Machine Learning Abstractions and Numerical Optimization 25

5 Machine Learning Abstractions and Numerical Optimization

ML ABSTRACTIONS [some meta comments on machine learning]

[When you write a large computer program, you break it down into subroutines and modules. Many of you
know from experience that you need to have the discipline to impose strong abstraction barriers between
different modules, or your program will become so complex you can no longer manage nor maintain it.]

[When you learn a new subject, it helps to have mental abstraction barriers, too, so you know when you can
replace one approach with a different approach. I want to give you four levels of abstraction that can help
you think about machine learning. It’s important to make mental distinctions between these four things, and
the code you write should have modules that reflect these distinctions as well.]

APPLICATION/DATA

data labeled (classified) or not?
yes: labels categorical (classification) or quantitative (regression)?
no: similarity (clustering) or positioning (dimensionality reduction)?

MODEL [what kinds of hypotheses are permitted?]

e.g.

— decision fns: linear, polynomial, logistic, neural net, ...

— nearest neighbors, decision trees

— features

— low vs. high capacity (affects overfitting, underfitting, inference)

OPTIMIZATION PROBLEM

— variables, objective fn, constraints
e.g., unconstrained, convex program, least squares, PCA

OPTIMIZATION ALGORITHM

e.g., gradient descent, simplex, SVD

[In this course, we focus primarily on the middle two levels. As a data scientist, you might be given an
application, and your challenge is to turn it into an optimization problem that we know how to solve. We
will talk a bit about optimization algorithms, but usually you’ll use an optimization code that’s faster and
more robust than what you would write yourself.]

[The second level, the model, has a huge effect on the success of your learning algorithm. Sometimes you
get a big improvement by tailoring the model or its features to fit the structure of your specific data. The
model also has a big effect on whether you overfit or underfit. And if you want a model that you can interpret
so you can do inference, the model has to have a simple structure. Lastly, you have to pick a model that
leads to an optimization problem that can be solved. Some optimization problems are just too hard.]

[It’s important to understand that when you change something in one level of this diagram, you probably
have to change all the levels underneath it. If you switch your model from a linear classifier to a neural net,
your optimization problem changes, and your optimization algorithm probably changes to0o.]

26 Jonathan Richard Shewchuk

[Not all machine learning methods fit this four-level decomposition. Nevertheless, for everything you learn
in this class, think about where it fits in this hierarchy. If you don’t distinguish which math is part of the
model and which math is part of the optimization algorithm, this course will be very confusing for you.]

OPTIMIZATION PROBLEMS

[I want to familiarize you with some types of optimization problems that can be solved reliably and effi-
ciently, and the names of some of the optimization algorithms used to solve them. An important skill for
you to develop is to be able to go from an application to a well-defined optimization problem. That skill
depends on your ability to recognize well-studied types of optimization problems.]

Unconstrained

Goal: Find w that minimizes (or maximizes) a continuous objective fn f(w).
f is smooth if its gradient is continuous too.

A global minimum of f is a value w such that f(w) < f(v) for every v.
A local minimum 2 2 29 99 2 2 2 2 2 2

for every v in a tiny ball centered at w.
[In other words, you cannot walk downhill from w.]

A

\
v local minima

global minimum [Draw this by hand. | minima.pdf

Usually, finding a local minimum is easy;
finding the global minimum is hard. [or impossible]

Exception: A function is convex if for every x,y € R,
the line connecting (x, f(x)) to (v, f(y)) does not go below f(-).

vx y [Draw this by hand. | convex.pdf |

E.g. perceptron risk fn is convex and nonsmooth.

Machine Learning Abstractions and Numerical Optimization 27

[When you sum together convex functions, you always get a convex function. The perceptron risk function
is a sum of convex loss functions.]

A [continuous] convex function [on a closed, convex domain] has either
— no minimum (goes to —oo), or
— just one local minimum, or
— aconnected set of local minima that are all global minima with equal f.

[The perceptron risk function has the last of these three.]

[In the last two cases, if you walk downhill, you eventually converge to a global minimum.]

[However, there are many applications where you don’t have a convex objective function, and your machine
learning algorithm has to settle for finding a local minimum. For example, neural nets try to optimize an
objective function that has lots of local minima; they almost never find a global minimum.]

Algs for smooth f:
— Gradient descent:
— blind [with learning rate] repeat: w «— w — e Vf(w)
— with line search:
— secant method
— Newton—Raphson (may need Hessian matrix of f)
— stochastic (blind) [trains on one point per iteration, or a small batch]
— Nonlinear conjugate gradient [uses the secant or Newton—Raphson line search methods]
— Newton’s method (needs Hessian matrix)

Algs for nonsmooth f:
— Gradient descent:
— blind
— with direct line search (e.g. golden section search)

These algs find a local minimum. [They don’t reliably find a global minimum, because that’s very hard.]

line search: finds a local minimum along the search direction by solving an optimization problem in 1D.
[...instead of using a blind step size like the perceptron algorithm does. Solving a 1D problem is much
easier than solving a higher-dimensional one.]

[Neural nets are unconstrained optimization problems with many, many local minima. They sometimes
benefit from line search or second-order optimization algorithms, but when the input data set is very large,
researchers often favor the dumb, blind, stochastic versions of gradient descent.]

[If you’re optimizing over a d-dimensional space, the Hessian matrix is a d X d matrix and it’s usually dense,
so most methods that use the Hessian are computationally infeasible when d is large.]

Constrained Optimization (smooth equality constraints)

Goal: Find w that minimizes (maximizes) f(w)
subject to g(w) = 0 [« observe that

where g is a smooth fn [¢ may be a vector, encoding

Alg: Use Lagrange multipliers. [to transform constrained to unconstrained optimization]

28 Jonathan Richard Shewchuk

Linear Program

Linear objective fn + linear inequality constraints.

Goal: Find w that maximizes (or minimizes) ¢ - w
subject to Aw < b

where A is n X d matrix, b € R”, expressing n linear constraints:
Aiw < b, ie€[l,n]

<— active constraint

optimum

feasible
region

= active constraint [Draw this by hand. | linprog.pdf ||

The set of points that satisfy all constraints is a convex polytope called the feasible region F [shaded].
The optimum is the point in F that is furthest in the direction c. ~ [What does convex mean?]
A point set P is convex if for every p, g € P, the line segment with endpoints p, g lies entirely in P.

[A polytope is just a polyhedron, generalized to higher dimensions.]

The optimum achieves equality for some constraints (but not most), called the active constraints of the
optimum. [In the figure above, there are two active constraints. In an SVM, active constraints correspond to
the sample points that touch or violate the slab, and they’re also known as support vectors.]

[Sometimes, there is more than one optimal point. For example, in the figure above, if ¢ pointed straight up,
every point on the top horizontal edge would be optimal. The set of optimal points is always convex.]

Example: EVERY feasible point (w, @) gives a linear classifier:

Find w, a that maximizes O
subjectto y;(w - X;+a)>1 forallie[l,n]

IMPORTANT: The data are linearly separable iff the feasible region is not the empty set.
— Also true for maximum margin classifier (quadratic program)

Algs for linear programming:
— Simplex (George Dantzig, 1947)
[Indisputably one of the most important and useful algorithms of the 20th century.]
[Walks along edges of polytope from vertex to vertex until it finds optimum.]
— Interior point methods

[Linear programming is very different from unconstrained optimization; it has a much more combinatorial
flavor. If you knew which constraints would be the active constraints once you found the solution, it would
be easy; the hard part is figuring out which constraints should be the active ones. There are exponentially
many possibilities, so you can’t afford to try them all. So linear programming algorithms tend to have a
very discrete, computer science feeling to them, like graph algorithms, whereas unconstrained optimization
algorithms tend to have a continuous, numerical mathematics feeling.]

Machine Learning Abstractions and Numerical Optimization 29

[Linear programs crop up everywhere in engineering and science, but they’re usually in disguise. An ex-
tremely useful talent you should develop is to recognize when a problem is a linear program.]

[A linear program solver can find a linear classifier, but it can’t find the maximum margin classifier. We
need something more powerful.]

Quadratic Program

Quadratic, convex objective fn + linear inequality constraints.
Goal: Find w that minimizes f(w) = w'Qw +c¢'w
subject to Aw < b
where Q is a symmetric, positive definite matrix.
A matrix is positive definite if wT Qw > 0 for all w # 0.
Only one local minimum! [Which is therefore the global minimum.]

[What if Q is not positive definite? If Q is indefinite, then f is not convex, the minimum is not always
unique, and quadratic programming is NP-hard.]

Example: Find maximum margin classifier.

quadratic.pdf | [Draw two polygons on these isocontours—one with one active constraint,
and one with two—and show the constrained minimum for each polygon. “In an SVM, we
are looking for the point in this polygon that’s closest to the origin.”]

Algs for quadratic programming:
— Simplex-like [commonly used for general-purpose quadratic programs, but not as good for SVMs as
the following two algorithms that specifically exploit properties of SVMs]
— Sequential minimal optimization (SMO, used in LIBSVM)
— Coordinate descent (used in LIBLINEAR)

[One clever idea SMO uses is that it does a line search that uses the Hessian, but it’s cheap to compute
because SMO doesn’t walk in the direction of steepest descent; instead it walks along just two coordinate
axes at a time.]

30 Jonathan Richard Shewchuk

Convex Program

Convex objective fn + convex inequality constraints.

[What I’ve given you here is, roughly, a sliding scale of optimization problems of increasing complexity,
difficulty, and computation time. But even convex programs are relatively easy to solve. When you’re trying
to address the needs of real-world applications, it’s not uncommon to devise an optimization problem with
crazy inequalities and an objective function that’s nowhere near convex. These are sometimes very, very
hard to solve.]

Numerical optimization @ Berkeley: EECS 127/227AT/227BT/227C.

