

A Brief History

- ◆ 1958: First integrated circuit
 - Flip-flop using two transistors
 - > From Texas Instruments
- **2011**
 - > Intel 10 Core Xeon Westmere-EX
 - √ 2.6 billion transistors
 - √ 32 nm process

Courtesy Texas Instruments

Courtesy Intel

Moore's Law

Growth rate

- > 2x transistors & clock speeds every 2 years over 50 years
- > 10x every 6-7 years
- Dramatically more complex algorithms previously not feasible
 - Dramatically more realistic video games and graphics animation (e.g. Playstation 4, Xbox 360 Kinect, Nintendo Wii)
 - > 1 Mb/s DSL to 10 Mb/s Cable to 2.4 Gb/s Fiber to Homes
 - > 2G to 3G to 4G wireless communications
 - MPEG-1 to MPEG-2 to MPEG-4 to H.264 video compression
 - > 480 x 270 (0.13 million pixels) NTSC to 1920x1080 (2 million pixels) HDTV resolution

Moore's Law

Moore's Law

- Many other factors grow exponentially
 - > Ex: clock frequency, processor performance

Standard Cells

NOR-3 XOR-2

Standard Cell Layout

GeForce 8800

(600+ million transistors, about 60+ million gates)

Subwavelength Lithography Challenges

NRE Mask Costs

ASIC NRE Costs Not Justified for Many Applications

- Forecast: By 2010, a complex ASIC will have an NRE Cost of over \$40M = \$28M (NRE Design Cost) + \$12M (NRE Mask Cost)
- Many "ASIC" applications will not have the volume to justify a \$40M NRE cost
- e.g. a \$30 IC with a 33% margin would require sales of 4M units (x \$10 profit/IC) just to recoup \$40M NRE Cost

Power Density a Key Issue

- Motivated mainly by power limits
- $ightharpoonup P_{total} = P_{dynamic} + P_{leakage}$
- $P_{dynamic} = \frac{1}{2} \alpha C V_{DD}^2 f$
- Problem: power (heat dissipation) density has been growing exponentially because clock frequency (f) and transistor count have been doubling every 2 years

Power Density a Key Issue

- Intel VP Patrick Gelsinger (ISSCC 2001)
 - "If scaling continues at present pace, by 2005, high speed processors would have power density of nuclear reactor, by 2010, a rocket nozzle, and by 2015, surface of sun."

Before Multicore Processors

- e.g. Intel Itanium II
 - > 6-Way Integer Unit < 2% die area
 - Cache logic > 50% die area
- Most of chip there to keep these 6 Integer Units at "peak" rate
- Main issue is external DRAM latency (50ns) to internal clock (0.25ns) is 200:1
- Increase performance by higher clock frequency and more complex pipelining & speculative execution

Multicore Era

Multicore era

- Operate at lower voltage and lower clock frequency
- Simpler processor cores
- Increase performance by more cores per chip

e.g. Intel 10 Core Xeon Westmere-EX

> 1.73-2.66 GHz (vs. previous Xeons at 4 Ghz)

Embedded Multicore Processors

- Embedded multicore processors replacing ASICs
 - Much simpler processor cores, much smaller caches
- e.g. Tilera-GX: 100 processors

What Does the Future Look Like?

Corollary of Moore's law: Number of cores will double every 18 months

	'02	'05	'08	'11	'14
Research	16	64	256	1024	4096
Industry	4	16	64	256	1024

(Cores minimally big enough to run a self-respecting OS!)

ITRS Roadmap

Semiconductor Industry Association forecast

> Intl. Technology Roadmap for Semiconductors

Year	2009	2012	2015	2018	2021
Feature size (nm)	34	24	17	12	8.4
L_{gate} (nm)	20	14	10	7	5
$V_{DD}\left(\mathbf{V}\right)$	1.0	0.9	0.8	0.7	0.65
Billions of transistors/die	1.5	3.1	6.2	12.4	24.7
Wiring levels	12	12	13	14	15
Maximum power (W)	198	198	198	198	198
DRAM capacity (Gb)	2	4	8	16	32
Flash capacity (Gb)	16	32	64	128	256