps

so that log ζ(s) can be written as

log ζ(s) =
∑
p∈P

1

ps
+
∑
p∈P

∞∑
n=2

1

npns
= P (s) +

∑
p∈P

∞∑
n=2

1

npns
.

We note that P (s) is called the prime zeta function. We now direct our attention to the last
term of the above equations. Since

∑∞
n=2

1
npns

is absolutely convergent, we may interchange
the summations and obtain

log ζ(s) = P (s) +
∞∑
n=2

1

n

∑
p∈P

1

pns
. (2.0.2)
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Let us write s = x+ iy. Since |eiy| = 1 for any y ∈ R,∣∣∣∣∣∑
p∈P

1

pns

∣∣∣∣∣ ≤∑
p∈P

∣∣∣∣∣ 1

pns

∣∣∣∣∣ =
∑
p∈P

1

|pnx+iyn|
=
∑
p∈P

1

|pnx||pnyi|
∑
p∈P

1

pnx|eiyn log(p)|
=
∑
p∈P

1

pnx
.

Thus, for x > 1, we have ∣∣∣∣∑
p∈P

1

pns

∣∣∣∣ ≤ ∣∣∣∣ 1

pnx

∣∣∣∣ ≤∑
p∈P

1

pn
≤

∞∑
j=2

1

jn
.

Now we obtain an upper bound of the right hand side as

∞∑
j=2

1

jn
<

∞∑
j=2

∫ j

j−1

1

tn
dt =

∫ ∞
1

1

tn
dt =

1

n− 1
,

which transitively means ∣∣∣∣∑
p∈P

1

pns

∣∣∣∣ ≤ 1

n− 1
.

Thus, we obtain the following upper bound,∣∣∣∣∣
∞∑
n=2

1

n

∑
p∈P

1

pns

∣∣∣∣∣ ≤
∞∑
n=2

1

n

∣∣∣∣∑
p∈P

1

pns

∣∣∣∣ ≤ ∞∑
n=2

1

n
· 1

n− 1
= 1.

The last equality uses the fact that the partial sum
∑M

n=2
1

n(n−1)
= M−1

M
. In particular,

∣∣∣ ∞∑
n=2

1

n

∑
p∈P

1

pns

∣∣∣ ≤ 1

as s → 1. Therefore, by Equation (2.0.1), it must be that P (1) =
∑

p∈P
1
p

diverges since

lim
s→1+

ζ(s) = ∞. As we will see later in Section 5.1, ζ(2) = π2

6
, which implies that, al-

though there are infinitely many primes and squares, the primes are “more numerous” than the
squares. More details on this topic can be found in, for example, [14].

Another important property of Riemann zeta function is to have an analytic continuation to
the complex plane (with a simple pole at s = 1), which was first proved by Bernhard Riemann
in his 1859 manuscript (translated into English in [23]). Furthermore, it is known to satisfy
the functional equation of the form

ζ(s)π−
s
2 Γ
(s

2

)
= π−

1−s
2 Γ

(
1− s

2

)
ζ(1− s),

where Γ(s) is the gamma function. Detail on analytic continuation and the functional equation
is discussed in Chapter 3.

One of the interesting topics concerning the Riemann zeta function is to evaluate so-called

5



“special values,” that is to study the values of ζ(s) at s = 2k with k ∈ N. It is one of our main
goals to fully understand the following theorem.

Theorem 2.0.5 Let k be a natural number and B2k denote the 2k-th Bernoulli number. Then

ζ(2k) =
(−1)k+1(2π)2k

2(2k)!
B2k.

Bernoulli numbers are defined by using their recursive definition as
∑n

k=0

(
n+1
k

)
Bk = 0, where

k > 1 and B0 = 1. Their properties are explained in Chapter 4, and the proofs for Theorem
2.0.5 will be shown in Sections 5.1 and 5.2.

6



CHAPTER 3
ANALYTIC CONTINUATION

Analytic continuation of a holomorphic function is a process of extending the function’s do-
main to a larger domain. See the definition below as described in Section 5.8 of [19].

Definition 3.0.1 (Analytic Continuation) Let f be analytic in domain D1 and g be analytic
in domain D2. If D1 ∩D2 is nonempty and f(z) = g(z) for all z in D1 ∩D2, then we call g a
direct analytic continuation of f to D2.

Using a direct analytic continuation of a function f we can define a new function on an ex-
tended domain as follows.

Theorem 3.0.2 Given an analytic function f in domainD1 and a direct analytic continuation,
g, of f to domain D2, we can form the function

F (z) :=

{
f(z) for z ∈ D1

g(z) for z ∈ D2,

which is analytic on D1 ∪D2.

The uniqueness of such function can be shown by studying the Taylor expansion of f and g.
The goal of this section is to study the analytic continuation of ζ(s). This section is mainly
studied from Chapter 2 of [1], [3], [6], and [2].

3.1 Gamma Function

We start with analytic continuation of the gamma function, which helps in proving the analytic
continuation of the Riemann zeta function later.

Definition 3.1.1 Let s be a complex number with <(s) > 0. Then we define the gamma
function as

Γ(s) =

∫ ∞
0

e−tts
dt

t
.

It is noted that
∫∞

0
e−tts dt

t
< ∞ for <(s) > 0. In particular, we easily observe by definition

that Γ(1) =
∫∞

0
e−tt1 dt

t
= −e−t|∞0 = 1 and that Γ(x) is real for all real numbers x. Moreover,

we have the following proposition.

Proposition 3.1.2 Let s be a complex number with <(s) > 0. Then

Γ(s+ 1) = sΓ(s).

7



Proof. Applying integration by parts to

Γ(s+ 1) =

∫ ∞
0

e−tts+1 dt

t
,

we see that

Γ(s+ 1) = −e−tts
∣∣∣∣t=∞
t=0

−
∫ ∞

0

−e−tstsdt

t
= 0 + sΓ(s).

�
The following corollary follows immediately from Proposition 3.1.2.

Corollary 3.1.3 For any positive integer n,

Γ(n) = (n− 1)!

We can use Proposition 3.1.2 to define analytic continuation for the Γ(s) where <(s) ≤ 0.
Specifically, we observe that the right hand side of Γ(s) = Γ(s+1)

s
is analytic when <(s) > −1

with a simple pole at s = 0 with residue 1. If we repeat this extension, we can continue
extending Γ(s) to the whole complex plane with simple poles when s is a non-positive integer.

There is another way to define analytic continuation of the Gamma function, which is to
use contour integration. In the following proposition, we introduce this method.

Proposition 3.1.4 (Analytic Continuation of the Gamma Function) Let the contour C be
the Hankel Curve shown below.

Then the gamma function Γ(s) can be represented as the following integral where the
branch cut is real non-negative axis x ≥ 0:

Γ(s) =
1

e2πis − 1

∮
C

ts−1e−tdt.

Due to the branch cut and the denominator of e2πis − 1, this representation is defined for
complex numbers s where s /∈ R≥0 ∪ Z<0.

Proof. Since C is a contour on the complex plane, we integrate over t = x+ iy and consider
3 parts of the Hankel Curve C as∮

C

ts−1e−tdt, =

∫
purple line

ts−1e−tdt+

∫
red circle

ts−1e−tdt+

∫
blue line

ts−1e−tdt.

The purple line is a line segment for x from R to ε (on the positive imaginary side) with an
arbitrarily small positive number ε. Therefore, we write the integral as∫

purple line
ts−1e−tdt =

∫ ε

R

xs−1e−xdx.

8



For the red curve, write t in polar coordinates, that is, t = εeiθ with θ ∈ (0, 2π), and so
dt
dθ

= iεeiθ. Hence, ∫
red circle

ts−1e−tdt =

∫ 2π

0

(
εeiθ
)s−1

e−εe
iθ

iεeiθdθ.

The blue line is a line segment for x from ε to R (on the negative imaginary side). Since it
is a contour after wrapping around the origin, the phase angle is now 2πi. Therefore, writing
t = xe2πi, we have ∫

blue line
ts−1e−tdt =

∫ R

ε

(
xe2πi

)s−1
e−xe

2πi

dx.

Hence, we have

lim
R→∞,ε→0

∮
C

ts−1e−tdt

= lim
R→∞,ε→0

(∫ ε

R

xs−1e−xdx+

∫ 2π

0

(
εeiθ
)s−1

e−εe
iθ

iεeiθdθ +

∫ R

ε

(
xe2πi

)s−1
e−xe

2πi

dx

)
= lim

R→∞,ε→0

(
−
∫ R

ε

xs−1e−xdx+ iε

∫ 2π

0

(
εeiθ
)s−1

e−εe
iθ

eiθdθ + e2πi(s−1)

∫ R

ε

xs−1e−xdx

)
= lim

R→∞

(
−
∫ R

0

xs−1e−xdx+ 0 + e2πise−2πi

∫ R

0

xs−1e−xdx

)
= lim

R→∞

(
−
∫ R

0

xs−1e−xdx+ e2πise−2πi

∫ R

0

xs−1e−xdx

)
= lim

R→∞

(
−
∫ R

0

xs−1e−xdx+ e2πis(1)

∫ R

0

xs−1e−xdx

)
= lim

R→∞

((
−1 + e2πis

) ∫ R

0

xs−1e−xdx

)
=
(
e2πis − 1

) ∫ ∞
0

xs−1e−xdx

=
(
e2πis − 1

)
Γ(s).

In conclusion, ∮
C

ts−1e−tdt =
(
e2πis − 1

)
Γ(s), (3.1.1)

which gives us our desired result of

Γ(s) =
1

e2πis − 1

∮
C

ts−1e−tdt.

�
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Proposition 3.1.5 The gamma function Γ(s), as a function on C, has simple poles at non-
positive integers, s = −n, with residues (−1)n

n!
.

Proof. We already showed that Γ(s) has simple poles at non-positive integers. This can also
be observed from appearance of the factor (e2πis − 1)−1 in the Hankel contour representation.
To find the residues of Γ(s) at negative integers s = −n, we first observe that if s was an
integer, then

∮
C
ts−1e−tdt would not require a branch cut. Therefore,

∮
C
ts−1e−tdt becomes

an integral over a circle around the origin, which is the red contour in the previous picture.
Thus, we have ∮

C

t−n−1e−tdt =

∮
|t|=ε

t−n−1e−tdt =
2πi

n!

because of Cauchy Residue Theorem. Therefore the residue of Γ(−n) is

lim
s→−n

(
s− (−n)

e2πis − 1

∮
C

t−n−1e−tdt

)
=

2πi

n!
lim
s→−n

(
s+ n

e2πis − 1

)
=

(−1)n

n!
.

�
Another important property of the gamma function Γ(s) is to satisfy the following functional
equation, which is often called the Euler reflection formula of the gamma function.

Theorem 3.1.6 For complex number s, such that s /∈ Z,

Γ(s)Γ(1− s) =
π

sin(πs)
.

Proof. The proof is omitted for now, but can be found in many books, such as [4] and [12]. �
An interesting result that follows from the theorem above is that the gamma function is never
zero, and thus the reciprocal of the gamma function is entire. Hence, we have the following
corollary.

Corollary 3.1.7 The following equation is entire (analytic on the entire complex plane).

1

Γ(s)
=

sin(πs)

π
Γ(1− s)

Proof. We know that Γ(1 − s) has simple poles at s = 1, 2, 3, . . . by Proposition 3.1.5, and
sin(πs) has zeroes at s = 0,−1,−2, . . . . Therefore the simple poles, which are poles of order
1, of Γ(s) become removable singularities. �

Before we close our focus on the gamma function, let us point out Legendre’s Duplication
Formula that provides a relation between Γ(2s) and Γ(s). This discussion can be found, for
example, in Chapter 3 (p. 24) of [3] or in Chapter 5 of [9]. They use the beta function (also
known as Euler’s First Integral) to prove this relation. We only state the formula without a
proof.

10



Proposition 3.1.8 (Legendre’s Duplication Formula) For any complex number s, the fol-
lowing functional equation holds:

Γ(2s) =
22s−1

√
π

Γ(s)Γ

(
s+

1

2

)
.

3.2 Jacobi Theta Function

The next function to consider is the Jacobi theta function, and (inadvertently) the Poisson sum-
mation formula. We begin by explaining the Jacobi theta function, and how Fourier analysis
gives us relevant properties.

Definition 3.2.1 For any complex number s, the Jacobi theta function θ(s) is defined as

θ(s) =
∑
n∈Z

e−πn
2s.

Note that since −πn2s = −π(−n)2s, we may write the Jacobi theta function as

θ(s) = 1 + 2
∞∑
n=1

e−πn
2s.

The summation
∑∞

n=1 e
−πn2s is often called the psi function and is denoted as Ψ(s). Therefore,

we may also write the Jacobi theta function as θ(s) = 1 + 2Ψ(s).
To prove the analytic continuation of Riemann zeta function, the important property needed

of the theta function is its functional equation, which is stated below.

Proposition 3.2.2 The functional equation of Jacobi theta function is given as

θ(s) =
1√
s
θ

(
1

s

)
. (3.2.1)

In order to prove the proposition above, we first introduce the Poisson summation formula,
following from [5].

Proposition 3.2.3 (Poisson Summation Formula) Let f be a piece-wise continuous function
defined on R, satisfying the following condition: For all c ∈ R,

f(c) =
1

2

[
lim
x→c−

f(x) + lim
x→c+

f(x)

]
and |f(c)| < a for some positive constant a. (This means that f is bounded.) Then its Poisson
summation is ∑

n∈Z

f(n) =
∑
k∈Z

∫ ∞
−∞

f(x)e−2πikxdx.
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The Poisson summation formula is easily derived from the Fourier series. See, for example,
[5] and Chapter 2 of [8] for more details.
Proof for Proposition 3.2.2. While this proposition holds for s ∈ C, we only prove the case of
s ∈ R. This proof can can be extended to the complex plane. Let f(n) = e−πn

2s for a fixed
s ∈ R. Then applying the Poisson summation formula to θ(s), we see

θ(s) =
∑
n∈Z

e−πn
2s =

∑
k∈Z

∫ ∞
−∞

e−πx
2se−2πikxdx

=
∑
k∈Z

∫ ∞
−∞

e−πx
2s−2πikxdx.

We use the Gauss integral trick to solve the integral above. Thus, we aim to form an integral
that looks like e−a2 by completing the square for −πx2s− 2πikx. Indeed, we may write

θ(s) =
∑
k∈Z

∫ ∞
−∞

e−πx
2s−2πikxdx

=
∑
k∈Z

∫ ∞
−∞

e−πs(x
2+2i k

s
x+i2 k

2

s2
−i2 k

2

s2
)dx

=
∑
k∈Z

∫ ∞
−∞

e−πs((x+i k
s

)2−i2 k
2

s2
)dx

=
∑
k∈Z

∫ ∞
−∞

e−πs(x+i k
s

)2+πs(−1) k
2

s2
)dx

=
∑
k∈Z

∫ ∞
−∞

e−
πk2

s e−πs(x+i k
s

)2dx

=
∑
k∈Z

e−
πk2

s

∫ ∞
−∞

e−πs(x+i k
s

)2dx.

We now want to introduce a substitution, x + ik
s

= a Since ik
s

is a constant, dx = da.
Therefore, we have

θ(s) =
∑
k∈Z

e−
πk2

s

∫ ∞
−∞

e−πsa
2

da,

which is shown in Section 5.1 of [16]. Now we have the form to use the Gauss Integral trick,

12



∫∞
−∞ e

−bx2dx =
√

π
b

for positive b, and therefore

θ(s) =
∑
k∈Z

e−
πk2

s

∫ ∞
−∞

e−πsa
2

da =
∑
k∈Z

e−
πk2

s

√
π

πs
=
∑
k∈Z

e−
πk2

s

√
π

πs
=
∑
k∈Z

e−
πk2

s

√
1

s

=
1√
s
θ

(
1

s

)
.

This completes the proof. �
Applying Proposition 3.2.2 to 2Ψ(s) = θ(s)− 1, we observe the following:

Corollary 3.2.4

Ψ(s) =
1√
s

Ψ

(
1

s

)
+

1

2
√
s
− 1

2
.

This gives us enough tools to analytically extend the Riemann zeta function to C. The fol-
lowing section is devoted to proving the analytic continuation of ζ(s) as well as its functional
equation. This section is mainly adopted from [7] and [23], with more details.

3.3 Completed Riemann Zeta Function

Theorem 3.3.1 The Riemann zeta function ζ(s) can be analytically continued to the whole
complex plane except at s = 1.

In order to prove Theorem 3.3.1, we first define the completed zeta function Λ(s) and prove
some of its properties.

Theorem 3.3.2 Define the completed zeta function Λ(s) as

Λ(s) := π−
s
2 Γ
(s

2

)
ζ(s)

for <(s) > 1. Then it can be analytically continued to the whole complex plane except when
s = 0 and 1, and it satisfies the functional equation,

Λ(s) = Λ(1− s).

Proof. We first note that Λ(s) is well-defined where <(s) > 1 because ζ(s) and Γ
(
s
2

)
are

well-defined in that region. Furthermore, the integral representation of Γ( s
2
) holds, so

Γ
(s

2

)
=

∫ ∞
0

t
s
2
−1e−tdt. (3.3.1)

Let n ∈ Z>0 and substitute t = πn2x into Equation (3.3.1). Then Γ( s
2
) becomes

13



Γ
(s

2

)
=

∫ ∞
0

(πn2x)
s
2
−1e−πn

2xπn2dx

=

∫ ∞
0

π
s
2
−1n2( s

2
−1)x

s
2
−1e−πn

2xπn2dx

= π
s
2ns
∫ ∞

0

x
s
2
−1e−πn

2xdx.

Multiplying both sides of the equality by π− s
2

ns
, we get

π−
s
2

ns
Γ
(s

2

)
=

∫ ∞
0

x
s
2
−1e−πn

2xdx.

Summing over positive integers n yields

∞∑
n=1

π−
s
2

ns
Γ
(s

2

)
=
∞∑
n=1

∫ ∞
0

x
s
2
−1e−πn

2xdx.

Notice that the left hand side of the above equation is π−
π
2 Γ
(
s
2

)
ζ(s). For the right hand side,

we can interchange the integral and summation because both are absolutely convergent for
<(s) > 1. The above expression is then equal to

π−
s
2 Γ
(s

2

)
ζ(s) =

∫ ∞
0

∞∑
n=1

x
s
2
−1e−πn

2xdx

=

∫ ∞
0

x
s
2
−1

∞∑
n=1

e−πn
2xdx.

It is observed that the summation on the right hand side of the above equation is nothing but
the Ψ-function, and thus

Λ(s) = ζ(s)π−
s
2 Γ
(s

2

)
=

∫ ∞
0

x
s
2
−1Ψ(x)dx.

Now we split the right hand side into two integrals, namely

Λ(s) =

∫ 1

0

x
s
2
−1Ψ(x)dx+

∫ ∞
1

x
s
2
−1Ψ(x)dx. (3.3.2)
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We compute the first integral of Equation (3.3.2) by applying Corollary 3.2.4. Indeed,∫ 1

0

x
s
2
−1Ψ(x)dx =

∫ 1

0

x
s
2
−1

(
1√
x

Ψ

(
1

x

)
+

1

2
√
x
− 1

2

)
dx

=

∫ 1

0

(
x
s−3
2 Ψ

(
1

x

)
+

1

2
x
s−3
2 − 1

2
x
s
2
−1

)
dx

=

∫ 1

0

x
s−3
2 Ψ

(
1

x

)
dx+

1

2

∫ 1

0

(
x
s−3
2 − x

s
2
−1
)

dx

=

∫ 1

0

x
s−3
2 Ψ

(
1

x

)
dx+

1

2

[
2

s− 1
x
s−1
2 − 2

s
x
s
2

]x=1

x=0

=

∫ 1

0

x
s−3
2 Ψ

(
1

x

)
dx+

1

2

[
2

s− 1
(1)

s−1
2 − 2

s
(1)

s
2 − 2

s− 1
(0)

s−1
2 +

2

s
(0)

s
2

]

=

∫ 1

0

x
s−3
2 Ψ

(
1

x

)
dx+

1

s(s− 1)
.

Furthermore, by changing the variable as x 7→ 1
u

on the right hand side, we obtain∫ 1

0

x
s
2
−1Ψ(x)dx =

∫ 1

∞

(
1

u

) s−3
2

Ψ(u)(−u−2)du+
1

s(s− 1)

=

∫ ∞
1

u
−s+3

2 Ψ(u)u−2du+
1

s(s− 1)

=

∫ ∞
1

u
−s−1

2 Ψ(u)du+
1

s(s− 1)
.

Hence,

Λ(s) =

∫ 1

0

x
s
2
−1Ψ(x)dx+

∫ ∞
1

x
s
2
−1Ψ(x)dx

=

∫ ∞
1

x
−s−1

2 Ψ(x)dx+
1

s(s− 1)
+

∫ ∞
1

x
s
2
−1Ψ(x)dx

=

∫ ∞
1

(
x

−s−1
2 + x

s
2
−1
)

Ψ(x)dx+
1

s(s− 1)

=

∫ ∞
1

(
x

−s+1
2 + x

s
2

)
x−1Ψ(x)dx+

1

s(s− 1)
. (3.3.3)

Note that the integral on the right hand side is well-defined for any s ∈ C, and so the right
hand side is well defined for any s 6= 0, 1. This gives the analytic continuation of Λ(s).
Furthermore, it allows us to substitute s 7→ 1− s, and therefore we can write Equation (3.3.3)
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as

Λ(1− s) =

∫ ∞
1

(
x

−1+s+1
2 + x

1−s
2

)
x−1Ψ(x)dx+

1

(1− s)(1− s− 1)

=

∫ ∞
1

(
x
s
2 + x

−s+1
2

)
x−1Ψ(x)dx+

1

(1− s)(s)
= Λ(s).

Thus we get the desired result. �
Recall that the only possible poles on the right hand side of Equation (3.3.3) are at s = 0 and
1. Together with the fact that 1

Γ(s)
is entire (as stated in Corollary 3.1.7), we observe that

ζ(s) =
π
s
2

Γ
(
s
2

) (∫ ∞
1

(
x
s
2 + x

−s+1
2

)
x−1Ψ(x)dx+

1

(1− s)(s)

)
.

is meromorphic on C, except possibly at s = 0, 1. We now claim that the pole at s = 0 is
removable. This can be shown by the following expression:

lim
s→0

1

s
· π

s
2

Γ
(
s
2

) = lim
s→0

1

2 · s
2

· π
s
2

Γ
(
s
2

) = lim
s→0

π
s
2

2Γ
(
s
2

+ 1
) =

1

2Γ (1)
=

1

2
.

The second equality follows from Proposition 3.1.2. Hence, ζ(s) has an analytic continuation
to C with a simple pole at s = 1. To end this chapter, we state the functional equation of the
Riemann zeta function below.

Theorem 3.3.3 For any complex number s 6= 1, the following function is well-defined:

ζ(s) = 2sπs−1 sin
(πs

2

)
Γ(1− s)ζ(1− s).

Proof. This follows from Theorem 3.1.6, Proposition 3.1.8, and Proposition 3.3.2.
First, in Proposition 3.1.8, we apply a change of variable s 7→ s

2
to get

Γ (s) =
2s−1

√
π

Γ
(s

2

)
Γ

(
s

2
+

1

2

)
.

Therefore, we have

Γ
(s

2

)
Γ

(
s+ 1

2

)
=

√
π

2s−1
Γ(s). (3.3.4)

Also, substituting s 7→ s+1
2

in Theorem 3.1.6, we have

Γ

(
s+ 1

2

)
Γ

(
1− s+ 1

2

)
=

π

sin
(
πs
2

+ π
2

) . (3.3.5)
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Since 1
Γ(s)

is entire, we can divide Equation (3.3.4) by Equation (3.3.5) to get

Γ
(
s
2

)
Γ
(

1−s
2

) =
2

2s
√
π

cos
(πs

2

)
Γ(s). (3.3.6)

Lastly we manipulate the functional equation of Proposition 3.3.2 to have the left hand side of
Equation (3.3.6), that is, to divide both sides of

π−
s
2 Γ
(s

2

)
ζ(s) = π−

s−1
2 Γ

(
s− 1

2

)
ζ(s− 1)

by Γ
(
s−1

2

)
and rearrange to get

ζ(1− s) = π
1
2
−s Γ

(
s
2

)
Γ
(

1−s
2

)ζ(s).

By substituting in Equation (3.3.6), we obtain our desired result. �

Remark 3.3.4 The Dirichlet eta function η(s) =
∑∞

n=1
(−1)n−1

ns
for complex s where <(s) >

0, is also used to prove the analytical continuation of the Riemann zeta function to the critical
strip where 0 < Re(s) < 1. It is not explained in this note, but refer to the sources focusing
on the Riemann Hypothesis, such as [18] and [Kim_Riemann_Hypothesis].

Proposition 3.3.5 ζ(s) has a simple pole at s = 1.

Proof. An easy way to see this is to consider ζ(s) = 2sπs−1 sin
(
πs
2

)
Γ(1 − s)ζ(1 − s). The

terms 2sπs−1 sin
(
πs
2

)
ζ(1− s) are well defined when s = 1, but Γ(1− s) has a simple pole at

s = 1. �

Proposition 3.3.6 (The Zeta function’s Trivial Zeroes) The zeroes of ζ(s) in <(s) < 0 are
where s is a negative even integer, that is,

ζ(−2k) = 0 for k ∈ N.

Proof. Let s be a complex number and <(s) < 0. So the ζ(s) representation we use is

ζ(s) = 2sπs−1 sin
(πs

2

)
Γ(1− s)ζ(1− s).

On the right hand side, 2sπs−1ζ(1 − s) 6= 0, so we only have to look at sin
(
πs
2

)
Γ(1 − s).

However, Γ(1 − s) has simple poles for 1 − s = 0,−1,−2, · · · , so when s = 1, 2, 3, · · · .
Therefore when <(s) < 0,Γ(1 − s) 6= 0 and is well-defined.Therefore when <(s) < 0, ζ(s)
has zeroes when sin

(
πs
2

)
= 0, which when s = −2,−4,−6, . . . . �
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CHAPTER 4
BERNOULLI NUMBERS AND BERNOULLI POLYNOMIALS

As seen in Theorem 2.0.5, Bernoulli numbers are deeply connected to the special values of
the Riemann zeta function. In this chapter, we study some important properties of Bernoulli
numbers as well as the Bernoulli polynomials.

4.1 Bernoulli Numbers

Bernoulli numbers first appeared in the Jacob Bernoulli’s book, Ars Conjectandi, where he

studied the sums of the k-th powers of n integers, Sk(n) =
n∑
i=1

ik. In this section, we will

introduce how Bernoulli encountered such numbers and study their useful properties. The
exposition of this section is borrowed from [2] and [22].

Let us look at the first few formulas for sums of integer powers.

S0(n) = n

S1(n) =
n(n+ 1)

2
=

1

2
n2 +

1

2
n

S2(n) =
n(n+ 1)(2n+ 1)

6
=

1

3
n3 +

1

2
n2 +

1

6
n

S3(n) =
n2(n− 1)2

4
=

1

4
n4 +

1

2
n3 +

1

4
n2

S4(n) =
n(n− 1)(2n− 1)(3n2 − 3n− 1)

30
=

1

5
n5 +

1

2
n4 +

1

3
n3 − 1

30
n

S5(n) =
n2(2n2 − 2n− 1)(n− 1)2

12
=

1

6
n6 +

1

2
n5 +

5

12
n4 − 1

12
n2

...

Thus a pattern emerges,

Sk(n) =
1

k + 1
nk+1 +

1

2
nk +

k

12
nk−1 + 0 · nk−2 + · · · , (4.1.1)
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which we now write as

Sk(n) =
1

k + 1
B0n

k+1 +B1n
k +

k

2
B2n

k−1 +
k(k − 1)(k − 2)

2 · 3 · 4
B4n

k−3

+
k(k − 1)(k − 2)(k − 3)(k − 4)

2 · 3 · 4 · 5 · 6
B6n

k−5

+
k(k − 1)(k − 2)(k − 3)(k − 4)(k − 5)(k − 6)

2 · 3 · 4 · 5 · 6 · 7 · 8
B8n

k−7 + · · · ,

where

B0 = 1, B1 =
1

2
, B2 =

1

6
, B3 = 0, B4 =

−1

30
, B5 = 0, B6 =

1

42
, . . . .

Such Bk’s are called the k-th Bernoulli numbers. Indeed, these are called the “classical”
Bernoulli numbers nowadays. Recent study frequently adopts so-called the “modern” Bernoulli
numbers, which only differs from the classical definition at k = 1. We will use the modern
definition for our later computation purposes.

Many define Bernoulli numbers using its generating function or recursive function. Here,
we adopt the recursive definition, but later show that these are equivalent.

Definition 4.1.1 Let B0 = 0. For k ≥ 1, the (modern) k-th Bernoulli number Bk is defined
recursively as

n∑
k=0

(
n+ 1

k

)
Bk = 0.

For example, the first six Bernoulli numbers are,

B0 = 1, B1 = −1

2
, B2 =

1

6
, B3 = 0, B4 =

−1

30
, B5 = 0, B6 =

1

42
, . . . .

In what follows, we show that the Bernoulli numbers can be equivalently defined by its
generating function.

Proposition 4.1.2 The generating function below gives the k-th Bernoulli number Bk as a
coefficient of t

k

k!
.

t

et − 1
=
∞∑
k=0

Bk
tk

k!

Proof. From Definition 4.1.1, if k ≥ 1, we see(
k−1∑
j=0

(
k

j

)
Bj

)
+Bk = 0 +Bk = Bk.
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Note that the left hand side in the above expression can be also written as(
k−1∑
j=0

(
k

j

)
Bj

)
+

(
k

k

)
Bk =

k∑
j=0

(
k

j

)
Bj.

Therefore we can express the k-th Bernoulli Number as

Bk =
k∑
j=0

(
k

j

)
Bj. (4.1.2)

On the other hand, let t 6= 0 and g(t) =
∞∑
k=0

Bk
tk

k!
. Then applying Equation (4.1.2), we observe

g(t)et =
∞∑
k=0

Bk
tk

k!

∞∑
k=0

tk

k!

=
∞∑
k=0

(
k∑
j=0

(
k

j

)
Bj

)
tk

k!

=

((
0

0

)
B0

)
t0

0!
+

((
1

0

)
B0 +

(
1

1

)
B1

)
t1

1!

+

((
2

0

)
B0 +

(
2

1

)
B1 +

(
2

2

)
B2

)
t2

2!
+
∞∑
k=3

(
k∑
j=0

(
k

j

)
Bj

)
tk

k!

= B0 + (B0 +B1)t+ (B0 + 2B1 +B2)
t2

2!
+
∞∑
k=3

Bk
tk

k!

= 1 + (1 +B1)t+ (1− 1 +B2)
t2

2!
+
∞∑
k=3

Bk
tk

k!

= 1 + t+B1t+B2
t2

2!
+
∞∑
k=3

Bk
tk

k!
.

Since 1 +B1t = B0t0

0!
+ B1t1

1!
, we have

g(t)et = t+
∞∑
k=0

Bk
tk

k!
= t+ g(t).

Thus,
g(t)et − g(t) = t,
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or equivalently,
t

et − 1
= g(t) =

∞∑
k=0

Bk
tk

k!
.

�

4.2 Bernoulli Polynomials

We now define Bernoulli polynomials. Since there is one accepted representation of Bernoulli
polynomials, we will define them by their generating function and note important properties
that relate to the Bernoulli numbers.

Definition 4.2.1 The k-th Bernoulli polynomials Bk(x) are defined as

∞∑
k=0

Bk(x)
tk

k!
=

text

et − 1
.

In this section, we prove some properties connecting Bernoulli polynomials with Bernoulli
numbers. These properties can also be found in [22].

1. (Spawning Bernoulli Polynomials from Bernoulli Numbers)

Bk(x) =
k∑
j=0

(
k

j

)
Bjx

k−j for k ≥ 0

Proof. Consider the following,

∞∑
k=0

Bk(x)
tk

k!
=

text

et − 1
=

t

et − 1
· ext =

(
∞∑
k=0

Bk
tk

k!

)(
∞∑
k=0

xktk

k!

)

=
∞∑
k=0

(
k∑
j=0

(
k

j

)
Bjx

k−j

)
tk

k!
.

The desired result follows by comparing coefficients. �

Using the previous property, we can easily compute the first few Bernoulli polynomials
as follows:

B0(x) = 1, B1(x) = x− 1

2
, B2(x) = x2 − x+

1

6
,

B3(x) = x3 − 3

2
x2 +

1

2
x, B4(x) = x4 − 2x3 + x2 − 1

30
, . . . .
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2. Bk(x+ 1)−Bk(x) = kxk−1 for k ≥ 0
Proof. We express text in two different ways. Indeed, we have

text = t

∞∑
k=0

xktk

k!
=
∞∑
k=0

xktk+1

k!
=
∞∑
k=1

xk−1tk

(k − 1)!
.

On the other hand, text can also be written as

text =
text

et − 1
(et − 1) =

tet(x+1)

et − 1
− text

et − 1

=
∞∑
k=0

Bk(x+ 1)
tk

k!
−
∞∑
k=0

Bk(x)
tk

k!
=
∞∑
k=0

(Bk(x+ 1)−Bk(x))
tk

k!
.

Comparing the two expressions yields

∞∑
k=0

(Bk(x+ 1)−Bk(x))
tk

k!
=
∞∑
k=1

xk−1tk

(k − 1)!
,

and therefore
Bk(x+ 1)−Bk(x)

k!
=

xk−1

(k − 1)!
.

Multiplying both sides of the equation by k!, we obtain

Bk(x+ 1)−Bk(x) =
k!xk−1

(k − 1)!
= kxk−1.

�

3. Bk(1− x) = (−1)kBk(x) for k ≥ 0
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Proof. The generating function for the Bernoulli numbers gives

∞∑
k=0

Bk(1− x)
tk

k!
=
te(1−x)t

et − 1
=

tet

et − 1
e−xt

=
ett

et(1− e−t)
−1

−1
e−xt =

−t
e−t − 1

e−xt

=

(
∞∑
k=0

Bk
(−t)k

k!

)(
∞∑
k=0

(−x)ktk

k!

)

=
∞∑
k=0

(
k∑
j=0

(
k

j

)
(−1)jBj(−1)k−jxk−j

)
tk

k!

=
∞∑
k=0

(−1)k

(
k∑
j=0

(
k

j

)
Bk−j
j

)
tk

k!

=
∞∑
k=0

(−1)kBk(x)
tk

k!
.

Note that the Bernoulli polynomial Property 1 was applied in the second and fourth lines
in the above equation. We get our desired result by comparing coefficients. �

4. B′k(x) = kBk−1(x) for k ≥ 1 and B′0(x) = 0

Proof. Since B0(x) = 1, it is clear that B′0(x) = 0. Now let k ≥ 1 and take the partial
derivative of the generating function with respect to x,

∂

∂x

(
text

et − 1

)
=

∂

∂x

∞∑
k=0

Bk(x)
tk

k!
=
∞∑
k=0

∂

∂x

(
Bk(x)

tk

k!

)
=
∞∑
k=0

B′k(x)
tk

k!
.

On the other hand,

∂

∂x

(
text

et − 1

)
=

t2ext

et − 1
= t

(
text

et − 1

)
= t

(
∞∑
k=0

Bk(x)
tk

k!

)
=

(
∞∑
k=0

Bk(x)
tk+1

k!

)

=

(
∞∑
k=1

Bk−1(x)
tk

(k − 1)!

)
.
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Thus,
∞∑
k=0

B′k(x)
tk

k!
=
∞∑
k=1

Bk−1(x)
tk

(k − 1)!
.

Therefore by comparing coefficients of the tk-th term, we have

B′k(x)

k!
=
Bk−1(x)

(k − 1)!
,

or equivalently,

B′k(x) =
k!Bk−1(x)

(k − 1)!
= kBk−1(x).

�

5. Bk(0) = Bk and Bk(1) = (−1)kBk for k ≥ 1
Proof. The first part follows from substituting x = 0 into Definition 4.2.1 and Proposi-
tion 4.1.2. More precisely,

∞∑
k=0

Bk(0)
tk

k!
=

te(0)t

et − 1
=

t

et − 1
=
∞∑
k=0

Bk
tk

k!
.

For the second part, we again use Proposition 4.1.2,

∞∑
k=0

Bk(1)
tk

k!
=

te(1)t

et − 1
=

(−e−t)tet

(−e−t)(et − 1)
=

−t
e−t − 1

=
∞∑
k=0

(−1)kBk
tk

k!
.

Thus we can compare coefficients to get the desired result. �

6.
∫ 1

0

Bk(x)dx = 0 for k ≥ 1

Proof. We can evaluate the integral by using Property 4 as follows:∫ 1

0

Bk(x)dx =

∫ 1

0

1

k + 1
B′k+1(x)dx =

1

k + 1

∫ 1

0

B′k+1(x)dx

=
1

k + 1
(Bk+1(1)−Bk+1(0))

=
1

k + 1

(
(−1)k+1Bk+1 −Bk+1

)
.
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The last equality follows from Property 5. Finally, we note that

(−1)k+1Bk+1 −Bk+1 =

{
0− 0 = 0 if k is even
Bk+1 −Bk+1 = 0 if k is odd,

which completes the proof. �
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CHAPTER 5
SPECIAL VALUES OF RIEMANN ZETA FUNCTION

One of the areas studied extensively in the seventeenth century was to understand infinite
series. In 1644, Pietro Mengoli introduced the Basel problem, which is to evaluate

∑∞
n=1

1
n2 ,

now known as the value of ζ(2). However, it was ignored until Johann Bernoulli published it
in 1689. It remained unsolved until 1734, when Euler showed that ζ(2) = π2

6
. Furthermore,

he found a way to evaluate ζ(2k) for any positive integer k. In this section, we will explain
his method and a newly published method for evaluating ζ(2k).

5.1 Connecting to the Cotangent Function

In this section, we follow one of Euler’s proofs described above. This can also be found in,
for example, [20], [9], and [15].

Note that sin(πs)
πs

has infinitely many zeroes when s ∈ {. . . ,−2,−1, 1, 2, . . . }. In order to
describe the function as a product of its linear factors, we apply the following theorem proved
by the nineteenth century mathematician Karl Weierstrass. The theorem is listed below, and
more information can be found on page 71 of [9].

Theorem 5.1.1 (Weierstrass Factor Theorem) Let f(s) be an entire function with a zero at
s = 0 of order b ≥ 0 and non-zero zeroes s = c1, c2, c3, . . . . There exists a sequence of
numbers a1, a2, a3, . . . and an entire function g(s), f(s) such that

f(s) = sbeg(s)
∞∏
n=1

Ean

(
s

cn

)
.

Where for an a in the sequence a1, a2, a3, . . .,

Ea(s) =

{
(1− s) if a = 0

(1− s)e
∑a
a=1

sa

a otherwise.

Therefore, we can write sin(s) as

sin(πs) = πs
∏
n∈Z
n6=0

e
s
n

(
1− s

n

)
.

and thus,
sin(πs)

πs
=
∞∏
n=1

(
1− s2

n2

)
. (5.1.1)

Multiplying them out and rearranging terms according to the powers of s, we get that the coef-
ficient of s2k is the sum of reciprocals of the product of k squared natural numbers multiplied
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by (−1)k, so
sin(πs)

πs
=
∞∑
k=1

(−1)k

( ∑
n1,...,nk∈N

1

n2
1 · · ·n2

k

)
s2k,

or more explicitly for our purposes,

sin(πs)

πs
= 1−

(
1

12
+

1

22
+

1

32
+ · · ·

)
s2 (5.1.2)

+

(
1

1222
+

1

1232
+

1

2332
+ · · ·

)
s4 −

(
1

122232
+ · · ·

)
s6 + · · · . (5.1.3)

Therefore, we can see that the coefficient of s2 is ζ(2). We now recall the Taylor expansion of
the sine function,

sin(s) = s− s3

3!
+
s5

5!
− s7

7!
+ · · · .

Now by letting s 7→ πs and dividing by πs, we have

sin(πs)

πs
= 1− (πs)2

3!
+

(πs)4

5!
− (πs)6

7!
+ · · ·

= 1− π2

3!
s2 +

π4

5!
s4 − π6

7!
s6 + · · · .

Since the Taylor expansion is unique, we can compare the coefficients of the Taylor expansion
and Equation (5.1.2) to find the value of ζ(2). More precisely, we observe that −ζ(2)s2 =
−π2

3!
s2, which allows us to conclude

ζ(2) =
π2

6
.

Remark 5.1.2 The Weierstrass factor theorem was not known during the time of Euler, yet
Euler assumed this property was true, as stated by in [21]. Indeed, it was about a hundred
years later when Weierstrass rigorously proved this theorem. What Euler knew was that if
p(x) is an n degree polynomial such that it has n non zero roots, c1, . . . , cn, and p(0) = 1,
then p(x) can be written as

p(x) =
n∏
i=1

(
1− x

ci

)
.

Then Euler assumed that this holds for an infinite degree polynomial and wrote

sin(πs)

πs
=
(

1− s

1

)(
1 +

s

1

)(
1− s

2

)(
1 +

s

2

)(
1− s

3

)(
1 +

s

3

)
· · ·

=

(
1− s2

12

)(
1− s2

22

)(
1− s2

32

)
· · · .

Euler’s method for evaluating ζ(2) demonstrates how to find some values of the Riemann zeta
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function using the properties of trigonometric functions. Now we generalize his approach to
prove Theorem 2.0.5.

This approach consists of three parts. First, we connect ζ(2k) with the cotangent function.
Secondly, we connect the cotangent function with Bernoulli numbers. Lastly, we show the
relationship between Bernoulli numbers and the Riemann zeta function, using the cotangent
relationships as bridges. This proof is a more detailed version of Chapter 9.6 of [15].

The first step is to express special values of ζ(2k) in terms of the cotangent function.

Proposition 5.1.3 For natural number k and s ∈ (0, 1),

πs · cot(πs) = 1− 2
∞∑
k=1

ζ(2k)s2k.

Proof. Let s be a real number greater than 0 and less than 1. By taking the logarithm of both
sides of Equation (5.1.1), we have

log

(
sin(πs)

πs

)
= log

(
∞∏
n=1

(
1− s2

n2

))
=
∞∑
n=1

log

(
1− s2

n2

)
,

and therefore

log (sin(πs)) = log(πs) +
∞∑
n=1

log

(
1− s2

n2

)
.

Taking the derivative of the above equation with respect to s gives us the cotangent function
because d

ds
log (sin(πs)) = cos(πs)

sin(πs)
π. On the other hand,

d

ds

(
log(πs) +

∞∑
n=1

log

(
1− s2

n2

))
=

1

s
+
∞∑
n=1

1

1− s2

n2

·
(
−2s

n2

)
.

Therefore, we obtain
cos(πs)

sin(πs)
π =

1

s
+
∞∑
n=1

1

1− s2

n2

·
(
−2s

n2

)

Multiply both sides by s to obtain

πs · cot(πs) = 1 +
∞∑
n=1

1

1− s2

n2

·
(
−2s2

n2

)
, (5.1.4)

which gives us a nice series expression for πs · cot(πs). Since
∣∣∣ s2n2

∣∣∣ < 1 with our assumption,

we may write 1

1− s2

n2

as a geometric series,

∞∑
k=0

(
s2

n2

)k
=

1

1− s2

n2

.
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Substituting it into Equation (5.1.4) gives us

πs · cot(πs) = 1 +
∞∑
n=1

∞∑
k=0

(
s2

n2

)k (−2s2

n2

)

= 1− 2
∞∑
n=1

∞∑
k=0

(
s2

n2

)k+1

= 1− 2
∞∑
n=1

∞∑
k=1

(
s2

n2

)k
= 1− 2

∞∑
n=1

∞∑
k=1

1

n2k
· s2k.

In the above equation, we can justify changing the order of summations by knowing that for
s ∈ (0, 1),

∑∞
n=1

1
n2k and

∑∞
k=1 s

2k are absolutely convergent series. Therefore, we can write

πs · cot(πs) = 1− 2
∞∑
k=1

∞∑
n=1

1

n2k
· s2k = 1− 2

∞∑
k=1

ζ(2k) · s2k.

This completes the proof.
For our second step, we prove relationship between Bernoulli numbers and the cotangent

function. This proof comes from the Appendix of [2] and from [10].

Proposition 5.1.4 For s ∈ (0, 1), the following is true:

πs · cot(πs) = iπs+
∞∑
k=0

Bk
(2iπs)k

k!
.

Proof. First we express πs · cot(πs) using the identity cot(πs) = cos(πs)/ sin(πs) and the
Euler formula for complex exponentials. Indeed, we have

πs · cot(πs) = πs · cos(πs)

sin(πs)
= πs ·

eiπs + e−iπs

2
eiπs − eiπs

2i

= iπs · e
iπs + e−iπs

eiπs − eiπs
= iπs · e

2iπs + 1

e2iπs − 1

= iπs · e
2iπs − 1 + 2

e2iπs − 1

= iπs ·
(

1 +
2

e2iπs − 1

)
= iπs+

2iπs

e2iπs − 1
.
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Notice that the last term in the expression above is nothing but the Bernoulli number generating
function in Proposition 4.1.2 with t = 2iπs. This substitution gives us

πs · cot(πs) = iπs+
∞∑
k=0

Bk
(2iπs)k

k!
.

Propositions 5.1.4 and 5.1.3 give the following relation,

iπs+
∞∑
k=0

Bk
(2iπs)k

k!
= πs · cot(πs) = 1− 2

∞∑
k=1

ζ(2k)s2k. (5.1.5)

As for our final step, we now make a further observation on the left hand side of Equation
5.1.5, rewriting it as

iπs+
∞∑
k=0

Bk
(2iπs)k

k!
= iπs+

B0

0!
+ 2

B1

1!
(iπs) +

∞∑
k=2

Bk
(2iπs)k

k!

= iπs+
1

1
+ 2
−1/2

1
(iπs)− 2

∞∑
k=2

−1

2
Bk

(2iπs)k

k!

= iπs+ 1− iπs− 2
∞∑
k=2

−1

2
Bk

(2iπs)k

k!

= 1− 2
∞∑
k=2

−1

2
Bk

(2iπs)k

k!
.

Noting that B2k+1 = 0 for k > 0, we have

1− 2
∞∑
k=1

−1

2
B2k

(2iπs)2k

(2k)!
= 1− 2

∞∑
k=1

−1

2
B2k

(2π)2ki2ks2k

(2k)!

= 1− 2
∞∑
k=1

−1

2
B2k

(2π)2k(−1)ks2k

(2k)!

= 1− 2
∞∑
k=1

B2k
(−1)k+1(2π)2ks2k

2(2k)!
.

Comparing coefficients of this expression with the right hand side of Equation (5.1.5) provides
that

ζ(2k) = B2k
(−1)k+1(2π)2k

2(2k)!
.

This completes the proof of Theorem 2.0.5.
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5.2 Alternative Proof

In May 2015, Óscar Ciaurri, Luis Navas, Francisco Ruiz and Juan Varona published a paper
[11], providing a new method to evaluate ζ(2k) that only uses properties of Bernoulli poly-
nomials and that of telescoping series. It is remarkable that this new method does not require
knowledge of complex analysis. In this section, we study their proof thoroughly.

First let us define the integral I(k,m). For any integers k ≥ 0 and m ≥ 1,

I(k,m) :=

∫ 1

0

B2k(t) · cos(mπt)dt. (5.2.1)

Notice that I(0,m) = 0 because

I(0,m) =

∫ 1

0

B0(t) · cos(mπt)dt

=

∫ 1

0

1 · cos(mπt)dt

= 0.

We now find I(k,m) for k ≥ 1 using integration by parts twice. Indeed,

I(k,m) =

[
B2k(t) ·

1

mπ
sin(mπt)

]t=1

t=0

−
∫ 1

0

1

mπ
sin(mπt) · 2k ·B2k−1(t)dt (5.2.2)

=
1

mπ

[
B2k(t) · sin(mπt)

]t=1

t=0

− 2k

mπ

∫ 1

0

B2k−1(t) · sin(mπt)dt

= − 2k

mπ

∫ 1

0

B2k−1(t) · sin(mπt)dt.

31



Applying integration by parts in the integral on the right hand side, we observe∫ 1

0

B2k−1(t) · sin(mπt)dt =

[
B2k−1(t) ·

(
− cos(mπt)

mπ

)]t=1

t=0

−
∫ 1

0

(
− cos(mπt)

mπ

)
·
(

(2k − 1)B2k−2(t)dt
)

=
−1

mπ

[
B2k−1(t) · cos(mπt)

]t=1

t=0

+
2k − 1

mπ

∫ 1

0

B2k−2(t) · cos(mπt)dt

=
−1

mπ

[
B2k−1(t) · cos(mπt)

]t=1

t=0

+
2k − 1

mπ
I(k − 1,m).

Substituting the above equation back into Equation (5.2.2), we obtain

I(k,m) = − 2k

mπ

−1

mπ

[
B2k−1(t) · cos(mπt)

]t=1

t=0

+
2k − 1

mπ
I(k − 1,m)


=

2k

m2π2

[
B2k−1(t) · cos(mπt)

]t=1

t=0

− 2k(2k − 1)

m2π2
I(k − 1,m)

=
2k

m2π2
(B2k−1(1) · cos(mπ)−B2k−1(0) · cos(0))− 2k(2k − 1)

m2π2
I(k − 1,m)

=
2k

m2π2
(B2k−1(1) · cos(mπ)−B2k−1)− 2k(2k − 1)

m2π2
I(k − 1,m).

Notice that, if k = 1, we have

I(1,m) =
2k

m2π2
(B1(1) · cos(mπ)−B1)− 2

m2π2
I(0,m)

=
2k

m2π2
(B1(1) · cos(mπ)−B1)

=
2

m2π2

[
1

2
· cos(mπ)−

(−1

2

)]
=

2

m2π2

[
1

2
· cos(mπ) +

1

2

]
=

2

m2π2

(
(−1)m

1

2
+

1

2

)
.
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Therefore, we get an explicit expression for I(1,m) as

I(1,m) =

0 if m is odd
2

m2π2
if m is even.

From Bernoulli Polynomials’ Property 5, we know that B2k−1(1) = (−1)2k−1B2k−1. Since
B2k−1 = 0 for k ≥ 2, we have B2k−1(1) = 0. Therefore we have the following recurrence
relation, for k ≥ 2,

I(k,m) =
2k(2k − 1)

m2π2
I(k − 1,m). (5.2.3)

Together with the evaluation for I(1,m), we now have an explicit expression for I(k,m) for
any k ≥ 1 as

I(k,m) =

0 if m is odd
(−1)k−1(2k)!

m2kπ2k
if m is even.

(5.2.4)

Next, we define I∗(k,m) by slightly modifying I(k,m). The importance of I∗(k,m) will
come up later when we discuss the telescoping series. Define B∗k(t) as

B∗k(t) := Bk(t)−Bk(0) = Bk(t)−Bk,

and let

I∗(k,m) :=

∫ 1

0

B∗2k(t) · cos(mπt)dt (5.2.5)

for integers k ≥ 0 and m ≥ 1.
Notice that since

∫ 1

0
cos(mπt)dt = 0 for m ≥ 1,

I∗(k,m) =

∫ 1

0

B∗2k(t) · cos(mπt)dt

=

∫ 1

0

B2k(t) · cos(mπt)dt−B2k

∫ 1

0

cos(mπt)dt

= I(k,m).

Therefore although I(k,m) and I∗(k,m) have different representations, they evaluate equiva-
lently. Now for I∗(k,m), fix some k ≥ 1 and sum over positive integers m. Since I(k,m) = 0
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for odd m, we have

∞∑
m=1

I∗(k,m) =
∞∑
m=1

I(k,m)

= I(k, 1) + I(k, 2) + I(k, 3) + I(k, 4) + I(k, 5) + · · ·
= I(k, 2) + I(k, 4) + · · ·

=
∞∑
m=1

I(k, 2m)

=
∞∑
m=1

(−1)k−1(2k)!

(2m)2kπ2k

=
(−1)k−1(2k)!

(2π)2k

∞∑
m=1

1

m2k

=
(−1)k−1(2k)!

(2π)2k
ζ(2k).

Therefore we have completed the first part of our proof with

∞∑
m=1

∫ 1

0

B∗2k(t) · cos(mπt)dt =
∞∑
m=1

I∗(k,m) =
(−1)k−1(2k)!

(2π)2k
ζ(2k) (5.2.6)

To evaluate
∑∞

m=1

∫ 1

0
B∗2k(t) · cos(mπt)dt, we employ a trick of telescoping series. We will

use the following trigonometric identity,

cos(a) · sin(b) =
1

2
[sin(a+ b)− sin(a− b)].

By taking a = mπt and b = πt
2

with t ∈ (0, 1), we have

cos(mπt) =
sin
(

2m+1
2
πt
)
− sin

(
2m−1

2
πt
)

2 sin
(
πt
2

) . (5.2.7)

Thus we can write
∞∑
m=1

I∗(k,m) =
∞∑
m=1

∫ 1

0

B∗2k(t) · cos(mπt)dt

= lim
N→∞

N∑
m=1

[∫ 1

0

B∗2k(t)
sin
(

2m+1
2
πt
)

2 sin
(
πt
2

) dt−
∫ 1

0

B∗2k(t)
sin
(

2m−1
2
πt
)

2 sin
(
πt
2

) dt

]
.
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To show the telescoping behavior, consider I∗(k, a) and I∗(k, a+ 1). Then

I∗(k, a) =

∫ 1

0

B∗2k(t)
sin
(

2a+1
2
πt
)

2 sin
(
πt
2

) dt−
∫ 1

0

B∗2k(t)
sin
(

2a−1
2
πt
)

2 sin
(
πt
2

) dt,

and

I∗(k, a+ 1) =

∫ 1

0

B∗2k(t)
sin
(2(a+1)+1

2
πt
)

2 sin
(
πt
2

) dt−
∫ 1

0

B∗2k(t)
sin
(2(a+1)−1

2
πt
)

2 sin
(
πt
2

) dt

=

∫ 1

0

B∗2k(t)
sin
(

2a+3
2
πt
)

2 sin
(
πt
2

) dt−
∫ 1

0

B∗2k(t)
sin
(

2a+1
2
πt
)

2 sin
(
πt
2

) dt.

Adding I∗(k, a) with I∗(k, a+ 1), we have

I∗(k, a) + I∗(k, a+ 1) = −
∫ 1

0

B∗2k(t)
sin
(

2a−1
2
πt
)

2 sin
(
πt
2

) dt+

∫ 1

0

B∗2k(t)
sin
(

2a+3
2
πt
)

2 sin
(
πt
2

) dt,

as the first term of I∗(k, a) is canceled by the second term of I∗(k, a+ 1). Thus

lim
N→∞

N∑
m=1

[∫ 1

0

B∗2k(t)
sin
(

2m+1
2
πt
)

2 sin
(
πt
2

) dt−
∫ 1

0

B∗2k(t)
sin
(

2m−1
2
πt
)

2 sin
(
πt
2

) dt

]

= lim
N→∞

[
−
∫ 1

0

B∗2k(t)
sin
(
πt
2

)
2 sin

(
πt
2

)dt+

∫ 1

0

B∗2k(t)
sin
(

2N+1
2
πt
)

2 sin
(
πt
2

) dt

]

=− 1

2

∫ 1

0

B∗2k(t)dt+

[
lim
N→∞

∫ 1

0

B∗2k(t)
sin
(

2N+1
2
πt
)

2 sin
(
πt
2

) dt

]
.

The first term can be evaluated as

−1

2

∫ 1

0

B∗2k(t)dt = −1

2

∫ 1

0

(B2k(t)−B2k)dt = −1

2
(−B2k) =

B2k

2
.

This follows from Bernoulli polynomial Property 6 that shows
∫ 1

0
B2k(t) = 0. Now we want

to show that

lim
N→∞

∫ 1

0

B∗2k(t)
sin
(

2N+1
2
πt
)

2 sin
(
πt
2

) dt = 0.

Although 1
sin(πt

2
)

is undefined for t = 0, we consider the function

f(t) =
B∗2k(t)

2 sin
(
πt
2

)
defined for t ∈ (0, 1]. If we can find lim

ε→0+
f(ε), then we can give an extension of f(t) by
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continuity to t = 0. Since B∗2k(0) = B2k(0) − B2k = 0 by Bernoulli polynomial Property 5,
we may apply L’Hôpital’s rule for f(t) as

lim
ε→0+

f(0) = lim
ε→0+

B∗2k(ε)

2 sin
(
πε
2

)
= lim

ε→0+

B2k(ε)−B2k

2 sin
(
πε
2

)
= lim

ε→0+

2kB2k−1(ε)

π cos
(
π
2
ε
)

=
0

π · 1
= 0.

So we now can extend f(t) to t ∈ [0, 1] as

f(t) =

0 t = 0
B∗

2k(t)

2 sin
(
πt
2

) otherwise.

Let R = (2N+1)π
2

. We now evaluate
∫ 1

0
B∗2k(t)

sin
(

2N+1
2

πt
)

2 sin
(
πt
2

) dt =
∫ 1

0
f(t) · sin(Rt)dt using

integration by parts.∫ 1

0

f(t) · sin(Rt)dt =
[
f(t)

(
−cos(Rt)

R

)]t=1

t=0
−
∫ 1

0

f ′(t)
(
− cos(Rt)

R

)
dt

=
[
f(t)

(
−cos(Rt)

R

)]t=1

t=0
+

∫ 1

0

f ′(t)
(cos(Rt)

R

)
dt

= −f(1)
cos(R)

R
+ f(0)

cos(0)

R
+

∫ 1

0

f ′(t)
cos(Rt)

R
dt

= −f(1)
cos(R)

R
+

1

R
f(0) +

∫ 1

0

f ′(t)
cos(Rt)

R
dt.

From our original substitution, R = (2N+1)π
2

, we observe each term in the sum approaches 0
as N →∞ because its numerator is bounded while its denominator tends to infinity. Thus,

lim
N→∞

∫ 1

0

B∗2k(t)
sin
(

2N+1
2
πt
)

2 sin
(
πt
2

) dt = lim
R→∞

∫ 1

0

f(t) sin(Rt)dt = 0.

Hence we see that, by Equation (5.2.6),

(−1)k−1(2k)!

(2π)2k
ζ(2k) = −1

2

∫ 1

0

B∗2k(t)dt+

[
lim
N→∞

∫ 1

0

B∗2k(t)
sin
(

2N+1
2
πt
)

2 sin
(
πt
2

) dt

]
=
B2k

2
,
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and therefore,

ζ(2k) =
(−1)k−122kπ2k

2(2k)!
B2k, k = 1, 2, 3, . . . .
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CHAPTER 6
DIRICHLET L-FUNCTION

Following Chapter 7 of [17], Chapter 4 of [2], and [22], we study the basic properties of
Dirichlet L-functions. We start with defining the Dirichlet character χ.

Definition 6.0.1 A Dirichlet character χ modulo M is a multiplicative function that maps
(Z/MZ)× to the complex plane with absolute value 1. Such a character can be extended as a
function on all integers as the following:

χ(a+ bM) =

{
χ(a) if gcd(a,M) = 1

0 otherwise.

Therefore, a Dirichlet character extended to all integers has the following properties.

Proposition 6.0.2 Let χ be a Dirichlet character modulo M that is extended to all integers.
Then

1. χ is completely multiplicative, that is χ(ab) = χ(a)χ(b) for any integers a and b.

2. χ has a period of M .

3. If a and M are coprime, then χ(a) 6= 0.

A character is called, the trivial character χ0 modulo M , if

χ0(a) =

{
0 if gcd(a,M) > 1

1 if gcd(a,M) = 1.

In particular, the trivial character modulo 1 is called the principal character and denoted as
χ = 1.

Let φ(M) be the Euler totient function, that is

φ(M) =

∣∣∣∣{n ∈ [1,M ] : gcd(n,M) = 1}
∣∣∣∣.

A well known property of the totient function is that if c and M are coprime, then cφ(M) ≡ 1
mod (M). Furthermore, we also see the following Lemma associating the Dirichlet character
with the Euler totient function.

Lemma 6.0.3 Let χ be a Dirichlet character modulo M . Then χ satisfies the following prop-
erties.

1. If a ≡ 1 mod M , then χ(a) = 1.

2. If gcd(a,M) = 1, then χ(a)φ(a) = 1.
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3.
N∑
a=1

χ(a) =

{
φ(M) if χ = χ0

0 if χ is non-trivial.

The proof is omitted here, but can be found in many elementary number theory books, in-
cluding Chapter 4 of [2]. The first point of Lemma 6.0.3 implies that χ(1) = 1 and χ(−1) ∈
{1,−1} and brings up the notion of parity. A character is said to be “even” if χ(−1) = 1, and
“odd” if χ(−1) = −1.

Definition 6.0.4 The parity δχ of χ is defined as

δχ =

{
0 if χ(−1) = 1

1 if χ(−1) = −1
.

We also introduce this notion of primitive Dirichlet characters.

Definition 6.0.5 (Primitive or Induced Dirichlet Characters and Conductors) The conduc-
tor C of a Dirichlet character χ modulo M is the smallest positive integer such that, for all a
coprime to M,

χ(a+ C) = χ(a).

If C = M , then the character χ is said to be primitive.

We note that, in the definition above, if C < M , then the character is said to be induced from
another character χ′ modulo C. Notice that such a constant C must be necessary a divisor of
M .

Definition 6.0.6 Given a Dirichlet character χ modulo M and an integer n, the Gauss sum
is

τ(χ, n) :=
M∑
a=1

χ(a)e
2πian
M .

For clarity, we write τ(χ, 1) = τ(χ).

We now can consider a generalization of the Riemann zeta function called the Dirichlet L-
series. For simplicity, we assume χ to be primitive and nontrivial unless otherwise specified.

Definition 6.0.7 Given a Dirichlet character χ modulo M , the Dirichlet L-series associated
to χ is defined as

L(χ, s) =
∞∑
n=1

χ(n)

ns
,

where s is a complex variable with <(s) > 1.

It follows that L(1, s) = ζ(s) because for all integers n, 1(n) = 1. Many properties of ζ(s)
can be naturally generalized to the setting of Dirichlet L-series, which are listed below.
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Theorem 6.0.8 (Euler Product for Dirichlet L-series) The Dirichlet L-series L(χ, s) con-
verges absolutely for <(s) > 1 and has the Euler product,

L(χ, s) =
∏
p∈P

(
1− χ(p)

ps

)−1

.

The Dirichlet L-series also has a symmetry property as well.

Proposition 6.0.9 (Completed L-series Definition and Functional Equation) Let χ be a non-
trivial Dirichlet character modulo M , and we define the completed L-series as

Λ(χ, s) :=

(
M

π

)s/2
Γ

(
s+ δχ

2

)
L(χ, s).

Then Λ(χ, s) satisfies the functional equation

Λ(χ, s) = W (χ)Λ(χ, 1− s),

where W (χ) = τ(χ)

iδχ
√
M

.

Proof. The proof is omitted but can be found in many analytical number theory textbooks and
papers, such as Chapter 7 of [17], [22], and [13]. �

Similar to how the Riemann zeta function has a connection to Bernoulli numbers and
Bernoulli polynomials, the Dirichlet L-series has a connection to a generalization of Bernoulli
numbers and polynomials. Let χ be a primitive Dirichlet character modulo M . Then the k-th
generalized Bernoulli number Bk,χ is defined as

∞∑
k=0

Bk,χ
tk

k!
=

M∑
a=1

χ(a)
teat

eMt − 1
. (6.0.1)

The generalized Bernoulli numbers satistfy the following property:

Bk,χ = Mk−1

M∑
a=1

χ(a)Bk

( a
M

)
, (6.0.2)

where Bk(x) is the k-th Bernoulli polynomial defined in Chapter 4. To see this, we consider

∞∑
k=0

Bk,χ

(
t
M

)k
k!

=
M∑
a=1

χ(a)

(
t
M

)
ea(

t
M )

eM( t
M ) − 1

=
M∑
a=1

χ(a)

M

te
a
M
t

et − 1
=

M∑
a=1

χ(a)

M

∞∑
k=1

Bk

( a
M

) tk
k!
.

By comparing coefficients of the tk-term, we have

Bk,χ

Mkk!
=

M∑
a=1

χ(a)

M

Bk

(
a
M

)
k!

,
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and therefore,

Bk,χ = Mk−1

M∑
a=1

χ(a)Bk

( a
M

)
.

Using the above property and Lemma 6.0.3, we have B1,χ = 1
M

∑M
a=1 χ(a)a.

Remark 6.0.10 There is also a generalization of Bernoulli polynomials associated with Dirich-
let characters. The k-th generalized Bernoulli polynomial Bk,χ(x) associated with a primi-
tive, nontrivial Dirichlet character χ is defined as

∞∑
k=0

Bk,χ(x)
tk

k!
=

M∑
a=1

χ(a)
te(a+x)t

eMt − 1
. (6.0.3)

To parallel the special values of the Riemann zeta function, we observe the following Theo-
rems.

Theorem 6.0.11 For a primitive and nontrivial Dirichlet character χ modulo M and a posi-
tive integer k, we have

L(χ, 1− k) = −Bk,χ

k
.

Theorem 6.0.12 (Special Values of Dirichlet L-series) For a positive integer k such that k ≡
δχ mod 2, we have

L(χ, k) = (−1)1+(k−δχ)/2 τ(χ)

2iδχ

(2π

M

)kBk,χ

k!
.
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