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Abstract – This is an introductory tutorial on standard errors. Every statistical estimate has its own Standard Error.  

Using an incorrect definition for a standard error invalidates the results of any study. 
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Introduction  

The standard error, denoted by stderr or SE, is a statistical indicator of the reliability of an 

estimate. It is formally defined as the standard deviation of the sampling distribution of a statistical 

estimate (Kurtz, 1991; Arsham, 1994).  

The sampling distribution and sample distribution are different things. The former is the 

distribution of a sample statistic while the latter is of raw observations. So an SE is not the standard 

deviation of a sample, but of a sampling distribution.  

While the standard deviation is a measure of the dispersion or variability of values in a sample, 

an SE is a measure of the dispersion or variability of values in the sampling distribution of a 

statistical estimate (McHugh, 2008). An SE represents the typical amount of error that can be 

expected from an estimator so it tells you how precise your estimate of said statistics is likely to 

be (McHugh, 2008; Biau, 2011; Harding, Tremblay & Cousineau, 2014).  

As the standard error is a type of standard deviation, the two terms are often mistaken (Altman 

& Bland, 2005; Harding, Tremblay & Cousineau, 2014). The following example can help you to 

understand the conceptual difference between these two terms. 

Assume a large enough set of samples, each with their own numbers of observations and mean 

values. These means might vary from sample to sample. The sampling distribution of the means 

has its own mean (i.e., a mean of means) and, therefore, standard deviation which we call the 

standard error of the estimate of the mean. 
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On the Importance of Standard Errors 

Standard errors are critical to a statistical analysis. Once a standard error is properly computed, 

what do we do with it? A lot! 

First, the statistical estimate of interest, divided by its standard error, gives us a way of testing 

whether said statistic is significantly different from zero. A second application of the standard error 

is the calculation of confidence intervals.  A third application consists in testing whether any two 

statistics of the same kind are significantly different.  

 As we can see, properly computing SE values is extremely important. Any blunder in their 

calculations invalidates the results or conclusions of a study. In the next sections we show that SEs 

can be computed for other statistical estimators, not just the mean. One can even compute the SE 

of a standard deviation. 

 

The Standard Error of the Mean 

This is probably the best known SE. The standard error of the mean is the standard deviation of the 

sample mean estimate    of a population mean (Kurtz, 1991); i.e. 

 

        
 

  
                      (1) 

 

where n is the number of the xi observations and s is their standard deviation.  

Contrary to misconceptions, (1) does not assume a normal distribution so it can be applied to 

any type of distribution. However, to compute s and    the xi observations must be additive.  

Notice from (1) that as more number of observations are taken the standard error decreases 

which not necessarily is the case with the standard deviation, s. 

 

The Standard Error of the Median 

For large and approximately normal samples the SE of the median can be approximated as 
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Since the median  tends  to  be  less  reliably estimated  than  the mean (by 25%), this is one of 

the reasons that the mean is usually preferred over the median (Stockburger, 1996; Harding, 

Tremblay & Cousineau, 2014). Notice that (2) assumes a normal distribution. 

This formula can yield wrong results for extremely non-normal distributions. Although     is 

computed when the data is normally distributed, bootstrapping     avoids this requirement. 

Bootstrap is also useful for computing confidence intervals and standard errors of difficult statistics 

like the median (Eichler, 2003; Efron &Tibshirani, 1993). 

 

The Standard Error of the Standard Deviation 

The SE of the standard deviation (SEs) is about 71% that of the mean, 

 

            
 

  
                    (3) 

 

The distribution of the standard deviation is positively skewed for small n and approximately 

normal if the sample size is 25 or greater. Procedures for calculating the area under the normal 

curve work for the sampling distribution of the standard deviation as long as the sample size is at 

least 25 and the distribution is approximately normal. 

 

The Standard Error of a Correlation Coefficient 

The SE of a correlation coefficient r is computed by normalizing the fraction of the unexplained 

variations with respect to n – 2 degrees of freedom; i.e. 

 

       
      

    
                     (4) 

 

In (4), r2 is the Coefficient of Determination which expresses the fraction of the explained 

variations; e.g., variations in y as the result of variations in x. To illustrate, if r2 is 0.90, the 

independent variable y is said to explain 90% of the variance in the dependent variable x, but does 

not explain 1 – r2 or 10% of the variance in the dependent variable.  
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The Standard Error of Z Scores 

The Fisher Transformation (Fisher, 1915; 1921; 1924) converts a correlation coefficient into a Z 

score also known as a normal score (Wikipedia, 2016). Said scores should not to be mistaken for z-

standardized scores which are computed from a sample of mean-centered data as    
     

 
. 

By contrast, the Fisher Transformation is computed, for each r value, as follows: 
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This r-to-Z transformation has its inverse, Z-to-r, which is computed as 
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The standard error associated to a Z value is 

 

        
 

     
      

 

    
                             (7) 

 

Expressions (5) and (6) are not valid when r = 1 exactly, but this is not a real issue because in 

most experimental problems r = 1 exactly is not achievable. 

 

Limitations of the r-to-Z Fisher Transformation  

The r-to-Z Fisher Transformation and its inverse should not be applied arbitrarily, but only when 

both random variables, x and y, are approximately normally distributed. Ignoring this requirement 

can induce a researcher to draw misleading conclusions (Garcia, 2012a; 2012b; 2015a; 2015b).  

Zimmerman, Zumbo, and Williams (2003) have shown that arbitrarily applying this 

transformation, especially from distributions that violate bivariate normality can lead to spurious 

results, even with large sample sizes.  
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According to these authors, “…significance tests of hypotheses about validity and reliability 

coefficients or differences between them require an assumption of bivariate normality despite large 

sample sizes. Researchers certainly should be aware of this assumption before using the r to Z 

transformation in data analysis.” 

Bond and Richardson (2004) have published the first geometrical visualizations of these 

transformations to date, which are given in Figure 1. 

 

 

 

Figure 1. Z (a) and r (b) as areas in scatterplots. Source: Bond & Richardson, 2004. 

 

Clearly the requirement of bivariate normality comes from the transformation itself. An r-to-Z 

transformation is an inverse hyperbolic tangent function while the Z-to-r transformation is a 

hyperbolic tangent function. Violation of bivariate normality distorts the areas shown in Figure 1.  

These transcendental transformations are available in most computer programming languages 

and software. For instance, these functions are built- in in the scientific calculator of Windows 

computers, and Microsoft Excel has these as the ATANH and TANH functions. We have built our 

own tool to take care of these transformations (Garcia, 2016). Unlike similar tools, ours accepts an 

entire set of values, transforming these accordingly.  

 

Pooled Standard Errors 

To test if two correlation coefficients, r1 and r2, are significantly different, these are transformed 

into Fisher Z-scores, provided that these come from bivariate distributions. Their difference, 

computed as Z1 – Z2 , is tested using a pooled standard error which is defined as follows: 
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Beware of Incorrect Standard Error Calculations 

A statistical analysis makes sense only if there is a sound theory behind it. Using incorrect SE 

definitions invalidates arguments stated or implied in any statistical study.  

For instance, some search engine marketers at SEOmoz.org, now MOZ.org, generated some 

so-called “scientific” studies using standard errors of correlation coefficients. It was later 

acknowledged that the SE of a correlation coefficient was literally computed as 
 

  
  where s was a 

standard deviation computed out of several correlation coefficients (SEOmoz 2010a; 2010b). That 

is, they used the definition of SE of the mean (1) and applied to correlation coefficients! 

In addition to be a serious blunder or statistical horror, another problem with their approach is 

that to compute such a standard deviation one would need to compute a mean correlation 

coefficient in the first place. But there is a problem: correlation coefficients are not additive. This is 

a known fact in the scientific community and across disciplines (Zsak, 2006; Hetti-Arachchilage & 

Piontkivska, 2016). In her thesis, Zsak remarks: “The correlation coefficient is not a linear function 

of the size of relation between the variables that are correlated and thus cannot simply be summed 

to find a mean that is representative as the mean value for the correlation coefficients. ”  

In addition, StatSoft, creators of  Statistica, now a Dell company (Dell, 2016) have stated in 

their literature: “Are correlation coefficients “additive?” No, they are not. For example, an average 

of correlation coefficients in a number of samples does not represent an "average correlation" in all 

those samples. Because the value of the correlation coefficient is not a linear function of the 

magnitude of the relation between the variables, correlation coeffic ients cannot simply be 

averaged.” 

Formally, a correlation coefficient is a function of the covariance between two variables, 

normalized by their standard deviations,  

 

      
          

     
                      (9) 

 

where the covariance is defined in terms of the expectation (mean) values of the variables; i.e. 
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and where E(x*y), E(x), and E(y) are expectation values. 

Because (9) and (10) are specific to a sample, r values are dissimilar ratios. These types of 

ratios are not additive. Furthermore, for mean-centered variables, Pearson’s r is a cosine. Cosines 

are not additive either (Garcia, 2012a; 2012b; 2015a; 2015b). We must conclude that it is not 

possible to add r values and then average these to compute a standard deviation of correlation 

coefficients.  

In the case of a Spearman Correlation Coefficient, the mere idea of constructing a linear 

function by averaging Spearman values is highly questionable because what is considered are 

ranks, not the magnitude of the relation between variables.  

As correlation coefficients (Pearson’s r, Spearman’s rho, others) are not additive, we cannot 

compute arithmetic averages from these. The same holds for standard deviations and standard 

errors. Political correctness aside, stating the contrary equates to a futile effort of defending “quack 

science” (Garcia, 2010).  

The fact that SEOmoz (MOZ) search marketers computed the SE of correlation coefficients 

using the definition ascribed to the mean indicates a lack of knowledge about sampling 

distributions from their part.  

 

Conclusion 

In this tutorial we explained the difference between standard deviations and standard errors. The 

standard error is the standard deviation of a sampling distribution of a statistical estimate. It is not 

the standard deviation of a sample of raw observations.  

The proper way of computing the standard errors of several statistical estimates was discussed 

along with the non-additivity of correlation coefficients. We state that improperly computing 

standard errors invalidates any statistical study. 
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