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Abstract. An accumulator is a function that hashes a set of inputs into
a short, constant-size string while preserving the ability to efficiently
prove the inclusion of a specific input element in the hashed set. It has
proved useful in the design of numerous privacy-enhancing protocols,
in order to handle revocation or simply prove set membership. In the
lattice setting, currently known instantiations of the primitive are based
on Merkle trees, which do not interact well with zero-knowledge proofs.
In order to efficiently prove the membership of some element in a zero-
knowledge manner, the prover has to demonstrate knowledge of a hash
chain without revealing it, which is not known to be efficiently possible
under well-studied hardness assumptions. In this paper, we provide an
efficient method of proving such statements using involved extensions
of Stern’s protocol. Under the Small Integer Solution assumption, we
provide zero-knowledge arguments showing possession of a hash chain. As
an application, we describe new lattice-based group and ring signatures
in the random oracle model. In particular, we obtain: (i) The first lattice-
based ring signatures with logarithmic size in the cardinality of the ring;
(ii) The first lattice-based group signature that does not require any GPV
trapdoor and thus allows for a much more efficient choice of parameters.

1 Introduction

Cryptographic accumulators were introduced by Benaloh and de Mare [10] as
alternative to digital signatures in the design of distributed protocols. While
initially used in time-stamping and membership testing mechanisms [10], they
found numerous applications in the context of fail-stop signatures [7], anony-
mous credentials [21,20,1,45], group signatures [69], anonymous ad hoc authenti-
cation [29], digital cash [6,23,55], set membership proofs [70,64] or authenticated
data structures [61,60] (see [28] for further examples).

In a nutshell, an accumulator is a sort of algebraic hash function that maps a
large set R of inputs into a short, constant-size accumulator value u such that an
efficiently computable short witness w provides evidence that a given input was



indeed incorporated into the hashed set. In order to be useful, the size of the wit-
ness should be much smaller than the cardinality of the input set. An extension,
suggested by Camenisch and Lysyanskaya [21], allows the accumulator value to
be updated over time, by adding or deleting elements of the hashed set while
preserving the ability to efficiently update witnesses. For most applications, the
usual security requirement mandates the infeasibility of computing an accumu-
lator value u and a valid witness w for an element x outside the set of hashed
inputs. This is made possible by public-key techniques like the existence of a
trapdoor (e.g., the factorization of an RSA modulus or the discrete logarithm of
some public group element) hidden behind public parameters.

So far, number theoretic realizations have been divided into two main families.
The first one relies on groups of hidden order [10,7,48,15] and includes proposals
based on the Strong RSA assumption [7,44]. The second main family [58,20]
was first explored by Nguyen [58] and appeals to bilinear maps (a.k.a. pairings)
and assumptions of variabe size like the Strong Diffie-Hellman assumption [14].
Strong-RSA-based candidates enjoy the advantage of short public parameters
and they easily extend into universal accumulators [44] (where non-membership
witnesses can show that a given input was not accumulated). While pairing-
based schemes [58,20] usually require linear-size public parameters in the num-
ber of elements to be hashed, they are useful in applications [6,23] where we
want to limit the number of elements to be hashed. A third family (e.g., [60]) of
constructions relies on Merkle trees [51] rather than number theoretic assump-
tions. Its main disadvantage is that the use of hash trees makes it hardly com-
patible with efficient zero-knowledge proofs, which are inevitable ingredients of
privacy-preserving protocols [21,69,20,1]. In fact, currently known methods [15,9]
for reconciling Merkle trees and zero-knowledge proofs require non-standard as-
sumptions in groups of hidden order [15] or the machinery of SNARKs, which
inherently rely on non-falsifiable [56] knowledge assumptions [36].

Despite its wide range of applications, the accumulator primitive still has a
relatively small number of efficient realizations. For the time being, most known
solutions require non-standard ad hoc assumptions like Strong RSA or Strong
Diffie-Hellman. To our knowledge, the only exception is a generic construction
from vector commitments [25], which leaves open the problem of candidates
based on the standard Computational Diffie-Hellman assumption (in groups
without a bilinear map) or zero-knowledge-friendly lattice-based schemes. In
this paper, we describe a new construction based on standard lattice assump-
tions which interacts nicely with zero-knowledge proofs despite the use of Merkle
trees. We show that this new construction enables new, unexpected applications
to the design of lattice-based ring signatures and group signatures.

Our Contributions. We describe a lattice-based accumulator3 that enables
short zero-knowledge arguments of membership. Our construction relies on a
Merkle hash tree which is computed in a special way that makes it compatible

3 A lattice-based accumulator was previously claimed in [39]. However, the generation
of witnesses can only be performed using the secret key of the system. Moreover,
their scheme is seemingly not compact due to the required choice of parameters.



with efficient protocols for proving possession of a secret value (i.e., a leaf of
the tree) that is properly accumulated in the root of the tree. More specifically,
our system allows demonstrating the knowledge of a hash chain from the con-
sidered secret leaf to the root in a zero-knowledge manner. This building block
enables many interesting applications. In particular, we use it to design lattice-
based ring and group signatures with dramatic improvements over the existing
constructions. In the random oracle model, we obtain:

– The first lattice-based ring signature with logarithmic signature size in the
cardinality of the ring. So far, all suggested proposals have linear size in the
number of ring members.

– A lattice-based group signature with much shorter public key, signature
length, and weaker hardness assumptions than all earlier realizations.

Our ring signature does not require any other setup assumption than having
all users agree on a modulus q, a lattice dimension n and a random matrix
A ∈ Zn×mq (which can be derived from a random oracle). It provably satisfies
the strong security definitions put forth by Bender, Katz and Morselli [11].

Our group signature is analyzed in the setting of static groups using the defini-
tions of Bellare, Micciancio and Warinschi [8]. Its salient feature (which it shares
with our ring signature) is that, unlike all earlier candidates [34,42,43,47,59], it
does not require the use of a trapdoor (as defined by Gentry, Peikert and Vaikun-
tanathan [32]) consisting of a short basis of some lattice. It thus eliminates one
of the frequently cited reasons [50] for which lattice-based signatures tend to be
impractical. In fact, our group signature departs from previously used design
principles – which are all inspired in some way by the general construction of [8]
– in that, surprisingly, it does not even require an ordinary digital signature
to begin with. All we need is a lattice-based accumulator with a compatible
zero-knowledge argument system for arguing knowledge of a hash chain.

Our Techniques. Our accumulator proceeds by computing a Merkle tree us-
ing a hash function based on the Small Integer Solution (SIS) problem, which
is a variant of the hash functions considered in [4,33,54] previously considered
by Papamanthou et al. [60]. Instead of hashing a vector x ∈ {0, 1}m by com-
puting its syndrome A · x ∈ Znq via a random matrix A ∈ Zn×mq , it outputs

the coordinate-wise binary decomposition bin(A · x mod q) ∈ {0, 1}m/2 of the
syndrome to obtain the two-fold compression factor that is needed for iteratively
applying the function in a Merkle tree. However, Papamanthou et al. [60] did not
consider the problem of proving knowledge of a hash chain in a zero-knowledge
fashion. The main technical novelty that we introduce is thus a method for
demonstrating knowledge of a Merkle-tree hash chain using the framework of
Stern’s protocol [68].

Using this method, we build ring and group signatures with logarithmic size
in the number of ring or group members involved. Our constructions are concep-
tually simple. Each user’s private key is a random m-bit vector x ∈ {0, 1}m and
the matching public key is the binary expansion d = bin(A·x mod q) ∈ {0, 1}m/2
of the corresponding syndrome. In order to sign a message, the user considers



an accumulation u ∈ {0, 1}m/2 of all users’ public keys R = (d0, . . . ,dN−1) –
which is obtained by dynamically forming the ring R in the ring signature and
simply consists of the group public key in the group signature – and generates
a Stern-type argument that: (i) His public key dj belongs to the hashed set
R; (ii) He knows the underlying secret dj = bin(A · xj mod q); (iii – for the
group signature) He has honestly encrypted the binary representation of the
integer j determining his position in the tree to a ciphertext attached in the
signature. In order to acquire anonymity in the strongest sense (i.e., where the
adversary is granted access to a signature opening oracle), we apply the Naor-
Yung paradigm [57] to Regev’s cryptosystem [65], as was previously considered
in [12]. As pointed out earlier, the advantage of not relying on an ordinary dig-
ital signature4 lies in that it does not require any party (i.e., neither the group
manager nor the group members in the case of group signatures) to have a
GPV trapdoor [32] consisting of a short lattice basis. As emphasized by Lyuba-
shevsky [50], explicitly avoiding the use of such trapdoors allows for drastically
more efficient choices of parameters. As by-products, our scheme features much
smaller group public key and users’ secret keys, produces shorter signatures,
and relies on weaker hardness assumptions than all of the existing lattice-based
group signature schemes [34,22,42,47,59] in the BMW model [8].

In the following, we give an estimated efficiency comparison among our group
signature and the previous 2 most efficient schemes with CCA-anonymity, by
Ling et al. [47] and Nguyen et al. [59]. The estimations are done with parameter
n = 28, group size N = 1024, and soundness error 2−80 for the NIZKs.

– Ling et al.’s scheme requires q = O(logN · n2), m ≥ 2n log q, so we set
q = 218 and m = 29 · 18. The infinity norm bound for discrete Gaussian
samples is 26. The scheme produces group public key size 65.8 MB; user’s
secret key size 13.5 KB (a Boyen signature [17]); and signature size 1.20 GB.

– Nguyen et al.’s scheme requires q > m8.5, m ≥ 2n log q, so we set q = 2142

and m = 29 ·142. The scheme produces group public key size 2.15 GB; user’s
secret key size 90 GB (a trapdoor in Z3m×3m with (logm)-bit entries); and
signature size 500 MB.

– Our scheme works with q = 28, m = 29 ·8, and parameters p = 32719, mE =
7980 for the encryption layer. The scheme features public key size 4.9 MB;
user’s secret key size 3.25 KB; and it produces signatures of size 61.5 MB.

Related Work. While originally suggested as a 3-move code-based identifica-
tion scheme, Stern’s protocol was adapted to the lattice setting by Kawachi et
al. [41] and extended by Ling et al. [46] into an argument system for the Inhomo-
geneous Small Integer Solution (ISIS) problem. In particular, Ling et al. gave a
method, called decomposition-extension framework, which allows arguing knowl-
edge of an integer vector x ∈ Zm of norm ‖x‖∞ ≤ β such that A · x = u ∈ Znq
without leaving any gap between the vector computed by the knowledge extrac-
tor and the actual witness x. As shown in [47], the technique of Ling et al. [46]

4 Recall that all O(logN)-size group signatures employ a signature scheme in the stan-
dard model (for which all known constructions use trapdoors) in order to smoothly
interact with zero-knowledge proofs.



can be used to prove more involved statements such as the possession of a Boyen
signature [17] on a message encrypted by a dual Regev ciphertext [32]. Here,
we take one step further and develop a zero-knowledge argument of knowledge
(ZKAoK) that a specific element of some universe belongs to a hashed set.

Ring signatures were introduced by Rivest, Shamir and Tauman-Kalai [66]
with the motivation of hiding the identity of a source (e.g., a whistleblower in
a political scandal) while providing guarantees of trustworthiness. Bender, Katz
and Morselli [11] gave stringent security definitions while constructions with
sub-linear signature size were given by Chandran, Groth and Sahai [26]. The
celebrated results of Gentry, Peikert and Vaikuntanathan [32] inspired a num-
ber of lattice-based ring signatures. The state-of-the-art construction probably
stems from the framework of Brakerski and Tauman-Kalai [18], which results in
linear-size in the number of ring members. The same holds for all known Fiat-
Shamir-like lattice-based ring signatures (e.g., [41,2]), although some of them
do not require a trapdoor. Thus far, the only logarithmic-size ring signatures
[37,16] arise from the results of Groth and Kohlweiss [37] and it is not clear how
to extend them to the lattice setting.

The notion of group signatures dates back to Chaum and Van Heyst [27].
While viable constructions were given in the seminal paper by Ateniese, Ca-
menisch, Joye and Tsudik [5], their security notions remained poorly understood
until the work of Bellare, Micciancio and Warinschi [8]. The first lattice-based
proposal came out with the results of Gordon, Katz and Vaikuntanathan [34],
which inspired a number of follow-up works describing new systems with a better
asymptotic efficiency [42,59,47] or additional properties [22,43]. For the time be-
ing, the most efficient candidates are the recent concurrent proposals of Nguyen
et al. and Ling et al. [59,47]. As it turns out, except for one scheme [12] that mixes
lattice-based and discrete-logarithm-related assumptions, all currently available
candidates [42,59,47,22,43] utilize a GPV trapdoor, either to perform the setup
of the system or to trace signatures (or both). Our results thus provide the first
system that completely eliminates GPV trapdoors.

At a high level, our ZKAoK system is partially inspired by the way Langlois
et al. [43] made use of the Bonsai tree technique [24] since it proves knowledge of
a solution to a SIS problem determined by the user’s position in a tree. However,
there are fundamental differences since our tree is built in a bottom-up (rather
than top-down) manner and we do not perform any trapdoor delegation.

2 Preliminaries

Notations. We assume that all vectors are column vectors. The concatenation
of matrices A ∈ Zk×i, B ∈ Zk×j is denoted by [A|B] ∈ Zk×(i+j). For b ∈ {0, 1},
we denote the bit 1− b ∈ {0, 1} by b̄. For a positive integer i, we let [i] be the set

{1, . . . , i}. If S is a finite set, x
$←− S means that x is chosen uniformly at random

from S. All logarithms are of base 2. The addition in Z2 is denoted by ⊕.
In this section, we first recall the average-case lattice problems SIS and LWE,

together with their hardness results; and the notion of statistical zero-knowledge



arguments of knowledge. The definitions and security requirements of crypto-
graphic accumulators, ring signatures, and group signatures are deferred to their
respective Sections 3, 4, and 5.

2.1 Average-case Lattice Problems

Definition 1 ([3,32]). The SIS∞n,m,q,β problem is as follows: Given uniformly
random matrix A ∈ Zn×mq , find a non-zero vector x ∈ Zm such that ‖x‖∞ ≤ β
and A · x = 0 mod q.

If m,β = poly(n), and q > β · Õ(
√
n), then the SIS∞n,m,q,β problem is at least

as hard as the worst-case lattice problem SIVPγ for some γ = β · Õ(
√
nm) (see

[32,53]). Specifically, when β = 1, q = Õ(n), m = 2ndlog qe, the SIS∞n,m,q,1
problem is at least as hard as SIVPÕ(n).

In the last decade, numerous SIS-based cryptographic primitives have been
proposed. In this work, we will extensively employ 2 such constructions:

– Our Merkle tree accumulator is built upon a specific family of collision-resistant
hash functions, which is a syntactic modification (i.e., it takes two inputs,
instead of one) of the one presented in [3,54]. A similar scheme that works
with larger SIS norm bound β was proposed in [60].

– Our zero-knowledge argument systems use the statistically hiding and compu-
tationally binding string commitment scheme from [41].

For appropriate setting of parameters, the security of the above two constructions
can be based on the worst-case hardness of SIVPÕ(n).

In the group signature in Section 5, we will employ the multi-bit version of
Regev’s encryption scheme [65], presented in [40][63]. The scheme is based on
the hardness of the LWE problem.

Definition 2 ([65]). Let n,mE ≥ 1, p ≥ 2, and let χ be a probability distribu-

tion on Z. For s ∈ Znp , let As,χ be the distribution obtained by sampling a
$←− Znq

and e ←↩ χ, and outputting (a, s> · a + e) ∈ Znp × Zp. The LWEn,p,χ problem

asks to distinguish mE samples chosen according to As,χ (for s
$←− Znp ) and mE

samples chosen according to the uniform distribution over Znp × Zp.
If p is a prime power, χ is the discrete Gaussian distribution DZ,αp, where αp ≥
2
√
n, then LWEn,p,χ is as least as hard as SIVPÕ(n/α) (see [65,62,52,53]).

2.2 Zero-Knowledge Arguments of Knowledge

We will work with statistical zero-knowledge argument systems, namely, inter-
active protocols where the zero-knowledge property holds against any cheat-
ing verifier, while the soundness property only holds against computationally
bounded cheating provers. More formally, let the set of statements-witnesses
R = {(y, w)} ∈ {0, 1}∗ × {0, 1}∗ be an NP relation. A two-party game 〈P,V〉 is
called an interactive argument system for the relation R with soundness error e
if the following two conditions hold:



– Completeness. If (y, w) ∈ R then Pr
[
〈P(y, w),V(y)〉 = 1

]
= 1.

– Soundness. If (y, w) 6∈ R, then ∀ PPT P̂: Pr[〈P̂(y, w),V(y)〉 = 1] ≤ e.

An argument system is called statistical zero-knowledge if for any V̂(y), there
exists a PPT simulator S(y) producing a simulated transcript that is statistically

close to the one of the real interaction between P(y, w) and V̂(y). A related notion
is argument of knowledge, which requires the witness-extended emulation prop-
erty. For protocols consisting of 3 moves (i.e., commitment-challenge-response),
witness-extended emulation is implied by special soundness [35], where the lat-
ter assumes that there exists a PPT extractor which takes as input a set of
valid transcripts with respect to all possible values of the ‘challenge’ to the same
‘commitment’, and outputs w′ such that (y, w′) ∈ R.

The statistical zero-knowledge arguments of knowledge (sZKAoK) presented
in this work are Stern-type [68]. In particular, they are Σ-protocols in the gener-
alized sense defined in [38,12] (where 3 valid transcripts are needed for extraction,
instead of just 2). Several recent works rely on Stern-type protocols to design
lattice-based [46,43,47] and code-based [38,30] constructions.

3 A Lattice-Based Accumulator with Supporting
Zero-Knowledge Argument of Knowledge

Throughout the paper, we will work with positive integers n, q, k,m, where: n is
the security parameter; q = Õ(n); k = dlog qe; and m = 2nk. We identify Zq by
the set {0, . . . , q − 1}. We define the “powers-of-2” matrix

G =


1 2 4 . . . 2k−1

1 2 4 . . . 2k−1

. . .
1 2 4 . . . 2k−1

 ∈ Zn×nkq .

Note that for every v ∈ Znq , we have v = G · bin(v), where bin(v) ∈ {0, 1}nk
denotes the binary representation of v.

3.1 Cryptographic Accumulators

An accumulator scheme is a tuple of algorithms (TSetup,TAcc,TWitness,TVerify)
defined as follows:

TSetup(n) On input security parameter n, output the public parameter pp.
TAccpp On input a set R = {d0, . . . ,dN−1} of N data values, output an accu-

mulator value u.
TWitnesspp On input a data set R and a value d, output ⊥ if d 6∈ R; otherwise

output a witness w for the fact that d is accumulated in TAcc(R). (Typically,
the size of w should be short (e.g., constant or logarithmic inN) to be useful.)

TVerifypp On input accumulator value u and a value-witness pair (d, w), out-
put 1 (which indicates that (d, w) is valid for the accumulator u) or 0.



An accumulator scheme is called correct if for all pp ← TSetup(n), we have
TVerifypp

(
TAccpp(R),d,TWitnesspp(R,d)

)
= 1 for all d ∈ R.

The security of an accumulator scheme, as defined in [7,21], says that it is
infeasible to prove that a value d∗ was accumulated in a value u if it was not.
This property is formalized as follows.

Definition 3. An accumulator scheme (TSetup,TAcc,TWitness,TVerify) is called
secure if for all PPT adversaries A:

Pr
[
pp← TSetup(n); (R,d∗, w∗)← A(pp) :

d∗ 6∈ R ∧ TVerifypp(TAccpp(R),d∗, w∗) = 1
]

= negl(n).

3.2 A Family of Lattice-Based Collision-Resistant Hash Functions

We now describe the specific family of lattice-based collision-resistant hash func-
tions, upon which our Merkle hash tree will be built.

Definition 4. The function family H mapping {0, 1}nk×{0, 1}nk to {0, 1}nk is
defined as H = {hA |A ∈ Zn×mq }, where for A = [A0|A1] with A0,A1 ∈ Zn×nkq ,

and for any (u0,u1) ∈ {0, 1}nk × {0, 1}nk, we have:

hA(u0,u1) = bin
(
A0 · u0 + A1 · u1 mod q

)
∈ {0, 1}nk.

Note that hA(u0,u1) = u⇔ A0 · u0 + A1 · u1 = G · u mod q.

Lemma 1. The function family H, defined in 4 is collision-resistant, assuming
the hardness of the SIVPÕ(n) problem.

Proof. Given A = [A0|A1]
$←− Zn×mq , if one can find two distinct pairs (u0,u1) ∈(

{0, 1}nk
)2

and (v0,v1) ∈
(
{0, 1}nk

)2
such that hA(u0,u1) = hA(v0,v1) mod q,

then one can obtain a non-zero vector z =

(
u0 − v0

u1 − v1

)
∈ {−1, 0, 1}m such that

A·z = A0 ·(u0−v0)+A1 ·(u1−v1) = G·hA(u0,u1)−G·hA(v0,v1) = 0 mod q.

In other words, z is a valid solution to the SIS∞n,m,q,1 problem associated with
matrix A. The lemma then follows from the worst-case to average-case reduction
from SIVPÕ(n). ut

3.3 Our Merkle-Tree Accumulator

We now give the construction of a Merkle tree with N = 2` leaves, where ` is
a positive integer, based on the family of lattice-based hash function H defined
above.

TSetup(n). Sample A
$←− Zn×mq , and output pp = A.



TAccA(R = {d0 ∈ {0, 1}nk, . . . ,dN−1 ∈ {0, 1}nk}). For every j ∈ [0, N − 1], let
(j1, . . . , j`) ∈ {0, 1}` be the binary representation of j, and let dj = uj1,...,j` .
Form the tree of depth ` = logN based on the N leaves u0,0,...,0, . . . ,u1,1,...,1

as follows:
1. At depth i ∈ [`], the node ub1,...,bi ∈ {0, 1}nk, for all (b1, . . . , bi) ∈ {0, 1}i,

is defined as hA(ub1,...,bi,0,ub1,...,bi,1).

2. At depth 0: The root u ∈ {0, 1}nk is defined as hA(u0,u1).
The algorithm outputs the accumulator value u.

TWitnessA(R,d). If d 6∈ R, return ⊥. Otherwise, d = dj for some j ∈ [0, N − 1]
with binary representation (j1, . . . , j`). Output the witness w defined as:

w =
(
(j1, . . . , j`), (uj1,...,j`−1,j̄` , . . . ,uj1,j̄2 ,uj̄1)

)
∈ {0, 1}` ×

(
{0, 1}nk

)`
,

for uj1,...,j`−1,j̄` , . . . ,uj1,j̄2 ,uj̄1 computed by algorithm TAccA(R).

TVerifyA
(
u,d, w

)
. Let the given witness w be of the form:

w =
(
(j1, . . . , j`), (w`, . . . ,w1)

)
∈ {0, 1}` ×

(
{0, 1}nk

)`
.

The algorithm recursively computes the path v`,v`−1, . . . ,v1,v0 ∈ {0, 1}nk
as follows: v` = d and

∀i ∈ {`− 1, . . . , 1, 0} : vi =

{
hA(vi+1,wi+1), if ji+1 = 0;

hA(wi+1,vi+1), if ji+1 = 1.

Then it returns 1 if v0 = u. Otherwise, it returns 0.

In Figure 1, we give an illustrative example of a tree with 23 = 8 leaves.

u

u000 u111u011 u100u010 u101u001 u110

d0 d7d3 d4d2 d5d1 d6

u00 u11u01 u10

u0 u1

Fig. 1: A Merkle tree with 23 = 8 leaves, which accumulates the data blocks
d0, . . . ,d7 into the value u at the root. The bit string (101) and the gray nodes
form a witness to the fact that d5 is accumulated in u.

One can check that the above Merkle-tree accumulator scheme is correct.
Furthermore, its security is based on the collision-resistance of the hash function
family H, which in turn is based on the hardness of SIVPÕ(n).



Theorem 1. The given accumulator scheme is secure in the sense of Defini-
tion 3, assuming the hardness of the SIVPÕ(n) problem.

Proof. Assuming that there exists a PPT adversary B who has non-negligible
success probability in the security experiment of Definition 3. It receives a
uniformly random matrix A ∈ Zn×mq generated by TSetup(n), and returns
(R = (d0, . . . ,dN−1),d∗, w∗) such that d∗ 6∈ R and TVerifyA(u∗,d∗, w∗) = 1,
where u∗ = TAccA(R).

Parse w∗=((j∗1 , . . . , j
∗
` ), (w∗` , . . . ,w

∗
1)). Let j∗∈ [0, N−1] be the integer having

binary representation (j∗1 , . . . , j
∗
` ) and let uj∗1 ,...,j∗` = dj∗ ,uj∗1 ,...,j∗`−1

, . . . ,uj∗1 ,u
∗

be the path from the leave dj∗ to the root of the tree generated by TAccA(R).
On the other hand, let v∗` = d∗,v∗`−1, . . . ,v

∗
1,v
∗
0 = u∗ be the path computed

by algorithm TVerifyA(u∗,d∗, w∗). Note that d∗ 6= dj∗ since d∗ 6∈ R. Thus,
comparing the two paths, we can find the smallest integer k ∈ [`], such that
v∗k 6= uj∗1 ,...,j∗k . We then obtain a collision for hA at the parent node of uj∗1 ,...,j∗k .
The theorem then follows from Lemma 1. ut

3.4 Zero-Knowledge AoK of an Accumulated Value

Our goal in this section is to construct a zero-knowledge argument system that
allows prover P to convince verifier V that P knows a secret value that is properly
accumulated into the root of the lattice-based Merkle tree described above. More
formally, in our protocol, P convinces V on input (A,u) that P possesses a value-
witness pair (d, w) such that TVerifyA

(
u,d, w

)
= 1. The associated relation Racc

is defined as follows.

Definition 5.

Racc =
{(

(A,u) ∈ Zn×mq × {0, 1}nk; d ∈ {0, 1}nk, w ∈ {0, 1}` × ({0, 1}nk)`
)

:

TVerifyA
(
u,d, w

)
= 1
}
.

Before going into the details, we first introduce several supporting notations
and techniques.

– We denote by Bnkm the set of all vectors in {0, 1}m that have Hamming weight
nk; and by Sm the set of all permutations of m elements.

– For i ∈ {nk,m}, for b ∈ {0, 1} and for v ∈ {0, 1}i, we let ext(b,v) denote

the vector z ∈ {0, 1}2i of the form z =

(
b̄ · v
b · v

)
.

– For b ∈ {0, 1}, for π ∈ Sm, we define the permutation Fb,π that transforms

z =

(
z0

z1

)
∈ Z2m

q consisting of 2 blocks of size m into Fb,π(z) =

(
π(zb)
π(zb̄)

)
.

Namely, Fb,π first rearranges the blocks of z according to b (it keeps the
arrangement of blocks if b = 0, or swaps them if b = 1), then it permutes
each block according to π.



Our strategy to achieve zero-knowledgeness will crucially rely on the following
observation: For all c, b ∈ {0, 1}, all π, φ ∈ Sm, and all v,w ∈ {0, 1}m, we have
the equivalences{

z = ext(c,v) ∧ v ∈ Bnkm ⇐⇒ Fb,π(z) = Ext(c⊕ b, π(v)) ∧ π(v) ∈ Bnkm ;

y = ext(c̄,w) ∧ w ∈ Bnkm ⇐⇒ Fb̄,φ(y) = Ext(c⊕ b, φ(w)) ∧ φ(w) ∈ Bnkm .
(1)

Warm-up step. Now, let (d, w) be such that
(
(A,u),d, w

)
∈ Racc, where w is

of the form w =
(
(j1, . . . , j`), (w`, . . . ,w1)

)
, and let v` = d,v`−1, . . . ,v1,v0 be

the path computed by TVerifyA
(
u,d, w

)
. Note that v0 = u and:

∀i ∈ {`− 1, . . . , 1, 0} : vi =

{
hA(vi+1,wi+1), if ji+1 = 0;

hA(wi+1,vi+1), if ji+1 = 1.
(2)

We observe that relation (2) can be equivalently rewritten in a more compact
form: ∀i ∈ {`− 1, . . . , 1, 0},

vi = j̄i+1 · hA(vi+1,wi+1) + ji+1 · hA(wi+1,vi+1). (3)

Equation (3) then can be interpreted as:

j̄i+1 ·
(
A0 · vi+1 + A1 ·wi+1

)
+ ji+1 ·

(
A0 ·wi+1 + A1 · vi+1

)
= G · vi mod q

⇔ A ·
(
j̄i+1 · vi+1

ji+1 · vi+1

)
+ A ·

(
ji+1 ·wi+1

j̄i+1 ·wi+1

)
= G · vi mod q

⇔ A · ext(ji+1,vi+1) + A · ext(j̄i+1,wi+1) = G · vi mod q.

Therefore, to achieve our goal, it is necessary and sufficient to construct an
argument system in which P convinces V in ZK that P knows j1, . . . , j` ∈ {0, 1}`
and v1, . . . ,v`,w1, . . . ,w` ∈ {0, 1}nk satisfying{

A · ext(j1,v1) + A · ext(j̄1,w1) = G · u mod q;

∀i ∈ [`− 1] : A · ext(ji+1,vi+1) + A · ext(j̄i+1,wi+1) = G · vi mod q.
(4)

To this end, we develop a Stern-type protocol [68], in which we adapt the
extension technique from [46]. Specifically, we perform the following extensions:

– Extend matrix A = [A0|A1] to matrix A∗ = [A0|0n×nk|A1|0n×nk] ∈ Zn×2m
q .

– Extend matrix G to matrix G∗ = [G|0n×nk] ∈ Zn×mq .

– Extend v1, . . . ,v`,w1, . . . ,w` into v∗1, . . . ,v
∗
` ,w

∗
1, . . . ,w

∗
` ∈ Bnkm , respectively.

This is done by appending a length-nk vector of suitable Hamming weight to
each of these vectors.

Let zi = ext(ji,v
∗
i ) and yi = ext(j̄i,w

∗
i ) for each i ∈ [`]. Note that now the

conditions in (4) can be equivalently rewritten as:{
A∗ · z1 + A∗ · y1 = G · u mod q;

∀i ∈ [`− 1] : A∗ · zi+1 + A∗ · yi+1 = G∗ · v∗i mod q.
(5)



The Interactive Protocol. Having performed the above preparation and trans-
formation steps, we now give a summary and sketch the main ideas of our
interactive protocol, before formally describing it. The public parameters are
n, q, k,m, `, the “powers-of-2” matrix G and its extension G∗.

Common inputs: (A,u). Both parties extend A to A∗.

P’s inputs:
(
(j1, . . . , j`), (v

∗
1, . . . ,v

∗
` ), (w

∗
1, . . . ,w

∗
` ), (z1, . . . , z`), (y1, . . . ,y`)

)
.

P’s goal: Prove in ZK that v∗i ,w
∗
i ∈ Bnkm , zi = ext(ji,v

∗
i ), yi = ext(j̄i,w

∗
i ) for

all i ∈ [`], and that (5) holds.

To achieve its goal, P employs the following strategies:

1. To prove in ZK that v∗i ,w
∗
i ∈ Bnkm and zi = ext(ji,v

∗
i ) and yi = ext(j̄i,w

∗
i ) for

all i ∈ [`], the equivalences observed in (1) are exploited. Specifically, for each

i ∈ [`], P samples πi, φi
$←− Sm and bi

$←− {0, 1}, then it demonstrates to V that:{
πi(v

∗
i ) ∈ Bnkm ∧ Fbi,πi(zi) = ext(ji ⊕ bi, πi(v∗i ));

φi(w
∗
i ) ∈ Bnkm ∧ Fb̄i,φi

(yi) = ext(ji ⊕ bi, φi(w∗i )).
(6)

Seeing (6), V should be convinced of the facts P wants to prove, while learning
no additional information, thanks to the randomness of πi, φi and bi.

2. To prove in ZK that the ` equations in (5) hold, P samples uniformly random

masking vectors r
(1)
v , . . . , r

(`−1)
v

$←− Zmq ; r
(1)
z , . . . , r

(`)
z , r

(1)
y , . . . , r

(`)
y

$←− Z2m
q , and

then it shows V that
A∗ · (z1 + r

(1)
z ) + A∗ · (y1 + r

(1)
y )−G · u = A∗ · r(1)

z + A∗ · r(1)
y mod q;

∀i ∈ [`− 1] : A∗ ·(zi+1 + r
(i+1)
z ) + A∗ ·(yi+1 + r

(i+1)
y )−G∗ ·(v∗i + r

(i)
v )

= A∗ · r(i+1)
z + A∗ · r(i+1)

y −G∗ · r(i)
v mod q.

Let COM : {0, 1}∗×{0, 1}m → Znq be the string commitment scheme from [41],
which is statistically hiding and computationally binding if the SIVPÕ(n) prob-

lem is hard. The interaction between prover P and verifier V is described in
Figure 2.

3.5 Analysis of the Interactive Protocol

The properties of the given protocol are summarized in the following theorem.

Theorem 2. The given interactive protocol has perfect completeness and com-
munication cost Õ(` · n). If COM is a statistically hiding and computationally
binding string commitment scheme, then it is a statistical zero-knowledge argu-
ment of knowledge for the relation Racc.

Completeness and Communication Cost. Based on the discussion given
in the previous section, it can be checked that the described protocol has per-
fect completeness, i.e., if P is honest and follows the protocol, then V always



1. Commitment. P samples randomness ρ1, ρ2, ρ3 for COM andb1, . . . , b`
$←− {0, 1}; π1, . . . , π`, φ1, . . . , φ`

$←− Sm;

r
(1)
v , . . . , r

(`−1)
v

$←− Zmq ; r
(1)
z , . . . , r

(`)
z , r

(1)
y , . . . , r

(`)
y

$←− Z2m
q .

It then sends V commitment CMT = (C1, C2, C3), where
C1 = COM

(
{bi; πi; φi}`i=1; A∗ · r(1)

z + A∗ · r(1)
y ;

{A∗ · r(i+1)
z + A∗ · r(i+1)

y −G∗ · r(i)
v }`−1

i=1 ; ρ1

)
C2 = COM

(
{πi(r(i)

v )}`−1
i=1 ; {Fbi,πi(r

(i)
z ); Fb̄i,φi

(r
(i)
y )}`i=1; ρ2

)
C3 = COM

(
{πi(v∗i +r

(i)
v )}`−1

i=1 ; {Fbi,πi(zi+r
(i)
z ); Fb̄i,φi

(yi+r
(i)
y )}`i=1; ρ3

)
.

2. Challenge. Receiving CMT, V sends a challenge Ch
$←− {1, 2, 3} to P.

3. Response. Depending on Ch, P sends the response RSP computed as follows:
– Case Ch = 1: For each i ∈ [`− 1], let t

(i)
v = πi(r

(i)
v ). For each i ∈ [`], let:

ai = ji ⊕ bi; s(i)
v = πi(v

∗
i ); s(i)

w = φi(w
∗
i ); t(i)

z = Fbi,πi(r
(i)
z ); t(i)

y = Fb̄i,φi
(r(i)

y ).

Then let RSP =
(
{t(i)

v }`−1
i=1 ; {ai; s(i)

v ; t(i)
z ; s(i)

w ; t(i)
y }`i=1; ρ2; ρ3

)
. (7)

– Case Ch = 2: For each i ∈ [`− 1], let e
(i)
v = v∗i + r

(i)
v . For each i ∈ [`], let:

ci = bi; π̂i = πi; φ̂i = φi; e(i)
z = zi + r(i)

z ; e(i)
y = yi + r(i)

y .

Then let RSP =
(
{e(i)

v }`−1
i=1 ; {ci; π̂i; φ̂i; e(i)

z ; e(i)
y }`i=1; ρ1; ρ3

)
. (8)

– Case Ch = 3: For each i ∈ [`− 1], let p
(i)
v = r

(i)
v . For each i ∈ [`], let:

di = bi; π̃i = πi; φ̃i = φi; p(i)
z = r(i)

z ; p(i)
y = r(i)

y .

Then let RSP =
(
{p(i)

v }`−1
i=1 ; {di; π̃i; φ̃i; p(i)

z ; p(i)
y }`i=1; ρ1; ρ2

)
. (9)

Verification. Receiving RSP, V proceeds as follows.

– Case Ch = 1: Parse RSP as in (7). Check that s
(i)
v , s

(i)
w ∈ Bnkm for all i ∈ [`]. Next,

for each i ∈ [`], let s
(i)
z = ext(ai, s

(i)
v ) and let s

(i)
y = ext(ai, s

(i)
w ). Then check that:{

C2 = COM
(
{t(i)

v }`−1
i=1 ; {t(i)

z ; t
(i)
y }`i=1; ρ2

)
,

C3 = COM
(
{s(i)

v + t
(i)
v }`−1

i=1 ; {s(i)
z + t

(i)
z ; s

(i)
y + t

(i)
y }`i=1; ρ3

)
.

(10)

– Case Ch = 2: Parse RSP as in (8) and check that:
C1 = COM

(
{ci; π̂i; φ̂i}`i=1; A∗ ·e(1)

z +A∗ ·e(1)
y −G·u;

{A∗ ·e(i+1)
z +A∗ ·e(i+1)

y −G∗ ·e(i)
v }`−1

i=1 ; ρ1

)
C3 = COM

(
{π̂i(e(i)

v )}`−1
i=1 ; {Fci,π̂i(e

(i)
z ); Fc̄i,φ̂i

(e
(i)
y )}`i=1; ρ3

)
.

(11)

– Case Ch = 3: Parse RSP as in (9) and check that:
C1 = COM

(
{di; π̃i; φ̃i}`i=1; A∗ ·p(1)

z +A∗ ·p(1)
y ;

{A∗ ·p(i+1)
z +A∗ ·p(i+1)

y −G∗ ·p(i)
v }`−1

i=1 ; ρ1

)
C2 = COM

(
{π̃i(p(i)

v )}`−1
i=1 ; {Fdi,π̃i(p

(i)
z ); Fd̄i,φ̃i

(p
(i)
y )}`i=1; ρ2

)
.

(12)

In each case, V outputs 1 if all the conditions hold. Otherwise, it outputs 0.

Fig. 2: A zero-knowledge argument of knowledge for the relation Racc.



outputs 1. It can also be seen that the communication cost of the protocol is
Õ(` ·m · log q) = Õ(` · n) bits.

In order to prove that the protocol is a ZKAoK for the relation Racc, we
will employ the standard simulation and extraction techniques for Stern-type
protocols (see, e.g., [41,46,47]).

Lemma 2 (Zero-Knowledge Property). If COM is statistically hiding, then
the interactive protocol in Figure 2 is a statistical zero-knowledge argument.

Proof. We construct a PPT simulator S interacting with a (possibly dishonest)

verifier V̂, such that, given only the public input, S outputs with probability
negligibly close to 2/3 a simulated transcript that is statistically close to the one
produced by the honest prover in the real interaction. The simulator S begins
by selecting a random Ch ∈ {1, 2, 3}. This is a prediction of the challenge value

that V̂ will not choose.

Case Ch = 1: Using linear algebra, S computes z′1, . . . , z
′
`,y
′
1, . . . ,y

′
` ∈ Z2m

q and
v′1, . . . ,v

′
`−1 ∈ Zmq such that{

A∗ · z′1 + A∗ · y′1 = G · u mod q;

∀i ∈ [1, `− 1] : A∗ · z′i+1 + A∗ · y′i+1 = G∗ · v′i mod q.

Then it samples randomness ρ1, ρ2, ρ3 for COM andb1, . . . , b`
$←− {0, 1}; π1, . . . , π`, φ1, . . . , φ`

$←− Sm;

r
(1)
v , . . . , r

(`−1)
v

$←− Zmq ; r
(1)
z , . . . , r

(`)
z , r

(1)
y , . . . , r

(`)
y

$←− Z2m
q .

It then sends V̂ commitment CMT = (C ′1, C
′
2, C

′
3), where

C ′1 = COM
(
{bi; πi; φi}`i=1; A∗ · r(1)

z + A∗ · r(1)
y ;

{A∗ · r(i+1)
z + A∗ · r(i+1)

y −G∗ · r(i)
v }`−1

i=1 ; ρ1

)
C ′2 = COM

(
{πi(r(i)

v )}`−1
i=1 ; {Fbi,πi(r

(i)
z ); Fb̄i,φi

(r
(i)
y )}`i=1; ρ2

)
C ′3 = COM

(
{πi(v′i+r

(i)
v )}`−1

i=1 ; {Fbi,πi(z
′
i+r

(i)
z ); Fb̄i,φi

(y′i+r
(i)
y )}`i=1; ρ3

)
.

(13)

Receiving a challenge Ch from V̂, the simulator responds as follows:

– If Ch = 1: Output ⊥ and abort.

– If Ch = 2: Send RSP =
(
{v′i+r

(i)
v }`−1

i=1 ; {bi; πi; φi; z′i+r
(i)
z ; y′i+r

(i)
y }`i=1; ρ1; ρ3

)
.

– If Ch = 3: Send RSP =
(
{r(i)

v }`−1
i=1 ; {bi; πi; φi; r

(i)
z ; r

(i)
y }`i=1; ρ1; ρ2

)
.

Case Ch = 2: S samples
j′1, . . . , j

′
`

$←− {0, 1}; v′1, . . . ,v
′
`,w

′
1, . . . ,w

′
`

$←− Bnkm ;

b1, . . . , b`
$←− {0, 1}; π1, . . . , π`, φ1, . . . , φ`

$←− Sm;

r
(1)
v , . . . , r

(`−1)
v

$←− Zmq ; r
(1)
z , . . . , r

(`)
z , r

(1)
y , . . . , r

(`)
y

$←− Z2m
q .



It then computes z′i = ext(j′i,v
′
i), y′i = ext(j̄′i,w

′
i) for each i ∈ [`], and sends the

commitment CMT computed in the same manner as in (13).

Receiving a challenge Ch from V̂, it responds as follows:

– If Ch = 1: Send

RSP =
(
{πi(r(i)

v )}`−1
i=1 ; {j′i⊕bi; πi(v′i); Fbi,πi

(r(i)
z ); φi(w

′
i); Fb̄i,φi

(r(i)
y )}`i=1; ρ2; ρ3

)
.

– If Ch = 2: Output ⊥ and abort.
– If Ch = 3: Send RSP computed as in the case (Ch = 1, Ch = 3).

Case Ch = 3: The simulator proceeds with the preparation as in the case Ch = 2
above. Then it sends the commitment CMT := (C ′1, C

′
2, C

′
3), where C ′2, C

′
3 are

computed as in (13), while

C ′1 = COM
(
{bi; πi; φi}`i=1; A∗ · (z′1 + r(1)

z ) + A∗ · (y′1 + r(1)
y )−G · u;

{A∗ · (z′i+1 + r(i+1)
z ) + A∗ · (y′i+1 + r(i+1)

y )−G∗ · (v′i + r(i)
v )}`−1

i=1 ; ρ1

)
.

Receiving a challenge Ch from V̂, it responds as follows:

– If Ch = 1: Send RSP computed as in the case (Ch = 2, Ch = 1).
– If Ch = 2: Send RSP computed as in the case (Ch = 1, Ch = 2).
– If Ch = 3: Output ⊥ and abort.

We observe that, in every case we have considered above, since COM is statis-
tically hiding, the distribution of the commitment CMT and the distribution of
the challenge Ch from V̂ are statistically close to those in the real interaction.
Hence, the probability that the simulator outputs ⊥ is negligibly close to 1/3.
Moreover, one can check that whenever the simulator does not halt, it will pro-
vide an accepted transcript, the distribution of which is statistically close to
that of the prover in the real interaction. In other words, we have constructed a
simulator that can successfully impersonate the honest prover with probability
negligibly close to 2/3. ut

To prove that our protocol is an argument of knowledge for the relation Racc,
it suffices to demonstrate that the protocol has the special soundness prop-
erty [35].

Lemma 3 (Argument of Knowledge Property). If COM is computation-
ally binding, then there exists an efficient knowledge extractor K that, on input
3 valid responses (RSP1,RSP2,RSP3) to the same commitment CMT, outputs
a pair (d′ ∈ {0, 1}nk, w′ ∈ {0, 1}` × ({0, 1}nk)`) such that(

(A,u); d′, w′
)
∈ Racc.

Proof. Let the 3 valid responses to CMT = (C1, C2, C3) be
RSP1 =

(
{t(i)

v }`−1
i=1 ; {ai; s

(i)
v ; t

(i)
z ; s

(i)
w ; t

(i)
y }`i=1; ρ2; ρ3

)
,

RSP2 =
(
{e(i)

v }`−1
i=1 ; {ci; π̂i; φ̂i; e

(i)
z ; e

(i)
y }`i=1; ρ1; ρ3

)
,

RSP3 =
(
{p(i)

v }`−1
i=1 ; {di; π̃i; φ̃i; p

(i)
z ; p

(i)
y }`i=1; ρ1; ρ2

)
.



The validity of RSP1 implies that ∀i ∈ [`] : s
(i)
v , s

(i)
w ∈ Bnkm . Furthermore, it

follows from the verification conditions given in (10), (11), (12), and from the
computational binding property of COM that:

A∗ · e(1)
z + A∗ · e(1)

y −G · u = A∗ · p(1)
z + A∗ · p(1)

y mod q,

and for all i ∈ [1, `− 1]: t
(i)
v = π̃i(p

(i)
v ); s

(i)
v + t

(i)
v = π̂i(e

(i)
v ); and

A∗ · e(i+1)
z + A∗ · e(i+1)

y −G∗ · e(i)
v = A∗ · p(i+1)

z + A∗ · p(i+1)
y −G∗ · p(i)

v mod q,

and for all i ∈ [`]:
ci = di; π̂i = π̃i; φ̂i = φ̃i;

t
(i)
z = Fdi,π̃i

(p
(i)
z ); ext(ai, s

(i)
v ) + t

(i)
z = Fci,π̂i

(e
(i)
z );

t
(i)
y = Fd̄i,φ̃i

(p
(i)
y ); ext(ai, s

(i)
w ) + t

(i)
y = Fc̄i,φ̂i

(e
(i)
y ).

The knowledge extractor K now proceeds as follows. For each i ∈ [`], let:

ji = ai ⊕ ci; v∗i = π̂−1
i (s(i)

v ); w∗i = φ̂−1
i (s(i)

w ); zi = e(i)
z − p(i)

z ; yi = e(i)
y − p(i)

y .

Note that π̂i(v
∗
i ) = s

(i)
v ∈ Bnkm , and thus v∗i ∈ Bnkm (by (1)). Similarly, w∗i ∈ Bnkm .

Furthermore, one has that:

– Fci,π̂i
(zi) = ext(ai, s

(i)
v ) = ext

(
ji⊕ci, π̂i(v∗i )

)
. By (1), this implies zi = ext(ji,v

∗
i ).

– Fc̄i,φ̂i
(yi) = ext(ai, s

(i)
w ) = ext

(
j̄i⊕c̄i, φ̂i(w∗i )

)
. By (1), this implies yi = ext(j̄i,w

∗
i ).

Moreover, the following relations hold:{
A∗ · z1 + A∗ · y1 = G · u mod q

∀i ∈ [1, `− 1] : A∗ · zi+1 + A∗ · yi+1 = G∗ · v∗i mod q

⇔

{
A∗ · ext(j1,v∗1) + A∗ · ext(j̄i,w∗i ) = G · u mod q

∀i ∈ [1, `− 1] : A∗ · ext(ji+1,v
∗
i+1) + A∗ · ext(j̄i+1,w

∗
i+1) = G∗ · v∗i mod q.

Now, by dropping the last nk coordinates from v∗1, . . . ,v
∗
` ,w

∗
1, . . . ,w

∗
` , the knowl-

edge extractor K obtains v′1, . . . ,v
′
`,w

′
1, . . . ,w

′
` ∈ {0, 1}nk, respectively. These

vectors satisfy:{
A · ext(j1,v′1) + A · ext(j̄1,w′1) = G · u mod q

∀i ∈ [1, `− 1] : A · ext(ji+1,v
′
i+1) + A · ext(j̄i+1,w

′
i+1) = G · v′i mod q

⇔

{
v′0 = u

∀i ∈ [0, `− 1] : v′i = j̄i+1 · hA(v′i+1,w
′
i+1) + ji+1 · hA(w′i+1,v

′
i+1).

Let d′ = v′` and w′ =
(
(j1, . . . , j`), (w

′
`, . . . ,w

′
1)
)
, then TVerifyA(u,d′, w′) = 1.

In other words, (d′, w′) satisfies
(
(A,u); d′, w′

)
∈ Racc. This concludes the proof.

ut



4 A Logarithmic-Size Ring Signature from Lattices

In this section, we construct a ring signature scheme [66] with signature size

Õ(logN · n), where N is the size of the ring, based on the hardness of lattice
problem SIVPÕ(n). We use the ZKAoK given in Section 3 as the building block.

4.1 Definitions

We recall the standard definitions and security requirements for ring signa-
tures [11,37]. A ring signature scheme consists of a tuple of efficient algorithms
(RSetup,RKgen,RSign,RVerify) for generating a public parameter, generating
keys for users, signing messages, and verifying ring signatures, respectively.

RSetup(n): Generates public parameters pp which are made available to all users.
RKgen(pp): Generates a public key pk and the corresponding secret key sk.
RSignpp(sk,M,R): Outputs a signature Σ on the message M ∈ {0, 1}∗ with

respect to the ring R = (pk0, . . . , pkN−1). It is required that (pk, sk) be a
valid key pair produced by RKgen(pp) and that pk ∈ R.

RVerifypp(M,R,Σ): Given a candidate signature Σ on a message M with respect
to the ring of public keys R, this algorithm outputs 1 if Σ is deemed valid
or 0 otherwise.

We next describe the following requirements for ring signatures: correctness,
unforgeability with respect to insider corruption, and statistical anonymity.

The correctness requirement says that a user can always sign any message on
behalf of a ring he belongs to. This is formalized as follows.

Definition 6 (Correctness). A ring signature (RSetup,RKgen,RSign,RVerify)
is correct if for any pp← RSetup(n), any (pk, sk)← RKgen(pp), any R such that
pk ∈ R, any M ∈ {0, 1}∗, we have RVerifypp

(
M,R,RSignpp(sk,M,R)

)
= 1.

A ring signature is unforgeable with respect to insider corruption if it is infeasible
to forge a ring signature without controlling one of the ring members.

Definition 7 (Unforgeability w.r.t. insider corruption). A ring signature
scheme (RSetup,RKgen,RSign,RVerify) is unforgeable w.r.t. insider corruption if
for all PPT adversaries A,

Pr[pp← RSetup(1n); (M?, R?, Σ?)← APKGen,Sign,Corrupt(pp) :

RVerifypp(M
?, R?, Σ?) = 1] ∈ negl(n),

where:

– PKGen on the j-th query runs (pkj , skj)← RKgen(pp) and returns pkj.
– Sign(j,M,R) returns the output of RSignpp(skj ,M,R) provided: (i) (pkj , skj)

has been generated by PKGen; (ii) pkj ∈ R. Otherwise, it returns ⊥.
– Corrupt(j) returns skj, provided that (pkj , skj) has been generated by PKGen.



– A outputs (M?, R?, Σ?) such that Sign(·,M?, R?) has not been queried. More-
over, R? is non-empty and only contains public keys pkj generated by PKGen
for which j has not been corrupted.

Definition 8. A ring signature scheme (RSetup,RKgen,RSign,RVerify) pro-
vides statistical anonymity if, for any (possibly unbounded) adversary A,

Pr

[
pp← RSetup(1n); (M?, j0, j1, R

?)← ARKgen(pp)(pp)

b
$←− {0, 1};Σ∗ ← RSignpp(skjb ,M

?, R?)
: A(Σ?) = b

]
= 1/2 + negl(n),

where pkj0 , pkj1 ∈ R?.

Remark: Anonymity under full key exposure [11] requires that the randomness
used by KeyGen be revealed to the adversary. In our construction, it does not
make a difference since we assume computationally unbounded adversaries. A
c-user ring signature scheme is a variant of ring signatures, that only supports
rings of fixed size c. Here, we do not assume any upper bound on the size of a
ring. Similarly to [37], we only assume that all users agree on pre-existing public
parameters pp. In our scheme, these public parameters consist of a modulus q
and a random matrix A ∈ Zn×2nk

q which can be derived from a random oracle.
In this case, we only need all users to agree on the parameters q and n.

4.2 The Underlying Zero-Knowledge Protocol

The ring signature scheme that we will present next relies on a simple extension
of the ZKAoK in Section 3. Specifically, one more layer is added: apart from
proving that it has a secret value d that was properly accumulated to the root
of the tree, P has to convince V that it knows a vector x ∈ {0, 1}m such that
bin(A·x mod q) = d, or equivalently, A·x = G·d mod q. The associated relation
Rring is defined as follows.

Definition 9. Define the relation

Rring =
{(

(A,u) ∈ Zn×mq × {0, 1}nk; d ∈ {0, 1}nk, w ∈ {0, 1}` × ({0, 1}nk)`,

x ∈ {0, 1}m
)

: TVerifyA
(
u,d, w

)
= 1 ∧ A · x = G · d mod q

}
.

A ZKAoK for Rring can be obtained from the one in Section 3, where the new
layer is handled by the same “extend-then-permute” technique. As before, the
protocol relies on the string commitment scheme from [41], which is statistically
hiding and computationally binding if the SIVPÕ(n) problem is hard.

Lemma 4. Let us assume that the SIVPÕ(n) problem is hard. Then, there exists

a statistical ZKAoK for the relation Rring with perfect completeness and commu-

nication cost Õ(` · n). In particular:



– There exists an efficient simulator that, on input (A,u), outputs an accepted
transcript which is statistically close to that produced by the real prover.

– There exists an efficient knowledge extractor that, on input 3 valid responses
(RSP1,RSP2,RSP3) to the same commitment CMT, outputs (d′, w′,x′) such
that (

(A,u),d′, w′,x′
)
∈ Rring.

The full description and analysis of the argument system are given in Ap-
pendix A.

4.3 Description of the Ring Signature Scheme

We now will construct a ring signature scheme for rings of N = 2` users based
on the Merkle-tree accumulator presented in Section 3. Our ring signature can
be easily adapted for the case when the size of the ring is not a power of 2
(see Remark 1). The scheme uses parameters n,m, q defined as in Section 3,
parameter κ = ω(log n) that determines the number of protocol repetitions, and
a random oracle HFS : {0, 1}∗ → {1, 2, 3}κ.

RSetup(n) : Sample A
$←− Zn×mq , and output pp = A.

RKgen(pp = A) : Pick x
$←− {0, 1}m, compute d = bin(A · x mod q) ∈ {0, 1}nk,

and output (sk, pk) = (x,d).
RSignpp(sk,M,R) : Given a ring R = (d0, . . . ,dN−1), where di ∈ {0, 1}nk for

every i ∈ [0, N−1], and sk = x ∈ {0, 1}m such that d = bin(Ax mod q) ∈ R,
this algorithm generates a ring signature Σ on M ∈ {0, 1}∗ as follows:

1. Run algorithm TAccA(R) to build the Merkle tree based on R and the hash
function hA, and obtain the root u ∈ {0, 1}nk.

2. Run algorithm TWitnessA(R,d) to get a witness

w =
(
(j1, . . . , j`) ∈ {0, 1}`, (w`, . . . ,w1) ∈ ({0, 1}nk)`

)
to the fact that d was properly accumulated in u.

3. Generate a NIZKAoK Πring to demonstrate the possession of a valid pair
(sk, pk) = (x,d) such that d is properly accumulated in u. This is done by
running the protocol in Section 4.2 with public input (A,u) and prover’s
witness (x,d, w). The protocol is repeated κ = ω(log n) times to achieve
negligible soundness error and made non-interactive via the Fiat-Shamir
heuristic as a triple Πring = ({CMTi}κi=1,CH, {RSP}κi=1), where

CH = HFS

(
M, ({CMTi}κi=1,A,u, R

)
∈ {1, 2, 3}κ.

4. Let Σ = Πring.

RVerifypp(M,R,Σ) : Given pp = A, a message M , a ring R = (d0, . . . ,dN−1),
and a signature Σ, this algorithm proceeds as follows:

1. Run algorithm TAccA(R) to compute the root u of the tree.



2. Parse Σ as Σ = ({CMTi}κi=1, (Ch1, . . . , Chκ), {RSP}κi=1). Return 0 if
(Ch1, . . . , Chκ) 6= HFS

(
M, ({CMTi}κi=1,A,u, R

)
.

3. For each i = 1 to κ, run the verification phase of the protocol from
Section 4.2 with public input (A,u) to check the validity of RSPi with
respect to CMTi and Chi. If any of the conditions does not hold, then
return 0. Otherwise, return 1.

4.4 Analysis of the Ring Signature Scheme

We first summarize the properties of the given ring signature scheme in the
following theorem.

Theorem 3. The ring signature scheme described in Section 4.3 is correct, and
produces signatures of bit-size Õ(n · logN). In the random oracle model, the
scheme is unforgeable w.r.t. insider corruption based on the worst-case hardness
of the SIVPÕ(n) problem, and it is statistically anonymous.

Correctness. The correctness of the ring signature scheme directly follows
from the correctness of the accumulator scheme in Section 3 and the perfect
completeness of the argument system in Section 4.2: A member of a ring can
always obtain a tuple (x,d, w) such that

(
(A,u),d, w,x

)
∈ Rring, and thus, his

signature on any message always get accepted by the verification algorithm.

Efficiency. Since the underlying protocol has communication cost Õ(` ·n), the

signatures produced by the scheme has bit-size Õ(κ · ` · n) = Õ(logN · n).

Unforgeability with respect to insider corruption. For simplicity, the
proof of unforgeability assumes that the cardinality of each ring R? is a power
of 2. However, this restriction can be easily eliminated, as we will see later on.

The proof of unforgeability relies on the following Lemma from [49].

Lemma 5 ([49],Lemma 8). For any matrix A ∈ Zn×mq and a uniformly ran-
dom x ∈ {0, 1}m, the probability that there exists another x′ ∈ {0, 1}m \{x} such
that A · x = A · x′ mod q is at least 1− 2n·log q−m.

With m = 2nk and x
$←− {0, 1}m, there exists x′ ∈ {0, 1}m \ {x} such that

A · x = A · x′ mod q with overwhelming probability 1− 2−nk.

Theorem 4. The scheme provides unforgeability w.r.t. insider corruption in the
random oracle model if the SIVPÕ(n) problem is hard. (The proof is available in

Appendix C.)

Statistical anonymity. The proof of the following theorem relies on the statis-
tical witness indistinguishability of the argument system of Lemma 4. The proof
is straightforward and omitted.

Theorem 5. The scheme provides statistical anonymity in the random oracle
model.



Remark 1. As already mentioned, we can handle arbitrary ring sizes. To this
end, one option is to add dummy ring members dfake,1, . . . ,dfake,r0 whose public
keys are sampled obliviously of their private keys, by deriving them as dfake,j =
bin(G0(j)) ∈ {0, 1}nk for each j ∈ {1, . . . , r0}, where G0 : N→ Znq is an additional
random oracle. A simpler solution is to duplicate one of the actual ring members
until reaching a multi-set whose cardinality is a power of two.

5 A Lattice-Based Group Signature without Trapdoors

This section shows how to use our accumulator and argument systems to build a
lattice-based group signature which is dramatically more efficient than previous
proposals as it does not use any trapdoor. Indeed, surprisingly, the scheme does
not rely on a standard digital signature to generate group members’ private keys.

5.1 Definitions

We recall the standard definitions and security requirements for static group sig-
natures [8]. A group signature scheme is a tuple of 4 polynomial-time algorithms
(GKeygen,GSign,GVerify,GOpen) defined as follows:

– GKeygen: This is a probabilistic algorithm that takes as input 1n, 1N , where
n ∈ N is the security parameter and N ∈ N is the number of group users, and
outputs a triple (gpk, gmsk,gsk), where gpk is the group public key; gmsk is
the group manager’s secret key; and gsk = (gsk[0], . . . , gsk[N − 1]), where for
j ∈ {0, . . . , N − 1}, gsk[j] is the secret key for the group user of index j.

– GSign: is a randomized algorithm that inputs gpk, a secret key gsk[j] for some
j ∈ {0, . . . , N − 1}, and a message M . It returns a group signature Σ on M .

– GVerify: This deterministic algorithm takes as input the group public key gpk,
a message M , a purported signature Σ on M , and returns either 1 or 0.

– GOpen: This deterministic algorithm takes as input the group public key gpk,
the group manager’s secret key gmsk, a message M , a signature Σ on M , and
returns an index j ∈ {0, . . . , N − 1}, or ⊥ (to indicate failure).

Correctness. The correctness requirement is stated as follows. For all n,N ∈ N,
all (gpk, gmsk,gsk) produced by GKeygen(1n, 1N ), all j ∈ {0, . . . , N − 1}, and
any message M ∈ {0, 1}∗, we have GVerify

(
gpk,M,GSign(gpk, gsk[j],M)

)
= 1

and GOpen
(
gpk, gmsk,M,GSign(gsk[j],M)

)
= j.

In static groups, the security model of Bellare, Micciancio and Warinschi
subsumes the desirable security properties of group signatures using two security
notions called full anonymity and full traceability.



Expanon-b
GS,A(n,N)

(gpk, gmsk,gsk)
← GKeyGen(1n, 1N )

(st, j0, j1,M
?)

← AGS.GOpen(gpk,msk,.,.)
1 (gpk,gsk)

Σ? ← GSign(gpk, gsk[jb],M
?)

b′ ← AGS.GOpen(gpk,msk,.,.),¬(M?,Σ?)
2 (st, Σ?)

Return b′

Exptrace
GS,A(n,N)

(gpk, gmsk,gsk)← GKeygen(1n, 1N )
st← (gmsk, gpk)
C ← ∅ ; K ← ε ; Cont← true
while (Cont = true) do

(Cont, st, j) ←
AGS.GSign(gpk,gsk[·],·)1 (st,K)

if Cont = true then C ← C ∪ {j};
K ← gsk[j]

end if
end while;
(M?, Σ?)← AGS.GSign(gpk,gsk[·],·)2 (st)
if GVerify(gpk,M?, Σ?) = 0, Return 0
if GOpen(gpk, gmsk,M?, Σ?) =⊥,

Return 1
if GOpen(gpk, gmsk,M?, Σ?) = j?

∧ (j? ∈ {0, . . . , N − 1} \ C)
∧ (no signing query involved(j?,M?))

then Return 1 else Return 0

Fig. 3: Experiments for the definitions of anonymity and full traceability

Full anonymity. Full anonymity requires that, without the group manager’s
secret key, no efficient adversary can infer the identity of a user from its sig-
natures. The adversary should even be unable to distinguish signatures from
two distinct users j0, j1, even knowing their private keys gsk[j0], gsk[j1]. More-
over, this should remain true even when the adversary is granted access to an
oracle that opens arbitrary message-signature pairs (M,Σ) 6= (M?, Σ?), where
(M?, Σ?) is the challenge pair generated by the challenger on behalf of user jb,
for some b ∈ {0, 1}. Formally, the attacker, modeled as a two-stage adversary
A = (A1,A2), is run in the first experiment depicted in Figure 3. The adversary’s
advantage is defined as

Advanon
GS,A(n,N) =

∣∣Pr[Expanon-1
GS,A (n,N) = 1]− Pr[Expanon-0

GS,A (n,N) = 1]
∣∣ .

Definition 10 (Full anonymity, [8]). A group signature is fully anonymous
if, for any polynomial N and any PPT adversary A, AdvanonGS,A(n,N) is a negli-
gible function in the security parameter n.

Full traceability. Full traceability mandates that all signatures, even those cre-
ated by colluding users and the group manager who pool their secrets together,
be traceable to a member of the coalition. The attacker is modeled as a two-
stage adversary A = (A1,A2) which is run in the second experiment of Figure 3,
where it is further granted access to an oracle GS.GSign(gpk, gsk[·], ·) that re-
turns signatures on behalf of any honest group member. Its success probability



against GS is measured as

SucctraceGS,A(n,N) = Pr[Exptrace
GS,A(n,N) = 1].

Definition 11 (Full traceability, [8]). A group signature scheme GS is fully
traceable if for any polynomial N and any PPT adversariy A, the probabil-
ity SucctraceGS,A(n,N) is negligible in the security parameter n.

5.2 The Underlying Zero-Knowledge Protocol

The group signature scheme that we will present in Section 5.3 relies on an
extension of the ZKAoK in Section 4.2. An encryption layer is added, and the
prover additionally has to prove that the given 2 Regev ciphertexts both encrypt
the same (j1, . . . , j`)

> that was included in w. The associated relation is defined
as follows.

Definition 12. Define Rgroup =
{

(A,u,B,P1,P2, c1, c2),d, w,x, r1, r2

}
as a

relation where
A ∈ Zn×mq ; u ∈ {0, 1}nk; B ∈ Zn×mE

p ;

∀i ∈ {1, 2} : Pi ∈ Z`×mE
p ; ci = (ci,1, ci,2) ∈ Znp × Z`p;

d ∈ {0, 1}nk; w =
(
(j1, . . . , j`), (w`, . . . ,w1)

)
∈ {0, 1}` × ({0, 1}nk)`;

x ∈ {0, 1}m; r1, r2 ∈ {0, 1}mE

satisfy{
TVerifyA

(
u,d, w

)
= 1 ∧ A · x = G · d mod q

∀i ∈ {1, 2} : ci,1 = B · ri mod p ∧ ci,2 = Pi · ri +
⌊
p
2

⌉
· (j1, . . . , j`)> mod p.

To prove in ZK that the vector (j1, . . . , j`)
T involved in the new layer is the same

(j1, . . . , j`)
T that was included in w, we introduce the following technique.

– For each c ∈ {0, 1}, let extbit(c) =

(
c̄
c

)
∈ {0, 1}2.

– For each b ∈ {0, 1}, we define the permutation Tb that transforms vector

z =

(
z0

z1

)
∈ Z2

p into vector Tb(z) =

(
zb
zb̄

)
.

Observe that the following equivalence holds: For all b ∈ {0, 1} and all z ∈ Z2
p,

z = extbit(ji) ⇔ Tb(z) = extbit(ji ⊕ b). (14)

In Stern’s framework, this equivalence allows us to prove in ZK the possession of
the bit ji, for every i ∈ [`], by extending ji to extbit(ji) and then, by permuting
it with a one-time pad bi. Furthermore, to prove that the same ji is involved in
both layers, we will use the same one-time pad in both layers of the protocol.

Embedding this new technique into the protocol in Section 4.2, we obtain
an argument system for the relation Rgroup. As for the previous two protocols,
they also rely on the string commitment scheme from [41], which is statistically
hiding and computationally binding if the SIVPÕ(n) problem is hard.



Lemma 6. Assume that the SIVPÕ(n) problem is hard. Then, there exists a

statistical ZKAoK for the relation Rgroup with perfect completeness and commu-

nication cost Õ(` · n) +O((mE + `) · log p). In particular:

– There exists an efficient simulator that, on input (A,u,B,P1,P2, c1, c2), out-
puts an accepted transcript which is statistically close to that produced by the
real prover.

– There exists an efficient knowledge extractor that, on input of 3 valid responses
(RSP1,RSP2,RSP3) to the same commitment CMT, outputs (d′, w′,x′, r′1, r

′
2)

such that (
(A,u,B,P1,P2, c1, c2),d′, w′,x′, r′1, r

′
2

)
∈ Rgroup.

The full description and analysis of the argument system are given in Ap-
pendix B.

5.3 Our Construction

Let n be the security parameter, and N = 2` = poly(n) be the maximum ex-
pected number of group users. Parameters m, q, k, κ and the random oracle HFS

are defined as in the ring signature scheme in Section 4.3. To employ the `-bit ver-
sion of Regev’s encryption scheme, we will also need prime modulus p = Õ(n1.5),
parameter mE = 2(n+ `)dlog pe, and an LWE error distribution χ = DZ,2

√
n.

GKeygen(1n, 1N ) : This algorithm begins by sampling a uniformly random ma-

trix A
$←− Zn×mq . Then, it performs the following steps:

1. For each j ∈ [0, N − 1], sample a random binary vector xj
$←− {0, 1}m

and compute dj = bin(A · xj mod q) ∈ {0, 1}nk. In the unlikely event that
{dj}N−1

j=0 are not pairwise distinct, restart the process. Otherwise, define the
set R = (d0, . . . ,dN−1).

2. Run algorithm TAccA(R) to build the Merkle tree based on R and the hash
function hA, and obtain the root u ∈ {0, 1}nk.

3. For each j ∈ [0, N−1], run algorithm TWitnessA(R,dj) to output a witness

w(j) =
(
(j1, . . . , j`) ∈ {0, 1}`, (w(j)

` , . . . ,w
(j)
1 ) ∈ ({0, 1}nk)`

)
to the fact that dj was accumulated in u. (Note that (j1, . . . , j`) is the
binary representation of j.) Then define gsk[j] = (xj ,dj , w

(j)).

4. Sample B
$←− Zn×mE

p . For i ∈ {1, 2}, sample Si
$←− Zn×`p , Ei ←↩ χ`×mE , and

compute Pi = S>i ·B + Ei ∈ Z`×mE
p .

5. Output

gpk := {A,u,B,P1,P2} ; gmsk := S1; gsk := (gsk[0], . . . , gsk[N − 1]).

GSign(gpk, gsk[j],M): To sign M ∈ {0, 1}∗ using gsk[j] = (xj ,dj , w
(j)), where

w(j) =
(
(j1, . . . , j`), (w

(j)
` , . . . ,w

(j)
1 )
)
, the user conducts the following steps:



1. Encrypt (j1, . . . , j`) ∈ {0, 1}` twice using Regev’s encryption scheme. Namely,

for each i ∈ {1, 2}, sample ri
$←− {0, 1}mE and compute

ci = (ci,1, ci,2)

=
(
B · ri mod p, Pi · ri +

⌈p
2

⌋
· (j1, . . . , j`)> mod p

)
∈ Znp × Z`p.

2. Generate a NIZKAoKΠgroup in order to demonstrate the possession of a valid

tuple τ =
(
xj ,dj , w

(j), r1, r2

)
, where w(j) =

(
(j1, . . . , j`), (w

(j)
` , . . . ,w

(j)
1 )
)
,

such that:

(a) A · xj = G · dj mod q and TVerifyA
(
u,dj , w

(j)
)

= 1.
(b) c1 and c2 are both correct encryptions of (j1, . . . , j`) with randomness

r1 and r2, respectively.
This is done by running the protocol in Section 5.2 with public input
(A,u,B,P1,P2, c1, c2) and prover’s witness τ defined above. The proto-
col is repeated κ = ω(log n) times to achieve negligible soundness error
and made non-interactive via the Fiat-Shamir heuristic as a triple Πgroup =
({CMTi}κi=1,CH, {RSP}κi=1), where

CH = HFS

(
M, ({CMTi}κi=1,A,u,B,P1,P2, c1, c2

)
∈ {1, 2, 3}κ.

3. Output the group signature Σ = (Πgroup, c1, c2).

GVerify(gpk,M,Σ) : This algorithm proceeds as follows:

1. Parse Σ as Σ =
(
{CMTi}κi=1, (Ch1, . . . , Chκ), {RSP}κi=1, c1, c2

)
.

If (Ch1, . . . , Chκ) 6= HFS

(
M, ({CMTi}κi=1,A,u,B,P1,P2, c1, c2

)
, then re-

turn 0.
2. For each i = 1 to κ, run the verification phase of the protocol in Section 5.2

with public input (A,u,B,P1,P2, c1, c2) to check the validity of RSPi w.r.t.
CMTi and Chi. If any of the conditions does not hold, then return 0.

3. Return 1.

GOpen(gpk, gmsk, Σ,M): On input gmsk = S1 and a group signature Σ =
(Πgroup, c1, c2) on message M , this algorithm decrypts c1 = (c1,1, c1,2) and
returns an index j ∈ [0, N − 1], as follows:

1. Compute (j′1, . . . , j
′
`) = c1,2 − S>1 · c1,1 ∈ Z`p.

2. For each i ∈ [`], if j′i is closer to 0 than to dp2c modulo p, then let ji = 0;
otherwise, let ji = 1.

3. Output index j ∈ [0, N − 1] that has binary representation (j1, . . . , j`).

Efficiency. The public key consists of a constant number of matrices over
Zq and Zp, where q and p are small moduli. The group signature has bit-size

κ·
(
Õ(`·n)+O((mE+`)·log p)

)
= Õ(logN ·n). The scheme is dramatically more

efficient than previous lattice-based realizations of group signatures. Indeed, its
most important advantage is that it does not require any party to hold a GPV
trapdoor. As observed by Lyubashevsky [50], lattice-based signatures without



trapdoor can be made significantly more efficient.

Correctness. The correctness of algorithm GVerify follows directly from the
correctness of the accumulator scheme in Section 3, and the completeness of the
argument system in Section 5.2. As for the correctness of algorithm GOpen, it
suffices to note that

c1,2 − S>1 · c1,1 = (S>1 ·B + E1) · r1 +
⌈p

2

⌋
· (j1, . . . , j`)> − S>1 ·B · r1

= E1 · r1 +
⌈p

2

⌋
· (j1, . . . , j`)> mod p,

and ‖E1 · r1‖∞ < p/4 with overwhelming probability, for the given setting of
parameters, and the decryption algorithm should return (j1, . . . , j`)

>.

Security. The full traceability property of our scheme is stated in Theorem 6.
In the proof, which is given in Appendix D, we prove that any adversary with
noticeable probability of evading traceability implies an algorithm for either
breaking the security of the underlying accumulator of Section 3, breaking the
computational soundness of the argument system in Section 5.2, or solving an
instance of the SIS∞n,m,q,1 problem.

Theorem 6. The scheme provides full traceability in the random oracle model
if the SIVPÕ(n) problem is hard.

The proof of full anonymity relies on the fact that applying the Naor-Yung
paradigm [57] to Regev’s cryptosystem yields an IND-CCA2 secure cryptosys-
tem. (A similar argument was used by Benhamouda et al. [12] for an NTRU-like
encryption scheme.) Indeed, the argument system of Definition 12 implies that
c1 and c2 encrypt the same message. In the random oracle model, it was already
observed by Fouque and Pointcheval [31] (see [13] for a more general treatment)
that applying the Fiat-Shamir heuristic to Σ-protocols can give simulation-
sound proofs [67]. Similarly to [31,13], the proof of Theorem 7 relies on the
fact that applying Fiat-Shamir to the argument system of Definition 12 yields a
simulation-sound NIZK argument in the random oracle model if the underlying
commitment is computationally binding. This holds even though this argument
system does not have the standard special soundness property (i.e., three ac-
cepting conversations for distinct challenges are necessary to extract a witness).
Simulation-soundness is actually implied by Lemma 6: suppose that c1 and c2

encrypt distinct `-bit strings. This means that there exists no binary vector
(rT1 | rT2 )T such that [

B −B
P1 −P2

]
·
[
r1

r2

]
=

[
c1,1 − c2,1

c2,1 − c2,2

]
.

Now, recall that the computational soundness of all Stern-type protocols is
proved by showing that the knowledge extractor obtains either a set of valid
witnesses or breaks the binding property of the underlying commitment scheme.
Given that the witnesses do not exist if the statement is false, by rewinding a



simulation-soundness adversary sufficiently many times, the knowledge extractor
necessarily extracts two openings of a given commitment.

The proof of Theorem 7 is similar to [67] and given in Appendix E.

Theorem 7. The scheme provides full anonymity if the LWEn,p,χ problem is
hard, and if the argument system is simulation-sound.
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A Full Description and Analysis of the Zero-Knowledge
Protocol Underlying the Ring Signature Scheme

In this section, we provide the full description and analysis of the ZKAoK for the
relation

Rring =
{(

(A,u) ∈ Zn×mq × {0, 1}nk; d ∈ {0, 1}nk, w ∈ {0, 1}` × ({0, 1}nk)`,

x ∈ {0, 1}m
)

: TVerifyA
(
u,d, w

)
= 1 ∧ A · x = G · d mod q

}
.

We first restate Lemma 4.

Lemma 7. Assume that the SIVPÕ(n) problem is hard. Then there exists a sta-

tistical ZKAoK for the relation Rring with perfect completeness and communica-

tion cost Õ(` · n). In particular:

– There exists an efficient simulator that, on input (A,u), outputs an accepting
transcript which is statistically close to that produced by the real prover.

– There exists an efficient knowledge extractor that, on input 3 valid responses
(RSP1,RSP2,RSP3) to the same commitment CMT, outputs (d′, w′,x′) such
that (

(A,u),d′, w′,x′
)
∈ Rring.

A.1 Description of the Protocol

We now describe the protocol. The public parameters are n, q, k,m, `, the “powers-
of-2” matrix G and its extension G∗ = [G|0n×nk] ∈ Zn×mq .

Common inputs: (A,u). Both parties extend A to A∗ as in Section 3.

P’s inputs: d, w,x.

P’s goal: Prove in ZK that

TVerifyA
(
u,d, w

)
= 1 ∧ A · x = G · d mod q.

Let Â ∈ Zn×2m
q be the matrix obtained by appending m zero-columns to

matrix A. (Note that Â 6= A∗.) Let Bm2m be the set of all vectors in {0, 1}2m
having Hamming weight m, and let S2m be the set of all permutations of 2m
elements.

The prover P, possessing a valid tuple (d, w,x), performs the preparation
steps as in the protocol for the relation Racc in Section 3 to obtain v∗i ,w

∗
i ∈ Bnkm ,

zi = ext(ji,v
∗
i ), yi = ext(j̄i,w

∗
i ) for all i ∈ [`] such that{

A∗ · z1 + A∗ · y1 = G · u mod q;

∀i ∈ [`− 1] : A∗ · zi+1 + A∗ · yi+1 = G∗ · v∗i mod q.
(15)

Observe that by construction, one has G∗ ·v∗` = G ·d. First, P extends x into

x∗ ∈ Bm2m. Observe that Â · x∗ = A · x and that, in Stern’s framework, one can



use τ
$←− S2m and rx

$←− Z2m
q to prove the possession of x in a zero-knowledge

manner by using the equivalence:

x∗ ∈ Bm2m ⇔ τ(x∗) ∈ Bm2m. (16)

After the above preparation steps, in the protocol, P will convince V that
it knows v∗i ,w

∗
i ∈ Bnkm , zi = ext(ji,v

∗
i ), yi = ext(j̄i,w

∗
i ), for all i ∈ [`], and

x∗ ∈ Bm2m which satisfy (15) and Â · x∗ = G∗ · v∗` mod q.

Let COM : {0, 1}∗×{0, 1}m → Znq be the string commitment scheme from [41],
which is statistically hiding and computationally binding if the SIVPÕ(n) prob-

lem is hard. The interaction between prover P and verifier V is described in
Figure 4.

A.2 Analysis of the Protocol

Completeness and Communication Cost. The perfect completeness of the
protocol can be verified by inspection: if P is honest and follows the protocol,
then V always outputs 1. It can also be seen that the communication cost of the
protocol is just slightly larger than that of the argument system in Section 3,
and is of order Õ(` ·m · log q) = Õ(` · n).

The proofs that the protocol is a ZKAoK for the relation Rring follow the
same strategy as for the one in Section 3.

Zero-Knowledge Property. We will prove that, if COM is statistically hiding,
then the interactive protocol in Figure 4 is a statistical zero-knowledge argument.
Specifically, we construct a PPT simulator S interacting with a (possibly dishon-

est) verifier V̂ such that, given only the public input, S outputs with probability
close to 2/3 a simulated transcript that is statistically close to the one produced
by the honest prover in the real interaction.

The simulator S begins by selecting a random Ch ∈ {1, 2, 3}. This is a

prediction of the challenge value that V̂ will not choose.

Case Ch = 1: Using linear algebra, S computes z′1, . . . , z
′
`,y
′
1, . . . ,y

′
` ∈ Z2m

q and
v′1, . . . ,v

′
` ∈ Zmq and x′ ∈ Z2m

q such that:
A∗ · z′1 + A∗ · y′1 = G · u mod q;

∀i ∈ [1, `− 1] : A∗ · z′i+1 + A∗ · y′i+1 = G∗ · v′i mod q;

Â · x′ = G∗ · v′` mod q.

Then it samples randomness ρ1, ρ2, ρ3 for COM andb1, . . . , b`
$←− {0, 1}; π1, . . . , π`, φ1, . . . , φ`

$←− Sm; τ
$←− S2m

r
(1)
v , . . . , r

(`)
v

$←− Zmq ; r
(1)
z , . . . , r

(`)
z , r

(1)
y , . . . , r

(`)
y

$←− Z2m
q ; rx

$←− Z2m
q .



1. Commitment. P samples randomness ρ1, ρ2, ρ3 for COM andb1, . . . , b`
$←− {0, 1}; π1, . . . , π`, φ1, . . . , φ`

$←− Sm; τ
$←− S2m

r
(1)
v , . . . , r

(`)
v

$←− Zmq ; r
(1)
z , . . . , r

(`)
z , r

(1)
y , . . . , r

(`)
y

$←− Z2m
q ; rx

$←− Z2m
q .

It then sends V commitment CMT = (C1, C2, C3), where
C1 = COM

(
{bi; πi; φi}`i=1; τ ; A∗ · r(1)

z + A∗ · r(1)
y ; Ârx −G∗r

(`)
v ;

{A∗ · r(i+1)
z + A∗ · r(i+1)

y −G∗ · r(i)
v }`−1

i=1 ; ρ1

)
C2 = COM

(
{πi(r(i)

v ); Fbi,πi(r
(i)
z ); Fb̄i,φi

(r
(i)
y )}`i=1; τ(rx); ρ2

)
C3 = COM

(
{πi(v∗i +r

(i)
v ); Fbi,πi(zi+r

(i)
z ); Fb̄i,φi

(yi+r
(i)
y )}`i=1; τ(x∗+rx); ρ3

)
.

2. Challenge. Receiving CMT, V sends a challenge Ch
$←− {1, 2, 3} to P.

3. Response. Depending on Ch, P sends the response RSP computed as follows:
– Case Ch = 1: Let sx = τ(x∗); tx = τ(rx), and for each i ∈ [`], let:{

ai = ji ⊕ bi; s
(i)
v = πi(v

∗
i ); s

(i)
w = φi(w

∗
i );

t
(i)
v = πi(r

(i)
v ); t

(i)
z = Fbi,πi(r

(i)
z ); t

(i)
y = Fb̄i,φi

(r
(i)
y ).

Then let RSP =
(
{ai; s(i)

v ; t(i)
v ; t(i)

z ; s(i)
w ; t(i)

y }`i=1; sx; tx; ρ2; ρ3

)
. (17)

– Case Ch = 2: Let τ̂ = τ , ex = x∗ + rx, and for each i ∈ [`], let:

ci = bi; π̂i = πi; φ̂i = φi; e(i)
v = v∗i + r(i)

v ; e(i)
z = zi + r(i)

z ; e(i)
y = yi + r(i)

y .

Then let RSP =
(
{ci; π̂i; φ̂i; e(i)

v ; e(i)
z ; e(i)

y }`i=1; τ̂ ; ex; ρ1; ρ3

)
. (18)

– Case Ch = 3: Let τ̃ = τ , px = rx and for each i ∈ [`], let:

di = bi; π̃i = πi; φ̃i = φi; p(i)
v = r(i)

v ; p(i)
z = r(i)

z ; p(i)
y = r(i)

y .

Then let RSP =
(
{di; π̃i; φ̃i; p(i)

v ; p(i)
z ; p(i)

y }`i=1; τ̃ ; px; ρ1; ρ2

)
. (19)

Verification. Receiving RSP, V proceeds as follows.

– Case Ch = 1: Parse RSP as in (17). Check that sx ∈ Bm2m, and s
(i)
v , s

(i)
w ∈ Bnkm for

all i ∈ [`]. Next, for each i ∈ [`], let s
(i)
z = ext(ai, s

(i)
v ) and s

(i)
y = ext(ai, s

(i)
w ). Then

check that:{
C2=COM

(
{t(i)

v ; t
(i)
z ; t

(i)
y }`i=1; tx; ρ2

)
,

C3=COM
(
{s(i)

v +t
(i)
v ; s

(i)
z +t

(i)
z ; s

(i)
y +t

(i)
y }`i=1; sx+tx; ρ3

)
.

(20)

– Case Ch = 2: Parse RSP as in (18) and check that:
C1 = COM

(
{ci; π̂i; φ̂i}`i=1; τ̂ ; A∗ ·e(1)

z +A∗ ·e(1)
y −G·u; Âex −G∗e

(`)
v ;

{A∗ ·e(i+1)
z +A∗ ·e(i+1)

y −G∗ ·e(i)
v }`−1

i=1 ; ρ1

)
C3 = COM

(
{π̂i(e(i)

v ); Fci,π̂i(e
(i)
z ); Fc̄i,φ̂i

(e
(i)
y )}`i=1; τ̂(ex); ρ3

)
.

(21)

– Case Ch = 3: Parse RSP as in (19) and check that:
C1 = COM

(
{di; π̃i; φ̃i}`i=1; τ̃ ; A∗ ·p(1)

z +A∗ ·p(1)
y ; A∗px −G∗p

(`)
v ;

{A∗ ·p(i+1)
z +A∗ ·p(i+1)

y −G∗ ·p(i)
v }`−1

i=1 ; ρ1

)
C2 = COM

(
{π̃i(p(i)

v ); Fdi,π̃i(p
(i)
z ); Fd̄i,φ̃i

(p
(i)
y )}`i=1; τ̃(px); ρ2

)
.

(22)

In each case, V outputs 1 if all the conditions hold. Otherwise, it outputs 0.

Fig. 4: A zero-knowledge argument of knowledge for the relation Rring.



It then sends V commitment CMT = (C ′1, C
′
2, C

′
3), where

C ′1 = COM
(
{bi; πi; φi}`i=1; τ ; A∗ · r(1)

z + A∗ · r(1)
y ; Ârx −G∗r

(`)
v ;

{A∗ · r(i+1)
z + A∗ · r(i+1)

y −G∗ · r(i)
v }`−1

i=1 ; ρ1

)
C2 = COM

(
{πi(r(i)

v ); Fbi,πi
(r

(i)
z ); Fb̄i,φi

(r
(i)
y )}`i=1; τ(rx); ρ2

)
C3 = COM

(
{πi(v′i+r

(i)
v ); Fbi,πi

(z′i+r
(i)
z ); Fb̄i,φi

(y′i+r
(i)
y )}`i=1; τ(x′+rx); ρ3

)
.

(23)

Receiving a challenge Ch from V̂, the simulator responds as follows:

– If Ch = 1: Output ⊥ and abort.
– If Ch = 2: Send

RSP =
(
{bi; πi; φi; v′i + r(i)

v ; z′i + r(i)
z ; y′i + r(i)

y }`i=1; τ ; x′ + rx; ρ1; ρ3

)
.

– If Ch = 3: Send RSP =
(
{bi; πi; φi; r

(i)
v ; r

(i)
z ; r

(i)
y }`i=1; τ ; rx; ρ1; ρ2

)
.

Case Ch = 2: S samples
j′1, . . . , j

′
`

$←− {0, 1}; v′1, . . . ,v
′
`,w

′
1, . . . ,w

′
`

$←− Bnkm ; x′
$←− Bm2m

b1, . . . , b`
$←− {0, 1}; π1, . . . , π`, φ1, . . . , φ`

$←− Sm; τ
$←− S2m

r
(1)
v , . . . , r

(`)
v

$←− Zmq ; r
(1)
z , . . . , r

(`)
z , r

(1)
y , . . . , r

(`)
y

$←− Z2m
q ; rx

$←− Z2m
q .

It then computes z′i = ext(j′i,v
′
i), y′i = ext(j̄′i,w

′
i) for each i ∈ [`], and sends the

commitment CMT computed in the same manner as in (23).

Receiving a challenge Ch from V̂, it responds as follows:

– If Ch = 1: Send

RSP =
(
{j′i ⊕ bi; πi(v′i); πi(r(i)

v ); Fbi,πi(r
(i)
z ); φi(w

′
i); Fb̄i,φi

(r(i)
y )}`i=1;

τ(x′); τ(rx); ρ2; ρ3

)
.

– If Ch = 2: Output ⊥ and abort.
– If Ch = 3: Send RSP computed as in the case (Ch = 1, Ch = 3).

Case Ch = 3: The simulator proceeds the preparation as in the case Ch = 2
above. Then it sends the commitment CMT := (C ′1, C

′
2, C

′
3), where C ′2, C

′
3 are

computed as in (23), while

C ′1 = COM
(
{bi; πi; φi}`i=1; τ ; A∗ · (z′1 + r(1)

z ) + A∗ · (y′1 + r(1)
y )−G · u;

Â · (x′ + rx)−G∗ · (v′` + r(`)
v ;

{A∗ · (z′i+1 + r(i+1)
z ) + A∗ · (y′i+1 + r(i+1)

y )−G∗ · (v′i + r(i)
v )}`−1

i=1 ; ρ1

)
.

Receiving a challenge Ch from V̂, it responds as follows:



– If Ch = 1: Send RSP computed as in the case (Ch = 2, Ch = 1).
– If Ch = 2: Send RSP computed as in the case (Ch = 1, Ch = 2).
– If Ch = 3: Output ⊥ and abort.

We observe that, in every case we have considered above, since COM is statis-
tically hiding, the distribution of the commitment CMT and the distribution of
the challenge Ch from V̂ are statistically close to those in the real interaction.
Hence, the probability that the simulator outputs ⊥ is negligibly far from 1/3.
Moreover, one can check that, whenever the simulator does not halt, it provides
an accepting transcript, the distribution of which is statistically close to that of
the prover in the real interaction. In other words, we have designed a simulator
that can successfully emulate the honest prover with probability negligibly far
from 2/3.

Argument of Knowledge. As for the protocol in Section 3, to prove that the
protocol in Figure 4 is an argument of knowledge for the relation Rring, it suffices
to demonstrate that the protocol has the soundness property [35]. Suppose that
COM is computationally binding, we construct an efficient knowledge extractor
K that, on input 3 valid responses (RSP1,RSP2,RSP3) to the same commitment
CMT, outputs (d′, w′,x′) such that(

(A,u),d′, w′,x′
)
∈ Rring.

Let the 3 valid responses to CMT = (C1, C2, C3) be
RSP1 =

(
{ai; s

(i)
v ; t

(i)
v ; t

(i)
z ; s

(i)
w ; t

(i)
y }`i=1; sx; tx; ρ2; ρ3

)
,

RSP2 =
(
{ci; π̂i; φ̂i; e

(i)
v ; e

(i)
z ; e

(i)
y }`i=1; τ̂ ; ex; ρ1; ρ3

)
,

RSP3 =
(
{di; π̃i; φ̃i; p

(i)
v ; p

(i)
z ; p

(i)
y }`i=1; τ̃ ; px; ρ1; ρ2

)
.

The validity of RSP1 implies that sx ∈ Bm2m and ∀i ∈ [`] : s
(i)
v , s

(i)
w ∈ Bnkm .

Furthermore, it follows from the verification conditions given in (20), (21), (22),
and from the computational binding property of COM that:

A∗ · e(1)
z + A∗ · e(1)

y −G · u = A∗ · p(1)
z + A∗ · p(1)

y mod q,

Â · ex −G∗ · e(`)
v = Â · px −G∗ · p(`)

v mod q,

τ̂ = τ̃ ; tx = τ̃(px); sx + tx = τ̂(ex);

and for all i ∈ [1, `− 1]:

A∗ · e(i+1)
z + A∗ · e(i+1)

y −G∗ · e(i)
v = A∗ · p(i+1)

z + A∗ · p(i+1)
y −G∗ · p(i)

v mod q,

and for all i ∈ [`]:
ci = di; π̂i = π̃i; φ̂i = φ̃i;

t
(i)
v = π̃i(p

(i)
v ); s

(i)
v + t

(i)
v = π̂i(e

(i)
v );

t
(i)
z = Fdi,π̃i

(p
(i)
z ); ext(ai, s

(i)
v ) + t

(i)
z = Fci,π̂i

(e
(i)
z );

t
(i)
y = Fd̄i,φ̃i

(p
(i)
y ); ext(ai, s

(i)
w ) + t

(i)
y = Fc̄i,φ̂i

(e
(i)
y ).



The knowledge extractor K now proceeds as follows. Let x∗ = τ̂−1(sx), and for
each i ∈ [`], let:

ji = ai ⊕ ci; v∗i = π̂−1
i (s(i)

v ); w∗i = φ̂−1
i (s(i)

w ); zi = e(i)
z − p(i)

z ; yi = e(i)
y − p(i)

y .

Note that τ̂(x∗) = sx ∈ Bm2m, and thus x∗ ∈ Bm2m by 16. Also, note that, for

each i ∈ [`], π̂i(v
∗
i ) = s

(i)
v ∈ Bnkm , and thus v∗i ∈ Bnkm . Similarly, w∗i ∈ Bnkm .

Furthermore, we have:

– Fci,π̂i
(zi) = ext(ai, s

(i)
v ) = ext

(
ji⊕ci, π̂i(v∗i )

)
. By (1), this implies zi = ext(ji,v

∗
i ).

– Fc̄i,φ̂i
(yi) = ext(ai, s

(i)
w ) = ext

(
j̄i⊕c̄i, φ̂i(w∗i )

)
. By (1), this implies yi = ext(j̄i,w

∗
i ).

Moreover, we have Â · x∗ = G∗ · v∗` mod q and{
A∗ · z1 + A∗ · y1 = G · u mod q

∀i ∈ [1, `− 1] : A∗ · zi+1 + A∗ · yi+1 = G∗ · v∗i mod q

⇔

{
A∗ · ext(j1,v∗1) + A∗ · ext(j̄i,w∗i ) = G · u mod q

∀i ∈ [1, `− 1] : A∗ · ext(ji+1,v
∗
i+1) + A∗ · ext(j̄i+1,w

∗
i+1) = G∗ · v∗i mod q.

Now, K drops the last m coordinates from x∗ to obtain x′ ∈ {0, 1}m. Also,
by dropping the last nk coordinates from v∗1, . . . ,v

∗
` ,w

∗
1, . . . ,w

∗
` , it obtains

v′1, . . . ,v
′
`,w

′
1, . . . ,w

′
` ∈ {0, 1}nk, respectively. Observe that A·x′ = G·v′` mod q

and the following relations hold:{
A · ext(j1,v′1) + A · ext(j̄1,w′1) = G · u mod q

∀i ∈ [1, `− 1] : A · ext(ji+1,v
′
i+1) + A · ext(j̄i+1,w

′
i+1) = G · v′i mod q

⇔

{
v′0 = u

∀i ∈ [0, `− 1] : v′i = j̄i+1 · hA(v′i+1,w
′
i+1) + ji+1 · hA(wi+1,vi+1)

Let d′ = v′` and w′ =
(
(j1, . . . , j`), (w

′
`, . . . ,w

′
1)
)
, then TVerifyA(u,d′, w′) = 1.

The knowledge extractor K outputs witnesses (d′, w′,x′) which satisfy(
(A,u),d′, w′,x′

)
∈ Rring.

This concludes the proof.

B Full Description and Analysis of the Zero-Knowledge
Protocol Underlying the Group Signature Scheme

In this section, we provide the full description and analysis of the ZKAoK for the

relation Rgroup =
{

(A,u,B,P1,P2, c1, c2),d, w,x, r1, r2

}
where

A ∈ Zn×mq ; u ∈ {0, 1}nk; B ∈ Zn×mE
p ;

∀i ∈ {1, 2} : Pi ∈ Z`×mE
p ; ci = (ci,1, ci,2) ∈ Znp × Z`p;

d ∈ {0, 1}nk; w =
(
(j1, . . . , j`), (w`, . . . ,w1)

)
∈ {0, 1}` × ({0, 1}nk)`;

x ∈ {0, 1}m; r1, r2 ∈ {0, 1}mE



satisfying{
TVerifyA

(
u,d, w

)
= 1 ∧ A · x = G · d mod q

∀i ∈ {1, 2} : ci,1 = B · ri mod p ∧ ci,2 = Pi · ri +
⌊
p
2

⌉
· (j1, . . . , j`)> mod p.

We first restate Lemma 6.

Lemma 8. Assume that the SIVPÕ(n) problem is hard. Then, there exists a

statistical ZKAoK for the relation Rgroup with perfect completeness and commu-

nication cost Õ(` · n) +O((mE + `) · log p). In particular:

– There exists an efficient simulator that, on input (A,u,B,P1,P2, c1, c2), out-
puts an accepting transcript which is statistically close to that produced by the
real prover.

– There exists an efficient knowledge extractor that, on input 3 valid responses
(RSP1,RSP2,RSP3) to the same commitment CMT, outputs (d′, w′,x′, r′1, r

′
2)

such that (
(A,u,B,P1,P2, c1, c2),d′, w′,x′, r′1, r

′
2

)
∈ Rgroup.

Another Permutation Technique. Our ZKAoK for the relation Rgroup is an
extension of the one for Rring. In order to prove in ZK that the vector (j1, . . . , j`)
involved in the new layer is the same (j1, . . . , j`) that was included in w, we
introduce the following technique.

– For each b ∈ {0, 1}, let extbit(b) =

(
b̄
b

)
∈ {0, 1}2.

– For each b ∈ {0, 1}, we define the permutation Tb that transforms vector

z =

(
z0

z1

)
∈ Z2

p into vector Tb(z) =

(
zb
zb̄

)
.

Observe that we have the following equivalence: For all c, b ∈ {0, 1} and z ∈ Z2
p,

z = extbit(c) ⇔ Tb(z) = extbit(c⊕ b). (24)

This equivalence allows proving in ZK the possession of the bit ji, for every i ∈ [`],
using a one-time pad bi. Furthermore, to prove that the same ji is involved in
both layers, we will use the same bi in both layers of the protocol.

Preparation Steps. We first observe that the 4 equations:
c1,1 = B · r1 mod p

c1,2 = P1 · r1 +
⌊
p
2

⌉
· (j1, . . . , j`)> mod p

c2,1 = B · r2 mod p

c2,2 = P2 · r2 +
⌊
p
2

⌉
· (j1, . . . , j`)> mod p

(25)

can be equivalently written in a more compact form:
c1,1

c1,2

c2,1

c2,2

 =


B

P1

0

0
B

P2

 ·
(

r1

r2

)
+


0

bp2e · I`
0

bp2e · I`

 ·

j1
·
·
j`

 mod p. (26)



We now perform the following extensions:

– Append 2mE zero-columns to the matrix


B

P1

0

0
B

P2

 ∈ Z2(n+`)×2mE
p so as

to obtain matrix B∗ ∈ Z2(n+`)×4mE
p .

– Extend

(
r1

r2

)
∈ {0, 1}2mE to vector f∗ ∈ B2mE

4mE
, where B2mE

4mE
denotes the

set of all vectors in {0, 1}4mE that have Hamming weight 2mE .

– Let the columns of matrix


0

bp2e · I`
0

bp2e · I`

 ∈ Z2(n+`)×`
p be h1, . . . ,h` ∈ Z2(n+`)

p .

For each i ∈ [`], prepend a zero-column to hi so as to obtain a two-column

matrix Hi = [0|hi] ∈ Z2(n+`)×2
p .

– For each i ∈ [`], let gi = extbit(ji).

Let c =


c1,1

c1,2

c2,1

c2,2

 ∈ Z2(n+`)
p , then (26) can be rewritten as:

B∗ · f∗ +
∑̀
i=1

Hi · gi = c mod p.

The possession of f∗ and {gi}`i=1 that satisfy the above equation can be proved
in ZK using the usual masking-permuting technique (for f∗) and the technique
introduced at the beginning of this section.

B.1 Description of the Protocol

The public parameters are n, q, k,m, `, p,mE , the “powers-of-2” matrix G and
its extension G∗ = [G|0n×nk] ∈ Zn×mq , and matrices Hi defined above.

Common Inputs: (A,u,B,P1,P2, c1, c2). Both parties form matrices A∗, Â
as in the previous protocols, and matrix B∗ and vector c as described above.

P’s Input: (d, w,x, r1, r2). P performs the preparation steps of the previous
protocols, as well as the steps described above to obtain: {v∗i }`i=1, {w∗i }`i=1,
{zi}`i=1, {yi}`i=1, x∗, f∗, {gi}`i=1.



P’s Goal: Convince V in ZK that

∀i ∈ [`] : v∗i ,w
∗
i ∈ Bnkm ; zi = ext(ji,v

∗
i ); yi = ext(j̄i,w

∗
i ); gi = extbit(ji);

x∗ ∈ Bm2m; f∗ ∈ B2mE
4mE

.

A∗ · z1 + A∗ · y1 = G · u mod q;

∀i ∈ [`− 1] : A∗ · zi+1 + A∗ · yi+1 = G∗ · v∗i mod q;

Â · x∗ = G∗ · v∗` mod q;

B∗ · f∗ +
∑`
i=1 Hi · gi = c mod p.

Let COM : {0, 1}∗×{0, 1}m → Znq be the statistically hiding and computationally
binding string commitment scheme from [41]. The interaction between prover P
and verifier V is described in Figure 5.

B.2 Analysis of the Protocol

Completeness and Communication Cost. The perfect completeness of the
protocol can be verified by inspection: if P is honest and follows the protocol,
then V always outputs 1. It can also be seen that the communication cost of the
protocol is O((mE + `) · log p) bits larger than that of the argument system in

Section 4, and is of order Õ(` ·m · log q) +O((mE + `) · log p) = Õ(` · n), for the
given setting of parameters.

The proofs that the protocol is a ZKAoK for the relation Rring follow the
same strategy as for the one in Section 3 and Section 4.

Zero-Knowledge Property. We will prove that, if COM is statistically hiding,
then the interactive protocol in Figure 5 is a statistical zero-knowledge argument.
Specifically, we construct a PPT simulator S interacting with a (possibly dishon-

est) verifier V̂, such that, given only the public input, S outputs with probability
negligibly far apart from 2/3 a simulated transcript that is statistically close to
the one produced by the honest prover in the real interaction.

The simulator S begins by selecting a random Ch ∈ {1, 2, 3}. This is a

prediction of the challenge value that V̂ will not choose.

Case Ch = 1: Using linear algebra, S computes z′1, . . . , z
′
`,y
′
1, . . . ,y

′
` ∈ Z2m

q ,
v′1, . . . ,v

′
` ∈ Zmq , x′ ∈ Z2m

q , f ′ ∈ Z4mE
p , and g′1, . . . ,g

′
` ∈ Z2

p such that:
A∗ · z′1 + A∗ · y′1 = G · u mod q;

∀i ∈ [1, `− 1] : A∗ · z′i+1 + A∗ · y′i+1 = G∗ · v′i mod q;

Â · x′ = G∗ · v′` mod q;

B∗ · f ′ +
∑`
i=1 Hi · g′i = c mod p.

Then, it samples randomness ρ1, ρ2, ρ3 for COM and
b1, . . . , b`

$←− {0, 1}; π1, . . . , π`, φ1, . . . , φ`
$←− Sm; τ

$←− S2m; ψ
$←− S4mE

;

r
(1)
v , . . . , r

(`)
v

$←− Zmq ; r
(1)
z , . . . , r

(`)
z , r

(1)
y , . . . , r

(`)
y

$←− Z2m
q ; rx

$←− Z2m
q ;

rf
$←− Z4mE

p ; r
(1)
g , . . . , r

(1)
g

$←− Z2
p.



1. Commitment. P samples randomness ρ1, ρ2, ρ3 for COM and
b1, . . . , b`

$←− {0, 1}; π1, . . . , π`, φ1, . . . , φ`
$←− Sm; τ

$←− S2m; ψ
$←− S4mE ;

r
(1)
v , . . . , r

(`)
v

$←− Zmq ; r
(1)
z , . . . , r

(`)
z , r

(1)
y , . . . , r

(`)
y

$←− Z2m
q ; rx

$←− Z2m
q ;

rf
$←− Z4mE

p ; r
(1)
g , . . . , r

(1)
g

$←− Z2
p.

It then sends V commitment CMT = (C1, C2, C3), where

C1 = COM
(
{bi; πi; φi}`i=1; τ ; ψ; A∗ · r(1)

z + A∗ · r(1)
y ; Ârx −G∗r

(`)
v ;

{A∗ · r(i+1)
z + A∗ · r(i+1)

y −G∗ · r(i)
v }`−1

i=1 ; B∗ · rf +
∑`
i=1 Hi · r(i)

g ; ρ1

)
C2 = COM

(
{πi(r(i)

v ); Fbi,πi(r
(i)
z ); Fb̄i,φi

(r
(i)
y )}`i=1; τ(rx); ψ(rf ); {Tbi(r

(i)
g )}`i=1; ρ2

)
C3 = COM

(
{πi(v∗i +r

(i)
v ); Fbi,πi(zi+r

(i)
z ); Fb̄i,φi

(yi+r
(i)
y )}`i=1; τ(x∗+rx);

ψ(f∗ + rf ); {Tbi(gi + r
(i)
g )}`i=1; ρ3

)
.

2. Challenge. Receiving CMT, V sends a challenge Ch
$←− {1, 2, 3} to P.

3. Response. Depending on Ch, P sends the response RSP computed as follows:
– Case Ch = 1: Let sx = τ(x∗); tx = τ(rx); sf = ψ(f∗); tf = ψ(rf ); and ∀ i ∈ [`]:{

ai = ji ⊕ bi; s
(i)
v = πi(v

∗
i ); s

(i)
w = φi(w

∗
i ); s

(i)
g = Tbi(gi);

t
(i)
v = πi(r

(i)
v ); t

(i)
z = Fbi,πi(r

(i)
z ); t

(i)
y = Fb̄i,φi

(r
(i)
y ); t

(i)
g = Tbi(r

(i)
g ).

RSP :=
(
{ai; s(i)

v ; t(i)
v ; t(i)

z ; s(i)
w ; t(i)

y }`i=1; sx; tx; sf ; tf ; {s(i)
g , t(i)

g }`i=1; ρ2; ρ3

)
. (27)

– Case Ch = 2: Let τ̂ = τ , ex = x∗ + rx; ψ̂ = ψ, ef = f∗ + rf ; and ∀ i ∈ [`], let:

ci = bi; π̂i = πi; φ̂i = φi; e(i)
v = v∗i+r(i)

v ; e(i)
z = zi+r(i)

z ; e(i)
y = yi+r(i)

y ; e(i)
g = gi+r(i)

g .

RSP :=
(
{ci; π̂i; φ̂i; e(i)

v ; e(i)
z ; e(i)

y }`i=1; τ̂ ; ex; ψ̂; ef ; {e(i)
g }`i=1; ρ1; ρ3

)
. (28)

– Case Ch = 3: Let τ̃ = τ , px = rx; and ψ̃ = ψ, pf = rf ; and ∀ i ∈ [`], let:

di = bi; π̃i = πi; φ̃i = φi; p(i)
v = r(i)

v ; p(i)
z = r(i)

z ; p(i)
y = r(i)

y ; p(i)
g = r(i)

g .

RSP :=
(
{di; π̃i; φ̃i; p(i)

v ; p(i)
z ; p(i)

y }`i=1; τ̃ ; px; ψ̃; pf ; {p(i)
g }`i=1; ρ1; ρ2

)
. (29)

Verification. Receiving RSP, V proceeds as follows.

– Case Ch = 1: Parse RSP as in (27). Check that sx ∈ Bm2m, sf ∈ B2mE
4mE

and for all

i ∈ [`]: s
(i)
v , s

(i)
w ∈ Bnkm , s

(i)
g = extbit(ai).

Next, for each i ∈ [`], let s
(i)
z = ext(ai, s

(i)
v ) and s

(i)
y = ext(ai, s

(i)
w ), and check that:{

C2=COM
(
{t(i)

v ; t
(i)
z ; t

(i)
y }`i=1; tx; tx; tf ; {t(i)

g }`i=1; ρ2

)
,

C3=COM
(
{s(i)

v +t
(i)
v ; s

(i)
z +t

(i)
z ; s

(i)
y +t

(i)
y }`i=1; sx+tx; sf+tf ; {s(i)

g +t
(i)
g }`i=1; ρ3

)
.
(30)

– Case Ch = 2: Parse RSP as in (28) and check that:
C1 = COM

(
{ci; π̂i; φ̂i}`i=1; τ̂ ; ; ψ̂; A∗ ·e(1)

z +A∗ ·e(1)
y −G·u; Âex −G∗e

(`)
v ;

{A∗ ·e(i+1)
z +A∗ ·e(i+1)

y −G∗ ·e(i)
v }`−1

i=1 ; B∗ ·ef +
∑`
i=1 Hi · e(i)

g − c; ρ1

)
C3 = COM

(
{π̂i(e(i)

v );Fci,π̂i(e
(i)
z );Fc̄i,φ̂i

(e
(i)
y )}`i=1; τ̂(ex); ψ̂(ef ); {Tci(e

(i)
g )}`i=1; ρ3

)
.

(31)

– Case Ch = 3: Parse RSP as in (29) and check that:
C1 = COM

(
{di; π̃i; φ̃i}`i=1; τ̃ ; ψ̃; A∗ ·p(1)

z +A∗ ·p(1)
y ; A∗px −G∗p

(`)
v ;

{A∗ ·p(i+1)
z +A∗ ·p(i+1)

y −G∗ ·p(i)
v }`−1

i=1 ; B∗ ·pf +
∑`
i=1 Hi ·p(i)

g ; ρ1

)
C2 = COM

(
{π̃i(p(i)

v ); Fdi,π̃i(p
(i)
z ); Fd̄i,φ̃i

(p
(i)
y )}`i=1; τ̃(px); ψ̃(pf ); {Tdi(p

(i)
g )}; ρ2

)
.

(32)

In each case, V outputs 1 if all the conditions hold. Otherwise, it outputs 0.

Fig. 5: A zero-knowledge argument of knowledge for the relation Rgroup.



It then sends V commitment CMT = (C ′1, C
′
2, C

′
3), where

C ′1 = COM
(
{bi; πi; φi}`i=1; τ ; ψ; A∗ · r(1)

z + A∗ · r(1)
y ; Ârx −G∗r

(`)
v ;

{A∗ · r(i+1)
z + A∗ · r(i+1)

y −G∗ · r(i)
v }`−1

i=1 ; B∗ · rf +
∑`
i=1 Hi · r(i)

g ; ρ1

)
C ′2 = COM

(
{πi(r(i)

v ); Fbi,πi(r
(i)
z ); Fb̄i,φi

(r
(i)
y )}`i=1; τ(rx);

ψ(rf ); {Tbi(r
(i)
g )}`i=1; ρ2

)
C ′3 = COM

(
{πi(v′i+r

(i)
v ); Fbi,πi

(z′i+r
(i)
z ); Fb̄i,φi

(y′i+r
(i)
y )}`i=1;

τ(x′+rx); ψ(f ′ + rf ); {Tbi(g′i + r
(i)
g )}`i=1; ρ3

)
.

(33)

Receiving a challenge Ch from V̂, the simulator responds as follows:

– If Ch = 1: Output ⊥ and abort.
– If Ch = 2: Send

RSP =
(
{bi; πi; φi; v′i + r(i)

v ; z′i + r(i)
z ; y′i + r(i)

y }`i=1; τ ; x′ + rx;

ψ; f ′ + rf ; {g′i + r(i)
g }; ρ1; ρ3

)
.

– If Ch = 3: Send

RSP =
(
{bi; πi; φi; r(i)

v ; r(i)
z ; r(i)

y }`i=1; τ ; rx; ψ; rf ; {r(i)
g }; ρ1; ρ2

)
.

Case Ch = 2: S samples
j′1, . . . , j

′
`

$←− {0, 1}; v′1, . . . ,v
′
`,w

′
1, . . . ,w

′
`

$←− Bnkm ; x′
$←− Bm2m; f ′

$←− B2mE
4mE

;

b1, . . . , b`
$←− {0, 1}; π1, . . . , π`, φ1, . . . , φ`

$←− Sm; τ
$←− S2m; ψ

$←− S4mE
;

r
(1)
v , . . . , r

(`)
v

$←− Zmq ; r
(1)
z , . . . , r

(`)
z , r

(1)
y , . . . , r

(`)
y

$←− Z2m
q ; rx

$←− Z2m
q ;

rf
$←− Z4mE

p ; r
(1)
g , . . . , r

(1)
g

$←− Z2
p.

It then computes z′i = ext(j′i,v
′
i), y′i = ext(j̄′i,w

′
i), and g′i = extbit(j′i) for each

i ∈ [`], and sends the commitment CMT = (C ′1, C
′
2, C

′
3) computed in the same

manner as in (33).

Receiving a challenge Ch from V̂, it responds as follows:

– If Ch = 1: Send

RSP =
(
{j′i ⊕ bi; πi(v′i); πi(r(i)

v ); Fbi,πi
(r(i)

z ); φi(w
′
i); Fb̄i,φi

(r(i)
y )}`i=1;

τ(x′); τ(rx); ψ(f ′); {Tbi(g′i), Tbi(r(i)
g )}; ρ2; ρ3

)
.

– If Ch = 2: Output ⊥ and abort.
– If Ch = 3: Send RSP computed as in the case (Ch = 1, Ch = 3).

Case Ch = 3: The simulator proceeds the preparation as in the case Ch = 2
above. Then it sends the commitment CMT := (C ′1, C

′
2, C

′
3), where C ′2, C

′
3 are



computed as in (33), while

C ′1 = COM
(
{bi; πi; φi}`i=1; τ ; ψ; A∗ · (z′1 + r(1)

z ) + A∗ · (y′1 + r(1)
y )−G · u;

Â · (x′ + rx)−G∗ · (v′` + r(`)
v ;

{A∗ · (z′i+1 + r(i+1)
z ) + A∗ · (y′i+1 + r(i+1)

y )−G∗ · (v′i + r(i)
v )}`−1

i=1 ;

B∗ · (f ′ + rf ) +
∑̀
i=1

Hi · (g′i + r(i)
g )− c; ρ1

)
.

Receiving a challenge Ch from V̂, it responds as follows:

– If Ch = 1: Send RSP computed as in the case (Ch = 2, Ch = 1).
– If Ch = 2: Send RSP computed as in the case (Ch = 1, Ch = 2).
– If Ch = 3: Output ⊥ and abort.

We observe that, in every case we have considered above, since COM is statis-
tically hiding, the distribution of the commitment CMT and the distribution
of the challenge Ch from V̂ are statistically close to those in the real interac-
tion. Hence, the probability that the simulator outputs ⊥ is negligibly far apart
from 1/3. Moreover, one can check that, whenever the simulator does not halt, it
provides a valid transcript, the distribution of which is statistically close to that
of the prover in the real interaction. In other words, we have built a simulator
that can successfully emulate the honest prover with probability negligibly far
from 2/3.

Argument of Knowledge. As for the protocols in Section 3 and (4), to prove
that the protocol in Figure 5 is an argument of knowledge for the relation Rgroup,
it suffices to demonstrate that the protocol has the soundness property [35]. Sup-
pose that COM is computationally binding, we construct an efficient knowledge
extractor K that, on input 3 valid responses (RSP1,RSP2,RSP3) to the same
commitment CMT, outputs (d′, w′,x′, r′1, r

′
2) such that(

(A,u,B,P1,P2, c1, c2),d′, w′,x′, r′1, r
′
2

)
∈ Rgroup.

Let the 3 valid responses to CMT = (C1, C2, C3) be
RSP1 =

(
{ai; s

(i)
v ; t

(i)
v ; t

(i)
z ; s

(i)
w ; t

(i)
y }`i=1; sx; tx; sf ; tf ; {s(i)

g , t
(i)
g }`i=1; ρ2; ρ3

)
,

RSP2 =
(
{ci; π̂i; φ̂i; e

(i)
v ; e

(i)
z ; e

(i)
y }`i=1; τ̂ ; ex; ψ̂; ef ; {e(i)

g }`i=1; ρ1; ρ3

)
,

RSP3 =
(
{di; π̃i; φ̃i; p

(i)
v ; p

(i)
z ; p

(i)
y }`i=1; τ̃ ; px; ψ̃; pf ; {p(i)

g }`i=1; ρ1; ρ2

)
.

The validity of RSP1 implies that sx ∈ Bm2m, sf ∈ B2mE
4mE

and for all i ∈ [`] :

s
(i)
v , s

(i)
w ∈ Bnkm and s

(i)
g = extbit(ai). Furthermore, it follows from the verification

conditions given in (30), (31), (32), and from the computational binding property
of COM that:

A∗ · e(1)
z + A∗ · e(1)

y −G · u = A∗ · p(1)
z + A∗ · p(1)

y mod q,

Â · ex −G∗ · e(`)
v = Â · px −G∗ · p(`)

v mod q,

B∗ · ef +
∑`
i=1 Hi · e(i)

g − c = B∗ · pf +
∑`
i=1 Hi · p(i)

g mod p;

τ̂ = τ̃ ; tx = τ̃(px); sx + tx = τ̂(ex); ψ̂ = ψ̃; tf = ψ̃(pf ); sf + tf = ψ̂(ef )



and for all i ∈ [1, `− 1]:

A∗ · e(i+1)
z + A∗ · e(i+1)

y −G∗ · e(i)
v = A∗ · p(i+1)

z + A∗ · p(i+1)
y −G∗ · p(i)

v mod q,

and for all i ∈ [`]:

ci = di; π̂i = π̃i; φ̂i = φ̃i;

t
(i)
v = π̃i(p

(i)
v ); s

(i)
v + t

(i)
v = π̂i(e

(i)
v );

t
(i)
z = Fdi,π̃i

(p
(i)
z ); ext(ai, s

(i)
v ) + t

(i)
z = Fci,π̂i

(e
(i)
z );

t
(i)
y = Fd̄i,φ̃i

(p
(i)
y ); ext(ai, s

(i)
w ) + t

(i)
y = Fc̄i,φ̂i

(e
(i)
y );

t
(i)
g = Tdi(p

(i)
g ); s

(i)
g + t

(i)
g = Tci(e

(i)
g ).

Now K proceeds as follows. Let x∗ = τ̂−1(sx), f∗ = ψ̂−1(sf ), and for each i ∈ [`],
let:{
ji = ai ⊕ ci; v∗i = π̂−1

i (s
(i)
v ); w∗i = φ̂−1

i (s
(i)
w ); zi = e

(i)
z − p

(i)
z ; yi = e

(i)
y − p

(i)
y ;

gi = e
(i)
g − p

(i)
g .

Note that τ̂(x∗) = sx ∈ Bm2m, and thus x∗ ∈ Bm2m; ψ̂(f∗) = sf ∈ B2mE
4mE

, and thus

f∗ ∈ B2mE
4mE

. Also note that for all i ∈ [`], π̂i(v
∗
i ) = s

(i)
v ∈ Bnkm , and thus v∗i ∈ Bnkm .

Similarly, w∗i ∈ Bnkm . Furthermore, one has that:

– Fci,π̂i
(zi) = ext(ai, s

(i)
v ) = ext

(
ji⊕ci, π̂i(v∗i )

)
. By (1), this implies zi = ext(ji,v

∗
i ).

– Fc̄i,φ̂i
(yi) = ext(ai, s

(i)
w ) = ext

(
j̄i⊕c̄i, φ̂i(w∗i )

)
. By (1), this implies yi = ext(j̄i,w

∗
i ).

– Tci(gi) = extbit(ai) = extbit(ji ⊕ ci). By (24), this implies gi = extbit(ji).

Moreover, one has that Â ·x∗ = G∗ ·v∗` mod q; B∗ · f∗+
∑`
i=1 Hi ·gi = c mod p,

and that:{
A∗ · z1 + A∗ · y1 = G · u mod q

∀i ∈ [1, `− 1] : A∗ · zi+1 + A∗ · yi+1 = G∗ · v∗i mod q

⇔

{
A∗ · ext(j1,v∗1) + A∗ · ext(j̄i,w∗i ) = G · u mod q

∀i ∈ [1, `− 1] : A∗ · ext(ji+1,v
∗
i+1) + A∗ · ext(j̄i+1,w

∗
i+1) = G∗ · v∗i mod q.

Now, K drops the last m coordinates from x∗ to obtain x′ ∈ {0, 1}m; drops the

last 2mE coordinates from f∗ to obtain

(
r′1
r′2

)
∈ Z2mE

p . Also, by dropping the last

nk coordinates from v∗1, . . . ,v
∗
` ,w

∗
1, . . . ,w

∗
` , it obtains v′1, . . . ,v

′
`,w

′
1, . . . ,w

′
` ∈

{0, 1}nk, respectively.
Observe that r′1, r

′
2 and (j1, . . . , j`) satisfy equation (26), and hence, also

satisfy the equivalent equation (25).
Observe also that A · x′ = G · v′` mod q, and the following relations hold:{

A · ext(j1,v′1) + A · ext(j̄1,w′1) = G · u mod q

∀i ∈ [1, `− 1] : A · ext(ji+1,v
′
i+1) + A · ext(j̄i+1,w

′
i+1) = G · v′i mod q

⇔

{
v′0 = u

∀i ∈ [0, `− 1] : v′i = j̄i+1 · hA(v′i+1,w
′
i+1) + ji+1 · hA(wi+1,vi+1)



Let d′ = v′` and w′ =
(
(j1, . . . , j`), (w

′
`, . . . ,w

′
1)
)
, then TVerifyA(u,d′, w′) = 1.

The knowledge extractor K outputs (d′, w′,x′, r′1, r
′
2). It follows from the

above discussion that(
(A,u,B,P1,P2, c1, c2),d′, w′,x′, r′1, r

′
2

)
∈ Rgroup.

This concludes the proof.

C Proof of Theorem 4

Proof. In the random oracle model, assuming that an adversary A has non-
negligible advantage ε in the game of Definition 7, we construct an algorithm B
that either breaks the security of the accumulator in Section 3, breaks the com-
putational soundness of the protocol of Lemma 4, or directly solves an SIS∞n,m,q,1
instance A with non-negligible probability.

To this end, B defines the public parameters by setting pp = A. During the
game, it faithfully answers all queries to the PKGen oracle and thus provides
A with public keys pk = bin(A · x mod q) that are distributed exactly as in the
real scheme. At each PKGen-query, B retains the underlying chosen secret key
sk = x ∈ {0, 1}m for later use. Knowing all users’ secret keys, the reduction B
is able to perfectly answer all corruption queries as well as queries to the sign-
ing oracle Sign(., ., .). Queries to the random oracle HFS(.) are answered in the
standard way, by outputting uniformly random elements of the range {1, 2, 3}κ.
Of course, the adversary obtains the same answer in case the same hash query
HFS(.) occurs more than once.

WhenA halts, it outputs a triple (M?, R?, Σ?) that properly verifies although
no member of R? was corrupted and no Sign(.,M?, R?) was made. Let us re-
write R? = (pki1 , . . . , pii|R?|) as a set of binary vectors (d0, . . . ,d|R?|). If we
parse Σ? as an argument of knowledge Π?

ring = ({CMT?i }κi=1,CH?, {RSP?}κi=1),
with all but negligible probability, A must have invoked the random oracle HFS

on the input
(
M?, {CMT?i }κi=1,A,u

?, R?
)
, where u? = TAccA(R?). Otherwise,

the probability that CH? = HFS

(
M?, {CMT?i }κi=1,A,u

?, R?
)

would be smaller
than 3−κ, making A’s success probability negligible. With probability at least
ε′ := ε − 3−κ, the tuple

(
M?, {CMT?i }κi=1,A,u

?, R?
)

has been the input of a
random oracle query and we call t? ∈ {1, . . . , QH} the index of this hash query.

Then, algorithm B runs up to 32 · QH/(ε − 3−κ) extra executions of the
adversary A with the same random tape and input as in the first execution.
In each new run, all queries receive exactly the same answers as in the first
run until the t†-th random oracle query where a forking occurs. Namely, the
first t? − 1 HFS-queries – which must coincide with those of the first run given
that A is provided with the same random tape – obtain the same responses
CH1, . . . ,CHt?−1 as in the first run. This implies that the t?-th query necessarily
involves the same input

(
M?, {CMT?i }κi=1,A,u

?, R?
)

as in the initial run. The
forking occurs at the moment of the t?-th query from which A’s HFS-queries
receive fresh random responses CH′t? , . . . ,CH′QH

at each new run. The Fork-
ing Lemma of Brickell et al. [19] tells us that, with probability at least 1/2,



B can obtain a 3-fork involving the same tuple
(
M?, {CMT?i }κi=1,A,u

?, R?
)

with pairwise distinct responses CH
(1)
t? ,CH

(2)
t? ,CH

(3)
t? ∈ {1, 2, 3}κ. With proba-

bility 1 − (7/9)κ, the results of [19] imply that there exists j ∈ {1, . . . , κ} for

which the j-th bits of CH
(1)
t? ,CH

(2)
t? ,CH

(3)
t? are (Ch

(1)
t?,j , Ch

(2)
t?,j , Ch

(3)
t?,j) = (1, 2, 3).

The soundness of the argument system for relation Rring implies that, from

the responses (RSP?
(1)
,RSP?

(2)
,RSP?

(3)
), algorithm B can extract witnesses

(x?,d?, w?), where w? =
(
(j?1 , . . . , j

?
` ), (w?

` , . . . ,w
?
1)
)

such that (j?1 , . . . , j
?
` ) ∈

{0, 1}` is the binary expansion of some index j? ∈ {0, . . . , |R?| − 1} and

A · x? = G · d? mod q, and TVerifyA
(
u?,d?, w?

)
= 1. (34)

At this point, we distinguish two cases:

- d? 6∈ R? = (d0, . . . ,d|R?|−1). Then, the second condition of (34) implies that
B can use (d?, R?,u?) to break the security of the accumulator.

- d? ∈ R? = (d0, . . . ,d|R?|−1), so that d? = dj? = pkj? . The soundness of the
argument system implies that the extracted witnesses (dj? ,x

?) satisfy the
first condition of (34). Recall that skj? consists of a vector xj? ∈ {0, 1}m
chosen by B at some PKGen query which satisfies

G · dj? = A · xj? mod q.

Since A did not corrupt user j?, we claim that xj? 6= x? with probability
at least 1/2. The first condition of (34) then implies that A · (xj? − x?) =
0 mod q, which yields a valid SIS solution w = xj? − x? ∈ {−1, 0, 1}m. To
argue that xj? 6= x? with probability at least 1/2, we have to recap what
A can learn about xj? during the game. We note that, in the extreme case,
|R?| = 1, so that can A learn u? = dj? . However, by Lemma 5, there
exists at least another vector x? 6= xj? for which dj? = bin(A · x? mod q).
Given that the argument system of Definition 4 is statistically WI (recall
that statistical ZK implies statistical WI when a statement has at least two
witnesses), signing queries of the form (j?, ., .) only leak a negligible amount
of information regarding which witness among x? and xj? is used to answer
signing queries. With probability at least 1/2, the knowledge extractor thus
obtains x? 6= xj? , as claimed.

It follows that a ring forger A implies an algorithm B that either directly solves
an instance of the SIS∞n,m,q,1 problem, breaks the security of the accumulator of
Section 3, or breaks the soundness of the zero-knowledge argument of Lemma 4.
Thus, assuming that SIVPÕ(n) is hard, the scheme provides unforgeability in the

random oracle model. ut

D Proof of Theorem 6

Proof. For the sake of contradiction, let us assume that an adversary A can win
the full traceability experiment with noticeable advantage ε. We build an algo-
rithm B that solves a SIS∞n,m,q,1 instance A with non-negligible probability.



To this end, the reduction B faithfully runs the GKeygen algorithm and
thus provides the adversary with a public key gpk that has exactly the pre-
scribed distribution. This also allows the reduction B to have at disposal all
users’ private keys gsk[j] = (xj ,dj , w

(j)), where u = TAccA(d0, . . . ,d1) and
dj = bin(A · xj) ∈ {0, 1}nk for each j ∈ {0, . . . , N − 1}. For this reason, B can
consistently answer all user corruption queries and, at each signing query (j,M),
return a valid signature on behalf of user j by following the exact specification
of the signing algorithm.

When the adversary A halts, it outputs a pair (M?, Σ?) that presumably
opens to some honest user j? ∈ {0, . . . , N − 1} \ C, where C denotes the set
of corrupted users at the end of the game. If we parse Σ? as (Π?

group, c
?
1, c

?
2)

and the proof of knowledge Π?
group as ({CMT?i }κi=1,CH?, {RSP?}κi=1), with over-

whelming probability, the adversary must have queried the random oracle HFS

on the input
(
M?, {CMT?i }κi=1,A,u,B,P1,P2, c

?
1, c

?
2

)
. Otherwise, the proba-

bility that CH? = HFS

(
M?, {CMT?i }κi=1,A,u,B,P1,P2, c

?
1, c

?
2

)
would be at

most 3−κ, which is negligible. With probability at least ε′ := ε− 3−κ, the tuple(
M?, {CMT?i }κi=1,A,u,B,P1,P2, c

?
1, c

?
2

)
must have been the input of a random

oracle query and we denote by t? ∈ {1, . . . , QH} the index of that specific query.
Then, the reduction B triggers up to 32·QH/(ε−3−κ) additional executions of

the adversary A with the same random tape and input as in the original run. As
usual in proofs based on the Forking Lemma, all queries receive exactly the same
answers as in the initial run until the t†-th random oracle query. Namely, the first
t?−1 HFS-queries – which necessarily coincide with those of the initial run since
A is fed with the same random tape – receive the same answers CH1, . . . ,CHt?−1

as in the first execution. For this reason, the t?-th query is guaranteed to in-
volve exactly the same input

(
M?, {CMT?i }κi=1,A,u,B,P1,P2, c

?
1, c

?
2

)
as in the

first run. From the t?-th query forward, A’s random oracle queries receive fresh
and independent responses CH′t? , . . . ,CH′QH

at each new execution. The Forking
Lemma of Brickell et al. [19] ensures that, with probability ≥ 1/2, the reduction
B manages to obtain a 3-fork involving the same tuple(

M?, {CMT?i }κi=1,A,u,B,P1,P2, c
?
1, c

?
2

)
with pairwise distinct answers CH

(1)
t? ,CH

(2)
t? ,CH

(3)
t? ∈ {1, 2, 3}κ. With probability

1 − (7/9)κ, the results of [19] imply that there exists j ∈ {1, . . . , κ} for which

the j-th bits of the challenges CH
(1)
t? ,CH

(2)
t? ,CH

(3)
t? are

(Ch
(1)
t?,j , Ch

(2)
t?,j , Ch

(3)
t?,j) = (1, 2, 3).

Lemma 3 ensures that, from the responses (RSP?
(1)
,RSP?

(2)
,RSP?

(3)
), the re-

duction B is able to extract witnesses

(x?,d?, w?, r?1, r
?
2),

where w? =
(
(j?1 , . . . , j

?
` ), (w?

` , . . . ,w
?
1)
)

such that (j?1 , . . . , j
?
` ) ∈ {0, 1}` is the

binary expansion of some integer j? ∈ {0, . . . , N − 1} and

A · x? = G · d? mod q, and TVerifyA
(
u,d?, w?

)
= 1. (35)



At this point, we distinguish two cases:

- d? 6∈ R = (d0, . . . ,dN−1). In this case, the second condition of (35) imme-
diately implies a breach in the security of the accumulator.

- d? ∈ R = (d0, . . . ,dN−1), so that d? = dj? . Note that {dj}N−1
j=0 are pairwise

distinct, as ensured by the GKeyen algorithm. The soundness of the argument
system implies that c?1 decrypts to (j?1 , . . . , j

?
` ) ∈ {0, 1}` which, in turn,

implies that A did not obtain the private key gsk[j?] of user j? ∈ {0, . . . , N−
1}\C. Recall that gsk[j?] contains a vector xj? ∈ {0, 1}m, which was initially
chosen by B and satisfies

G · dj? = A · xj? mod q.

Since A did not obtain gsk[j?], we claim that xj? 6= x? with probability at
least 1/2. In this case, we clearly have a SIS solution since the first condition
of (35) implies that A · (xj? − x?) = 0 mod q. We are left with the task of
arguing that xj? 6= x? with noticeable probability. To this end, we remark
that A may learn dj? = bin(A · xj? mod q), which it can possibly obtain by
corrupting gsk[j? + 1] or gsk[j? − 1]. However, Lemma 5 implies that there
exists at least another vector x? 6= xj? such that dj? = bin(A · x? mod q).
Moreover, since the argument system of Definition 6 is statistically WI,5

signing queries of the form (j?, .) only reveal a negligible amount of informa-
tion as to which witness among x? and xj? is used to answer signing queries.
With probability at least 1/2, the extracted vector x? is thus different from
xj? , as claimed.

We conclude that a successful forger A implies an algorithm that either directly
solves a SIS instance, defeats the security of the SIS-based accumulator of Sec-
tion 3, or breaks the soundness of the zero-knowledge argument system for the
relation Rgroup. Since the latter also relies on the SIS assumption if the under-
lying commitment is the state-of-the-art SIS-based statistically hiding commit-
ment [41], we conclude that the scheme provides full traceability in the random
oracle model under the SIS assumption. ut

E Proof of Theorem 7

Proof. We prove the result using a sequence of games. In the first game, the
challenger runs experiment Expanon-0

GS,A (n,N) whereas, in the last game, it runs

experiment Expanon-1
GS,A (n,N). For each i, we denote by Wi the event that the

adversary outputs 1 in Game i.

5 This is because the basic version (where the challenge space is {1, 2, 3}) is statistically
ZK, which implies statistical WI when at least two witnesses exist. Moreover, witness
indistinguishability is preserved by parallel repetitions.



Game 0: This is the real experiment Expanon-0
GS,A (n,N), where the adversary ob-

tains a challenge signature Σ? ← GSign(gpk, gsk[j0],M?) in the challenge
phase. The only difference is that, when gpk is generated, the challenger B
retains the second Regev decryption key S2 ∈ Zn×`p instead of erasing it.

Still, A’s view is exactly the same as in Expanon-0
GS,A (n,N). If we define W0 to

be the event that the adversary outputs b′ = 1 in the end of the game, we
thus have Pr[W0] = Pr[Expanon-0

GS,A (n,N) = 1].

Game 1: This game is like Game 0 with one modification in the signature open-
ing oracle GS.GOpen(gpk, gmsk, ., .). Namely, instead of opening signatures
using the real gmsk = S1 ∈ Zn×`p , the opening oracle opens them using the

auxiliary Regev decryption key S2 ∈ Zn×`p . It is easy to see that A’s view
will be the same as in Game 0 until that event F1 that A queries the opening
of a signature Σ = (Πgroup, c1, c2) for which c1 and c2 encrypt distinct `-bit
strings. Since event F1 could clearly break the soundness of the argument sys-
tem for relation Rgroup, we have |Pr[W1]−Pr[W0]| ≤ Pr[F1] ≤ Advsound

B (n).
If the proof system uses a commitment scheme based on the SIS assumption,
the LWE assumption thus implies that |Pr[W1]− Pr[W0]| ∈ negl(n).

Game 2: This game is identical to Game 1 with one modification. Instead of
computing Πgroup as a real proof using the witnesses r1, r2, the challenger
B appeals to the simulation technique of Lemma 2 to generate a simulated
proof by programming the random oracle HFS. Note that, since c1 and c2

still encrypt the same `-bit string, Πgroup is a simulated proof for a true
statement. Its distributions is thus statistically close to that of Game 1. We
have Pr[W2] ≈ Pr[W1].

Game 3: In this game, we modify the distribution of the challenge signature
Σ? = (Π?

group, c
?
1, c

?
2). Here, we compute c?1 by encrypting the `-bit binary

representation of j1 (instead of j0). The semantic security of Regev’s en-
cryption scheme for the public key (B,P1) (which is implied by the LWE
assumption and can be relied on since B does not use S1 for now) ensures
that |Pr[W3]− Pr[W2]| ∈ negl(n).

Game 4: This game is identical to Game 3 except that we modify again the
signature opening oracle GS.GOpen(gpk, gmsk, ., .). Instead of opening sig-
natures using S2 ∈ Zn×`p at step 1 of the GOpen algorithm, we switch back

to using the real opening key gmsk = S1 ∈ Zn×`p . It is easy to see that A’s
view will remain unchanged until the event F4 that A invokes the oracle
GS.GOpen(gpk, gmsk, ., .) on a signature Σ = (Πgroup, c1, c2) where c1 and
c2 encrypt distinct strings. A standard argument shows that event F4 would
contradict the simulation-soundness of the proof system for relation Rgroup:

we have |Pr[W4] − Pr[W3]| ≤ Pr[F4] ≤ Advss-sound
B (1n). Lemma 6 implies

that Advss-sound
B (n) ∈ negl(n) under the SIS assumption.

Game 5: We modify again the distribution of the challenge signature Σ? =
(Π?

group, c
?
1, c

?
2). Now, c?2 is also computed by encrypting the binary repre-

sentation of j1 (instead of j0). The semantic security of Regev’s encryption
scheme with respect to (B,P2) (which is implied by the LWE assumption)
implies that |Pr[W5]−Pr[W4]| ∈ negl(n). Note that c?1 and c?2 both encrypt



the binary expansion of j1 in Game 6, so that Π?
group is a simulated proof for

a true statement.
Game 6: In this game, we modify again the generation of the challenge signature

Σ? = (Π?
group, c

?
1, c

?
2), for which Π?

group is generated as a real proof using the
witnesses r1, r2 ∈ {0, 1}mE . Since Π?

group was a simulated NIZK argument
for a true statement in Game 5, the distribution of Π?

group is statistically
close to its distribution in Game 5. Hence, Pr[W6] ≈ Pr[W5]. In Game 6, it
is easy to see that the adversary’s view is exactly the same as its view in
Expanon-1

GS,A (n,N) = 1, so that Pr[W6] = Pr[Expanon-1
GS,A (n,N) = 1].

When tracing through the whole sequence of games, we find that

|Pr[Expanon-1
GS,A (n,N) = 1]− Pr[Expanon-0

GS,A (n,N) = 1]| ∈ negl(n)

assuming that the LWE assumption holds and that the argument system of
Lemma 6 is simulation-sound. ut
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