
Course: Inverse Problems in signal and image processing: Sta-
tistical Regularization, Deconvolution and Segmentation

This course will incorporate both the fundamentals of statistical regularization and introduce
the utilization of methods for edge detection from both spatial and Fourier data. An objective
of the course is enhancement of the mathematical understanding of the consequences of
modern data collection strategies used in magnetic resonance imaging (MRI) with respect
to generating high fidelity images. Examples for restoring images and signals from other
modalities are also relevant.

The course topics will include:

1. Some basics of numerical linear algebra, singular value decomposition, generalized sin-
gular value decomposition. Basic iterative methods (LSQR) for solving the least squares
problem.

2. The mathematical model of spatially invariant blur

3. Solution of the ill-conditioned systems of equations - regularization.

4. Discussing of the impact of noise on parameter estimation techniques.

5. How noise is transferred through the iterative process.

6. Regularization parameter estimation - statistical motivation.

7. Image segmentation - edge maps

8. Determining edges from Fourier data using the concentration enhancement of scales

9. Edge maps for noisy and blurred data

10. Semi-blind deconvolution, estimating the point spread function.

11. Reconstruction from non-harmonic data

12. Extending the Generalized Singular Value Decomposition as a generalized singular value
expansion.

The course will be illustrated by readings from recent and relevant literature [2, 5, 8,
9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19] augmented by portions from background texts as
needed [1, 4, 6, 7, 20]. A good overview of the edge detection approaches is found in the two
dissertations of Viswanathan [17, 19].
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[8] Hnĕtynková, I, Ples̆inger, M., and Strakos̆, Z, 2009, The regularizing effect of the Golub-
Kahan iterative bidiagonalization and revealing the noise level in the data, BIT Numerical
Mathematics 49, pp. 669-696.

[9] Lin, Y, 2010, Numerical Issues from Inverse Problems in Image Processing: Param-
eter Estimation, and Parallel Algorithms for a High Performance Computing, http:
//mathpost.la.asu.edu/~ylin/

[10] Mead, J., 2008, Parameter estimation: A new approach to weighting a priori informa-
tion, J. Inv. Ill-posed Problems, 16, 2, 175-194.

[11] Mead, J., and Renaut, R. A., 2009, A Newton root-finding algorithm for estimating
the regularization parameter for solving ill-conditioned least squares problems, Inverse
Problems,. 25, 025002, doi: 10.1088/0266-5611/25/2/025002.

[12] Renaut, R. A., Hnetynkova I., and Mead, J. L., 2010, Regularization parameter estima-
tion for large scale Tikhonov regularization using a priori information, Comp. Stat. and
Data Anal., 54. 1. doi:10.1016/j.csda.2009.05.026

[13] Rust, B. W., and O’Leary, D. P., 2008, Residual periodograms for choosing regularization
parameters for ill-posed problems, Inverse Problems, 24, 034005.

[14] Stefan, W., 2008, Total Variation Regularization for Linear Ill-Posed Inverse Prob-
lems: Extensions and Applications, Ph. D. Dissertation, Department of Mathematics
and Statistics, Arizona State University,http://mathpost.la.asu.edu/~stefan.

[15] Stefan, W., Viswanathan, A., Gelb, A. and Renaut, R.A. 2011, Sparsity enforcing edge
detection for blurred and noisy Fourier data, submitted, http://math.asu.edu/~rosie.

[16] Stefan, W., Renaut, R. A. and Gelb, A., (2010), Improved Total variation-type regu-
larization using higher order edge detectors, SIAM J. Imaging Sciences, 3, 2, 232-251.
doi:10.1137/080730251.

[17] Viswanathan, A. (2008) Spectral Sampling and Discontinuity Detection Methods with
Application to Magnetic Resonance Imaging , MA Thesis, Department of Electrical En-
gineering, ASU.

[18] Viswanathan, A. Gelb, A. ,Cochran, D. and Renaut , R.A. (2010) On reconstruction
from non-uniform spectral data, Journal of Scientific Computing, 45, 1-3, 487-513, doi:
10.1007/s10915-010-9364-3.

2



[19] Viswanathan, A., Imaging from Fourier Spectral Data: Problems in Discontinuity De-
tection, Non-Harmonic Fourier Reconstruction and Point Spread Function Estimates,
Ph.D. dissertation. Department of Electrical Engineering, Arizona State University.

[20] Vogel, C. R., 2002, Computational Methods for Inverse Problems, (SIAM Frontiers in
Applied Mathematics).

3


