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Abstract This paper presents a generalized version of the
classic projective reconstruction theorem which helps to
choose or assess depth constraints for projective depth es-
timation algorithms. The theorem shows that projective re-
construction is possible under a much weaker constraint than
requiring all estimated projective depths to be nonzero. This
result enables us to present classes of depth constraints un-
der which any reconstruction of cameras and points project-
ing into given image points is projectively equivalent to the
true camera-point configuration. It also completely speci-
fies the possible wrong configurations allowed by other con-
straints. We demonstrate the application of the theorem by
analysing several constraints used in the literature, as well
as presenting new constraints with desirable properties. We
mention some of the implications of our results on itera-
tive depth estimation algorithms and projective reconstruc-
tion via rank minimization. Our theory is verified by running
experiments on both synthetic and real data.
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1 Introduction

This paper generalizes the classic theorem of projective re-
construction. The main purpose is to provide a theoretical
basis for the choice and verification of constraints on projec-
tive depths for factorization-based projective reconstruction
algorithms. The basic idea behind factorization-based pro-
jective reconstruction is to find an estimation A = [i, ;] of the
projective depth matrix such that when the image data ma-
trix [x;;] is weighted by the elements of A, it can be factored
as a product of a 3m x4 matrix P, representing the stack of m
camera matrices, and a 4 xn matrix X, representing the hor-
izontal arrangement of n points. In other words, given the
projected image data {x;;} one tries to solve the following
equation

i&@[xlﬂ =P3, (1)

where the operator ©® multiplies each element i ; of the
depth matrix A by its corresponding image point x;;, that
is Ao [x;)] = i ;Xij|. While the true depths, camera matri-
ces and points provide a solution to (1), not every solution to
(1) gives a configuration projectively equivalent to the true
camera-point setup. Therefore, without putting extra con-
straints on the depth matrix the above problem can lead to
false solutions.

The main source of the false solutions in the
factorization-based methods is the possibility of having zero
elements in A. One can simply see that setting A, P and X all
equal to zero provides a solution to (1). Another trivial solu-
tion, as noted by Oliensis and Hartley (2007), occurs when A
has all but four zero columns. In general, it has been noticed
that false solutions to (1) can happen when some rows or
some columns of the depth matrix are zero. There has been
no research, however, specifying all possible false solutions
to the factorization equation (1) and the constraints which
can prevent them from happening. In this paper, in addition
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Fig. 1 Examples of 4x6 cross-shaped matrices. In cross-shaped ma-
trices all elements of the matrix are zero, except those belonging to a
special row r or a special column c¢ of the matrix. The elements of the
r-th row and the c-th column are all nonzero, except possibly the cen-
tral element located at position (r,c). In the above examples, the blank
parts of the matrices are zero. The elements a, b, ..., h are all nonzero,
while x can have any value (zero or nonzero).
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Fig. 2 An example of a degenerate solution with a cross-shaped depth
matrix A. Here, ({P;},{X;;},{A;;}) is the configuration of true camera
matrices, 3D points and projective depths. Given this true configura-
tion, a solution ({P;},{X;;},{Ai;}) has been constructed as shown in
the figure, where C; is the normalized camera centre of P (a unit vec-
tor in the null space of P1). One can easily check that P;X = ﬁ,i jXij
where Xx;; = ijin, Therefore, this degenerate solution satisfies the

projective equation A ® [x;;] = PX. See Sect. 5 for more details.

to the cases where the estimated depth matrix A has some
Zero rows or some zero columns, we present a less trivial
class of false solutions where the depth matrix has a cross-
shaped form (see Figs. 1 and 2). We shall further show that
all the possible false solutions to factorization based projec-
tive reconstruction are confined to the above cases. There-
fore, with a depth constraint which allows at least one cor-
rect solution, prevents zero rows and zero columns in the
depth matrix and avoids cross-shaped configurations, any
solution to the factorization problem (1) will lead to a cor-
rect projective reconstruction.

The main concern of this paper is the classification of the
false solutions of (1), and the constraints which can avoid
them. Therefore, we do not thoroughly deal with the ques-
tion of how to solve (1). However, we have to be realistic in
choosing proper constraints. The constraints have to possess
some desirable properties to make possible the design of ef-
ficient and effective algorithms for solving (1). As a trivial
example it is essential for many iterative algorithms that the
constraint space is closed. As nearly all factorization-based
algorithms are solved iteratively, this can guarantee that the
algorithm does not converge to something that violates the
constraints.

A major class of desirable constraints for projective fac-
torization problems are linear equality constraints. The cor-
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Fig. 3 Examples of 4x6 step-like mask matrices. Blank parts of the
matrices indicate zero values. A step-like matrix contains a chain of
ones, starting from its upper left corner and ending at its lower right
corner, made by making rightward and downward moves only. An ex-
clusive step-like mask is one which is not cross-shaped. In the above,
(a) and (b) are samples of an exclusive step-like mask while (c) is a
nonexclusive one. Associated with an mxn step-like mask M, one can
put a constraint on an mxn depth matrix A in the form of fixing the
elements of A to 1 (or some nonzero values) at the sites where M has
ones. For an exclusive step-like mask, this type of constraint rules out
all the wrong solutions to the factorization-based problems.
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Fig. 4 Examples of tiling a 4x6 depth matrix with row and column
vectors. The associated constraint is to force every tile of the depth
matrix to have a unit (or a fixed) norm. This gives a compact constraint
space. If the tiling is done according to (a), every row of the constrained
depth matrix has unit norm. Similarly, tiling according to (b) requires
columns with unit norms. Constraints associated with (a) and (b), re-
spectively, allow zero columns and zero rows in the depth matrix, along
with cross-shaped configurations. The associated constraints for (c-f)
do not allow any zero rows or zero columns, however, they all allow
cross-shaped structures. For each of the cases (a-f), the dots indicate
possible locations where the cross-shaped structures can be centred.
Clearly, for (a) and (b) the cross can be centred anywhere, whereas for
(c-f) they can only be centred at 1 x1 tiles.

responding affine constraint space is both closed and con-
vex, and usually leads to less complex factorization-based
algorithms. We shall show that the linear equality constraints
that are used so far in factorization-based reconstruction al-
low for cross-shaped depth matrices and hence cannot com-
pletely rule out false solutions. We shall further introduce
step-like constraints, a class of linear equality constraints
in the form of fixing certain elements of the depth matrix,
which provably avoid all the degenerate cases in the fac-
torization problem (see Fig. 3). The element-wise nature of
these constraints makes the implementation of the associ-
ated factorization-based algorithms very simple.

Another desirable property for the constraint space,
which is mutually exclusive with being an affine subspace,
is compactness. The importance of a compact constraint
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space is that certain convergence properties can be proved
for a large class of iterative descent algorithms when the se-
quence of solutions lie inside a compact set. One can think
of many compact constraints, however, the important issue
is that the constraint needs to be efficiently implementable
with a factorization algorithm. Two examples of such con-
straints are presented in (Heyden et al, 1999) and (Mahamud
et al, 2001), in which, respectively, all rows and all columns
of the depth matrix are forced to have a fixed (weighted)
[2-norm. In each case, every iteration of the factorization al-
gorithm requires solving a number of eigenvalue problems.
Mahamud et al (2001) prove the convergence of their algo-
rithm to local minima using the General Convergence The-
orem (Zangwill, 1969; Luenberger, 1984). However, these
constraints allow zero columns or zero rows in the depth
matrix, as well as cross-shaped structures. In this paper, we
combine the constraints used in (Heyden et al, 1999) and
(Mahamud et al, 2001), in the sense of tiling the matrix with
row and column vectors and requiring each tile to have a
unit (or fixed) norm (see Fig. 4). With a proper tiling, con-
vergence to configurations with zero rows and zero columns
is ruled out. Such tilings still allow for cross-shaped struc-
tures, however, as shown in Fig. 4, the number of possible
cross-shaped structures is limited.

Previous Attempts

It is clear from what has been mentioned above that this
paper focuses on those algorithms that try to estimate the
camera matrices and points directly, as opposed to the so-
called tensor-based approaches in which the camera param-
eters are estimated from the fundamental matrices, trifocal
tensors, or quadrifocal tensors, estimated, respectively, from
image data of pairs, triples or quadruples of views (Hartley
and Zisserman, 2004). The advantage of the former class of
algorithms is that they make uniform use of all image data to
build a reconstruction, and thus do not give a solution that is
biased towards particular views. It is also evident that we are
only dealing with the cases where the estimation of projec-
tive depths is involved at some stage of the algorithm. This
excludes approaches like Bundle Adjustment (Triggs et al,
2000). Here, we list some of the attempts made to solve the
factorization problem.

Sturm-Triggs Factorization The link between projective
depth estimation and projective reconstruction of cameras
and points was noted by Sturm and Triggs (1996), whereby
it is shown that given the true projective depths, camera ma-
trices and points can be found from the factorization of the
data matrix weighted by the depths. However, to estimate
the projective depths Sturm and Triggs make use of funda-
mental matrices estimated from pairwise image correspon-
dences. Several papers have proposed that the Sturm-Triggs

method can be extended to iteratively estimate the depth
matrix A and camera-point configurations P and X (Triggs,
1996; Ueshiba and Tomita, 1998; Heyden et al, 1999; Ma-
hamud et al, 2001; Hartley and Zisserman, 2004). It has been
noted that without constraining or normalizing the depths,
such algorithms can converge to false solutions. Especially,
Oliensis and Hartley (2007) show that the basic iterative
generalization of the Sturm-Triggs factorization algorithm
can converge to trivial false solutions, and that in the pres-
ence of the slightest amount of noise, it generally does not
converge to a correct solution.

Unit Row Norm Constraint Heyden et al (1999) estimate
the camera-point configuration and the projective depths al-
ternatingly, under the constraint that every row of the depth
matrix has unit /2-norm. They also suggest a normalization
step which scales each column of the depth matrix to make
the first row of the matrix have all unit elements. However,
they do not use this normalization step in their experiments,
reporting better convergence properties in its absence. It is
clear that by just requiring rows to have unit norm, we allow
zero columns in the depth matrix as well as cross-shaped
configurations. If all rows except the first are required to
have unit norm, and at the same time (and not in a sepa-
rate normalization step) the first row is constrained to have
all unit elements, then having zero columns is not possible,
but still a cross-shaped depth matrix is allowed. We refer the
reader to Sect. 9 for experiments on this constraint.

Unit Column Norm Constraint Mahamud et al (2001) pro-
pose an algorithms which is in some ways similar to that
of Heyden et al (1999). Again, the depths and camera-point
configuration are alternatingly estimated, but under the con-
straint that each column of the weighted data matrix has
a unit />-norm. The convergence to a local minimum is
proved, while no theoretical guarantee is given for not con-
verging to a wrong solution. In fact, the above constraint
can allow zero rows in the depth matrix in addition to cross-
shaped depth matrices.

Fixed Row and Column Norms Triggs (1996) suggests that
the process of estimating depths and camera-point struc-
ture in the Sturm-Triggs algorithm can be done in an al-
ternating and iterative fashion. He also suggests a depth
balancing stage after the depth estimation phase, in which
it is sought to rescale rows and columns of the depth ma-
trix such that all rows have the same Euclidean length and
similarly all columns have a common length. The same
balancing scheme has been suggested by Hartley and Zis-
serman (2004). The normalization step is in the form of
rescaling the rows to have similar norm and then doing the
same to the columns. At each iteration, this can either be
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done once each, or in a repeated iterative fashion. If an /”-
norm is used for this procedure, alternatingly balancing rows
and columns is the same as applying Sinkhorn’s algorithm
(Sinkhorn, 1964, 1967) to a matrix whose elements are |iij |P
and thereby forcing all rows of the depth matrix to eventu-
ally have the same norm, and similarly all columns to have
the same norm. We will show that forcing the matrix to have
equal nonzero column norms and equal nonzero row norms
will prevent false solutions to the factorization-based algo-
rithm. However, the direct implementation of this constraint
is difficult. Implementing it as a balancing stage after every
iteration can destroy the property of having descent moves
in the algorithm. Oliensis and Hartley (2007) report that the
normalization step can lead to bad convergence properties.

CIESTA Oliensis and Hartley (2007) prove that if the basic
iterative factorization is done without putting any constraint
on the depth matrix (except possibly retaining a global
scale), it can converge to trivial false solutions. More inter-
estingly, they show that in the presence of noise it generally
always converges to a wrong solution. They also argue that
many variants of the algorithm, including (Mahamud et al,
2001) and (Hartley and Zisserman, 2004) either are likely to
converge to false solutions or can exhibit undesirable con-
vergence behavior. They propose a new algorithm, called
CIESTA, which minimizes a regularized target function. Al-
though some convergence properties have been proved for
CIESTA, the solution is biased as it favors projective depths
that are close to 1. For this choice, even when there is no
noise present, the correct solution does not generally coin-
cide with the global minimum of the CIESTA target func-
tion. We do not deal with such approaches in this paper.

Fixing Elements of a Row and a Column Ueshiba and
Tomita (1998) suggest estimating the projective depths
through a conjugate gradient optimization process seeking
to make the final singular values of the weighted image data
matrix small, thus making it close to a rank-four matrix. To
avoid having multiple solutions due to the ambiguity asso-
ciated with the projective depths, the algorithm constrains
the depth matrix to have all elements of the r-th row and the
c-th column equal to one for some choice of r and c, that
is A, =1 when i =r or j = c. This constraint can lead to
cross-shaped configurations, although there is only one pos-
sible location for the centre of cross, namely (r,c).

Transportation Polytope Constraint Dai et al (2010, 2013)
seek to estimate the depths by putting a rank constraint on
the data matrix weighted by the depth matrix. The weighted
data matrix is restricted to have rank four or less. In addi-
tion, the depth matrix is constrained to have fixed row and
column sums. In addition, this approach also enforces the

constraint ii ;2> 0, that is the projective depths are all non-
negative'. In (Angst et al, 2011) it has been noted that the
corresponding constraint space is known as the Transporta-
tion Polytope. In (Dai et al, 2010, 2013) the problem is for-
mulated as a rank minimization problem and is solved by
using the trace norm as a convex surrogate of the rank func-
tion. The relaxed optimization problem can be recast as a
semi-definite program. One drawback of this approach is
the use of inequality constraints, preventing it from taking
advantage of the fast rank minimization techniques for large
scale data such as (Lin et al, 2010; Yang and Yuan, 2013).
The same idea as (Dai et al, 2010) is used in (Angst et al,
2011), however, a generalized trace norm target function is
exploited to approximate the rank. While the authors men-
tion the transportation polytope constraint space, for imple-
mentation just a single constraint is used that fixes the total
scale of the whole depth matrix. As this constraint is prone to
giving degenerate trivial solutions, the authors add inequal-
ity constraints whenever necessary. We shall show that the
transportation polytope constraint avoids false solutions to
the factorization methods if the marginal values to which
rows and columns must sum up are chosen properly.

Fixed Row and Column Sums As noted before, the inequal-
ity constraint used in (Dai et al, 2010, 2013) can prevent
the design of fast algorithms. This might be the reason why,
when it comes to introducing scalable algorithms in (Dai
et al, 2013), the inequality constraint has been neglected.
We will show that neglecting the inequality constraint and
just constraining row and columns to have specified sums
always allows for cross-shaped structures and thus for false
solutions. However, as argued in Sect. 6.2.1, it is difficult to
converge to such structures under these constraints starting
from a sensible initial solution (see Fig. 8). This belief is
supported by our experiments in Sect. 9.

In what comes next, we first define the problem in pre-
cise mathematical terms and discuss in more detail why it
is not fully solved by the previous results in multiple view
geometry (Sect. 2 and 3). Then, we present a more general
version of the Theorem of Projective Reconstruction work-
ing under a much weaker set of assumptions than the depths
being all nonzero (Sect. 4). By giving a counterexample we
then demonstrate that the assumptions made for the proof of
our theorem are minimal in a certain sense (Sect. 5). After-
wards, in Sect. 6, we present a class of constraints, called
reconstruction friendly constraints, under which false so-
lutions to the projective factorization problem are avoided.
Then we show how the results developed here can be used

1 Actually, in (Dai et al, 2010, 2013) the constraint is given as im-
posing strictly positive depths: ii_,- > 0, giving a non-closed constraint
space. However, what can be implemented in practice using semi-
definite programming or other iterative methods is non-strict inequali-
ties ii j >0.
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for the assessment of depth constraints by analysing some of
the constraints used in the literature. We also give examples
demonstrating how our results can be exploited for the de-
sign of new constraints with desirable properties. Especially,
we present the step-like mask constraints as examples of re-
construction friendly constraints in the form of linear equa-
tions. In Sect. 7 we study the implications of our results to
the rank minimization approach to projective reconstruction.
Then, in Sect. 8, we consider the case where the output of
the algorithm is in the form of a convergent sequence of so-
lutions. The paper is finished by running experimental tests
on synthetic and real data (Sect. 9).

2 Motivation

Consider a set of projection matrices Py,Ps,...,P, € R34 a
set of points X, Xy, ..., X, € R* Each point X j is projected
through each camera matrix P; to produce the set of image
points X;; € R3 according to

A,,']'X,'j = P,'Xj

where A;; # 0 are nonzero scalars known as projective
depths. The projective depths A;;, i=1,....m, j=1,...,n,
can be arranged as an mxn array to form the depth matrix
A = [A;j]. Similarly, the image data {x;;} can be arranged as
a 3mxn matrix [x;;| called here the data matrix. The above
equation can be written in the matrix form

A® [x;] = PX, 2

where P = stack(P;,Py, -+ ,P,,) is the vertical concatenation
of the camera matrices, X = [X;X5---X,,] and A © [x;;] =
[Aijx;j], that is the operator ® multiplies each element A;;
of A by the corresponding 31 block x;; of the data matrix
[x;j]. We stress that in this paper the projection matrices and
points are not considered as projective quantities, unless ex-
plicitly stated. No equation, therefore, implies equality up
to scale. From (2) it is obvious that having the true depth
matrix A, the weighted data matrix A ® [x;;] = [A;;x;;] can be
factored as the product of a 3m x4 matrix P and a 4 X n matrix
X. Equivalently, the matrix A® [x;;] has rank 4 or less. This is
where the underlying idea of factorization-based algorithms
comes from. These algorithms try to find the camera-matrix
configuration from the given image data {x;;} by finding a
depth matrix A for which A ® [x;;] has rank 4 (or less), and
thus, can be factored as the product of 3mx4 and 4 xn ma-
trices P and X:

A@[Xij} :ls)A( (3)

One hopes that by solving the above problem, dividing P
into blocks P; € R3*# as P = stack(Py,P,,---,P,,) and let-
ting X ; be the j-th column of X, the camera-point con-
figuration ({P;},{X;}) is equal to the true configuration

({P:},{X;}) up to a projective ambiguity>. However, it is
obvious that given the data matrix [x;;] not every solution to
(3) gives the true configuration up to projectivity. A simple
reason is the existence of trivial solutions, such as A = 0,
P =0, %X =0, or when A has all but four of its columns equal
to zero. In the latter case it is obvious that A ® [x;;] can be
factored as (3) as it has at most rank 4. This is why we see
that in almost all projective depth estimation algorithms the
depth matrix is restricted to some constraint space. This can
be done either by optimizing some target function subject
to an explicit constraint, or as a normalization or balancing
stage after every iteration. While the constraints are some-
times said to guarantee the uniqueness of the solution to (3),
their main purpose is to prevent the depth estimation proce-
dure from collapsing to the so-called trivial solutions where
some columns (or rows) of the depth matrix converge to
zero (see (Oliensis and Hartley, 2007) for more detail). It
is not obvious, however, (and we shall prove it false) if pos-
sible false solutions to (3) are restricted to these trivial cases.
Therefore, factorization-based algorithms lack a proper the-
oretical basis for finding possible false solutions allowed by
given constraints or to determine what constraints on the
depth matrix make every solution to (3) projectively equiv-
alent to the ground truth.

The main theoretical basis for the analysis of projec-
tive reconstruction is the Projective Reconstruction Theo-
rem (Hartley and Zisserman, 2004). It says that, under cer-
tain generic conditions, all configurations of camera matri-
ces and 3D points yielding a common set of 2D image points
are equal up to a projective ambiguity. This theorem is de-
rived from a geometric perspective and therefore presumes
assumptions like the estimated camera matrices P; having
full row rank and all the estimated projective depths Aij
being nonzero. While these are useful enough for the so-
called tensor-based reconstruction approaches, they are not
a good fit for the analysis of algebraic algorithms, especially
factorization-based depth estimation algorithms. Obviously,
these geometric assumptions can be reasonably assumed for
the true set of depths {A;;} and the true camera-point config-
uration ({P;},{X;}). However, for most of the factorization-
based algorithms, at least in the case of large-scale prob-
lems, it is hard to impose these constraints on the estimated
depths {A; 7} and camera-point configuration ({P;},{X;}) a
priori.

Actually, the basic assumption for the proof of the clas-
sic Projective Reconstruction Theorem (Hartley and Zisser-
man, 2004) is that the estimated depths i,- ; are all nonzero.
Other geometric assumptions like full-row-rank estimated
camera matrices P; follow from this assumption under rea-

2 Throughout the paper we follow the convention that estimated
depths, camera matrices and points are denoted using the hatted quan-
tities such as 4, s B; and X j» while the ground truth is shown using
unhatted symbols like A;;, P; and X;.
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sonable conditions. Therefore, one might like to enforce
il- ; 7 0 as a constraint for any algorithm for solving (3),
and make use of this theorem to show that the algorithm
avoids false solutions. However, this type of constraint space
cannot be easily applied in most of the iterative algorithms.
Since this constraint space is not closed, it is possible that the
procedure may converge to a solution outside the constraint
space, even if in all iterations the solution lies inside the con-
straint space. In this case, some of the projective depths can
converge to zero, resulting in a degenerate solution. Mak-
ing use of the scale ambiguity of the projective depths, the
constraint space can be made closed by using |4; j| > o for
some positive number J rather than i ; 7 0. However, this
non-connected constraint space again cannot be easily han-
dled by many of the iteration based algorithms. Actually, in
practice, when there is no missing data, it is usually the case
that all true depths A;; are positive, as all the 3D points are
in front of the cameras. In this case, we can have a convex
constraint space by forcing all depths to be positive, that is
ii ;> 0. Obviously, due to the scale ambiguity, the constraint
space can be made closed by using i ;> & instead, for some
6 > 0. This gives a set of linear inequalities.

One problem with the inequality constraints is that they
are hard to implement for fast and efficient factorization-
based algorithms, especially for large-scale problems. Thus,
we seek even simpler constraints making the optimization-
based techniques more efficient and easier to solve. For ex-
ample, linear equality constraints, which are easier to handle
and for which usually much faster algorithms exist com-
pared to inequality constraints. This can be seen, for ex-
ample, in state-of-the-art algorithms designed for the con-
vex relaxation of large scale rank minimization problems
which work with linear equality constraints (Lin et al, 2010;
Yang and Yuan, 2013). We observed the use of linear equal-
ity constraints in papers like (Ueshiba and Tomita, 1998)
(by fixing special elements of the depth matrix A) and also
(Dai et al, 2010, 2013) (by fixing the row and column sums
of ) when it comes to large scale problems. We also ob-
served other examples of constraints like requiring rows of
A (Heyden et al, 1999), or columns of A ® [x;;] (Mahamud
et al, 2001) to have a unit [?-norm, which allowed for effi-
cient factorization-based algorithms. However, as these con-
straints, per se, are unable to guarantee all depths to be
nonzero or strictly positive, we cannot take advantage of the
classic theorem of projective reconstruction to analyse their
effectiveness. This shows the need to finding weaker con-
ditions under which projective reconstruction succeeds. The
new conditions must allow the verification of the constraints
that fit the factorization-based algorithms. We will introduce
such a theorem in Sect. 4, after providing the required back-
ground in the next section.

3 Background
3.1 Notations

We denote matrices by typewriter letters (X), vectors by bold
letters (x or X), sets by upper-case normal letters (X), scalars
by lower-case normal letters x, and mappings (functions) by
calligraphic letters (Z°). Mappings ¢, % and .4 are re-
spectively used to represent the column space, row space
and null space of a matrix. For matrices A, A,,...,A,, shar-
ing the same number of columns, stack(A;,Ay,...,A,) de-
notes their vertical concatenation. The reader must keep in
mind that all expressions here are in algebraic affine geom-
etry sense. The equality sign “=", here, means algebraically
equal and not equal up to scale.

3.2 Projective Equivalence and the Depth Matrix

For a set of 3 x4 projection matrices Py,P5,...,P,, a set of
points X1,X>, ..., X, in R*, and a set of image data x;; € R3
formed according to the projection relation

)y,'jX,'j = P,’Xj

with nonzero projective depths A;; # 0, the problem of pro-
jective reconstruction is to find the projection matrices P;
and the points X; up to a projective ambiguity given the im-
age points x;;. The next definitions make clear what is meant
by projective ambiguity and projective equivalence. Readers
can refer to (Hartley and Zisserman, 2004) for more details.

Definition 1 Two sets of projection matrices {P;} and {P;},
with P;,P; € R34 for i = 1,2,...,m are projectively equiv-
alent if there exist nonzero scalars 7|, 7,...,T, and a 4x4
invertible matrix H such that

ﬁiZTiPiH, i=1,2,....m. 4)
Definition 2 Two configurations of m projections and n
points, namely ({P;},{X;}) and ({P;},{X;}) where P;,P; €
R4 for i =1,2,...,m and X;,X; € R* for j = 1,2,...,n,
are projectively equivalent if there exist an invertible 4 x4

matrix H and nonzero scalars 7,72, ..., T, and Vi, Vo,...,V,
such that

f’,’:TiPiH, i:1,2,...,m, 5
X;=v,H'X;, j=12,...,n. (6)

We need to see the implications of projective equiva-
lence of ({P;},{X;}) and ({P;},{X;}) on the depth matri-
ces A= [A;] and A = i ;). First, we define the concept of
diagonal equivalence® for matrices:

3 This term has been borrowed from (Sinkhorn, 1967).
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Definition 3 Two mxn matrices A and A are diagonally
equivalent if there exist nonzero scalars 71, 7,...,T, and
V1, Va,...,V, such that

A = diag(7) Adiag(V) (7

where T = [T, T2,...,Tu|T, V = [V1,V2,...,V,]T and diag(-)
arranges the entries of a vector on the diagonal of a diagonal
matrix.

The concepts of projective equivalence of projections
and points and diagonal equivalence of depth matrices are
related by the following lemma whose proof is given in Ap-
pendix C.

Lemma 1 Consider two configurations of m > 2 projection
matrices and n > 4 points ({P;},{X;}) and ({P:},{X;}),
with P, B; € R¥* and X ;,X; € R*, such that

(i) PX; #0 foralli,j,
(ii) span(Xy,Xo,...,X,) =R*, and
(iii) P = stack(Py,Py,...,Py,) has full column rank.

Also, consider two mxn matrices A = [2;;] and A = [il]} If
the relations

)yin,'j = P,’Xj
)Lin,'j = f’,’Xj

hold foralli=1,....mand j=1,...,n, then ({P;},{X;})
and ({P;}, {f(]}) are projectively equivalent if and only if
the matrices M and R are diagonally equivalent.

3.3 The Fundamental Matrix

Another important entity used in this paper is the fundamen-
tal matrix. For two cameras, the fundamental matrix gives
a bilinear relation between pairs of corresponding image
points. There are many different ways to define the fun-
damental matrix (Hartley and Zisserman, 2004). Here, we
choose the following definition

Definition 4 For two 3 x4 matrices Q and R, the correspond-
ing fundamental matrix is represented by the function value
Z(Q,R), where .7 : R¥* x R34 — R3*3 is defined as

F @R = (1) et | ] ®
—k

where Q_; € R2*4 is formed by removing the i-th row of Q

and R_y is defined similarly.

For more details of this definition we refer the reader to
(Hartley and Zisserman, 2004, Sect. 17.1). Notice that the
fundamental matrix is the output of the function .% applied
to Q and R and not the mapping .# itself. One of the ad-
vantages of using the above definition for the fundamental

matrix is that it is not restricted to the case of proper full-
rank camera matrices. It can be defined for any pair of 3x4
matrices. Also, the reader must keep in mind that, like other
entities in this paper, the fundamental matrix here is treated
as a member of R3*3, not as an up-to-scale equivalence class
of matrices. Basically, the above definition says that the ele-
ments of the fundamental matrix of two matrices Q,R € R3*4
are the determinant of 4 x4 submatrices stack(Q,R) made by
choosing two rows from Q and two rows from R. This gives
the following lemma

Lemma 2 For two 3x4 matrices Q and R, the fundamental
matrix % (Q,R) is nonzero if and only if there exists an in-
vertible 4 x4 submatrix of stack(Q,R) made by choosing two
rows from Q and two rows from R.

The next two lemmas about the fundamental matrix will
be used later in this paper.

Lemma 3 (Hartley and Zisserman, 2004) Consider two
pairs of camera matrices Q,R and Q, R such that Q and R both
have full row rank and also have distinct null spaces, that
is A (Q) # A (R). Then (Q,R) and (Q,R) are projectively
equivalent according to Definition 1 if and only if F(Q,R)
and .F (Q,R) are equal up to a nonzero scaling factor:

Notice that, unlike (Q,R), no assumptions are made in the
above about (Q,R).

Lemma 4 (Hartley and Zisserman, 2004) Consider two
Sull-row-rank matrices Q and R such that A (Q) # A (R). If
for a matrix F € R3*3 the relation

Q'FR+RTFTQ = 0404

holds (or equivalently XT (QTFR)X = 0 holds for all X €
R*), then F is equal to .7 (Q,R) up to a scaling factor.

3.4 Cross-shaped Matrices

The concept of cross-shaped matrices is essential for the
statement of our main theorem and the characterization of
false solutions to the projective factorization problem.

Definition 5 A matrix A = [q;;] is said to be cross-shaped,
if it has a row r and a column ¢ for which

aij=0i#rj#c,
a; #0i=rj#c, 9
a; #0i#rj=c.

The pair of indices (r,c) is called the centre of a cross-
shaped matrix and a,. is called its central element, which
can be either zero or nonzero according to (9). A cross-
shaped matrix can be zero-centred or nonzero-centred de-
pending on whether the central element a, is zero or
nonzero.
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A cross-shaped matrix has all of its elements equal to zero
except the elements of a certain row r and a certain column c.
The r-th row and the c-th column have all nonzero elements,
except at their junction where the element can be zero or
nonzero. Examples of cross-shaped matrices are depicted in
Fig. 1. Notice that any permutation to rows and columns of a
cross-shaped matrix results in another cross-shaped matrix.

Lemma 5 (i) Any two mxn nonzero-centred cross-shaped
matrices with a common centre (r,c) are diagonally equiv-
alent. (ii) any two mxn zero-centred cross-shaped matrices
with a common centre (r,c) are diagonally equivalent.

Proof Consider two mxn cross-shaped matrices A = [a;;]
and B = [b;;] with a common centre (r,c¢). According to
Definition 3, to prove diagonal equivalence we need to
show that B = diag(t)Adiag(v) for some vectors 7 and
v with all nonzero entries. If A and B are both zero-
centred, that is a,. = b, = 0, then we choose the vectors
T=(1,%2,...,Tn)" and v = (v{,vs,...,V,)T, such that
T, =V.=1, 71 = b,-c/aic for i 75 r, and Vj = b,j/a,j for
j # c¢. If A and B are both nonzero-centred, that is a,. #
0 and b, # 0, then the vectors T = (11,72,...,T,)’ and
v = (v1,V2,...,v,)T are chosen such that 7; = b /a;. for
i=1,....m,ve.=1,and v; = b,;/(a,;7,) for j # c. In either
cases, one can easily check that 7 and v have all-nonzero
entries and B = diag(7) Adiag(v). O

Now, we have the required tools to state our main theo-
rem on projective reconstruction.

4 A General Projective Reconstruction Theorem

In this section we give a projective reconstruction theorem
which is more general than the classic theorem in the sense
that it does not assume, a priori, that the estimated depths
i ; are all nonzero. This provides significantly more flexi-
bility in the choice of depth constraints for depth estimation
algorithms.

Our general projective reconstruction theorem is then:

Theorem 1 Consider a set of m > 2 camera matrices {P;}
and n > 8 points {X;} which are generic in the sense of con-
ditions (G1-G4) which will be introduced later, and project
into a set of image points {X;;} according to

)Lin,'j :P,'Xj, (10)

for nonzero depths 2;; #0 fori=1,...,mand j=1,...,n
Now, consider any other configuration of m camera matrices
{8}, n points {X;} and mn depths {jtij} related to the same
image data {X;;} by

l,'jX,‘j:f’in. (11)

Ifthe depth matrix A = [i, ] satisfies the following conditions

(D1) 1 has no zero columns,
(D2) R has no zero rows, and
(D3) Aisnota cross-shaped matrix,

then the camera-point configuration ({P;},{X;}) is projec-
tively equivalent to ({P;},{X;}).

Furthermore, we shall show in Sect. 5 that if any of the
depth assumptions (D1), (D2) or (D3) is removed, it allows
the existence of a configuration ({P;},{X;}), satisfying the
relations i,:,'x,- = B X ; and projectively non-equivalent to
(P} {X)).

Loosely speaking, by true camera matrices P; and points
X being generic, we mean that the camera matrices have
full row rank and the points and camera centres are in
general position. In Sect. 4.1 we will be more specific
about the required genericity conditions and mention four
generic properties (G1-G4) under which Theorem 1 is true.
To understand the paper, it is essential to notice that the
genericity assumptions only apply to the true configuration
({P:},{X|}). No assumption is made about the estimated
(hatted) quantities P; and X; except the relation i X =
;X ;. We do not a priori rule out the possibility that P;-s
or X j-s belong to some non-generic set. Referring to P;-s as
camera matrices carries no implications about them whatso-
ever other than that they are 3 x4 real matrices. They can be
rank-deficient or even zero unless the opposite is proven.

At a first glance, theorem (1) might seem contradic-
tory, as it says that only some small subset of the elements
of A = [jtij] being nonzero is sufficient for ({P;},{X;})
and ({P;},{X;}) being projectively equivalent. On the other
hand, from Lemma 1 we know that if ({P;},{X;}) and
({8;},{X;}) are projectively equivalent, then A must be di-
agonally equivalent to A and hence have all nonzero ele-
ments. The matter is that one has to distinguish between
the implications of depth assumptions (D1-D3) in their own
rights and their implications combined with the relations
i,-jxij =pX ;. Theorem 1, therefore, implies that if a special
subset of depths {i, i} are known to be nonzero, then all of
them are. This provides a sound theoretical base for choos-
ing and analysing depth constraints for factorization-based
projective reconstruction.

4.1 The Generic Camera-Point Setup

It is known that projective reconstruction from image data
can be problematic if the (true) camera matrices and points
belong to special degenerate setups (Hartley and Zisserman,
2004; Hartley and Kahl, 2007). The Projective Reconstruc-
tion Theorem is then said to be generically true, mean-
ing that is can be proved under some generic assumptions
about how the ground truth is configured. Here, we list the
generic assumptions made about the true setup of cameras
and points for the proof of our theorem.
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We assume that there exist m > 2 camera matrices
Pi,Ps,...,P, € R¥* and n > 8 points X, X»,...,X, in R*.
They are generically configured in the following sense:

(G1) All camera matrices P,P;,...,P,; € R3*4 have full
row rank.

(G2) Taking any two views i and k, and two nonzero vectors
C; € A (P;) and Cy € A (Py), any four vectors among
Ci,Cy, X1, Xy, ..., X, are linearly independent.

(G3) For any view i, and a nonzero vector C; € .4 (P;), no
n points among C;, X1,X>,..., X, lie on a twisted cu-
bic* (or any of the degenerate critical sets resulting
in a resection ambiguity, see (Hartley and Zisserman,
2004, Sect. 22.1) and (Hartley and Kahl, 2007)).

(G4) For any two views i and k, and two nonzero vectors
C; € A (P;) and C; € 4 (Py), the points {C;,Cy} U
ate) ruled quadric surface* (see (Hartley and Zisser-
man, 2004, Sect. 22.2) and (Hartley and Kahl, 2007)).

Notice that condition (G1) makes the choice of C; and
C}. in conditions (G2-G4) unique up to scale. It implies that
that any nonzero C; € .4'(P;) represents the camera centre
of P;. Condition (G2) has many implications when combined
with (G1). Here, we list the ones needed in the paper:

(G2-1) For all i and j we have P;X; # 0 (as for any nonzero
C; € A (P;), C; and X are linearly independent).
Geometrically, X; does not coincide with the cam-
era centre of P;.

(G2-2) For any two views i,k we have A4 (P;) # A (Py),
and hence, no pair of cameras share a common cam-
era centre.

(G2-3) For any two views i,k, stack(P;,P;) has full row
rank, and thus, so does P = stack(Py,P2,...,Py,).

(G2-4) For any two views i,k, and any point X, the three
nonzero vectors C;, C; and X; are linearly indepen-
dent and therefore, X; does not lie on the projective
line* joining the camera centres of P; and Py.

(G2-5) For any view i, any three vectors among
P;X1,PiXs,...,P;X,, are linearly independent
(as C; ¢ span(Y1,Y2,Y3) for any three distinct
vectors Y1,Y2,Y3 € {X;} and any nonzero vector
C; e N (P)).

Notice that conditions (G3) and (G4) are generic for

n > 8, because of the facts that 6 points in general posi-

tion completely specify a twisted cubic and 9 points in gen-

eral position determine a quadric surface (Semple and Knee-
bone, 1952). One might find tighter generic conditions un-
der which our projective reconstruction theorem is still true.

4 For simplicity of notation, we are being a bit sloppy here about the
projective entities like projective lines, quadric surfaces and twisted
cubics. The reader must understand that when talking about a point
X € R* lying on a projective entity, what we really mean is that the
projective point in P? represented by X in homogeneous coordinates
lies on them.

However, we avoid doing this as it unnecessarily compli-
cates the paper.

4.2 Overview of the proof

Here, we state the general outline of the proof. Each part of
the proof will then be demonstrated in a separate subsection.
The complete proof is rather long and intricate. The reader
may therefore wish to skip to Sect. 5.

Proof (Sketch of the Proof for Theorem 1) Under the theo-
rem’s assumptions, we shall show the following:

— There exist at least two views k and / for which the corre-
sponding fundamental matrix .% (15/(, 151) is nonzero (sec-
tion 4.3).

- If F(P,P;)) # 0 then the two configurations
(Px,P;,{X;}) and (B;,P;,{X;}) are projectively
equivalent (section 4.4).

— If for two views k and /, (P, P, {X;}) and (B, B}, {X;})
are projectively equivalent, then ({P;},{X;}) and
({:},{X;}) are projectively equivalent (section 4.5).

This completes the proof. O

Before stating the different parts of the proof, it is worth
mentioning that for proving Theorem 1 one may simply as-
sume that the set of true depths 4;; are all equal to one. This
can be seen by a simple change of variables X ;= AijXij,

A/;=1land il’j = i,-/-/l,-/-, implying A/;x;; = x;; = P;X; and
i;jx; ;= P;X;. Notice that j.l’j = Aij/Aij is zero if and only if
j,i ;18 zero. Therefore, (D1-D3) are true for the ii’j-s if and
only if they hold for the Ai j-s. This change of variables re-
quires A;; 7 0 which was among the assumptions of the theo-
rem (and even if it was not explicitly mentioned, it would be
required as a consequence of P;X; 7 0 from (G2-1) and the
relations A;;x;; = P;X;). Throughout the proof of Theorem
1, we assume A;; = 1. With this assumption, the equations
(10) and (11) are combined into

lsinZiijP,‘Xj. (12)

Theorem 1 is proved as a conjunction of several lemmas.
Therefore, to avoid redundancy, we assume the following
throughout the rest of this section:

There exist m > 2 camera matrices P1,P;,...,P,, € R3x4
and n > 8 points X1,Xo,..., X, € R* (called the frue sets of
camera matrices and points, or the ground truth), and an esti-
mated setup of m camera matrices and n points ({P;},{X;}),
related by (12) for a set of scalars {A; it
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Fig. 5 The inference graph for the proof of Lemma 6. Lemma 7 has
been omitted due to its frequent use.

4.3 The Existence of a Nonzero Fundamental Matrix

The following lemma is the key to the proof of Theorem 1:

Lemma 6 If the genericity assumptions (GI1-G4) hold for
({Pi},{X}), and depth assumptions (DI1-D3) hold for
{A i}, there exist two views k and | such that the fundamen-
tal matrix . (P, P;) is nonzero.

Using Lemma 2, one can say that what is claimed in
Lemma 6 is equivalent to the existence of an invertible 4 x4
submatrix of stack(Py,P;) for some views k and I, made
by choosing two rows from P, and two rows from P;. This
lemma is essential as the case of zero fundamental matrices
for all pairs of views happens in the cross-shaped degenerate
solutions. We will see later in section 5 that a cross-shaped
depth matrix A happens when for one special view r we have
rank(P,) = 3 and for the rest of the views i # r we have
rank(P;) = 1. One can easily see from Lemma 2 that in this
case all pairwise fundamental matrices are zero.

Lemma 6 is the hardest step in the proof of Theo-
rem 1. We prove this lemma as a consequence of a se-
ries of lemmas. Fig. 5 can help the reader to keep track of
the inference process. The reader might notice that there
are different ways of proving some of the lemmas here.
Part of this is because the genericity conditions (G1-G4)
are not tight. First, we state a lemma giving some simple
facts about the second configuration of cameras, points and

depths ({lsl}, {Xj}, {i,]})
Lemma 7 Under (G, G2)and (D1, D2) The following hold

(i) For all j we have Xj £ 0, and for all i we have P; # 0,
(ii) )Alij = 0 if and only iff(j € N (B;), where N (P;) is the
null space of P;.
(iii) rank(P;) > min (3,n;), where n; is the number of nonzero
elements among jlil , 1,27 .. ,i,',,,
(iv) If rank(stack(P;,Py)) = rank(P;) = 3 for two distinct
views i,k, then for all j, i,'j = 0 implies ikj =0.

(v) If rank(P;) = 3, all the points )A(j for which iij =0are
equal up to a nonzero scaling factor.

Proof To see (i), notice that for any i and j if we have
Aij # 0, then from B,X; = A;jP,X; and P;X; # 0 (G2-1) we
conclude that X,- # 0 and P; # 0. Then (i) follows from the
fact that at each row and each column of A = [i, ;] there ex-
ists at least one nonzero element due to (D1, D2).

(ii) is obvious by P;X; = j.,-jPin from (12) and the fact
that P;X; # 0 from (G2-1).

To prove (iii), notice that if i,'j is nonzero for some
i and j, from f’if(j = iijP,'Xj we conclude that P;X; €
% (P;), where € (P;) denotes the column space of P;. Now,
if there are n; nonzero i,- j-s for view 7, which (by a
possible relabeling) we assume they are ﬁ,il,i;z,...,i,'ni,
then span(P;X;,P;Xo,...,P;X,,) C € (P;). By (G2-5) then
we have min(3,n;) = dim (span(P;X;,P;Xs,...,PiX,,)) <
dim(% (P;)) = rank(P;).

To see (iv), notice that as rank(P;) = 3, if the matrix
stack(P;,P;) has a rank of less than 4, the row space of
P; includes that of Py, that is Z(P;) C Z(P;), and thus
N (B;) C A (Pr). Hence, from part (ii) of the lemma we
havejL,-j:0<:>Xj EJV(IS,) :>Xj E«/V(lsk)@ikao.

(v) simply follows from parts (i) and (ii) of this lemma
and the fact that a P; of rank 3 has a 1D null space. O

We make extensive use of Lemma 7 in what comes next.
The reader might want to keep sight of it while reading the
proofs.

Lemma 8 Consider two 3x4 matrices Q and R such that
rank(Q) > 2 and rank(R) > 2. Then .% (Q,R) # 0 if and only
if stack(Q,R) has rank 4.

Proof Assume stack(Q,R) has rank 4. If R and Q have both
rank 3, then stack(Q,R) having rank 4 means 4 (R) #
A (Q). Geometrically, it means that R and Q are two rank-
3 camera matrices with different camera centres. It is well
known that in this case the fundamental matrix % (Q,R) is
nonzero (Hartley and Zisserman, 2004).

If R has rank 2, it has two rows r! and rJT spanning its
row space, that is span(r;, r;) = #(R). Further, as stack(Q,R)
has rank 4, there exist at least two rows g/ and q/ of Q
such that dim(span(r;,r;,qx,q;)) = 4. The two rows g and
q; can be chosen by taking the set {r;,r;}, adding rows of
Q, one by one, to this set, and choose the two rows whose
addition leads to a jump in the dimension the span of the
vectors in the set. As, the 4x4 matrix stack(rf,rjr,qf,qlT)
has rank 4, Lemma 2 suggests that .% (Q,R) # 0.

The other direction of the lemma is proved immediately
from Lemma 2. ad

Lemma 8 shows that to prove the main Lemma 6, it is suf-
ficient to find two camera matrices both of rank 2 or more,
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whose vertical concatenation gives a matrix of rank 4. We
will show in Lemma 13 that this is possible. But, to get there
we need two extra lemmas. The next lemma relies on the
Camera Resectioning Lemma discussed in Appendix B.

Lemma 9 Under (GI-G3), if for two distinct views k and
I, there are at least n — 1 indices j among the point indices
1,2,...,n, for which the vector (ikﬁ ilj) is nonzero, we can-
not have % (P;) C #(Py), where & denotes the row space of
a matrix.

Proof To get a contradiction, assume Z(P;) C % (P;). Then
there must exist a 3x3 matrix H such that #; = HP,. There-
fore, for all j we have B;X = Hp, X ; and by the relation
135( = iijP-X- we get )AL,]P,X- = )ALkJHPkX' for all j. Now,
we can apply Lemma 19 on Camera Resectioning (see Ap-
pendix B) as (lk j,ll ;) is nonzero for at least n — 1 indices j
and (G1-G3) hold’. By applying Lemma 19 we get
HPk = aPl. (13)
for some scalar a. Now notice that H # 0, as otherwise
from P; = HP; we have P; = 0, which is not possible due
to Lemma 7(i). As H # 0 and Py, has full row rank according
to (G1), then the scalar a in (13) cannot be zero. Therefore,
we have

1
P, = — HP;
a

(14)
meaning Z(P;) C Z(Py). This possibility is excluded by
(G1, G2-2) and hence we get a contradiction. This completes
the proof. a

Lemma 10 [f (DI, D2) and (G1, G2) hold, then for at least
one view i we have rank(P;) > 2.

Proof To get a contradiction, assume that no matrix P; has
rank 2 or more. As P;-s are nonzero (Lemma 7(i)), we con-
clude that all P;-s have rank 1. By (D2) and Lemma 7(iii)
then each row of A must have exactly one nonzero element.
Moreover, according to (D1), all columns of A have at least
one nonzero element. These two facts imply that m > n and
that (by relabeling of the views) the rows of A can be per-
muted such that its top nxn block is a diagonal matrix D,
with all nonzero diagonal elements, that is

~

A= 5)

A

Dm}

5 According to (G3) the n — 1 points X ; corresponding to nonzero
zero vectors (ik j.,il ;) and the camera centre of P; do not all lie on a
twisted cubic. This is a generic property as n — 1 > 6 (see Sect. 4.1).
Notice that here the matrices P; and HP;, respectively act as Q and Q in
Lemma 19. The genericity conditions (G1-G3) provide the conditions
(Cl1, C2) in Lemma 19.

where D, = diag(iu,igg, ,/'L ) and /'LN #0forall j =
1,...,n. Using the relations P; X = 7L, PiX;, the above gives

(16)

where the 3mXxn matrix on the right hand side is block-
diagonal with nonzero diagonal blocks v; = ij P X; #0
(as ijj # 0 and P;X; # 0 due to (G2-1)). This suggests that
on the right hand side there is a matrix of rank n. On the
other hand, the left hand side of (16) has rank 4 or less as
[Xl X5 ... X,,] is 4xn. This is a contradiction since n > 8.

O

Lemma 11 If (DI, D2) and (G1, G2) hold, then for at least
one view i we have rank(P;) = 3.

Proof To get a contradiction, we assume that rank(P;) < 2
for all i. Consider an arbitrary view /. As rank(P;) < 2, by
Lemma 7(iii), we know that among i” , 112, iln at most
two are nonzero. By relabeling the points {X; } and accord-
1ng1y {X i} if necessary, we can assume that Az = Ay =
= )q,, = 0. Now, by (D1), we know that the third col-
umn of A is not zero and therefore, there must be a view
k for which lkg #0. Agaln there are at most two nonzero
projective depths among 7Lk1, /'Lkm and thus, at most one
nonzero depths among lk4, 7Lkn By relabeling the points
X4,..., X, and accordlngly X4, Xn, we can assume that
),k5 = )% = %k,, =0. Notice that this relabeling retains
113—114— 2/11;120- o

Now, as n > 8, we can consider the points X5, Xg and
X;. If these points are equal up to scale, then by Lemma
7(ii), for each view i, the depths 7L,5, 7Ll6 and ),,7 are either
all zero or all nonzero. In this case, by (D1), there must be
a view i for which A;s, A6 and A7 are all nonzero. But this
means that rank(P;) = 3 by Lemma 7(iii), contradicting our
assumption rank( ;) <2 forall i.

Thus, X5, X¢ and X7 are not equal up to scale, and
therefore, the dimension of span(X57X6,X7) is at least 2.
As ?Lk3 # 0 and )»ks = )% = lk7 =0, by Lemma 7(ii) we
have X3 ¢ 4 (B;) and span(Xs,Xs,X7) € .4 (). This
means that dim(span(X3,Xs,Xe,X7)) is at least 3. Now,
since 113 = 115 = 116 = 5L,7 =0, by Lemma 7(ii), we can say
span(X3,Xs,X4,X7) C A (B)). Since span(X3,Xs, X, X7)
is either 3D or 4D, this means that rank(P;) < 1. As we chose
[ to be any arbitrary view, this means that rank(P;) < 1 for
all i. But according to Lemma 10 this cannot happen, and
we get a contradiction. O

Lemma 12 Assume that (D1, D2) and (G1, G2) hold, and
denote by n; the number of nonzero elements of the i-th row
of A. If for some view r we have n, > n—1 and n; = 1 for all
i # 1, then the matrix R has to be cross-shaped.
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Proof As m > 2, there exist at least another view k other
than r. Assume the (only) nonzero element on the k-th row
of R is ikc We will show that for any view [ other than r and
k (if there is any) the only nonzero element in the /-th row
of A has to be Ay,.

Consider a view [ other than r and k. As n > 8, and
there is exactly one nonzero element in the k-th row of A,
one nonzero element in the /-th row of A, and at most one
zero element in the r-th row of A, one can find three dis-
tinct indices j1, j2, j3 such that km #0 7Lr,2 # 0,2, #0,
7ij1 = /'Lkn = lkn =0and l[]l = 7L[12 = 1113 = 0. We have

A

span(f( X Xj3) = :
=span(P,X;,,P,X;,,P,X;;). (17)
where the product P, span(X i X JZ,X j,) represents the set
created by multlplymg P, by each element of the sub-
space span(X;,,X,,X,). The last equality in (17) comes
from (12) and the fact that Kr s l, ;, and i, j, are nonzero.
According to (G2-5), span(P, XJI,P XJZ,P X},) is 3D, and
therefore, (17) suggests that span(XJ“ij,X ) has to be
also 3D. From lk]. = lkn = lk]; =0 and A’l]| = 1112 =
A i, = 0 respectively we conclude that span(X;,,X;,,X;) €
N (Pr) and span(X”,X]z,X ) € A (P;) (Lemma 7(11)).
As P, and B; are both nonzero (Lemma 7(i)), and hence,
of rank one or more, and their null-spaces include a the
3D subspace span(X;,,X},,X,), it follows that .4’ (15k)
N (8)) =span(X},,X},,X ;). This means that for any j, Ay,
and il ; are either both nonzero or both zero. As lkc #0, we
must have i;c = 0. Since this is true for any view [ other
than k and r, we can say that for all views i # r, the (only)
nonzero element is in the c-th column of /?L,-c.

By the assumption of the lemma, the r-th row of A can
have either no zero element or one zero element. If it does
have one zero element, it has to be im, as otherwise, if
A, = 0 for some ¢’ # ¢, the ¢/-th column of & would be
zero, violating (D1). Now, we have the case where all ele-
ments of A are zero except those in the r-th row or the c-th
column, and among the elements in the r-th row or the c-th
column, all are nonzero except possibly i,c. This means that
A is cross-shaped. a

Lemma 13 Under (DI1-D3), (G1-G3) there exist two views i
and k such that rank(P;) > 2, rank(P;) > 2 and stack(P;,Py)
has rank 4.

Proof Lemma 11 says that under our assumptions, there ex-
ists at least one estimated camera matrix P; of rank 3. With
a possible re-indexing of the views, we can assume that
rank(P;) = 3. Now we consider two cases. The first case is
when among Ml,l]g, ll,, there exists at most one zero
element. In this case there must be at least another view k
with two or more nonzero elements in the corresponding
row of A, as otherwise, according to Lemma 12, A would

be cross-shaped, violating (D3). By Lemma 7(iii) then we
have rank(Pk) > 2. Because at least for n — 1 point indices j
we have 11] # 0, and thus (11], Ak]) # 0, from Lemma 9
we know that the row space of P; cannot be a subset of
the row space of Py. Therefore, as rank(P;) = 3 we have

rank {1;1] = 4. This along with the fact that rank(P) =3 > 2
k

and rank(P;) > 2 completes the proof for this case.

The only case left is when there are at least two zero
elements among ),11 , 1127 M,, By a possible re-indexing
we can assume that ill = 112 0. From Lemma 7(v) it fol-
lows that X; and X, must be equal up to scale. According
to (Dl) there must be at least one view k for which ikl #0.
As X, and X, are nonzero (Lemma 7(i)) and equal up to
scale, A4 2 0 implies o =0 (by Lemma 7(ii)). This means
that rank(P;) > 2 (Lemma 7(iii)). As we have rank(P;) = 3,

211 =0and lkl # 0, by Lemma 7(iv) we get rank [ } =4,
Pk

This completes the proof as we also have rank(P;) > 2 and
rank (Py) > 2. O

Lemma 6 now follows directly from Lemmas 13 and 8.

4.4 Projective Equivalence for Two Views

The main result of this section is the following lemma:

Lemma 14 Under (G1, G2, G4) and (D1), If the fundamen-
tal matrix .7 (Py,B)) is nonzero for two views k and I, then
the two configurations (Pr,P;,{X;}) and (Py,P;,{X;}) are
projectively equivalent.

Proof For simplicity, we take k = 1 and [ = 2. The other
cases follow by relabeling the views. For each j we have
B1X; = A1;P1X; and P,X; = A»;PX;, or equivalently

PN

P, PIX; 0 o

1, P1X; " .

{f’z, 0 PZXJ ZL]] =0, j=12,...,n (18)
2j

As, X ; 7# 0 (Lemma 7(i)) the 6x6 matrix on the left hand
side of (18) has a nontrivial null space and hence a vanishing
determinant. Define the function . : R* — R as
Pi,P1X 0 }

19)

y(x)defdt{P2 0 PX|

Using the properties of the determinant and Definition 4 of
the fundamental matrix, the above can be written as (Hartley
and Zisserman, 2004, Sect. 17.1):

Z(X)=X"PT P, X =X sX (20)

where 1, & .7 (B},B,) is the fundamental matrix of P; and
B, as defined in Definition 4, and S & PT F1,P,. We shall



A Generalized Projective Reconstruction Theorem and Depth Constraints for Projective Factorization 13

show that .’(X) has to be identically zero. To see this, as-
sume that . (X) is not identically zero. Then the equation

Z(X)=X"sX=0 210
defines a quadric surface. From (18) we know . (X;) =0
for all j =1,2,...,n and therefore all the points {X;} lie
on this quadric surface. Also, for any pair of nonzero vec-
tors C; € A (P1) and C; € .#(P2) (camera centres) one

can easily check that .(C;) = .’(C;) = 0 and therefore,
C; and C,; also lie on the quadric surface.

As the fundamental matrix £, £ .7 (B, 8,) is rank defi-
cient (Hartley and Zisserman, 2004), we can have a nonzero
vector v € 4 (F1,). Since P, has full row rank by (Gl),
we can write v = P,Y for some Y € R*. Then, by taking
a nonzero vector C, € 4 '(P;), one can easily check that
for any two scalars a and 8 we have .(aY + C,) = 0.
This, plus the fact that Y and C, are linearly independent
(as P,Cy = 0 # v =P,Y), implies that the quadric surface
#(X) = 0 contains a projective line and hence is ruled.

Now, we have the case that the nonzero vectors C; €
A (Py) and C, € 4 (Py) (camera centres) plus the points
X1,Xs,...,X, all lie on a (proper or degenerate) ruled
quadric surface represented by (21). This contradicts the
genericity condition (G4). This only leaves the possibility
that .#(X) is identically zero or equivalently, S+ ST = 0,
that is

Pl Py +PL P =0 (22)

Therefore, according to Lemma 4 (whose conditions hold by
(G1) and (G2-2)) the matrix ¥, = .% (P,P;) is a multiple
of Z(P1,P). As we have assumed that .7 (P1,P,) # 0, and
having (G1) and (G2-2), by Lemma 3 we know that (P, P;)
is projectively equivalent to (Py,P2). As (G2-4) holds, us-
ing the Triangulation Lemma 18 (see Appendix A) we can
prove that (P1,P2,{X;}) and (P1,P,,{X;}) are projectively
equivalent®. a

4.5 Projective Equivalence for All Views

Lemma 15 Under (G1-G4) and (D1, D2), if for two views k
and | the two configurations (Py, Py, {X;}) and (Py,P;,{X;})
are projectively equivalent, then for the whole camera
matrices and points, the configurations ({P;},{X;}) and
({P:},{X}) are projectively equivalent.

Proof For convenience, take k = 1 and [ = 2 (the other cases
follow by relabeling the views). First of all, notice that as

® This can be done similarly to (Hartley and Zisserman, 2004, The-
orem 10.1), so we do not repeat it here.

(P1,P2,{X;}) and (P, Py, {X;}) are projectively equivalent,
we have

f’1=T1P1H, f’zZTQPQH7 (23)
X;=vH'X;, j=1,2,...n, 24

for an invertible matrix H and nonzero scalars 7j, 7, and
Vi,...,V,. From (G2) and (24), we can say that for any
four dlStlnCt point indices j,..., ja, the points X; i1 X, s X
and X;, span a 4-dimensional space. Therefore, for each
view i at most 3 depth scalars ii j can be zero, as other-
wise, if we have im = i,jz = /%-3 = /%-4 = 0 it means that
X]] aXszXan € .4 (P;) (Lemma 7(ii)). This, however,
implies P; = 0 contradicting Lemma 7(i).

Now, since we know that for each view i we have at most
3 zero depths i,'j, from n > 8, we know that there are more
than 3 nonzero depths i ;j at each row i. Therefore, according
to Lemma 7(iii), we can say that rank(P;) = 3 for all i.

Now, notice that as (P1,P,,{X;}) and (P, 8, {X;}) are
projectively equivalent, from Lemma 1 (whose conditions
hold by (G1, G2) and their consequences (G2-1) and (G2-
3)) we have 41 # 0 and Ay; # 0 forall j = 1,2,....n. Now,
for any view k > 3, consider the pair of matrices (Py,P;).
We have rank(P;) = rank(P;) = 3 and moreover, the vector
(A s Y ;) is nonzero for all j. Therefore, by Lemma 9 we get
rank (stack(Py,P;)) = 4. After that, by Lemma 13 it follows
that the fundamental matrix .% (Py,P;) is nonzero. Then by
Lemma 14 we can say that (PP, {X;}) and (P,P,{X;})
are projectively equivalent. Therefore,

A

P = T{P]G, lsk = TIQPkG, 25)
X;=Vvic''X;, j=12,...n, (26)

for an invertible matrix G and nonzero scalars 7|, 7, and

V{,V},...,v,. From (24) and (26) we have
\VA
GH_IXj:vf{Xj:(Xij 27)
j

where a; < V?/v;. This says that the points X, ..., X, are
eigenvectors of GH™!. Consider X|,X»,...,Xs. They are all
eigenvectors of the 4 x4 matrix GH™!, each associated with
anonzero eigenvalue o = v} /v i, and according to (G2), no
four eigenvectors among them are linearly dependent. This
can only happen when GH™! € R*** has a 4D eigenspace,
and therefore, all eigenvalues of GH™!, including oj-s, are
equal to a common nonzero scalar . Thus, we must have
GH! = aI or G = aH. This, plus (23) and (25) gives 71 =
at;. By using @ = &; = v;/v; and 7y = a7y, and defining

7 ¥ at, we have
Py =1PiH, By = PH, (28)
X;=v;i'X;, j=1,2,...,n, (29)
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Since the above is true for all k = 3,...,n, and also for

k =2 by (23), we conclude that the two configurations

({P:},{X;}) and ({P;},{X;}) are projectively equivalent.
O

5 Minimality of (D1-D3) and Cross-shaped
Configurations

From depth assumptions (D1-D3) we see that in order to
get the projective reconstruction working we require that
none of the rows or columns of the depth matrix i = [4; il
are zero and that A is not cross-shaped. One might wonder
whether projective reconstruction is possible under weaker
constraints on the estimated depth matrix. For example,
what happens if we just require that the matrix has no zero
rows and no zero columns.

In this section we shall show that, in some specific sense,
(D1-D3) is a minimal assumption for projective reconstruc-
tion. However, by this we do not mean that it is the weakest
possible constraint that guarantees the uniqueness of projec-
tive reconstruction up to projectivity. But, it is minimal in
the sense that if any of (D1), (D2) or (D3) is removed, and
no extra conditions are added, the resulting constraints can-
not rule out false solutions to projective reconstruction. This
shows that the false solutions to the factorization problem
A ® [x;;] = PX are not limited to the trivial cases of having
depth matrices with some zero rows or columns.

It is trivial to demonstrate degenerate solutions created
by violating (D1). For example, we can set )ALl = jtzk =...=
imk =0and Xk =0, as it satisfies ls,Xk = iikx,-k. For the rest
of variables we can have P; = P; for all i and Xj =X; and
i ;=A;j forall j # k. Similarly, if we relax (D2) by allowing
the I-th row of A to be nonzero, we can have a configuration
in which B; = 0.

The more difficult job is to show that the relaxation of
(D3) allows a projectively non-equivalent setup. Relaxing
this condition means that A is cross-shaped. We show that in
this case for any configuration of the true camera matrices
P;, points X; and depths A;;, we can find a non-equivalent
setup ({;},{X;}, {i,j}) satisfying the projection equations.

Consider m arbitrary 3x4 projection matri-
ces P1,Py,...,P, and an arbitrary set of points
X1,Xs,...,X, € R* (with m and n arbitrary), giving
the image points X;; through the relation A;;x;; = P;X; for
nonzero scalars A; ;. Now, for any arbitrary view r and point

index ¢ we can take

die=Nie, i=1,2,....m, (30)
Arj=Avjy j=1,2,...0m, €2
Aij=0, i#nj#c (32)
B, =P, (33)
B, =PX.CI i#r (34)
X, =(1-CCHX.+C,, (35)

X;=(1-CCHX;, j#c (36)
where C, is the normalized camera centre of P, (a unit vector
in the null-space of P,). Notice that the matrix I — C,CT is
the orthogonal projection onto the row space of P,.. Now, it
can be easily checked that

lsiﬁjzpinZAin,‘j:i,‘jX,'j ifi:I”OFjZC (37)
lsin:OZO-X,‘j:i,'jX,'j ifi;érandj;éc (38)

Notice that to derive (37) one has to check three cases sepa-
rately: firsti=r, j=c,secondi=r, j # c,and third i # r, j =
c. You can see that with this choice we have P;X; = i X j for
all i and j. It is obvious that ({F;},{X;}) is not projectively
equivalent to ({P;}, {X;}), as, for example, for any i # r we
have rank(P;) = 1 regardless of the value of P;. From (30-32)
it follows that

0 1,10
A= 1?7] 1 IZ_C ol 39)
0 1,0

where the zero matrices denoted by 0 are of compatible size
and o denotes the Hadamard (element-wise) product. This
shows that A = [}, j] is a nonzero-centred cross-shaped ma-
trix centred at (r,¢), according to Definition 5.

One can observe that instead of (35) we can give any
arbitrary value to X, provided that it is not perpendicular to
C,, and still get a setup with a cross-shaped depth matrix.
Especially, we leave it to the reader to check that by taking
X, equal to C, instead of (I — C,CT)X,+C, in (35), we
have a setup in which the depth matrix A is arranged as (30-
32) with the exception that the central element i,c is zero,
that is

0 1,10
A=1T,0 17 |oA. (40)
0 1,,0

This means that A is a zero-centred cross-shaped matrix.
Fig. 2 illustrates such a solution for the case of r = 1,c = 1.

Obviously for any pair of vectors T € R” and v € R”
with all nonzero entries, we can find a new configuration
with &' = diag(t) Rdiag(v), P} = 7;; and X, = v;X;, satis-
fymg lsiX/] = il-/jx,-j (as (Tif’i)(Vij) = (TiVjiij)Xij). Notice
that, according to the above discussion, both configurations
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(39) and (40) can be obtained for any configuration of m
views and n points, and for any choice of r and c. We also
know from Lemma 5 that any mxn cross-shaped matrix is
diagonally equivalent to either (39) or (40) for some choice
of r and c. Putting all these together we get the following
lemma.

Lemma 16 Consider any configuration of m camera matri-
ces and n points ({P;},{X}) giving the image points {X;;}
through the relations l,'jxl-j = P;X; with nonzero scalars
Aij # 0. Then for any cross-shaped matrix & = [i, ], there
exists a configuration ({B;},{X;}), such that the relation
iijxij = f’iﬁj holds foralli=1,....mand j=1,...,n.

This lemma is used in the next session as a useful test for the
assessment of depth constraints. It says that if a constraint
allows any cross-shaped structure for the depth matrix, then
it allows for a false solution.

6 The Constraint Space

In this section we will have a closer look at the depth
constraints used in factorization-based projective recon-
struction. Consider a set of m > 2 projection matrices
Pi,...,P, € R¥>*and asetof n > 8 points Xy,...,X, € R*,
generically configured in the sense of (G1-G4) and pro-
jecting into a set of image points Xx;; € R? according to
Aijx;j = P;X;. Given a constraint space C C R™*" we want
to assess the solutions to the problem

find s.t. Ao [X,‘j} = IS)A(, hec “1

R, Pyxas Raxn
in terms of whether ({P;},{X;}) is projectively equiva-
lent to ({P;},{X;}), where P = stack(P;,P,, -+ ,P,), X =
[XiX, - X,] and A ® [x;;] = PX represents all the relations
ii X = p.X ; in matrix form, as described for (2) and (3).
By P3,x4 and %4, we respectively mean P € R¥4 and
X e R¥xn,

Notice that, it is not sufficient that every R in C satisfies
depth assumptions (D1-D3). The constraint space must also
be inclusive, that is, it must make possible the existence of
{P;} and {X;} for which A ® [x;;] = PX holds for all i and .
In other words, it must guarantee that (41) has at least one
solution. One can check that for any A diagonally equivalent
to the true depth matrix A, there exists a setup ({F;},{X;}),
defined by b; = 7,p;, X ;= V;X;, which s projectively equiv-
alent to ({P;},{X;}) and satisfies the relation A® [x;;] = PX.
Therefore, for (41) to have at least one solution, it is suffi-
cient that the constraint space C allows at least one A which
is diagonally equivalent to A. Actually, this requirement is
also necessary, since, according to Lemma 1, if there exists
a setup ({P;},{X;}) projectively equivalent to ({P;},{X;})
which satisfies the relations A;;x;; = §;X;, then & must be di-
agonally equivalent to A. As we do not know the true depths

A beforehand, we would like the constraint A € C to work for
any initial value of depths A. Hence, we need it to allow at
least one diagonally equivalent matrix for every depth ma-
trix A whose entries are all nonzero. If we have some prior
knowledge about the true depth matrix A in the form of A € P
for some set P C R™*" the constraint is only required to al-
low at least one diagonally equivalent matrix for every depth
matrix A in P. For example, in many applications it is known
a priori that the true depths A;; are all positive. In such cases
P is the set of mxn matrices with all positive elements. The
concept of inclusiveness, therefore, can be defined formally
as follows:

Definition 6 Given a set P C R™*" representing our prior
knowledge about the possible values of the true depth matrix
(A € P), the constraint space C C R™*" is called inclusive if
for every mxn matrix A € P, there exists at least one matrix
A € C which is diagonally equivalent to A.

Definition 7 The constraint space C C R™*" is called
uniquely inclusive if for every mxn matrix A € P, there ex-
ists exactly one matrix A € C which is diagonally equivalent
to A.

In this paper whenever we use the term inclusive without
specifying P, we mean the general case of P being the set of
all mxn matrices with no zero element. We will only con-
sider one other case where P is the set of all mxn matrices
with all positive elements.

In addition to inclusiveness as a necessary property for
a constraint, it is desirable for a constraint to exclude false
solutions. This property can be defined as follows:

Definition 8 For m>2 and n>8, a constraint space C C
R™*" is called exclusive’ if every A € C satisfies (D1-D3).

Now, we can present a class of constraints under which
solving problem (41) leads to projective reconstruction:

Definition 9 Given integers m >2 andn > 8, and a set P C
R™ " representing our prior knowledge about the true depth
matrix, we call the constraint space C C R™*" (uniquely)
reconstruction friendly if it is both exclusive and (uniquely)
inclusive with respect to P.

We will apply the same terms (inclusive, exclusive, re-
construction friendly) to the constraints themselves (as re-
lations), and what we mean is that the corresponding con-
straint space has the property. The following proposition fol-
lows from the discussion above and Theorem 1.

7 1In fact, the term exclusive might not be a precise term here, as (D1-
D3) holding for all A € C is just a sufficient condition for a constraint to
exclude false solutions. While, according to Lemma 16, (D3) holding
for all A € C is necessary for ruling out false solutions, (D1) and (D2)
holding for all members of C is not necessary for this purpose. This is
because there might exist some A € C for which (D1) or (D2) do not
hold, but it is excluded by A ® [x;;] = PX. This is why in Sect. 5 we said
that (D1-D3) are minimal in a certain sense.
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Proposition 1 Consider a setup of m > 2 camera matrices
and n > 8 points ({P;},{X;}) generically configured in the
sense of (G1-G4), and projecting into the image points {X;;}
according to Aijx;j = P;X; with nonzero scalars A;j. If C
is a reconstruction friendly constraint space, then problem
(41) has at least one solution and for any solution (R, P %),
the configuration ({P;},{X,}) is projectively equivalent to
({P 1, {Xj} ), where the matrices P; € R>** and the points
X e R* ‘come from P = stack(Py,P,, - ,P,,) and X =
[X1X2 n]. If C is uniquely reconstruction friendly, then
there is a unique depth matrix R as the solution to (41).

Notice, that the uniqueness is with respect to A, however
a certain solution A gives a class of camera matrices and
points, namely (PH,H~'X) where H is an arbitrary 4 x4 in-
vertible matrix.

Being reconstruction friendly is a desirable property for
a constraint. However, this does not mean that other con-
straints are not useful. There can be other ways of avoid-
ing false solutions, including choosing a proper initial so-
lution for iterative factorization algorithms or trying differ-
ent initial solutions or different forms of a certain class of
constraints. What is important for reconstruction unfriendly
constraints is to be aware of possible false solutions and be-
ing able to determine whether the algorithm has fallen into
any of them.

Besides giving correct solutions to (41), there are other
desirable properties for a constraint space. We are specifi-
cally talking about the properties making the constraint us-
able with practical algorithms. For example, when dealing
with iterative algorithms that converge to the final solution,
it is essential that the constraint space C is closed. This is
because for a non-closed constraint space, even if the se-
quence of solutions throughout all iterations satisfy all the
constraints, they may converge to something outside C.

In the next subsections, to demonstrate how the theory
we developed can be applied to the analysis of depth con-
straints, we examine some of the depth constraints used in
the literature on factorization-based algorithms. It turned out
that all of the constraints we could find in the literature ei-
ther have a compact constraint space or are in the form of
linear equalities. We consider each of these classes in a sep-
arate subsection. For each class, in addition to reviewing the
constraints in the literature, we introduce a new class of con-
straints with extra desirable properties. This gives the reader
an idea as to how our theory can be exploited for the design
of new constraints. In particular, in Sect. 6.2.3, we introduce
a class of linear equality constraints which are reconstruc-
tion friendly.

6.1 Compact Constraint Spaces
6.1.1 The Transportation Polytope Constraint

We consider the constraint used in (Dai et al, 2010, 2013),
which requires A to have prescribed row and column sums
and to have all nonnegative elements. This can be repre-
sented as

=>

1,=u, A1, =v, (42)
= (43)

=>
o

where the vectors u € R” and v € R” are such that u; > 0 for
alli,v; >0 forall jand Y u; = }j_, v;. The relation =
means element-wise greater or equal. Notice that although
(42) introduces m + n constraints, only m +n — 1 of them
are linearly independent. In (Angst et al, 2011) it has been
noted that the corresponding constraint space is known as
the Transportation Polytope. Thanks to a generalization of
the well-known Sinkhorn’s Theorem (Sinkhorn, 1964) for
rectangular matrices (Sinkhorn, 1967), one can say that for
every mxn matrix A with all positive elements and any two
vectors u € R™ and v € R" with all positive entries, there
exists a matrix A which is diagonally equivalent to A and sat-
isfies the row and column sums constraint (42). Therefore,
(42) is inclusive if the true depth matrix A is known to have
all positive values, that is the set P representing the prior
knowledge in Definition 9 is equal to the set of all mxn ma-
trices with all positive elements. It is also obvious that the
constraint (42) enforces all rows and all columns of A to be
nonzero. Hence, every matrix in the constraint space satis-
fies (D1, D2). To see if the constraint is exclusive it only
remains to examine whether or not constraints (42) and (43)
allow for any cross-shaped depth matrix.

Assume that A is a cross-shaped matrix centred at (7,c),
as in Fig. 6. Then the elements of A are uniquely determined
by (42) as follows: iic =uy; foralli#r, i,j =vjforall j#c¢
and /LC = Uy — Y jLcVj = Ve — Lizruj (the latter equality is
true due to Y7 u; = Y}, v;). This has been illustrated in
Fig. 6. It is easy to check at all elements of A are nonnegative
except possibly jL,c. Therefore, to satisfy (43), we must have

-y it Vi = 0. Therefore, if for any choice of r and c,
u—y it Vi Z 0 is satisfied, then the constraints (42) and
(43) allow for a cross-shaped structure and hence, according
to Lemma 16, allow a false solution to (41). Otherwise, (42)
and (43) together give a reconstruction friendly constraint
space, and hence, do not allow any false solution according
to Proposition 1.

As a major example, if we take u = nl,, and v =ml, as
chosen in (Dai et al, 2010, 2013), for any choice of r and ¢
we have u, — Y ;..v; = m+n—mn. This is always smaller
than zero by our assumption of having two or more views
(m > 2) and 8 or more points (n > 8). Therefore, with the
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Fig. 6 A 4x6 cross-shaped depth matrix A centred at (r,c) with r =
3,c = 4. The blank parts of the matrix indicate zero elements. The only
way for the rows and columns of the matrix to sum up to the marginal

values {u;} and {v;} is to have Aie = u; for i #r, ﬁ,rj =v; for j #c,
and A =ty — Y20 Vj = Ve — Lty Uj-

choice of u = nl,, and v =ml,, (42) and (43) give a re-
construction friendly constraint space. The disadvantage of
this constraint is that it includes inequalities. This makes it
difficult to implement fast and efficient algorithms for large
scale problems.

6.1.2 Fixing the Norms of Rows and Columns

As suggested by Triggs (1996) and Hartley and Zisserman
(2004), after each iteration of a factorization-based algo-
rithm, one can alternatingly scale row and columns of A to
have prescribed norms. Here, we analyse this case for the
cases where the norms are /”-norms for some real num-
ber p > 1 (being real implies p < o). Consider the matrix
£ £ [|A;;]7), whose ij-th element is equal to |4;;|”. If all
ii ;- are nonzero, all elements of I are positive, and hence,
alternatingly scaling row and columns of A to have pre-
scribed /P-norms is equivalent to alternatingly scaling rows
and columns of I" to have prescribed sums, that is applying
the Sinkhorn’s algorithm to f* (Sinkhorn, 1964, 1967), mak-
ing I converge to a matrix with the desired marginal sums
and hence making A converge to a matrix with given row and
column /?-norms. Therefore, applying this iterative proce-
dure after every iteration of a factorization-based algorithms
keeps A in the following constraint space

Z|/A1i]|p—u,7 i=1,....,m (44)
=
Z|iij|p=vj7 j=1,...,n (45)
i=1
for vectors u = [uy,...,u,)" and v = [v1,...,v,]7 with all

positive elements. Notice that u and v must be taken such
that 3/ u; = Y7, v;. The above constrains I'=[|A;j|] as

5

1,=u, 71, =v. (46)

Moreover, [ = 0 is automatically satisfied by the definition

of I". For the true depths A;;, take T =N ye ;|7] and notice that

it has all positive elements as A; j-s are all nonzero. Thus,

by applying the generalization of the Sinkhorn’s theorem to
rectangular matrices (Sinkhorn, 1967) we can say that there
exists vectors T = [T, Ta,..., )T, V = [Vi,V2,..., V|7
with all positive entries such that I' = diag(t)T diag(v)
satisfies (46). Thus, for v/ = [rll/p,'vzl/P, .. .,T,l,/p]T, Vi =
[vll/p,vzl/p,...,v,:/p]T, the matrix A = diag(7") Adiag(V’)
satisfies (44) and (45). Therefore, (44) and (45) together
give an inclusive constraint space. To check for (D1-D3),
notice that I and A have a common zero pattern. Therefore,
(D1-D3) are satisfied for A if and only if they are satisfied
for . By considering (46) and [' = 0, with the same dis-
cussion as the previous subsection we can say that (44) and
(45) form a reconstruction friendly constraint if and only if
ur—Y jz-vj > 0 forall r and c. Specifically, if one requires
rows to have common norms and also columns to have com-
mon norms, as suggested by Triggs (1996) and Hartley and
Zisserman (2004), then we have u = anl,, and v = aml,
for some nonzero scaling factor ¢¢. A similar argument as in
the previous subsection shows that with this choice of u and
v, fixing [”-norms of rows and columns results in a recon-
struction friendly constraint space.

The problem with (46) as a constraint is that even sim-
ple target functions are hard to optimize subject to it. Im-
plementing this constraint as a balancing stage after every
iteration of a factorization-based algorithm can prevent us
from having a descent move at every iteration.

6.1.3 Fixed Row or Column Norms

Heyden et al (1999) uses the constraint of fixing the I°-
norms of the rows of the depth matrix. This constraint can
be written as

n
Y AP =u, i=1,...m (47)
=1

for fixed positive numbers u;. Indeed, this constraint is in-
clusive as for every matrix A with all nonzero rows one
can scale the rows to obtain a matrix A = diag(7)A with
prescribed row norms. Every matrix A satisfying this con-
straint has nonzero rows. However, the constraint allows for
zero columns and cross-shaped solutions. A similar situation
holds for (Mahamud et al, 2001) where the columns of the
depth matrix are required to have a unit weighted />-norm.

The disadvantage of these constraints is allowing for
zero columns (or zero rows in the second case) and cross-
shaped structures. The advantage is that they can be effi-
ciently implemented with iterative factorization-based algo-
rithms, by solving a number of eigenvalue problems at ev-
ery iteration (Mahamud et al, 2001). The compactness of the
constraint space contributes to the proof of special conver-
gence properties for special factorization-based algorithms
(Mahamud et al, 2001).
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6.1.4 Fixing Norms of Tiles

In this subsection we show how the fixed row and fixed col-
umn constraints can be somehow combined to make more
desirable constraints. This is done by #iling the depth matrix
A with row and column vectors, and requiring each tile to
have a unit norm (or a fixed norm in general). Examples of
tiling can be seen in Fig. 4 at page 2.

The process of tiling is done as follow: It starts by
putting a single tile (row vector or column vector) in the
matrix. We then keep adding tiles such that the tiled area
stays rectangular. At every stage either a horizontal tile (row
vector) is vertically concatenated or a vertical tile (column
vector) is horizontally concatenated to the tiled area, with
the constraint that the tiled region remains rectangular. The
process is continued until the whole A is tiled. This process
is illustrated in Fig. 7. By tiling the matrix in this way, the
corresponding constraint will be inclusive. We do not prove
this formally here, instead, we show how the proof is con-
structed by giving an example in Fig. 7.

6 T1 7 1
2| T2 3 T2
7 el

5 4 3 T3 6 51 4 T3

1 211
T4 T4

v vy V3 V4 Vs V1 Vy V3 V4 Vs

(@) (b)

Fig. 7 Examples of the procedure of tiling a 4x5 depth matrix. The
numbers show the order in which the tiles are placed. In these exam-
ples, we start by placing a 2x 1 tile on the left bottom of the matrix. The
tiles are added such that the tiled region at any time remains a rectangle.
Having an m’ xn’ rectangular area tiled already, we either concatenate
an m’ x 1 vertical block to its left, or a 1xn’ block to its top. The claim
is that with this procedure the constraint of every tile having a unit (or
a fixed positive) norm is inclusive. This can be shown as follows: We
start by taking A = A, and keep updating A by scaling one of its rows
or one of its columns at a time until it satisfies all the constraints, that
is all of its tiles have a unit norm. For matrix (a), the updates can be
done as follows: choose arbitrary nonzero values for 73 and 74 and ap-
ply them to the matrix (multiply them respectively by the 3rd and 4th
row of R). Now, choose vs such that tile 1 has a unit norm and apply
it. Then choose 7, and apply it such that tile 2 has a unit norm. Now,
choose and apply V4, v3 and v, such that tiles 3, 4, 5 have a unit norm,
and finally choose and apply 7; and then v; to respectively make tiles
6 and 7 have a unit norm. The procedure for (b) is similar, but the order
of finding 7;-s and v;-s is as follows: 73,14, V5, V4, T2, V3, V2, V1, T1.

Fig. 4 at page 2 shows six examples of tiling a 4 x 6 depth
matrix. Looking at Fig. 4(a) one can see that for an mxn
matrix, if the tiling begins by placing a 1 xn block, all other
tiles have to be also 1 xn and the constraint is reduced to the
case of requiring fixed row norms, a special case of which
was discussed in the previous subsection. Similarly, if the
first tile is mx 1, the constraint amounts to fixing the norms

of columns of the depth matrix Fig. 4(b). But the case of in-
terest here is when the first tile is a 1 x 1 block, like Fig. 4(c-
f). In this case, the constraint rules out having zero rows or
zero columns in the depth matrix. It does not rule out cross-
shaped structures, but it constrains the central position of the
cross to the location of 1x1 tiles (see Fig. 4(c-f)).

If the norms used for the constraints are weighted />
norms with properly chosen weights, an efficient factoriza-
tion algorithm can be implemented. For more details see
Sect. 9. Similar convergence properties as in (Mahamud
et al, 2001) can be proved for these constraints given a
proper algorithm.

6.2 Linear Equality Constraints
6.2.1 Fixing Sums of Rows and Columns

In this subsection, we consider constraining A to have pre-
scribed row and column sums, that is

i, =u, i1, =v, (48)

for two m- and n-dimensional vectors u and v with all
nonzero entries for which Y3, u; = ¥;_, v;. This is similar
to the transportation polytope constraint introduced in Sect.
6.1.1, with the only difference that it does not require A > 0.
Thus, it has the advantage of allowing for more efficient al-
gorithms compared to the case where inequality constraints
are also present. We can see this in (Dai et al, 2013), where
the inequality constraint A = 0 has been disregarded when
proposing fast and scalable algorithms.

With a similar argument as was made in Sect. 6.1.1, one
can say that (48) gives an inclusive constraint space when
the true depth matrix A is known to have all positive ele-
ments and u and v are chosen to have all positive entries.
The constraint also enforces all rows and columns of A to be
nonzero.

However, as noted in Sect. 6.1.1, a cross-shaped ma-
trix with any arbitrary centre (r,c¢) whose elements are cho-
sen as iic = u; for all i # r, irj =v; for all j # c and
im = Uy — Y jscVj = Ve — Yitr i, satisfies (48). Therefore,
by Lemma 16 we can say that it always allows for cross-
shaped solutions.

The bad thing about this type of constraint is that there
is no limitation as to where the cross-shaped structure can
be centred. But the good news is that, according to our ex-
periments (Sect. 9), it can be hard for an iterative algorithm
to converge to a cross-shaped solution with the choice of
u = nl,, and v =ml,,. This could be explained as follows:
As noted in Sect. 6.1.1, if any cross-shaped structure occurs,
the central element will have to be equal to m +n —mn. Un-
der our assumptions (m > 2,n > 8), this is a negative number
and its absolute value grows linearly both with respect to m
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Fig. 8 Examples of 4x6 matrices, both satisfying A1, = nl,, and
AT1,, = m1,. (a) is a typical initial state for iterative factorization-based
algorithm, (b) is the only cross-shape structure centred at (2,4) allowed
by the constraint. If the true depths are all positive, it can be harder for
an algorithm to converge from (a) to (b), compared to converging to a
correct solution with all positive elements.

and n. This can make it hard for the algorithm to converge
to a cross-shaped structure starting from an initial solution
like a matrix of all ones. This has been depicted in Fig. 8
for a 4 x6 matrix, where the central element of the cross has
to be —14. For a fairly small configuration of 20-views and
8-points this value is —132. This suggests that as the dimen-
sion of the depth matrix grows, it is made harder for the
algorithm to converge to a cross-shaped solution.

6.2.2 Fixing Elements of one row and one column

Here, we consider the constraint of having all elements of a
specific row and a specific column of the depth matrix equal
to one, as used in (Ueshiba and Tomita, 1998). This means
requiring A ;= 1for all j, and Aic = 1 for all i. This can be
represented as

MoA =M. (49)

where o represents the Hadamard (element-wise) product
and M is a mask matrix, having all elements of a specific
row r and a specific column ¢ equal to 1, and the rest of its
elements equal to zero. This means that the mask matrix M
is a cross-shaped matrix centred at (r,c). We leave it to the
reader to check that this is an inclusive constraint, and also
every matrix in the constraint space satisfies depth assump-
tions (D1) and (D2). However, one can easily check that,
as M itself is a cross-shaped matrix, the constraint (49) al-
lows for cross-shaped depth matrices. Therefore, by using
the above constraint problem (41) can admit false solutions.

One advantage of this type of constraint is its element-
wise nature. This can make the formulation of iterative fac-
torization algorithms much easier compared to other types
of constraints. The other advantage is that there is only a sin-
gle possibility about where the cross in centred, which is the
centre of cross in M. Therefore, the occurrence of a cross-
shaped solution can be easily verified. In the case where a
cross-shaped solution happens, one can try rerunning the al-
gorithm with a different mask M whose cross is centred else-
where.

6.2.3 Step-like Mask Constraint: A Linear Reconstruction
Friendly Equality Constraint

This section demonstrates a group of linear equality con-
straints which are reconstruction friendly. Like the previous
subsection, the linear equalities are in the form of fixing el-
ements of the depth matrix at certain sites. Therefore, it en-
joys all the benefits of elementwise constraints.

To present the constraint, we first define the concept of
a step-like mask. Consider an mxn matrix M. To make a
step-like mask, we have a travel starting from the upper-
left corner of the matrix (location 1,1) and ending at its
lower-right corner (location m,n). The travel from (1,1) to
(m,n) is done by taking m + n — 2 moves, such that at each
move we either go one step to the right or go one step
down. In total, we will make m — 1 downward moves and
n — 1 moves to the right. Therefore, the travel can be made
in (m+n—2)!/((m—1)!(n—1)!) ways. After doing a travel,
we make the associated step-like mask by setting to 1 all
(m+n—1) elements of M corresponding to the locations that
we have visited and setting to zero the rest of the elements.
Examples of step-like masks are shown in Fig. 3 at page 2
form =4 and n = 6.

Notice that a step-like mask has m +n — 1 nonzero ele-
ments which are arranged such that the matrix has no zero
rows and no zero columns. An exclusive step-like mask is
defined to be a step-like mask which is not cross-shaped (see
Fig. 3). With an m xn step-like mask we can put linear equal-
ity constraints on a depth matrix A as follows

A~

MoA =M. (50)

where o represents the Hadamard (element-wise) product. In
other words, it enforces the matrix A to have unit elements
at the sites where M has ones.

One can show that with an exclusive step-like mask M,
the constraint (50) is uniquely reconstruction friendly. As
the constraints enforce A to be nonzero at the sites where M
has ones, it is easy to see that if R satisfies (50), it satisfies
(D1-D3) and hence the constraint space is exclusive. There-
fore, we just have to show that for each matrix A with all
nonzero elements, there exists exactly one diagonally equiv-
alent matrix A satisfying (50). The proof is quite simple, but
we do not provide it here. Instead, we explain the idea of the
proof by giving an example for a special case in Fig. 9.

One can think of many ways to extend the step-like con-
straints. For example, one can fix the desired elements of )
to arbitrary nonzero values instead of ones. The reader can
also check that if M is obtained by applying any row and
column permutation to an exclusive step-like mask, then the
constraint (50) will still be reconstruction friendly. One im-
portant extension is to remove some of the constraints by
turning to O some of the elements of the mask matrix M.
Potential elements of a step-like matrix M for the removal
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Fig. 9 An example of a 3x4 depth matrix A (left) and an exclusive
step-like mask M = [m;;] (right). The elements A;; of A are underlined
at the sites where m;; = 1, which is where i j-s are constrained to be
equal to 1. The aim is to show that there exists a unique A in the form
of R = diag(t) Adiag(v) whose elements are 1 at the sites where M
has ones. Equivalently Mo A = M. This can be done as follows: Start by
taking A = A, and keep updating A by scaling its rows and columns, one
at a time, until it satisfies the constraint Mo A = M. For the above matrix,
we start by assigning an arbitrary nonzero value to 7; and multiplying
11 by the first row of A. Then we choose v; and v, and multiply them
by the corresponding columns of R such that /le1 =1 and 112 =1.
Now, we choose 7, and 73 and multiply them by the corresponding
rows of A such that we have 122 =1 and 232 = 1. Finally, we choose
v3 and v4 and multiply them by the corresponding columns of A to
have 133 =1and 134 = 1. Notice that in this process, except 7; which
is chosen arbitrarily, there is only one choice for each of the entries
T, T3, V1, V2, V3, V4 for each choice of 7. Because, given any pair of
vectors (7, V), all pairs of vectors (T, !v) for all & # 0 have the
same effect, this means that given the matrices A and M, the choice of
A = diag(7) Adiag(V) is unique.

(switching to zero) are the stair edges, which are the ele-
ments whose left and lower elements (or right and upper
elements) are both 1 (see Fig. 10). We call the new matrices
edgeless step-like masks. As switching some elements of M
to zero amounts to removing some linear equations from the
set of constraints, an edgeless step-like mask still gives an
inclusive constraint. If the edge elements for the removal
are chosen carefully from an exclusive step-like mask, the
corresponding constraint Mo A = M can still be exclusive,
not allowing for the violation of (D1-D3). Fig. 10(a,b) illus-
trates examples of exclusive edgeless step-like masks. The
corresponding constraint Mo A = M for such a mask is recon-
struction friendly, however it is not uniquely reconstruction
friendly. Our experiments show that, using the same algo-
rithm, an edgeless mask results in a faster convergence than
its corresponding edged mask. One explanation is that, in
this case, the removal of each constraint, in addition to in-
creasing the dimension of the search space, increases the di-
mension of the solution space® by one. This can allow an
iterative algorithm to find a shorter path from the initial es-
timate of A to a correct solution.

7 Projective Reconstruction via Rank Minimization

Recall from the last section that in the factorization-based
projective reconstruction the following problem is sought to
be solved

find st. Ro[x;]=PX, ReC (51

Av 15?}m><43 X4><n

8 namely {A|A = diag(7) Adiag(v), Mo & = M}.

10 110 1
110 1 1
10 1 1
11 0111 011111
(2) (b) (©

Fig. 10 Examples of 4x6 edgeless step-like mask matrices obtained
by removing (making zero) some of the stair edges of matrices in
Fig. 3. The blank parts of the matrices are zero. The elements explicitly
shown by 0 are the removed edges (those that are 1 on the original step-
like matrix). (a) and (b) are examples of an exclusive edgeless step-like
matrix, resulting in a reconstruction friendly constraint.

which is a restatement of (41). Rank minimization is one
of the approaches to factorization-based projective recon-
struction, in which, in lieu of (51), the following problem is
solved:

min rank(A® [x;;]) s.t. AeC. (52)
i

Two other closely related problems are

findA st rank(Ao[x;;]) <4, AeC, (53)
findd s.t. rank(Ao[x;])=4, AeC. (54)

If any solution A is found for any of the above problems
such that rank(A ® [x;;]) < 4, the camera matrices and points
can be estimated from the factorization of A ® [x;;]. We shall
show that if C is reconstruction friendly, any solution to
any of the above problems leads to projective reconstruc-
tion. First, it is easy to see that (53) is in fact equivalent to
problem (51):

Lemma 17 Given any set of 3D points X;j fori=1,2,...,m
and j=1,2,...,n, the problems (53) and (51) are equivalent
in terms of finding A.

Here, by being equivalent we mean that any solution A
to one problem is a solution to the other. Obviously, this im-
plies that if there exists no solution to one of the problems,
then there cannot exist any solution to the other. The proof,
which is left to the reader, uses the fact that any 3mxn ma-
trix whose rank is 4 or less, can be factored as the product
of a 3mx4 matrix P by a 4xn matrix X. Notice that to prove
the above lemma we need not make any assumption about
C or how the points x;; are created. The two other problems
(52) and (54) are not in general equivalent to (51). However,
if C is reconstruction friendly, one can show that all the four
problems (52), (53), (54) and (51) are equivalent:

Proposition 2 Consider a setup of m > 2 camera matri-
ces and n > 8 points ({P;},{X;}) generically configured in
the sense of (G1-G4), and projecting into the image points
{xij} according to A;jx;; = P;X; with nonzero scalars A;j. If
C CR™ " is a reconstruction friendly constraint space, then
given the image points X;;j, the problems (52), (53) and (54)
are all equivalent to (51) in terms of finding A.
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Proof As (53) and (51) are equivalent, the proof will be
complete by showing

- (54) € (53),
- 51 € (54),
- (52) € (53),
- (54 € (52),

where (P1) C (P2) means that any solution to (P1) is a so-
lution to (P2). The first part, that is (54) C (53), is obvi-
ous. To show (51) C (54), assume that (A, P,X) is a solution
to (51). By Proposition 1 and the definition of projective
equivalence we can conclude that P = diag(7 ® 13) PH and
X = H !X diag(v) for some invertible matrix H and vectors 7
and v with all nonzero entries, where P = stack(Py,...,P,),
X=[Xj,...,X,] and ® denotes the Kronecker product. This
gives

Ao [x;;] = PX = diag(t ® 13) PX diag(V) (55)

From (G1,G2) it follows that P and X respectively have full
column and full row rank, and hence, PX is of rank 4. Given
this, plus the fact that 7 and v have all nonzero entries, (55)
implies that rank(A ® [x;;]) = 4, meaning that 1 is a solution
to (54).

To see (52) C (53), notice that according to Proposi-
tion 1, (51) has at least one solution. This means that the
equivalent problem (53) has also one solution K C C for
which rank(A’ ® [x;;]) < 4. For any solution i C C to (52)
we have rank(A © [x;;]) < rank(}’ ® [x;;]) < 4. This means
that A is also a solution to (53).

Finally, to show (54) C (52), notice that from (53) = (51)
and (51) C (54) we already know that (53) C (54). It follows
that rank(R ® [x;;]) > 4 for all & € C. Thus, any solution to
(54) minimizes rank(A ® [x;;]), and hence, is also a solution
to (52). O

As a corollary, we can say that with the conditions of
Proposition 2, all the problems (52), (53) and (54) have at
least one solution. This is because Proposition 1 suggests
this fact about (51). It is also worth to mention that, with
some extra effort, a stronger variant of Proposition 2 can
be proved in which the constraint A € C is only required
to exclude (D1) and (D2), rather than (D1-D3) altogether.
Notice that this proposition is not about obtaining a correct
solution, but rather about the equivalence of (51-54).

8 Iterative Projective Reconstruction Algorithms

Most of the projective factorization-based problems are
solved iteratively. The output of such algorithms is not in
the form of a deterministic final solution, but rather is a se-
quence ({15§t)}, {Xsf)h {il(]t)}) which one hopes to converge
to a sensible solution. There are many questions such as
whether this sequence converges, and if it does, whether it

converges to a correct solution. Answering such algorithm-
specific questions, however, is beyond the scope of this pa-
per. However, a more basic question that needs answer-
ing is that, given a constraint space C, if the sequence
{f\(’ )} C C converges to some A, and moreover, the sequence
{30 & [x;;] — B R"} converges to zero, then whether A is a
solution to the factorization problem (41), that is AeCand
Ao [x;j] = PX for some P € R34 and & € R**". It is easy
to check that C being closed is sufficient for this to happen:

Proposition 3 Consider a set of image points {X;;}, i =
1,...,mand j=1,...,n, and a closed constraint space C C
R™ " [fthere exists a sequence of depth matrices {A")} C C
converging to a matrix i, and for each A© there exist 1) €
R34 and 1) € R such that 1Y) @ [x;j] — PO X" — 0
as t — oo, then there exist P € R34 qnd X € R such that
(A,P,X) is a solution to the factorization problem

findj 5, s.t. Aox;]=PX, AeC (56)

x4y Xdxn

A

Proof Let A") = PR, As the mapping A’ +— N © [x;;] is
continuous, A®) ® xi] — A® 5 0and AW — & give Al
A® [x;j] € A. Also, rank(A) < 4 because rank(A®")) < 4 and
the space of 3m xn real matrices with rank 4 or less is closed.
Thus, A can be factored as A = PX for some P € R3¥*4 and
L eR¥ " giving Ao (xij]=A= PX. Moreover, as C is closed
and {R")} C C we have & € C. This completes the proof. O

According to the above, as long as the constraint space
C is closed, all the results obtained in the previous section
about the solutions to the factorization problem (41), can
be safely used for iterative algorithms when the sequence
of depths {A(")} is convergent and A") ® [x;;] — B®) X() con-
verges to zero.

9 Experimental Results
9.1 Constraints and Algorithms

The results of this paper are not bound to any particular al-
gorithm and this paper is not concerned with convergence
properties or how to find global minima. The aim of this
section is, therefore, the verification of our theory by imple-
menting a basic iterative factorization procedure and show-
ing the algorithm’s behaviour for different choices of the
depth constraints, in terms of finding the correct solutions.

Given the image data matrix [x;;] and a constraint space
C, we estimate the depths through the following optimiza-
tion problem:

min ||[A®[x;;] —PX||, subjectto AeC, (57)
ipX

where A € R™*" X € R"*# and P € R**" for a configuration
of m views and n points. Clearly, when the data is noise-free
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(that is x;; exactly equals P;X;/A;; for all i, j), and the con-
straint space C is inclusive, the above problem has global
minima with zero target value, including the correct solu-
tions. If the constraint space is also exclusive, and therefore
is reconstruction friendly, the global minima contain only
the correct solutions for which ({P;},{X;}) are projectively
equivalent to the true configuration ({P;}, {X;}).

To make a clear comparison, among many different pos-
sible choices for depth constraints, we choose only four,
each representing one class of constraints discussed before.
A schema of these four constraints is depicted in Fig. 11.
The first two constraints are linear equality ones and the
next two are examples of compact constraint spaces. The
first constraint, abbreviated as ES-MASK is a masked con-
straint which fixes some elements of A according to Mo A =M
for a mask M. ES-MASK uses a specific exclusive edgeless
step-like mask. In the case of a fat depth matrix (n > m),
this mask is the horizontal concatenation of an mxm iden-
tity matrix and an mx (n—m) matrix whose last row consists
of ones and its rest of elements are zero (see Fig. 11). A
similar choice can be made for tall matrices. We choose the
edgeless step-like mask as our experiments show that it con-
verges more quickly than the edged version (see Sect. 6.2.3
for a discussion). The second-constraint, RC-SUM, makes
the rows of A sum up to n and its columns sum up to m,
that is A1,, = nl,,,AT1,, = m1,, (Sect. 6.2.1). The third con-
straint, R-NORM, requires rows of the depth matrix to have
a unit norm (Sect. 6.1.3). The final constraint, T-norm, is re-
quiring tiles of the depth matrix to have a unit norm (Sect.
6.1.4), where the tiling is done according to Fig. 11. The
last two constraints can be considered as examples of tiled
constraints (see Sect. 6.1.4). The norm used for these two
constraints are weighted />-norms with special weights as
follows: For an m’ xn' tile (m’ = 1 or ' = 1) in the depth ma-
trix, the constraint is that the corresponding 3m’ xn’ block in
A ®[x;] has a unit Frobenius norm, which amounts to a unit
weighted /2-norm for the corresponding m’ xn’ block of A.

The optimization problem (57) is hard to solve. Here, we
try to solve it by alternatingly minimizing over different sets
of variables. With linear equality constraints, we consider
two algorithms for the minimization problem (57):

(A1) Alternate between minimizing with respect to A sub-
ject to the constraint A € C, and minimizing with re-
spect to (X,P).

(A2) Alternate between minimizing with respect to (A, P),
and minimizing with respect to (A, X), subject to A €
C in both cases.

Notice that, the minimization with respect to A, (A, P) or
(1,%) is nothing but minimizing a positive definite quadratic
form with respect to a linear equality constraint, which has a
closed-form solution. Minimizing with respect to (X,P) can
be done by a rank-4 SVD thresholding of A® [x;;] and factor-
izing the rank-4 matrix as PX. While each iteration of (A2) is

1 - 1
1 b 1
1 -1
111 b 1
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mommmmm
(ES-MASK) (RC-SUM)
[T T 11
(R-NORM) (T-NORM)

Fig. 11 Four constraints implemented for the experiments. ES-MASK
is a masked constraint with an edgeless step-like mask M. The con-
straint fixes some elements of i according to Mo A = M. RC-SUM fixes
row and column sums according to Al,, = nl,,,A”1,, = m1,. R-NORM
fixes a weighted />-norm of each rows of A, and T-NORM fixes a
weighted /2-norm of tiles of A.

usually more complicated and time-consuming compared to
(A1), our experiments show that, generally, (A2) results in
faster convergence. Another advantage of (A2) is that it can
be readily adapted for the when there is missing data (see
(Hartley and Schaffalizky, 2003) for the case of affine cam-
era model). In our experiments, we use (A2) for optimiz-
ing with respect to ES-MASK as it converges more quickly.
For RC-SUM in most of the cases (A1) and (A2) both give
the correct result. However, it appears that (A2) is relatively
more prone to converge to a cross-shaped solution, which is
allowed by this constraint. Therefore, for RC-SUM we use
(A1). We will provide a brief comparison between (A1) and
(A2) in the next subsection.

The last two constraints are both examples of tiling con-
straints. Our method for optimizing (57) is to alternatingly
minimize with respect to A and then with respect to (X,P).
The latter is done by a rank-4 SVD thresholding of A ® [x;}]
and factorization. For the former step, we fix PX and min-
imize ||A®[x;;] —PX||, subject to the constraint that for
each m’'xn' tile of A, the corresponding 3m’xn’ block of
A ® [x;;] has unit Frobenius norm. This means that, each tile
of A can be optimized separately. Showing by A, the vec-
tor of elements of A belonging to a certain tile, the corre-
sponding optimization problem for this tile is in the form of
minj AL —b||; with respect to ||AA||, = 1 for some matrix A
and some vector b. This problem has a closed-form solution.

9.2 Synthetic Data

We take a configuration of 8 views and 20 points. The ele-
ments of the matrices P; and points X; are sampled accord-
ing to a standard normal distribution. The depths are taken
to be A;; = 3+ 1);;, where the 1);;-s are sampled from a stan-
dard normal distribution. This way we can get a fairly wide
range of depths. Negative depths are not allowed, and if they
happen, we repeat the sampling. This is mainly because of
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the fact that for the RC-SUM constraint, the inclusiveness is
only proved for positive depths. The image data is calculated
according to x;; = P;X;/A;;, with no added error. Notice that
here, unlike in the case of real data in the next subsection,
we do not require the last element of the X;-s and the x;;-s
to be 1, and consider the projective factorization problem in
its general algebraic form.

In each case, we plot the convergence graph, which is
the value of the target function ||A® [x;;] —PX||, through-
out iterations, followed by a graph of depth error. To deal
with diagonal ambiguity of the depth matrix, the depth error
is calculated as ||A — diag(7) Adiag(V)||, where 7 and v are
set such that diag(t)Adiag(v) has the same row norms and
column norms as A. This can be done using Sinkhorn’s algo-
rithm as described in Sect. 6.1.2. Finally, for each constraint
we depict the estimated depth matrix A as a grayscale im-
age whose intensity values show the absolute values of the
elements of A.

In the first example, we set the initial value of A to 1,,,
which is a matrix of all ones. The results for one run of the
algorithm are shown in Fig. 12. Fig. 12(a) shows that the al-
gorithm has converged to a global minimum for all four con-
straints. Fig. 12(b) shows that in all four cases the algorithm
has converged to a correct solution. Fig. 12(c) confirms this
by showing that in no case the algorithm has converged to
a cross-shaped solution or a solution with zero rows or zero
columns.

In the second test, we set the initial value of A to be 1
at the first row and 10th column, and 0.02 elsewhere. This
makes the initial A close to a cross-shaped matrix. The re-
sult is shown in Fig. 13. According to Fig. 13(a), in all cases
the target error has converged to zero, meaning that a so-
lution is found for the factorization problem A ® [x;;] = PX.
Fig. 13(b), shows that for the constraint ES-MASK and RC-
SUM, the algorithm gives a correct solution, however, for
R-NORM and T-NORM, it has converged to a wrong so-
lution. Fig. 13(c) supports this by showing that the algo-
rithm has converged to a cross-shaped solution for R-NORM
and T-NORM. Although, the constraint RC-SUM allows for
cross-shaped configurations, according to our discussion in
Sect. 6.2.1, it is unlikely for the algorithm to converge to a
cross-shaped solution if the initial solution has all positive
numbers (see Fig. 8). However, our experiments show that
if we start from a configuration close to the cross-shaped so-
lution of the constraint RC-SUM (with a negative element
at the centre of the cross), the algorithm will converge to a
cross-shaped configuration.

Next, we provide a comparison between the algorithms
(A1) and (A2), introduced in Sect. 9.1, for the linear equal-
ity constraints ES-MASK and RC-SUM. We run 100 trials
for each algorithm with the same random setup as the pre-
vious experiment. Each algorithm runs until a cost of less
than 107° is obtained or 20000 iterations are reached. Ta-

ble 1 summarizes the results. In general, we can say (A2)
spends more time at each iteration, however, it converges in
significantly fewer iterations than (A1). Overall, (A2) has a
faster convergence.

Algorithm ES-MASK RC-SUM

Al A2 Al A2
Iterations (med) 2256 42 421 34
Iter. time (mean) | 0.2 ms 29ms | 0.5ms 3.2 ms
Total time (med) | 523 ms 138 ms | 254 ms 117 ms

Table 1 Comparison of the algorithms (A1) and (A2) for each of the
linear equality constraints ES-MASK and RC-SUM. The results are
obtained over 100 trials per algorithm. Each algorithm stops when it
achieves a cost of less than 10~°, or reaches 20000 iterations. The first
row of the table is the median of the number of iterations taken by each
algorithm. The second row is the average time of a single iteration. The
last row is the median of the total time of each trial.

9.3 Real Data

We use the Model House data set provided by the Visual
Geometry Group at Oxford University”. As our theory does
not deal with the case of missing data, from the data ma-
trix we choose a block of 8 views and 19 points for which
there is no missing data. Here, the true depths are not avail-
able. Thus, to see if the algorithm has converged to a correct
solution, we use a special version of the reprojection error.
The basic reprojection error is Y, |X;; — ; B:X ;|| where for
each i and j, a;; is chosen such that the third entry of the
vector a;;P;X; is equal to the third entry of x;;, which is 1
in this case. However, as this can cause fluctuations in the
convergence graph at the points where the last element of
15l~f( j is close to zero, we instead choose each ¢;; such that it
minimizes ||x;; — &;P;X;|.

Fig. 14 shows one run of the algorithm for each of the
four constraints starting from R =1,,4,. It can be seen that
for all the constraints the algorithm has converged to a so-
lution with a very small error. Fig. 14(b) shows that all of
them have converged to something close to a correct so-
lution. This is affirmed by Fig. 14(c), showing that all so-
lutions satisfy depth conditions (D1-D3). Comparing Fig.
14(c) with Fig. 12(c) one can see that the depths in 14(c) are
more uniform. One reason is that the true depths in this ex-
periment are relatively close together compared to the case
of synthetic data. Except, T-NORM, all the other constraints
tend to somewhat preserve this uniformity, especially when
the initial solution is a uniform choice like 1,,,x,.

In the second test we start from an initial A which is close
to a cross-shaped matrix, as chosen in the second test for the
synthetic data. The result is shown in Fig. 15. Fig. 15(a)

 http://www.robots.ox.ac.uk/~vgg/data/data-mview.
html
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Fig. 12 An example where all algorithms converge to a correct solution. (a) shows all the four cases have converged to a global minimum, (b)
shows that all the four cases have obtained the true depths up to diagonal equivalence, and (c) confirms this by showing that the depth matrix A
satisfies (D1-D3). In (c) the gray-level of the image at different locations represents the absolute value of the corresponding element in A.
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Fig. 13 (a) the target error in all cases has converged to zero, (b) the depth error has converged to zero only for ES-MASK and RC-SUM, meaning
that only ES-MASK and RC-SUM have converged to a correct solution, (c) confirms this by showing that R-NORM and T-NORM have converged

to cross-shaped solutions.

shows that the RC-SUM has not converged to a solution
with a small target error, but the other 3 constraints seem to
have!?. Therefore, we cannot say anything about RC-SUM.
Fig. 15(b) shows that R-NORM and T-NORM did not con-
verge to a correct solution. Fig. 15(c) confirms this by show-
ing that R-NORM and T-NORM have converged to (some-
thing close to) a cross-shaped solution.

10 Conclusion and Future Work

We proved a more general version of the Projective Recon-
struction Theorem, which is well suited to the choice and
analysis of depth constraints for factorization-based projec-
tive reconstruction algorithms. We also demonstrated how
our theoretical results can be used for the analysis of existing
depth constraints used for the factorization-based algorithms
and also for the design of new types of depth constraints.

The main result of our paper is that the false solutions to
the factorization problem A ® [x;;] = PX, are restricted to the
cases where A has zero rows or zero columns and also when
it has a cross-shaped structure. Any solution which rules out
these cases is a correct solution.

We presented a class of linear equality constraints which
are able to rule out all the degenerate false solutions. Our ex-

10 Notice that the scale of the vertical axis in Fig. 15(a) is different
from that of Fig. 14(a)

periments also showed that choosing a good initial solution
can result in finding the correct depths, even with some of
the constraints that do not rule out all the false solutions.

Indeed, this paper is just a first step on this matter.
Hence, many practical issues have been disregarded. For ex-
ample, here it has been assumed that all points are visible in
all views. A very important extension to this work is there-
fore considering the case of incomplete image data. Another
assumption here was that the image data is not contaminated
with noise. The case of noisy data is another major issue
which must be addressed in future work.

Another important generalization of this work is the ex-
tension to higher dimensional projections, for example pro-
jections from P to P*, or more generally, when for the i-th
view the projection is P" — P*. This extension is important
because it has applications in problems like projective mo-
tion segmentation and non-rigid reconstruction.

Yet another follow-up is the study of the convergence of
specific factorization-based algorithms for each of the con-
straints and the design of constraints with desirable conver-
gence properties. For example, we know that certain con-
vergence properties can be proved for certain algorithms
with compact constraint spaces. However, guaranteed con-
vergence to a global minimum is still an unsolved problem.
Another interesting problem to solve is to find compact con-
straints which are reconstruction friendly, allow for efficient
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Fig. 14 An example where all algorithms converge to a solution with a very small target value which is also close to a correct solution. In (c), one
can observe a bright strip on the top of the corresponding image of T-NORM. The reason is that T-NORM forces each elements of the top row of
A to have a unit (weighted 1) norm, while for the other rows, the whole row is required to have a unit norm. See Fig. 1 1(T-NORM).
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Fig. 15 An example where the algorithms are started from an initial solution which is close to a cross-shaped matrix. (a) shows that RC-SUM has
not converged to a solution with a small target error. R-NORM and T-NORM have converged to something with a small target value, but did not

get close to a correct solution. This is obvious from (b) and (c).

factorization-based algorithms, and give a descent move at
every iteration of the algorithm.

A The Triangulation Problem

Triangulation is the process of determining the location of a 3D point
given its images in two or more cameras with known camera matrices.
The following lemma states that the solution to triangulation is unique
in generic cases:

Lemma 18 (Triangulation) Consider two full-row-rank camera ma-
trices Py,P, € ]Rf”k two points X, Y € R*, and scalars Ay and Ay such
that the vector (A1, Ay) is nonzero, for which the relations
PY =4,P X
PY = 1,P,X

(58)
(59)

hold. Take nonzero vectors Cy € A (Py) and Cy € N (P2). If the three
vectors Cy, Cy and X are linearly independent, then Y is equal to X
up to a nonzero scaling factor.

Notice that the condition of Cy, C; and X being linearly independent
means that the two camera centres are distinct and X does not lie on
the projective line joining them (see footnote 4). A geometric proof of
this is given in (Hartley and Zisserman, 2004, Theorem 10.1). Here,
we give an algebraic proof as one might argue that (Hartley and Zis-
serman, 2004) has used projective equality relations which cannot be
fully translated to our affine space equations since we do not assume
that ;11 and ;12 are both nonzero in (58) and (59).

Proof Since P; and P, have full row rank they have a 1D null space.
Thus, relations (58) and (59) respectively imply

Y = C +AX,
Y=w0C; +;12X,

(60)
(61

for some scalars ¢; and o. These give 0o C + ilX =mC+ izX or

a1 Cr—Car+ (A — )X =0 (62)

As the three vectors Cy, C, and X are linearly independent, (62) im-
plies that a; =0, 0p =0 and il = iz. Define v & il = ﬁ,z. Then, from
(60) we have Y = vX. Moreover, v must be nonzero as the lemma as-
sumes that the vector (41,42) = (v, V) is nonzero. O

B The Camera Resectioning Problem

Camera resectioning is the task of computing camera parameters given
the 3D points and their images. It can be shown that with sufficient 3D
points in general locations, the camera matrix can be uniquely deter-
mined up to scale (Hartley and Zisserman, 2004). Here, we consider a
slightly revised version of this problem, which fits our case where the
estimated projective depths are not assumed to be all nonzero and the
second (estimated) set of camera matrices need not be assumed to have
full rank.

Lemma 19 (Resectioning) Consider a 3 x4 matrix Q of rank 3 and a
set of points X1,Xa, ..., X, such that for a nonzero vector C € 4 (Q)
we have

(C1) Any four vectors among C,X1,Xq,...,X, are linearly indepen-
dent, and
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(C2) the set of points {C,X1,Xa,...,X,} do not lie on a twisted cubic
(see footnote 4) or any of the degenerate critical sets resulting in
a resection ambiguity (set out in (Hartley and Zisserman, 2004,
Sect. 22.1)).

Now, for any @ € R¥>* if we have
QX = B;0X; (63)

forall j=1,2,...,p where scalars oj and B; are such that the vector
(¢j, Bj) is nonzero for all j, then Q = aQ for some scalar a.

Proof First, since 6 points in general position completely specify a
twisted cubic (Semple and Kneebone, 1952), (C2) implies that p+ 1 >
7,0r p > 6.

If § = 0, then § = aQ with a = 0, proving the claim of the lemma.
Thus, in what follows we only consider the case of § # 0.

By (C1), for all j we have QX # 0. Therefore, f3; # 0, as otherwise
if B; = 0 from (e, B;)T # 0 we would have o # 0 and therefore 0 =
ﬁjQXj = a;QX; # 0, which is a contradiction. From ; # 0 and (63) it
follows that if a;; = 0 for some j, then X; € .#(Q). Now, if for 4 in-
dices j we have a;; = 0, from (C1) it follows that Q has a 4D null space,
or equivalently § = 0. Since we excluded this case, we conclude that
there are less than 4 zero-valued «;-s. As p > 6, it follows that there are
at least three nonzero a;-s, namely o;,, &, and aj,. Since 3;-s are all
nonzero, @; # 0 along with (63) implies that QX is in ¢'(Q), the col-
umn space of Q. Therefore, we have span(QX;, ,0X;,,0X,) C %(Q).
From (C1) we know that span(X; ,X;,,Xj,) is 3-dimensional and
does not contain the null space of Q. Therefore, span(QX INE). GAN1). §X )
is also 3-dimensional. From span(QX;,,0X,,0X;;) € %(Q) then we
conclude that  has full row rank.

As rank(Q) = 3, we can consider it as a proper camera matrix in
multiple view geometry, talking about its camera centre represented
by its null space. Therefore, for two camera matrices Q and § and all
the points X; for which a;; # 0 we can apply the results of the classic
camera resectioning problem: It is known that for two (up to scale)
distinct camera matrices Q and § to see the points X j equally up to a
possible nonzero scaling factor, the points X; and the camera centres
must lie on a common twisted cubic (or possibly some other specific
degenerate sets, see (Hartley and Zisserman, 2004; Buchanan, 1988)).

Notice that, as rank(Q) = 3, (C1) implies that among the points X ;
at most one lies on the null-space of @ and therefore, by (63) we can
say that at most one @; can be zero. By possibly relabeling the points
we assume that o, ..., Q) are all nonzero.

Now to get a contradiction, assume that there is a resection am-
biguity. We consider two cases namely ¢, # 0 and ¢, = 0. If ¢t, # 0
then by a;QX; = B;QX; we know that X, ..., X, are viewed equally
up to scale by both Q and  and thus X,..., X along with the camera
centre of Q must lie on a twisted cubic (or other degenerate sets leading
to a resection ambiguity), which is impossible due to (C2). If o = 0,
implying X € .#(Q), then again the camera center of Q, Xj,...,Xs
and X (this time as the camera centre of Q) must lie on a twisted cu-
bic (or the degenerate sets), contradicting with (C2). Hence there can
be no resection ambiguity and Q and § must be equal up to a scaling
factor. O

C Proof of Lemma 1

Proof (of Lemma 1) We need to prove that under assumptions of
Lemma 1 and the relations

l;jxij = P,’Xj (64)
i,»jx,»j = f’iﬁj (65)
({P:},{X;}) and ({P;},{X;}) are projectively equivalent if and only if
the matrices A and A are diagonally equivalent.

First, assume that ({P;},{X;}) and ({P:},{X;}) are projec-
tively equivalent. Then, there exist nonzero scalars 71, 1,..., T, and
Vi, V2,...,V, and an invertible matrix H such that (5) and (6) hold.
Therefore we have

A.,‘jPin = lijl,-jx,«j = ﬂ.,‘jlsl‘Xj
= l,‘jVj‘L',‘P,‘HH_l Xj = },ijVjTl‘Pl‘Xj.

where the first, second and third equations above hold respectively
from (64), (65) and (5) and (6) together. By condition (i) in the lemma,
thatis P;X; # 0, we have ii_,- = A;jv;7; forall i and j. This is equivalent
to (7) and hence A and A are diagonally equivalent.

To prove the other direction, assume that A and A are diagonally
equivalent. Then from (7) we have ii_,v = A;jv;7;. This along with (64)
and (65) gives

BiX; = Aijxij = hijvimixi; = TvPiX; = (5P) (v X)) (66)

fori=1,...,mand j=1,...,n Let Q; = 7;P; and Y; = v;X;, so we
have 13,-)2/- =Q;Y;. Denote by Q and P the vertical concatenations of Q;-s
and P;-s respectively and denote by Y and X respectively the horizontal
concatenations of Y j-s and X-s. From f’,—Xj = Q;Y; we have

AL def
PR =qQv¥a. (67)
From conditions (ii) and (iii) in the lemma along with the fact that 7;
and v; are nonzero, we can conclude that Q has full column rank and

Y has full row rank. Therefore, A &f QY has rank 4 and the 3mx4 and
4xn matrices P and X must be full-column- and full-row-rank matrices
respectively. As QY and PX are two rank-r factorizations of A, having
P =QHand X = H'Y for some invertible matrix H is the only possibil-
ity!!. This is the same thing as

B;
Xj

QH=1PH (68)
HileIVjHilXj (69)

Thus, ({P;},{X;}) and ({B;},{X;}) are projectively equivalent. O
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