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Por qué me preguntan las olas
lo mismo que yo les pregunto?

Quién puede convencer al mar
para que sea razonable?

Pablo Neruda, El libro de las preguntas.
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Chapter 1

Introduction

Waves are all around us, but it is actually hard to say what a wave is. This is be-
cause it is an immaterial thing: a signal, a certain amount of energy propagating
through a medium. The medium we consider is water, seawater in particular.
Even though water waves as such are immaterial, they are supported by the
oscillatory movement of the water parcels, and this indeed forms a way of de-
tecting them. But it is always important not to confuse the water motion with
the wave itself. The following analogies may help to clarify this point:

“A bit of gossip starting in London reaches Edinburgh very quickly, even

though not a single individual who takes part in spreading it travels be-

tween these two cities. There are two quite different motions involved,

that of the rumour, London to Edinburgh, and that of the persons who

spread the rumour.

The wind, passing over a field of grain, sets up a wave which spreads

out across the whole field. Here again we must distinguish between the

motion of the wave and the motion of the separate plants, which undergo

only small oscillations.

We have all seen the waves that spread in wider and wider circles when

a stone is thrown into a pool of water. The motion of the wave is very

different from that of the particles of water. The particles merely go up

and down. The observed motion of the wave is that of a state of matter

and not of matter itself. A cork floating on the wave shows this clearly,

for it moves up and down in imitation of the actual motion of the water,

instead of being carried along by the wave.” [16, pp. 104-105]

1.1 The ocean’s inner unrest

Waves at the ocean’s surface are a familiar sight. These lecture notes deal with
waves that propagate beneath the surface; they are mostly hidden from eyesight.
Occasionally, however, they produce a visible response at the ocean’s surface.
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An example is shown in Figure 1.1, a photograph taken from the Apollo-Soyuz
spacecraft in 1975, when it passed over Andaman Sea, north of Sumatra.

Fig. 1.1: A photograph from the Apollo-Soyuz spacecraft, made over Andaman Sea,

showing stripes due to internal waves. The stripes stretch over 100 km or more, and

have a mutual distance of the order of a few tens of kilometers; they propagate slowly

(at a speed of about 2 m s−1) to the northeast.

The stripes can be observed from a ship as well; they appear as long bands
of breaking waves, typically about 1 meter high. Spacecraft or satellite pictures
showing such stripes have since been obtained from many other locations; an
example from the Bay of Biscay is shown in Figure 8.11. Figure 1.2 provides
a look into the ocean’s interior, and brings us to the origin of the stripes, in
this case in Lombok Strait. The echosounder signal shows the elevation and
depression of levels of equal density (isopycnals); in the course of just 20 min-
utes, they descend more than 100 m, and rise again to their original levels.1

The isopycnals closer to the surface, however, undergo a much smaller vertical
displacement. This is the defining characteristic of internal waves: that their
largest vertical amplitudes occur in the interior of the fluid.

Internal waves were discovered more than a century ago. One of the first
observations is due to Helland-Hansen & Nansen [41]. They found that temper-
ature profiles may change substantially within the course of just hours (Figure
1.3); they ascribed this to the presence of ”puzzling waves”, an example of which
is shown in Figure 1.4. They stressed the importance of this newly discovered
phenomenon:

”The knowledge of the exact nature and causes of these ”waves” and their

movements would, in our opinion, be of signal importance to Oceanogra-

phy, and as far as we can see, it is one of its greatest problems that most

urgently calls for a solution” [p. 88]

1The horizontal currents associated with these waves extend to the surface; these sur-
face currents modify the roughness of the surface waves, thus rendering the internal waves
(indirectly) detectable by satellite remote sensing imagery.
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Fig. 1.2: Isopycnal movements associated with the passage of an internal wave, ob-

served with an echosounder in Lombok Strait, covering the upper 250 m of the water

column. Colours indicate levels of backscatter and can be used to distinguish levels

of density. Horizontal is time; the spacing between two vertical lines corresponds to 6

minutes. From [82].

Although the internal waves shown in Figure 1.2 are perhaps unusually large,
their presence as such is not at all unusual; they are a ubiquitous phenomenon
in the ocean (and in the atmosphere as well). Internal waves provide the ‘inner
unrest’ in the oceans, at time scales ranging from tens of minutes to a day.
These oscillations are a nuisance when one attempts to establish the ocean’s
‘background state’ (i.e. patterns of large-scale circulation, tracer distribution
etc.). This was already recognized by Helland-Hansen & Nansen. The puzzling
waves, they noted,

”make it much more difficult than has hitherto generally been believed, to

obtain trustworthy representations of the volumes of the different kinds of

water; they certainly cannot be attained by observations at a small num-

ber of isolated stations, chosen more or less at random. Such irregularities,

great or small, are seen in most vertical sections where the stations are

sufficiently numerous and not too far apart. The equilines (isotherms,

isohalines, as well as isopyknals) of the sections hardly ever have quite

regular courses, but form bends or undulations, like waves, sometimes

great, sometimes small.” [p. 87]

From measurements made at any one moment it is thus impossible to deduce
what the background isopycnal levels and current velocities are; the background
state is continually being perturbed by internal-wave activity, which may pro-
duce isopycnal variations of the order of 100 m, and current velocities of tens of
cm s−1. An example of such a variation is shown in Figure 1.5. Only prolonged
measurements allow for a meaningful estimate of the ’mean background state’.

Before we continue our discussion on internal waves, we first take a closer
look at the medium in which they propagate. Two properties are of primary

11



Fig. 1.3: Temporal changes in temperature profiles, at two different locations. The

curves were constructed on the basis of the measurements shown in dots. Profiles

a’ and a”: northeast of Iceland, on August 5, 1900; variations at 20 m depth were

measured during about 2 1/2 hours, but sometimes rapid changes occurred in just five

minutes. Profiles b and b’: north of the Faeroes, on 25-26 July, 1900. From [41].

Fig. 1.4: Isopycnal variations with time. The dominant period is about half a semi-

diurnal tidal period. For comparison, open and black circles have been added, denoting

the spacing between high and low waters. From [41].

importance: 1) the vertical stratification in density, and 2) the diurnal rotation.

1.2 Restoring forces

Waves in fluids owe their existence to restoring forces; these forces push parcels
that are brought out of their equilbrium position, back towards that position,
thus bringing them into oscillation. Sound waves, for example, exist due to
compression; here pressure (gradients) act as the restoring force. In internal
waves, two restoring forces are at work: 1) buoyancy (i.e. reduced gravity in the
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Fig. 1.5: Variation of the depth of the Chlorophyll maximum (shaded region) due to

the presence of internal waves, in the Bay of Biscay. Horizontal is time (in hours), but

the variations are both temporal and spatial, since the measurements were made from

a moving ship. From [43].

ocean’s interior), due to the ocean’s stratification, and 2) the Coriolis force, due
to the Earth’s diurnal rotation.

1.2.1 The ocean’s stratification

The bulk of the ocean is very cold; the ocean’s mean temperature is only 3.5◦C.
The variation with depth, however, is large: below 1000 m depth, temperature
is less than 5◦C, but in the upper 200 m it rises strongly, especially in the tropics
(see Figure 2.2a), and during summer at mid-latitudes. Together with variations
in salinity (Figure 2.2b), this determines in-situ density ρ, being a function of
pressure, temperature, and salinity (Figure 2.2e). The steady increase of in-
situ density with depth does not in itself guarantee that the water column is
gravitationally stable. As explained in Chapter 3, the stability of the water
column is determined by

N2 = g2
(∂ρ

∂p
− 1

c2
s

)
, (1.1)

where p is pressure, cs the speed of sound (Figure 2.2f), and g the acceleration
due to gravity. The water column is stably stratified if N2 > 0. The quantity N

is called the Brunt-Väisälä or buoyancy frequency; its unit is radians per second
(but also common are cycles per hour, or cycles per day).

A typical distribution of N in the ocean is shown in Figure 1.6. It shows
that N varies greatly: from O(10−4) in the deepest layers to O(10−2) rad s−1 in
the upper 200 m. The latter region includes the thermocline, corresponding to a
peak in N due to the rapid decrease of temperature with depth; the thermocline

13



Fig. 1.6: The stratification N (in rad s−1), derived from temperature and salinity

profiles in the Pacific Ocean, for a south-north section near 179◦E (WOCE section

P14, from the Fiji Islands into the Bering Sea, July/August 1993). Adapted from [30].

has a permanent character in the tropics and is seasonal at mid-latitudes. We
see from Figure 1.6 that N decreases again in the upper 50 m or so, the upper
mixed layer, which is due to the mixing by the wind.

In the atmosphere, values range from 0.01 in the troposphere to 0.02 rad s−1

in the stratosphere. Both in the ocean and atmosphere, N becomes locally very
small in turbulently mixed, convective layers.

1.2.2 The Earth’s diurnal rotation

The Earth undergoes a diurnal rotation on its axis. After one full rotational
period it regains the same orientation with respect to the ‘fixed stars’; this
period of 23 h 56 min 4 s (=86164 s) is called a sidereal day, dsid. It is distinct
from the solar day (i.e. 24 hours) because, as the Earth traverses its path around
the sun (in what as such is a translational motion), it takes slightly more2 than
the sidereal day to regain the same orientation with respect to the sun – which
is what defines the solar day.

The Earth angular velocity thus is

Ω =
2π

dsid
= 7.292× 10−5 rad s−1 .

2The Earth’s diurnal rotation is prograde; if it were retrograde, the solar day would be
shorter than the sidereal day.
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(Note that the last two decimals would be different if one mistakenly uses the
solar day.)

We can now express the vectorial character of the diurnal rotation as ~Ω,
aligned to the axis of rotation (pointing northward), and with magnitude |~Ω| =
Ω. To find the effects of rotation at a certain latitude φ, we can decompose the
vector as indicated in Figure 1.7. Thus we find the Coriolis frequencies

f = 2Ω sin φ ; f̃ = 2Ω cos φ . (1.2)

These components determine the Coriolis force, which is formed by the outer
product of 2~Ω with velocity (see Chapter 2). The Coriolis force acts as a purely
deflecting force: it never initiates a motion (the force does no work since it is
perpendicular to velocity), it only deflects an existing motion.

Fig. 1.7: Decomposition of the rotation vector ~Ω at latitude φ, giving rise to the

Coriolis components f = 2Ω⊥ and f̃ = 2Ω‖.

The perpendicularity with velocity has still another consequence: the compo-
nent f̃ , being itself horizontal (see Figure 1.7), deflects downward moving parcels
eastward (e.g. if you drop a stone from a tower, it will undergo a slight deflection
to the east), and produces an upward force on eastward moving parcels (i.e. the
weight of an eastward moving object is reduced, the so-called Eötvös effect).
In either case, there is a vertical direction involved. Now, the currents in the
ocean are predominantly horizontal, due to the fact that the ocean constitutes
a thin layer compared to the Earth’s radius. This diminishes the importance of
f̃ ; the effect of f usually far exceeds that of f̃ , despite the fact that f and f̃ as
such are of similar magnitude at mid-latitudes. We continue this discussion in
later chapters, but for the moment we assume that f̃ is negligible, so that the
effects of the Earth’s diurnal rotation are represented solely by f . Notice that
f is negative in the Southern Hemisphere.

We have thus established two fundamental frequencies, N and f , each of
them associated with a restoring force. These two restoring forces, gravity and
the Coriolis force, lie at the heart of the phenomenon of internal waves; this is
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reflected by the fact that N and f are key parameters in internal-wave theory.
We note that in most parts of the ocean, N exceeds |f |.

Finally, a few words on nomenclature. Internal waves for which only gravity
acts as the restoring force, are called internal gravity waves; this situation occurs
for example in laboratory experiments on a non-rotating platform, or in the
ocean for waves at frequencies much higher than |f |, in which case the Coriolis
force can be neglected. Conversely, if only the Coriolis force is at work, they are
called gyroscopic (or inertial) waves; this situation occurs in neutrally stratified
layers (N = 0). Finally, if both forces are at work – as is commonly the case –
they are called internal inertio-gravity waves.

1.3 Origins of internal waves

Where does the ubiquitous ‘inner unrest’ originate from? As it turns out, there
are two principal sources of internal waves.

One is the atmospheric disturbance of the ocean’s upper mixed layer by the
wind; this was already recognized by Helland-Hansen & Nansen [41]:

”It is a striking fact, and apparently not merely an accidental one, that

by far the greatest ”waves” of this kind in our sections, occurred in 1901,

when the atmosphere was unusually stormy; and it appears probable that

the ”waves” in that year might have been due to stirring of the water

masses, caused by disturbances in the atmosphere.” [p. 88]

As the wind resides, variations of the base of the mixed layer slowly evolve
towards equilibrium, in a process called geostrophic adjustment [33]. During
this process, internal waves are emitted, predominantly at frequencies close to
|f |, the inertial frequency. These waves are called near-inertial waves; they
are usually clearly present in internal-wave spectra, as a peak centered around
|f |. They form indeed the most energetic part of the internal-wave spectrum.
Notwithstanding their importance, it would seem that a comprehensive under-
standing of their generation and propagation is still lacking.

This is very different for the other source of internal waves, also at low
frequencies: the internal tides. They are formed by the flow of barotropic (i.e
surface) tides over sloping bottom.

The origin of barotropic tides themselves lies in the astronomical tide-generating
forces: the gravitational pull by the moon and, to a lesser extent, the sun. These
forces, together with the diurnal rotation of the Earth, produce the barotropic
tides, which traverse the oceans as surface waves (an example is shown in Figure
7.1). This movement acts as drag to the moon, and thus slows down its angular
velocity. Conservation of angular momentum implies that the moon must recede
from the Earth. This has been confirmed by observations: the distance between
the moon and Earth increases by 3.8 cm per year.3 From this, one can calculate

3Measured using laser beams reflecting from mirrors that were placed on the moon during
the Apollo 11 mission, in July 1969, and later missions. The drag not only retards the moon’s
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how much energy goes into the barotropic tides in the ocean (the amount going
into tides in the atmosphere and the Earth’s mantle is small by comparison):
about 3.5 TW for all tidal components together (1 TeraWatt = 1012 Watt). The
barotropic tide, in turn, loses its energy mostly by bottom friction in shallow
seas, but also for a significant part, about 30% (1 TW), over ridges in the ‘open
ocean’ (and for another, yet unknown part, over the continental slopes); here
the energy is transferred to internal tides. This is illustrated in Figure 1.8.

Fig. 1.8: Regions where dissipation of the semi-diurnal lunar barotropic tide (M2)

occurs, determined using data from satellite altimetry. There is a clear correspondence

with bottom topography; noticeable dissipation occurs over, for example, the Mid-

Atlantic Ridge and the Hawaiian Ridge. The results are less reliable in shallow regions

(because of uncertainties in the estimates of tidal currents), where errors may lead to

spots of negative values (in blue). From [15].

The idea behind this process is as follows. Barotropic tidal currents are
predominantly horizontal (U), but over bottom slopes a vertical component must
arise (U∇h, with bottom topography h), which, like the horizontal component,
oscillates at the tidal frequency. This vertical tidal current brings isopycnal
surfaces into oscillation; they are periodically lifted up and pulled down. These
vertical oscillations act as a wavemaker, emitting waves at the forcing frequency:
the internal tides. We may compare this process with that of wave generation
in a stretched string or rope: if it is forced into vertical oscillation at one point,
waves are generated which propagate away from that point.

But how do internal tides propagate away from the region of forcing? This
brings us to what is perhaps the most remarkable (and in any case the most
counter-intuitive) property of internal waves: their energy propagates at once
horizontally and vertically, quite unlike surface waves, whose energy propagates
only horizontally. The difference is due to the different nature of the stratifi-
cation supporting the waves. Surface waves owe their existence to the sharp
change in density between air and water, which is restricted to the surface –
and so is their energy propagation. Internal waves, on the other hand, owe

movement around the Earth, but also lengthens the terrestrial day. The combined effect of
lunar and solar tides amounts to an increase of 2.4 milliseconds per century (see [7], p. 249).
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Fig. 1.9: The path of an internal tidal beam generated over the continental shelf

break in the Bay of Biscay. The depth of maximum vertical isopycnal excursion was

determined at various horizontal positions by CTD yoyoing; these depths are indicated

by circles. They follow a path that coincides with the theoretical path of internal-tide

propagation (dashed line). From [69].

their existence to the stratification of the ocean’s interior, which is smoothly
distributed over the vertical (see Figure 1.6), and so energy is carried from one
depth level to the other. A vivid illustration of the path of energy propagation
is shown in Figure 1.9: the internal tide generated over the continental slope
propagates into the deep ocean, following a diagonal path. The arrows indicate
the vertical extent of the energy, showing that the internal tide propagates in a
beam-like manner.

To summarize, there are two main generation mechanisms: atmospheric
forcing, and barotropic tidal flow over topography. Both generate low-frequency
waves. However, interactions among these waves lead to internal waves at higher
frequencies. As a result, internal waves are found at all frequencies between |f |
and N , although those at low frequencies dominate the spectrum.
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1.4 Dissipation and mixing

In the previous section we have seen that the Earth-moon system loses energy to
barotropic tides, which, in turn, lose part of their energy to internal tides. The
question then arises where their energy goes. We have also seen that much of the
internal-wave energy originates from the upper layer of the ocean (near-inertial
waves generated by the wind, internal tides generated over the continental shelf
break). However, the vertical component in their energy propagation opens up
the possibility that their energy, though originating from the upper layer, may
finally be dissipated in the abyssal ocean.

This, indeed, seems to be what is happening. The precise pathways to
dissipation are yet to be established quantitatively, but the general picture has
become clearer in recent years, see Figure 1.10. Internal waves can become
unstable due to the presence of a background shear field, leading to internal-
wave breaking and mixing.

Fig. 1.10: Sketch of the pathway of internal-wave energy: from its origin, by the wind

and by tidal flow over topography, to dissipation as small-scale mixing. From [21].

Figure 1.10 thus illustrates how energy is transferred to smaller scales. Sur-
prisingly, this has important implications for the large-scale ocean circulation.
For a large part, this circulation is wind-driven, but part of it consists in a
sinking of cold water at high latitudes (deep convection), specifically in the
Labrador, Greenland and Weddell Seas; this water spreads horizontally over
the ocean basins, hence the low temperatures in the deep layers at all latitudes.
If this were the only factor determining the ocean’s vertical temperature distri-
bution, one would find low temperatures extending upwards until the ocean’s
most upper layer, where direct warming by the sun takes place. In reality, the
temperature gradient is much more gradual (see Figure 2.2a). This shows that
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there must be downward mixing of heat (Figure 1.11). The combined effects of
downward mixing and deep convection keep the ocean in a stationary state. The
mixing is thought to be largely due to internal waves; at any rate, the numbers
are consistent. The estimate of the required energy input into mixing is 2 TW;
near-inertial waves and internal tides each contribute about 1 TW.

Fig. 1.11: Near-inertial waves (not depicted), along with internal tides generated over

bottom topography by the barotropic tidal current, feature in the deep ocean. These

internal waves can lead to turbulence and mixing. This mixing plays a role in main-

taining a gradual transition between the sun-warmed surface layer of the ocean and the

upwelling cold, dense water formed at high latitudes. T (z) denotes the temperature

profile as a function of depth z. From [20].

1.5 Overview

As a guide through later chapters, we may use Figure 1.9 and the questions it
raises: “the facts which call for explanation”. To answer most of these ques-
tions, it suffices to consider linear theory, i.e. the theory of small-amplitude
internal waves (Chapters 5 and 6). This theory explains the remarkable diago-
nal propagation as well as the reflection from the bottom. Examining Figure 1.9
more closely, we see that the beam becomes slightly steeper in deeper waters,
i.e. refraction occurs; this, too, is explained by linear theory. At the origin of
the beam lies the barotropic tidal flow over a slope; this generation mechanism
is studied in Chapter 7. Not visible in Figure 1.9 is what happens after the
beam has reflected from the bottom. Other observations, to be discussed later,
show that the beam, with upward energy propagation, finally impinges on the
seasonal thermocline (in the upper 100 m of the water column); this gener-
ates high-frequency high-amplitude internal waves, called internal solitons. To
describe these waves, which are beyond the assumption of small amplitudes,
nonlinear theory is required (Chapter 8).

First of all, however, we need to establish the basic equations of internal-wave

20



theory (Chapter 2), put the notion of stratification in an exact form (Chapter
3), and discuss the approximations underlying internal-wave theory (Chapter
4). To do this properly, we also need to examine carefully the thermodynamic
principles that form part of the governing equations.

Further reading

Although these lecture notes are meant to be self-contained, it is of course useful
to consult other literature as well; here we give some suggestions for further
reading. More references follow in later chapters as appropriate.

Most textbooks on ocean physics or dynamical meteorology pay some at-
tention to internal waves. Three older textbooks deal exclusively with internal
waves in the ocean: Krauss [47], Roberts [72] and Miropol’sky [58]. Of these,
the third is the most advanced text. The second is probably the most accessible
and also provides an admirably complete reference list of the literature up to
1975. A lot of useful material on internal waves can be found in the textbook by
Leblond & Mysak [48]. Chapters on internal waves can be found in the books by
Turner [84], Phillips [67], and Lighthill [51]; on gyroscopic (i.e. inertial) waves,
see Greenspan [35]. See Vlasenko et al. [88] for a recent monograph on the
modelling of internal tides. The review papers by Garrett & St. Laurent on
deep-ocean mixing [24] and by Garrett & Kunze on internal tides [23] provide
a valuable account of the current understanding of these subjects. On short
internal waves and internal-wave spectra, see the review paper by Munk [61].

We focus on the ocean, and will only in passing discuss internal waves in the
atmosphere. More on this subject can be found in the textbook by Gossard &
Hooke [34], and the review paper by Fritts & Alexander [19].

21



22



Chapter 2

The equations of motion

2.1 Introduction

In early 1913, Vilhelm Bjerknes gave his inaugural lecture at the University of
Leipzig, which was titled “Die Meteorologie als exakte Wissenschaft” (Meteo-
rology as an exact science). In it, he drew attention to the fact that the physical
laws governing the motions of the atmosphere, together form a closed set; i.e.
there are as many equations as unknowns. Meteorology, Bjerknes argues, has
thus become an exact science. This offers the prospect, at least in principle,
that a solution to the equations may be obtained, which would provide a math-
ematical description, and even prediction, of the motions in the atmosphere
[5].

Fig. 2.1: Vilhelm Bjerknes (1862-1951), and the front page of his inaugural lecture.

The variables in question are the three velocity components, pressure, den-
sity, temperature and humidity (or, for the ocean: salinity). They feature in
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the following laws, seven in total:

1-3: the three momentum equations;

4: conservation of mass;

5: the equation of state;

6-7: the two laws of thermodynamics.

If we consider the ocean instead of the atmosphere, the laws remain the same
except the equation of state, which is specific for the medium in question.

We only briefly discuss the laws 1-4, for they belong to the standard ma-
terial in textbooks on (geophysical) fluid dynamics; they form the subject of
Section 2.2. Much more attention needs to be paid to the equations relating to
thermodynamics, 5-7, for two reasons. First, thermodynamic aspects are usu-
ally dealt with cursorily in the oceanographic literature; as a result, neither the
meaning nor the importance of thermodynamics is properly conveyed. Second,
a recent development calls for a new approach. This development is the usage
of the so-called Gibbs potential in ocean physics. At first, it may seem to make
things more complicated, but once grasped, it brings out the structure of ther-
modynamics, and the way thermodynamics enters the equations of motion, more
clearly than would otherwise be attainable. We discuss this in Sections 2.3 and
2.4. Finally, in Section 2.5, we arrive at the equations governing internal-wave
dynamics.

2.2 Fluid mechanics

The forces that feature in the momentum equations governing fluid motions
are pressure gradients, gravity, frictional forces, and external forces. Together
they determine the acceleration that fluid parcels undergo in coordinate sys-
tems which are at rest or in uniform rectilinear motion with respect to ‘absolute
space’, the ‘fixed stars’. The Earth, however, spins on its axis, and thus rotates
with respect to the ‘fixed stars’. If we use a coordinate system that co-rotates
with the Earth, we have to add two apparent forces: the Coriolis and the cen-
trifugal force. The momentum equations then become

D~u

Dt
= −1

ρ
∇p−∇Φg + ~F − 2~Ω× ~u− ~Ω× (~Ω× ~r) . (2.1)

Here we use a right-handed orthogonal Cartesian coordinate system which has
its origin at the centre of the Earth, the x and y axes span the equatorial
plane, and the z axis points towards the north pole. The Earth spins at angular
velocity Ω = 7.292 10−5 rad s−1 on the z axis, and ~Ω = (0, 0, Ω); the position of
the fluid parcel is denoted by ~r = (x, y, z). The velocity field is denoted by the
vector ~u; ρ is density; p pressure; Φg the gravitational potential; and ~F denotes
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any frictional or external forces, which need not be specified here. D/Dt and ∇
denote the material derivative and gradient:

D

Dt
=

∂

∂t
+ ~u · ∇ , ∇ =

( ∂

∂x
,

∂

∂y
,

∂

∂z

)
.

The centrifugal force, the last term on the right-hand side of (2.1), can be
written as (minus) the gradient of the potential Φc = − 1

2Ω2(x2 +y2), and hence
we can write (bringing the Coriolis force, the penultimate term in (2.1), to the
left-hand side, as is customary)

D~u

Dt
+ 2~Ω× ~u = −1

ρ
∇p−∇(Φg + Φc) + ~F . (2.2)

The coordinate system adopted here is inconvenient in that we would rather have
the origin at the surface of the Earth, and the axes oriented to it in a natural
way. Before this can be done, we have to find an appropriate representation of
the shape of the Earth.

On long geological time scales the Earth is not quite a solid object; rather
like a fluid, it has adjusted itself to the state of rotation. It thus has taken an
oblate shape such that the gradient of the geopotential Φ (i.e. the gravitational
plus centrifugal potential: Φ = Φg + Φc) has no components tangential to the
surface. In other words, the surface of the Earth coincides with a level of
constant geopotential. This is important for the dynamics of the atmosphere
and ocean, since otherwise a fluid parcel would experience a tangential force
due to the geopotential. This level of constant geopotential closely resembles an
ellipsoid of revolution. The ellipticity is small (about 0.08), which suggests that
we may pretend the surface of the earth to be spherical (with radius R ≈ 6371
km). In this new representation, the Earth’s surface (now a sphere) should
act as a level of constant geopotential; otherwise the dynamics would become
distorted.

The equations of motion can now be cast in terms of spherical coordinates.
A simpler form can however be obtained if the phenomena of interest are so
small that the curvature of the Earth’s surface becomes insignificant; this yields
the so-called f -plane approximation. The corresponding equations can be de-
rived either by employing a local approximation to the equations in spherical
coordinates (see [48]), or directly from (2.2) by moving the origin of the Carte-
sian coordinate system to the position of interest (r = R, φ = φ0, say), and
then tilting it such that the x,y plane becomes tangential to the Earth’s sur-
face (with x pointing eastward, y northward, and z positive in the outward
radial direction). Since this new coordinate system is at rest with respect to
the original system, the equations remain the same, except that ~Ω now becomes
~Ω = Ω(0, cosφ, sinφ), and the gradient of the geopotential ∇Φ = (0, 0, g). The
momentum equations thus become

D~u

Dt
+ 2~Ω× ~u = −1

ρ
∇p− gẑ + ~F , (2.3)
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where ẑ is the unit vector in the z direction (positive, outward). The f -plane
derives its name from the common notation 2~Ω = (0, f̃ , f), in which f̃ = 2Ωcos φ

and f = 2Ω sin φ are regarded constant.
A following order of approximation would lead to the so-called β-plane, in

which variations of the Coriolis parameter with latitude are taken into account
while metric terms are still ignored. This amounts to replacing f by f0 + βy,
with f0 constant and β = (2Ω cos φ)/R; to ensure the conservation of angular
momentum, f̃ should be taken constant, as on the f -plane, see [38].

To complete the mechanical part, we need an equation that expresses the
conservation of mass; in local Cartesian coordinates it reads

Dρ

Dt
+ ρ∇ · ~u = 0 . (2.4)

We now have four equations in total, but five unknowns: three velocity com-
ponents, pressure, and density. Hence the set is not closed, unless density were
simply assumed to be constant (incompressible fluid). However, variations in the
density field are essential to the existence of internal waves, so we have to com-
plete the set in a different way: by including thermodynamic principles, which
provide relationships between thermodynamic state variables such as pressure
and density. This will be elaborated on in the remainder of this chapter.

2.3 A brief introduction to thermodynamics

This section provides a résumé of thermodynamic principles, with a view to
ocean physics and meteorology. It serves as a preparation for Section 2.4, where
the set of governing equations is completed. In line with common usage in
thermodynamics, we use here specific volume ν = 1/ρ, instead of density ρ.

2.3.1 Fundamentals

Thermodynamics deals with transitions from one thermodynamic state to an-
other. In the simplest case, both are equilibrium states; states, that is, which
would remain unchanged if the system were isolated. Equilibrium states are de-
fined by a certain number of thermodynamic state variables (such as pressure,
temperature, density, internal energy or entropy).

For example, the equilibrium state of an ideal gas is defined by two such
variables; pressure p and temperature T , say. All other state variables are then
a function of those two; such a functional relationship is called an equation of
state. Specific volume ν, for instance, is given by the following expression:

ν(p, T ) =
RdT

p
, (2.5)
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in which Rd = R∗/m, where m is the mass (in kg) of 1 mol, and R∗ the universal
gas constant:1 R∗ = 8.31 J K−1 mol−1. The constant Rd thus depends on the
type of gas. For dry air2 one finds Rd = 287 J K−1 kg−1.

Despite the fact that the actual state of the ocean, or atmosphere, considered
in its entirety, is far removed from thermodynamic equilibrium, the concept of
thermodynamic equilibrium still proves very useful in the geophysical context.
This is because we can adopt the ‘local equilibrium assumption’ [46, §15.1]. Its
meaning is most easily grasped by supposing the opposite: that it were not valid.
This would be the case if specific volume ν were not only dependent on tem-
perature and pressure, like in (2.5), but also on spatial gradients of temperature
and pressure. This would call for an extended non-equilibrium thermodynam-
ics. The ‘local equilibrium assumption’ amounts to assuming that such spatial
gradients are negligible; this allows us to apply, locally, the thermodynamic
equilibrium relations, such as the equation of state.

In thermodynamics two types of processes are distinguished: according to
whether they are reversible or irreversible. In a reversible process all interme-
diate states are equilibrium states, whereas in an irreversible process they are
not. Strictly speaking, the former is not a process (since the only way to change
an equilibrium state is by bringing the system out of equilibrium), but rather
a chain of disconnected equilibrium states. Nevertheless, it is often useful to
consider quasi-static processes, as practical approximations to reversible pro-
cesses, which take place slowly enough for the state to be always very close to
thermodynamic equilibrium; one can then assume that the equation of state
is valid throughout the process. In the applications, discussed here and in the
following chapter, we assume this to be the case.

Besides state variables, which characterize the state of a system indepen-
dently of how it came into that state, there are also quantities – heat and work
– which are the exact reverse in that they do not refer to a state, but to the way
in which one state transforms into another. The First Law of thermodynamics
connects the two; in it, the state variable (specific) internal energy ε is postu-
lated, which can change either by heat (dQ) or by work done on the system
(dW ):

dε = dQ + dW .

All quantities are here taken per unit of mass, hence the dimension J kg−1. If,
after some process, a system returns to its initial state (a cyclic process), then
the First Law guarantees that ε takes again its original value; but in the course
of the process heat may have been partly converted into work – the principle of
a heat engine.

For quasi-static processes, the work done on the system can be expressed as

dW = −pdν .

In the Second Law another state variable, (specific) entropy η, is postulated,

11 mol contains 6.02× 1023 molecules.
278% N2, 21% O2, 1% Ar, with respective molmasses (in grams) of 28, 32 and 40.
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which has the property that

dη ≥ dQ

T
,

where the equality sign holds for reversible processes. Here η denotes the entropy
per unit of mass, hence the adjective ‘specific’; its dimension is J K−1 kg−1. For
reversible processes, we can combine both laws to obtain

dε = Tdη − pdν . (2.6)

This important equation is often referred to as the thermodynamic identity.

2.3.2 Open systems

We speak of an open system if the material substance in question is subject
to change; this happens for instance if, in addition to the main substance, a
second constituent is present whose concentration can change by gain, loss, or
redistribution. In the geophysical context, this role is played by salinity in
the ocean and humidity in the atmosphere, assuming that we may conceive
seawater, or air, simply as a two-component fluid. This is a valid approach, for
the following reasons. In the case of seawater, the primary substance (water) is
pure; the secondary substance has many constituents, but throughout the ocean
they contribute in a nearly fixed proportion,3 and this is why we can simply
think of it as one substance (‘salt’). In the troposphere it is the other way
round: the primary substance is a composite, but in fixed proportions (see note
on p. 27), and hence can be thought of as one substance (‘dry air’); the secondary
substance, water vapour, is pure. The concentration of the secondary substance
is expressed by the state variable S, a dimensionless quantity, which stands for
‘salinity’.4 In what follows, one may as well read S as ‘specific humidity’ if
one has in mind the troposphere instead of the ocean.5 Notice that there are
now three (instead of two) independent state variables; specific volume ν, for
example, is now a function of the three state variables p, T and S.

For open systems, an extra term has to be added to the thermodynamic
identity (2.6), representing the effect on the energetics of the system of any
changes in the concentration of the second constituent:

dε = Tdη − pdν + µdS . (2.7)

3The main constituents are: chloride, 55%; sodium, 30%; sulfate, 8%; magnesium, 4%;
potassium, and calcium, 1%.

4It is expressed in ‘PSU’, Practical Salinity Unit, or in g/kg, or in promille.
5Here and elsewhere, we ignore the thermodynamic complexities of phase changes such as

condensation, although they have some relevance to the study of internal waves: in the crests
of large-amplitude waves in the atmosphere, condensation may take place in the rising parcels
(due to adiabatic cooling), producing nice patterns of clouds. In Australia, this phenomenon
is known as ‘Morning Glory’, see Figure 8.2.
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Here µ is the chemical potential (dimension: J kg−1).6 It is important to note
that µ involves two arbitrary constants, A and B, say: there is no empirical way
to distinguish µ from µ′ = µ + A + BT . Apart from these arbitrary additive
terms, µ can be determined empirically by indirect means [18]. At first sight, it
may seem as if the indeterminacy of µ renders (2.7) utterly meaningless; upon
closer examination, however, this problem evaporates (see Section 2.3.4).

A two-component system in a gravity field is in a state of thermodynamic
equilibrium when it satisfies the following three conditions, which were first
formulated by Gibbs, in 1876 [31, pp. 144-147]:

i) hydrostatic equilibrium;

ii) a uniform temperature: T = const;

iii) a uniform chemical potential: µ = const .

The third condition implies a remarkably strong vertical salinity gradient, of
about 4 PSU per km! This is illustrated in the fictitious example of Figure
3.4, upper panels. In reality, salinity shows no such gradient (see Figure 2.2b),
indicating that the ocean is far removed from thermodynamic equilibrium.

The state of thermodynamic equilibrium would be approached if the system
were isolated for a sufficiently long time; molecular diffusion would then act to
make temperature and the chemical potential (not salinity!) uniform.

2.3.3 Some definitions

The specific heat (heat capacity per unit of mass) at constant pressure is defined
as

cp =
dQ

dT

∣∣∣
pS

. (2.8)

The indices denote which state variables are held fixed. An alternative expres-
sion for cp can be derived as follows. Since η is a state variable, we may write

dη =
(∂η

∂p

)
TS

dp +
( ∂η

∂T

)
pS

dT +
( ∂η

∂S

)
Tp

dS . (2.9)

In particular, for an isobaric and isohaline process (dp = dS = 0), we obtain

cp = T
( ∂η

∂T

)
pS

, (2.10)

where we also used the Second Law (dQ = Tdη).
The thermal expansion coefficient α, the haline expansion coefficient β, and

the speed of sound cs (see also Appendix B) are defined by

α =
1
ν

( ∂ν

∂T

)
pS

; β = −1
ν

( ∂ν

∂S

)
pT

; c−2
s =

(∂ρ

∂p

)
ηS

. (2.11)

6More precisely, µ is the difference between the chemical potentials for salt and pure water
[55, §15].

29



2.3.4 The Gibbs potential and the equation of state

The Gibbs potential, also called free enthalpy, is defined as G = ε − Tη + pν.
Together with the thermodynamic identity (2.7), this implies

dG = νdp− ηdT + µdS . (2.12)

So, changes in G are expressed in terms of changes in pressure, temperature
and salinity (or specific humidity). Observationally, these are the variables most
directly accessible in the ocean or atmosphere; this places the Gibbs potential
at the center of our thermodynamic considerations. We shall assume that the
Gibbs potential – as a function of pressure, temperature and salinity – is known:

G = G(p, T, S) . (2.13)

This is the fundamental equation of state. Unlike the thermodynamic identity
(2.7), or (2.12), whose form remains the same whatever the medium, the equa-
tion of state depends in its form on the type of medium under consideration.
For dry air, regarded as an ideal gas, we would have

G(p, T ) = RdT log p + 7
2RdT (1− log T )

(apart from two arbitrary constants, see below). For seawater, any reasonably
accurate form involves lengthy polynomial expressions. The task of such a
construction, based on measurements, was accomplished by Feistel & Hagen
[17], who were the first to fully exploit the usefulness of the Gibbs potential in
the thermodynamics of seawater; this section is indeed largely based on their
work. For the present discussion, the main point is that we can regard G(p, T, S)
as empirically established; its possibly unappealing functional form need not
concern us here.

We should add the proviso that G involves four arbitrary constants, A to D:

G′ = G + (A + BT )S + (C + DT )

is empirically indistinguishable from G. One can choose these constants ar-
bitrarily. Crucially, they leave the thermodynamic identity, (2.7) or (2.12),
unaffected (‘gauge-invariance’).7

For known G(p, T, S), all other relevant thermodynamic variables are ob-
tained simply by taking derivatives; we summarize the main expressions in
Table 2.1 (without proof; they follow, directly or indirectly, from the thermo-
dynamic identity (2.12)). Partial derivatives of G are indicated by indices; it is
understood that the two state variables to be kept fixed are the complementary
ones, so, e.g.,

Gp =
(∂G

∂p

)
TS

.

7Specifically, one finds ε′ = ε + AS + C, η′ = η−BS −D, µ′ = µ + A + BT , implying the
required invariance.
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specific volume ν = Gp

specific heat cp = −TGTT

thermal expansion α = GpT /Gp

haline expansion β = −GpS/Gp

entropy η = −GT

internal energy ε = G− TGT − pGp

chemical potential µ = GS

speed of sound cs c2
s = G2

pGTT /(G2
pT −GppGTT )

Table 2.1: Expressions of various state variables in terms of the Gibbs potential
and its derivatives.

This procedure provides us with a collection of equations, each of which can be
regarded as an ‘equation of state’ in its own right. The myriad of equations of
state thus obtained is perhaps bewildering; it is therefore important to realize
that there is, in essence, only one equation of state, that for the Gibbs potential,
from which all the others derive. Another strength of employing the Gibbs
potential lies in the fact that the ensuing equations of state are, by construction,
mutually consistent. To illuminate this point, let us pretend (falsely) that they
are independent of one another; we consider a system whose specific volume is
given by ν = c0 +c1p+C2T +c3T

2, while we also assume that cp = const. Now,
the first expression implies that G depends quadratically on T , which, in turn,
implies that cp must depend linearly on T . Hence our choice of constant cp was
inconsistent with that of ν. Such an inconsistency could never have arisen if we
had derived ν and cp from one and the same Gibbs potential G.

Figure 2.2 shows vertical profiles of state variables that are important in
ocean physics. A few comments are in order. From Figure 2.2a,b we see that
temperature and salinity vary little below 3 km depth. So, in the lowest 7 km,
the steady decrease with depth of µ and cp, and the steady increase of ρ, cs and
α, can be ascribed to increasing pressure. In the upper 1 km, on the other hand,
cs and α decrease with depth; here the rapid decrease of temperature dominates
the effect of increasing pressure. Notice, finally, the near constancy of entropy
in the lowest 7 km, as well as the small increase of temperature with depth.
We return to these aspects in the following chapter, where we also discuss the
concepts of potential density and potential temperature.

2.4 Complete set of governing equations

Section 2.2, the mechanics part, left us with four equations – (2.3) and (2.4) –
for the five unknowns ~u , p and ρ. We can now add the equation of state in
terms of the Gibbs potential, (2.13), which also provides us with an expression
for density ρ, via ν = Gp(p, T, S). By introducing the additional variables T

and S, however, we are now left with five equations and seven unknowns!
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Fig. 2.2: Several thermodynamic state variables as a function of depth (in km), in

the Mindanao Trench. The measured profiles of temperature T (in ◦C) and salinity S

(in PSU), shown in panels a and b, are taken from [39, Table 6]. From these profiles,

other thermodynamic variables are derived, using the equation of state for the Gibbs

potential (2.13), as determined by [17], along with the relations from Table 2.1. Thus

the following profiles are obtained: a) potential temperature Θ; c) entropy η (J kg−1

K−1); d) chemical potential µ (J kg−1 PSU−1); e) in-situ density ρ and potential

density ρΘ (kg m−3); f) the speed of sound cs (m s−1); g) the thermal expansion

coefficient α (K−1); h) specific heat cp (J K−1 kg−1). We note that the profiles for

entropy and the chemical potential (panels c and d) are not unique in the sense that

they depend on the arbitrary constants in the Gibbs potential, see the footnote on p.

30; the profiles shown here follow from the choices made in [17].

Clearly, what is still missing is information about sources (or sinks) of salt
and heat. Prescribing them provides two equations. However, the set is then still
not closed because the sources of heat are prescribed via the Second Law, which
involves entropy, so that an eighth variable is added to the list of unknowns.
But this is resolved by using η = −GT , which follows from (2.12) and thus
implicitly hinges on the thermodynamic identity (2.7), and hence on the First
Law. With this, the set is closed.
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To work out these ideas in some detail, we prescribe possible sources and
sinks of salinity, as well as any irreversible processes which may distribute it,
by a term Q1; thus

DS

Dt
= Q1 . (2.14)

For the present purposes, Q1 need not be specified, but, if needed, it could be
expressed in terms of the state variables that have already been introduced.
Irreversible changes, for example, can be expressed by a so-called constitutive
relation; in its simplest form it can be taken as a diffusive term.8

Similarly, we express sources and sinks of heat, and irreversible processes
enhancing the entropy, by a term Q2, which features in the Second Law:

T
Dη

Dt
= Q2 + Tη

S
Q1 . (2.15)

Here we presumed that, like Q1, Q2 is itself invariant with respect to the four
arbitrary constants in the Gibbs potential (e.g., Q2 consists of a diffusive term
in temperature). Since η, on the left-hand side, is not invariant, this necessitates
the inclusion of the second term on the right-hand side.9

Finally, we use the implicit form of the First Law:

η = −GT (p, T, S) . (2.16)

All in all, we have gathered eight equations – (2.3) and (2.4) from fluid me-
chanics; (2.13) and (2.16) from equilibrium thermodynamics; (2.14) and (2.15)
from non-equilibrium thermodynamics – for the eight unknowns ~u , p , ρ , T , S

and η, so that the set is now formally closed.

As a preparation for the next section, we derive a useful expression connect-
ing the thermodynamic state variables η, S, p and ν. This is done as follows.

8As explained above, molecular diffusion strives to make the chemical potential uniform,
suggesting a term like Q1 ∼ ∇2µ. However, this would violate the requirement of invariance
for the constant B, which stems from the Gibbs potential (see Section 2.3.4). To resolve this,
we must introduce an extra term, such that Q1 ∼ ∇2µ− µT∇2T (the subscript denotes the
partial derivative with respect to T ), in which case invariance is ensured. Interestingly, this
naturally couples the diffusion of the chemical potential to that of temperature, reflecting
their coupling in the conditions for thermodynamic equilibrium, see p. 29.

9We note that in convective equilibrium, as opposed to thermodynamic equilibrium, the
entropy is near-uniform, and it is generally assumed that turbulent mixing produces such
a state. Now, interestingly, diffusion of entropy cannot stand by itself, because Q2 ∼ ∇2η
violates the requirement of invariance. This necessitates the form Q2 ∼ ∇2η − ηS∇2S,
ensuring invariance. This couples the diffusion of entropy to that of salinity. Note that in the
deep ocean both are indeed nearly uniform, see Figure 2.2b,c.
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Since ν is a state variable, we can write

Dν

Dt
= Gpp

Dp

Dt
+ GpT

DT

Dt
+ GpS

DS

Dt
,

where we expressed all coefficients in terms of derivatives of the Gibbs potential.
Combining this with (2.9), cast in terms of material derivatives (d → D/Dt),
we can eliminate DT/Dt to obtain, after some rewriting,

− 1
ν2

Dν

Dt
=

1
c2
s

Dp

Dt
− αT

νcp

[Dη

Dt
− η

S

DS

Dt

]
+

β

ν

DS

Dt
,

where we used the expressions from Table 2.1. With (2.14) and (2.15), this
becomes

− 1
ν2

Dν

Dt
=

1
c2
s

Dp

Dt
− α

νcp
Q2 +

β

ν
Q1 . (2.17)

2.5 Internal-wave dynamics

The only state which – from a fundamental point of view – requires no expla-
nation is the state of thermodynamic equilibrium (characterized by a uniform
temperature and chemical potential, and by hydrostatic equilibrium). Obvi-
ously the oceans and atmosphere are far removed from such a state; there are
diabatic processes at work,10 which find their origin in the differential heating
by the sun, and which directly or indirectly drive the large-scale circulations in
the oceans and atmosphere. All in all, these processes are responsible for the
creation and maintenance of the distribution of temperature (and salinity or
humidity) that we find in the oceans and atmosphere.

This distribution, in turn, determines the stratification in density. The dy-
namics of internal waves, and indeed their very existence, depends crucially on
this stratification. While recognizing the all-important role of the stratifica-
tion for our subject, we shall however not pursue the question of what gives
the stratification the form it has. In other words, we shall regard the strati-
fication as something which needs no further explanation, as something given.
This allows us to ignore henceforth the diabatic processes, so that we can take
Q1 = Q2 = 0 (i.e. processes are isohaline and isentropic). The assumption
underlying this approach is that the time scale characteristic of internal waves
(the wave period), is much smaller than that characteristic of diabatic processes.
This means that at the time-scale of internal waves, the state of the medium
would not change significantly if diabatic processes were momentarily ‘switched
off’. Furthermore, the motions of the fluid parcels, insofar they are due to the
presence of an internal wave, can be regarded as an adiabatic process.11

10In this section we use the term ‘diabatic process’ in the loose sense of referring to any
changes in heat or salinity.

11While this approach is sensible as a first-order approximation, it clearly cannot be more
than that, given the role internal waves play in ocean mixing! (See the qualitative discussion
in Section 1.4.)
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With Q1 = Q2 = 0, then, (2.17) reduces to

Dρ

Dt
=

1
c2
s

Dp

Dt
, (2.18)

where we replaced ν with density, ρ = 1/ν.
It is now convenient to formally eliminate temperature from the problem by

using ρ = G−1
p (p, T, S) and assuming that we can express T in terms of ρ, p and

S. This would then allow us to obtain an expression of the form cs = Γ(ρ, p, S),
for some function Γ.

The complete set of equations now consists of the momentum equations (2.3)
(for the moment, we ignore the mechanical forcing/friction term ~F , which we
re-introduce in later chapters if needed), the equation for conservation of mass
(2.4), the ’energy’ equation (2.18), the advection equation for salinity (2.14), and
the equation of state for cs (derived from the Gibbs potential). The starting
point for the study of internal waves thus becomes:

D~u

Dt
+ 2~Ω× ~u = −1

ρ
∇p− gẑ (2.19a)

Dρ

Dt
+ ρ∇ · ~u = 0 (2.19b)

Dρ

Dt
=

1
c2
s

Dp

Dt
(2.19c)

DS

Dt
= 0 (2.19d)

cs = Γ(ρ, p, S) . (2.19e)

The set consists essentially of the five equations (2.19a,b,c) for the five unknowns
~u, ρ and p, while (2.19e) serves as an auxiliary identity for calculating cs, in
which S is needed from (2.19d).

In conclusion, it is worthwhile to emphasize that (2.19b) and (2.19c), while
both featuring Dρ/Dt, stem from very different physical principles: the former
expresses conservation of mass, the latter originates from the First and Second
Laws of thermodynamics, as is clear from its earlier form (2.17), and is thus
associated with an energy equation.

Further reading

Many subtleties of the fundamentals of fluid mechanics are discussed in the
encyclopedic overview by Serrin [76]. Rewarding is also the book by Lin &
Segel [52] and its companion volume by Segel [75].

There are many good books on thermodynamics; especially lucid is Sommer-
feld’s textbook [78]; it provides both an axiomatic approach to thermodynamics
(first part) and a treatment based on statistical mechanics, in particular the
kinetic theory of gases (second part).
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Thermodynamics is often treated somewhat negligibly in oceanographic text-
books, but in meteorology this is different; a good example is the book by Dutton
[13].

Appendix A: a closer look at the Coriolis Force

In the momentum equation (2.3) we have the Coriolis force 2~Ω× ~u, which gives
rise to four terms, with coefficients f̃ = 2Ω cos φ and f = 2Ω sin φ. These terms
represent a deflecting force, which produces an acceleration perpendicular to
velocity, as summarized in Table 2.2. Each of the terms can be derived from
elementary mechanical principles, in the following way.

Initial velocity: Induced Coriolis acceleration (in NH):

eastward (u) southward (−fv) & vertically upward (f̃w)
northward (v) eastward (fu)
vertically upward (w) westward (−f̃u)

Table 2.2: The effect of the components of the Coriolis force in the Northern
Hemisphere (NH). In the Southern Hemisphere (SH), f is negative, so in the
column on the right, ‘southward’ is then replaced by ‘northward’, and ‘eastward’
by ‘westward’.

From the terrestrial perspective, a fluid parcel, at rest on the Earth, is
subject to a balance of forces. From the perspective of the ‘fixed stars’, the parcel
traverses a latitudinal circle of radius Rφ = R cosφ, at an eastward velocity U =
ΩRφ. The centripetal force (U2/Rφ) required for this circular motion is provided
by gravity and pressure gradients. We now consider three cases in which the
parcel, instead of being at rest, has a velocity of its own. (I) If the parcel has
an eastward velocity u, its total velocity will be U + u, enhancing the required
centripetal force by an amount 2Uu/Rφ (to first order, assuming u ¿ U), or,
using the definition of U , 2Ωu. From the terrestrial perspective, this increment
acts as a centrifugal force, tending to sweep the parcel outward in the latitudinal
plane. This outward acceleration can be decomposed into a radial component
2Ωu cosφ = f̃u and a southward one, −2Ωu sin φ = −fu, in the Northern
Hemisphere (northward in the SH). This is precisely the result stated in the
first row of Table 2.2. (II) If, in the NH, the parcel moves northward to latitude
φ′ = φ + δφ, its latitudinal circle becomes smaller by an amount −R sin φ δφ

(to first order). By conservation of angular momentum (URφ = (U + u)Rφ′), it
will obtain an eastward velocity of its own: u = Ω sin φRδφ. Parcels at rest at
latitude φ′, meanwhile, rotate at U ′ = ΩRφ′ ≈ U −Ωsin φRδφ. With respect to
those parcels, the initially northward moving parcel will thus get an excess of
eastward velocity of 2Ω sin φRδφ = fRδφ, equivalent to an eastward acceleration
fv, as stated in the second row of Table 2.2. (III) Finally, we consider a parcel
that moves initially upward (i.e. radially outward), to R′ = R+δR. Again from
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the perspective of the ‘fixed stars’ and by conservation of angular momentum
(URφ = (U + u)R′φ), the parcel will get a smaller eastward velocity by an
amount u = −Ω cos φδR. Ambient parcels at rest at this higher altitude have
an eastward velocity U ′ = ΩR′φ, an excess compared to U , that is, of Ω cos φδR.
With respect to those parcels, the initially upward moving parcel will thus get an
excess of westward velocity of −2Ω cos φδR = −f̃ δR, equivalent to a westward
acceleration −f̃w, as stated in the third row of Table 2.2.

Appendix B: sound waves

In Eq. (2.11) we have introduced the “speed of sound” cs as yet another ther-
modynamic state variable. We have yet to show that it indeed acts as the speed
of sound. In the set (2.19) there are a number of restoring forces at work;
the two that are essential to internal waves are gravity (i.e. buoyancy) and the
Coriolis force. For sound waves, on the other hand, pressure gradients act as
the restoring force. In order to isolate pure sound waves from the problem, we
should therefore abandon the other restoring forces; hence we take g = 0 and
~Ω = 0. We moreover ignore salinity, for the sake of simplicity. We consider a
motionless state of thermodynamic equilibrium; both ρ and p are uniform in
such a state, and we denote their values by ρc and pc, respectively. Furthermore
~u = 0. We now consider small perturbations with respect to this equilibrium
state: ρ = ρc + ρ′, p = pc + p′ and a velocity ~u′. The ‘smallness’ means that
we may neglect products of perturbation (i.e. primed) terms; hence we obtain
from (2.19):

ρc
∂~u′

∂t
= −∇p′ (2.20a)

∂ρ′

∂t
+ ρc∇ · ~u′ = 0 (2.20b)

∂ρ′

∂t
=

1
c2
s

∂p′

∂t
(2.20c)

cs = Γ(ρc, pc) . (2.20d)

The first three of these equations are easily combined into one:

∂2p′

∂t2
− c2

s∇2p′ = 0 , (2.21)

which is the wave-equation. The simplest case occurs if we restrict the problem
to one spatial dimension, x say, in which case the general solution can be written

p′ = F (x + cst) + G(x− cst) ,

for arbitrary functions F and G, describing left- and rightward propagating
waves, respectively. This bornes out the role of cs as the speed of sound.

A few inferences are in order. First, sound waves are dispersionless, i.e.
their phase speed does not depend on wavelength. This is, in fact, obvious from
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everyday experience: if sound waves were dispersive, speech, not to speak of
music, would result in an unintelligible cacophony. (Some would argue that
modern music occasionally attains this quality even with dispersionless sound
waves.) The color of a voice – that what allows us tell one voice from another
– stems from the intensity of “overtones”, i.e. the tones whose frequencies are
a multiple of the basic tone. If they would travel at different speeds, the signal
would entirely lose its coherence.

Second, the speed of sound cs is the “Laplacian” one, defined by (2.11):

c−2
s =

(∂ρ

∂p

)∣∣∣
ηS

,

i.e. (de)compression of fluid parcels is assumed to take place under constant
entropy η (and salinity). This expression is another way of writing (2.18), which
was, after all, based on the assumption that entropy and salinity are constant.
Without proof, we note that for an ideal diatomic gas (dry air), the expression
reduces to c2

s = 7
5RdT .

Historically, this expression was preceded by the “Newtonian” speed of
sound, in which temperature instead of entropy was assumed to be constant
during (de)compression. For dry air, this assumption leads to a smaller speed,
given by c̃2

s = RdT . This would have been correct if parcels move so slowly that
their excess in temperature during compression is annulled by the exchange
of heat with their surroundings. This is however not the case [70, §246]; the
observed speed of sound in dry air agrees with the “Laplacian” one.
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Chapter 3

Local static stability

3.1 The buoyancy frequency

In later chapters we will think of internal waves as oscillatory motions in an
ocean or atmosphere that is otherwise at rest, in other words as perturbations to
a static background state. This is why we must first consider in detail the static
state itself (this chapter), before turning to internal waves. Central in the theory
of internal waves stands the so-called Brunt-Väisälä or buoyancy frequency (N),
which is a measure of the strength of the vertical stratification in density; it is
an indicator for the local gravitational stability of the stratification. A typical
distribution of N in the ocean is shown in Figure 1.6.

Generally, the concept of ‘stability’ tells us how a system responds to a per-
turbation. To use the concept in a meaningful way, one has to specify precisely
what sort of perturbations one is looking at. Here, in dealing with the question
of local static stability, we consider perturbations in the form of infinitesimal
vertical displacements of fluid parcels (we will see in a moment that this speci-
fication is not sufficient). We call a fluid stably stratified if the displaced parcel
tends to return to its original position, unstably stratified if it tends to move
further away from its original position, and neutrally stratified if it tends to stay
where it is. A naive look at Figure 2.2e (solid line) would perhaps suggest that
the density distribution is quite stable since the parcels are denser at deeper
positions. The real question, however, is whether they would still be denser
if they were displaced to a higher position; we have to take into account the
effect that quantities like the parcel’s temperature and density may change by
(de)compression as the parcel is vertically displaced. To make the argument
explicit, let us assume that the vertical density distribution, belonging to the
static state, is known: ρ = ρ0(z). Let a parcel be moved from its initial position
z−δz, where its density was ρ0(z−δz), upwards to a new position z; we denote
its change in density by δρ (Figure 3.1). The parcel will move back towards its
initial position when it is heavier than the surrounding fluid; hence the criterion
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for stability is:

ρ0(z − δz) + δρ > ρ0(z) (3.1)

or, in a Taylor expansion about z,

ρ0(z)− dρ0

dz
δz + · · ·+ δρ > ρ0(z) .

For infinitesimal displacements (δz → 0) this becomes

−dρ0

dz
+

δρ

δz
> 0 . (3.2)

This expression contains two types of density gradients: the first term simply
gives the rate at which the static density varies with height; the second, the rate
at which the parcel’s own density changes during its vertical displacement. It
is the difference between the two that determines whether the stratification is
stable or not.

Fig. 3.1: A fluid parcel (black blob) is moved upward from position z − δz to z.

At this stage we can formally introduce the buoyancy frequency N as

N2 = − g

ρ0

(dρ0

dz
− δρ

δz

)
(3.3)

where g is the acceleration due to gravity. Hence, in terms of N , the criterion
for local static stability becomes

N2 > 0 . (3.4)

Similarly, the fluid is unstably stratified if N2 < 0, and neutrally stratified if
N2 = 0.

The next problem is to find an expression for δρ/δz. It is here that ther-
modynamic principles come into play: the problem cannot be resolved unless
we specify the perturbation also from a thermodynamic point of view. We will
assume that the displacement of the parcel is such that its entropy and salinity
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(or humidity) are conserved. The conservation of entropy is guaranteed if the
parcel exchanges no heat and salinity with its surroundings and moves suffi-
ciently slowly to remain (nearly) in thermodynamic equilibrium (see eq. (2.15)).
This does not contradict the fact that the fluid as a whole may well be far re-
moved from thermodynamic equilibrium: the ‘thermodynamic system’ that we
consider is the parcel, and the surrounding fluid plays a role merely in providing
the pressure that the parcel experiences.

Before we proceed to derive expressions for N in terms of observable quanti-
ties (temperature, salinity, density), we furnish N with a simple interpretation.
We consider again the vertical displacement of the parcel (δz), and denote its
vertical acceleration by δ̈z (i.e. the second time derivative of δz). After its dis-
placement from z−δz to z (see Figure 3.1), the parcel experiences a buoyancy (or
Archimedean) force, which is gravity g times the difference in density between
the ambient fluid and the parcel. To a first approximation, this force is given
by g(δz dρ0/dz − δρ). By Newton’s second law, the force equals the accelera-
tion of the parcel (times its density); the latter is, again to first approximation,
ρ0(z) δ̈z. Hence

δ̈z + N2 δz = 0 .

This equation describes a harmonic oscillator, similarly as for a spring in classical
mechanics: for N2 > 0, the parcel oscillates vertically at frequency N about its
equilibrium position, the role of N being analogous to the stiffness of a spring.

3.2 N in terms of density

The criterion for stability (3.4) attains its meaning from the definition of N in
(3.3). We now have to find expressions for N in terms of observable quantities.
Using the results from thermodynamics that were discussed in Chapter 2, we
derive an expression for N in terms of the static temperature and salinity profiles
(see next section), and one in terms of the static density profile ρ = ρ0(z) alone.1

In practice, density is not measured directly but obtained via the equation
of state ν = Gp(p, T, S) (see Section 2.3.4), using known vertical profiles of
pressure, temperature and salinity.

In the static state, pressure and density satisfy the hydrostatic balance (see
(2.19a) with ~u = 0):

dp0

dz
= −ρ0g . (3.5)

By assumption, the parcel’s entropy and salinity are conserved during its dis-
placement, hence we can use (2.18) to express its change in density; this implies

δρ = c−2
s δp . (3.6)

1Here and in the rest of this chapter, the index ‘0’ refers to static profiles, while δ refers to
changes concerning the displaced parcel.
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Here cs is the speed of sound in the parcel, not that in the fluid surrounding it.
At each instant during the displacement, the pressure that the parcel experiences
is given by the local static value p0; hence, by the hydrostatic balance (3.5), the
change in pressure δp becomes δp = −ρ0gδz. Collecting these results in (3.3),
we obtain

N2 = − g

ρ0

(dρ0

dz
+

ρ0g

c2
s

)
. (3.7)

The terms on the right-hand side have opposite signs, the first term on the right-
hand side having a stabilizing effect, while the second term has a destabilizing
effect. In the larger part of the ocean (i.e. outside the thermocline), as well as
in the troposphere, the two terms are of the same order of magnitude. This is
easily verified for the ocean, using Figure 2.2e,f. Density ρ increases from 1022
at the surface to 1070 kgm−3 at 10 km depth (testifying to the compressibility
of seawater!), giving a gradient dρ0/dz = −0.0048 kgm−2. The mean speed
of sound is cs = 1545 m s−1, so that ρ0g/c2

s becomes 0.0043 kgm−2, being of
about the same magnitude, but of opposite sign, as the density gradient. In
other words, the second term cannot be neglected; in fact, it acts as an essential
’correction’ to the first term, to annul the effects of compressibility.

3.3 N in terms of temperature and salinity

Here we derive an alternative expression for N2, in terms of the (more directly
observable) distributions of static temperature and salinity. Choosing pressure,
temperature and salinity as the independent state variables, we can express the
parcel’s change in density δρ (see Figure 3.1) as

δρ =
(∂ρ

∂p

)
TS

δp +
( ∂ρ

∂T

)
pS

δT +
( ∂ρ

∂S

)
pT

δS . (3.8)

By assumption, the parcel’s salinity is conserved (δS = 0), so the last term
vanishes. Because of the conservation of entropy and salinity, (2.9) and (2.16)
together imply that the parcel’s change in temperature can be expressed as
δT = −δp GpT /GTT . Using Table 2.1 gives

δT =
αT

ρcp
δp . (3.9)

The quantities in the coefficient of δp refer to the parcel’s state, and thus change
as the parcel is moved. The change in pressure δp follows from the hydrostatic
balance (3.5); using this and (3.9), we obtain from (3.8):

δρ = −
((∂ρ

∂p

)
TS

+
( ∂ρ

∂T

)
pS

αT

ρcp

)
ρ0gδz . (3.10)
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We assume the static temperature profiles T0(z) and S0(z) to be known; the
static density gradient can then be written as

dρ0

dz
=

(∂ρ

∂p

)
TS

dp0

dz
+

( ∂ρ

∂T

)
pS

dT0

dz
+

( ∂ρ

∂S

)
pT

dS0

dz
. (3.11)

Substitution of (3.10) and (3.11) in (3.3) gives

N2 = g
[
α

(dT0

dz
+

αT0g

cp

)
− β

dS0

dz

]
(3.12)

where we used the definitions of α and β in (2.11), and the hydrostatic balance
(3.5). The thermodynamic parameters α, β and cp are functions of pressure,
temperature and salinity, for which we can use the local static values p0, T0 and
S0, because the displacement of the parcel is assumed to be infinitesimal.

3.4 A practical example

In the ocean, vertical distributions of temperature and salinity are obtained
from CTD profiling, a device that measures conductivity (hence salinity), tem-
perature, and depth (or pressure, rather). For example, Figure 1.6 is based on
185 such profiles, made at a range of latitudes. In this section we look further
into the practical usage of (3.7); as it turns out, obtaining respectable profiles
of N is a little less straightforward than it may seem. (The usage of (3.12) is
similar, and is not further discussed.)

We consider the profile at latitude 40◦N in Figure 1.6. From the measured
profiles of temperature and salinity (Figure 3.2a,b) we calculate density ρ and
the speed of sound cs using the equation of state for the Gibbs potential, see
Section 2.3.4. This yields the profiles shown in Figure 3.2c,d.2 Next we calculate
the gradient of density, using a 2nd-order central difference scheme:

∂ρ

∂p

∣∣∣
k

=
ρk+1 − ρk−1

2∆p
,

i.e. the gradient at pressure level k is calculated by taking the difference of
density at levels k + 1 and k− 1 divided by the pressure difference between the
levels, 2∆p; here ∆p = 2 dbar = 2× 104 Pa.

We can now use (1.1), which is the equivalent of (3.7); this produces the noisy
line in Figure 3.3a. The noisiness is caused by small-scale fluctuations in the
density gradient. They are of some interest in themselves; they are sometimes
due to small steps in temperature and salinity caused by double diffusion. It is

2Plots like these commonly have depth as the vertical coordinate rather than pressure,
even though the latter is used in the equation of state; a convenient and accurate formula
for the conversion of pressure (in dbar) to depth (in m) is z = (1 − c1)p − c2p2 with c1 =
(5.92 + 5.25 sin2 φ)× 10−3 and c2 = 2.21× 10−6, where φ is latitude [74].
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Fig. 3.2: Profiles of temperature, salinity, density and the speed of sound, at 40◦N in

the Pacific Ocean, from WOCE section P14, see Figure 1.6.

important to realize that Figure 3.3a is based on just one profile of temperature
and salinity; repeated profiling at the same location over longer periods of time
would partly remove the wiggles. In the absence of repeated profiles, it makes
sense to smooth out the wiggles by taking a running mean. Here the running
mean at a point is calculated by taking the average of its value and those of its
7 upper and 7 lower neighbours; the smoothing results in the thick blue line in
Figure 3.3a. Finally, incidental negative values are set to zero, which allows us
to calculate N , shown in Figure 3.3b.

Notice that there are two clearly identifiable peaks in N in the upper layer.
The largest peak occurs in the upper 100 m, and has a seasonal character; it
largely disappears during winter. Hence its name, seasonal thermocline. (In the
tropics, however, it has a permanent character.) Beneath it, near 400 m, lies
a smaller peak that is not affected by seasonal influences and hence is called a
permanent pycnocline. Its depth depends on the geographical location; in the
Bay of Biscay, for example, it lies at about 1000 m depth.

3.5 Special types of stratification

Below we discuss what the stratification is like for two cases of fundamental
importance.
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Fig. 3.3: Profiles of N2 (panel a) and N (panel b) at 40◦N in the Pacific Ocean (WOCE

section P14, see Figure 1.6). In a, the noisy thin black line shows N2 obtained from

(1.1), using the original data at pressure intervals of 2 dbar; the inserted figure shows

a zoom. The blue thick line shows the result of smoothing by taking the running mean

over 15 points (i.e. stretches of 30 dbar); moreover, incidental negative values are set

equal to zero. Panel b shows the square root of the smoothed profile of panel a.

3.5.1 A fluid in thermodynamic equilibrium

The state of thermodynamic equilibrium is special from a fundamental point of
view, because of all the states with the same energy (i.e. internal plus potential
energy) and the same mass, the equilibrium state has the largest entropy. Any
isolated body of fluid will evolve toward thermodynamic equilibrium, due to
molecular diffusion; the eventual state is one in which temperature and chemical
potential are uniform (Figure 3.4, upper panels).

In thermodynamic equilibrium, then, temperature is uniform, T0(z) = Tc.
If no salt is present (Sc = 0), then the stratification follows from (3.12) as

N2 =
α2Tcg

2

cp
. (3.13)

The right-hand side is always positive, so a fluid in thermodynamic equilibrium
is always stably stratified. This conclusion holds a fortiori if salinity is present,
since in thermodynamic equilibrium salinity increases strongly with depth (see
the end of Section 2.3.2, and Figure 3.4, upper panels), the chemical potential
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being uniform. The last term in (3.12) then makes the stratification even more
stable.
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Fig. 3.4: Two fictitious ocean states. Upper panels: thermodynamic equilibrium; lower

panels: convective equilibrium. In the upper panels temperature is chosen uniform (a),

while salinity (b) is chosen such that the chemical potential µ (d) is uniform; hence

a state of thermodynamic equilibrium. In the lower panels, salinity is chosen uniform

(f), while temperature (e) is chosen such that entropy η (g) is uniform; this describes

a state in which entropy and salinity are mixed, as in “convective equilibrium”. Units

as in Figure 2.2.

3.5.2 A turbulently mixed fluid

Molecular diffusion is a rather slow process. In geophysical fluid dynamics, it
is turbulent (rather than molecular) mixing that often stamps the state of the
fluid; it presumably tends to mix entropy and salinity, instead of temperature
and chemical potential (see also footnotes on p. 33).

Let the static entropy profile be given by η0(z). We can then express the
static density gradient as

dρ0

dz
=

(∂ρ

∂p

)
ηS

dp0

dz
+

(∂ρ

∂η

)
pS

dη0

dz
+

( ∂ρ

∂S

)
pη

dS0

dz
(3.14)

= −ρ0g

c2
s

+
(∂ρ

∂η

)
pS

dη0

dz
+

( ∂ρ

∂S

)
pη

dS0

dz
(3.15)
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where we used (3.5) and (3.6). Thus (3.7) can be rewritten as

N2 = − g

ρ0

[(∂ρ

∂η

)
pS

dη0

dz
+

( ∂ρ

∂S

)
pη

dS0

dz

]
. (3.16)

Now, if entropy and salinity are uniform – a state called “convective equilibrium”
(Figure 3.4, lower panels) – we obtain N2 = 0, i.e. the stratification is neutrally
stable.

Such a state is sometimes referred to as ‘adiabatic’ or ‘isentropic’.3 This
terminology is misleading, for contrary to what the terms may suggest, dia-
batic processes must be involved to maintain such a state; otherwise the system
would evolve towards thermodynamic equilibrium – an isothermal state. Put
differently, for the state to stay away from thermodynamic equilibrium, it is
necessary that the entropy that is inevitably being continually produced in the
interior of the fluid, be expulsed to its surroundings; this is accomplished by a
flow of heat through the system, with low-entropic incoming and high-entropic
outgoing energy. The Earth’s atmosphere/ocean system is a case in point; low-
entropic short-wave radiation is received from the sun, while the Earth emits
high-entropic long-wave radiation. The flow of energy is energetically neutral,
but allows entropy to be expulsed. Similarly, living organisms do not eat to gain
energy, but to keep down entropy (and thus to postpone as long as possible the
sorry state of thermodynamic equilibrium).4

3.6 Potential density

The relation between potential density and static stability is a complicated one.
It is instructive to introduce first the concept of a ‘generalized’ potential density,
which does provide a simple connection to static stability. From it, the potential
density, in its ordinary sense, can be deduced, but then the simple connection
to static stability is lost.

3.6.1 Generalized potential density

Imagine that a fluid parcel were moved from its initial vertical position z to a
certain reference level zr, under conservation of its entropy and salinity. Then
we define the density that the parcel would attain at its new position (i.e. at zr)
as its potential density ρr(zr, z). Usually one takes zr fixed (see next section),
but here we shall regard zr as a variable (hence the adjective ‘generalized’).

The potential density can be obtained by integrating (3.6); this gives

ρr(zr, z) = ρ0(z) + g

∫ z

zr

dz′
ρ0(z′)

c2
s(z, z′)

.

3The terms ‘adiabatic’ and ‘isentropic’ are not equivalent and should therefore not be used
interchangeably. For example, the free expansion of a gas in a cylinder, being an irreversible
process, is adiabatic (i.e. there is no heat exchange with its surroundings), but not isentropic.

4See also the thought-provoking discussion of Emden’s ”Warum heizen wir im Winter?”
by Sommerfeld [78, p. 38].
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The left-hand side thus denotes the density a parcel, originally at z, would attain
when brought adiabatically to zr. The speed of sound in the parcel, cs, depends
on its original height z, as well as on the height z′, which it passes during the
displacement. This is because the speed of sound depends on the state variables
pressure, entropy and salinity, the first of which takes the ambient value p0(z′),
whereas the last two retain their original values η0(z) and s0(z). This is an
important point, because differentiation to z now still yields an integral-term:

∂ρr

∂z
(zr, z) =

dρ0

dz
+

ρ0g

c2
s

+ g

∫ z

zr

dz′ ρ0(z′)
∂c−2

s

∂z
(z, z′) .

Comparison with (3.7) shows that

N2(z) = − g

ρ0

∂ρr

∂z
(zr, z) +

g2

ρ0

∫ z

zr

dz′ ρ0(z′)
∂c−2

s

∂z
(z, z′) . (3.17)

The quantity ρr depends on two independent variables: zr and z. By travers-
ing the zr, z-plane along a certain line, we obtain a transect of the surface
ρr(zr, z). Of special importance is the transect along the line zr = z; this yields
the static density profile, since ρr(z, z) = ρ0(z). Furthermore, for zr = z, all
that remains of (3.17) is the simple expression

N2(z) = − g

ρ0

∂ρr

∂z
(z, z) . (3.18)

Notice that the derivative on the right-hand side is not the gradient of the static
density ρ0. We follow the line zr = z, along which (as we saw above) the values
of ρr are indeed equal to ρ0; the partial derivative in (3.18), however, does
not produce the gradient of this curve, but rather the derivative in an oblique
direction (i.e. in a direction parallel to the z-axis).5

3.6.2 The common concept of potential density

Potential density, in its ordinary sense, is defined in the same way as was ρr

above, except that zr is taken to be fixed. To be specific, we shall choose
zr = 0 (sea surface, level of standard atmospheric pressure), but the following
statements are equally valid for any other fixed value. To make this change in
the meaning of zr explicit, we introduce the symbol

ρΘ(z) = ρr(0, z) .

Notice the difference from the previous section (where we followed the line zr =
z): we now travers the zr, z-plane along a line zr = const.

The difference between (in-situ) density ρ and potential density ρΘ is shown
in Figure 2.2e. In an incompressible fluid the two profiles would be identical;

5One may introduce a function ρl(z), the ‘local’ potential density [87], defined by equating
dρl/dz with the partial derivative on the right-hand side of (3.18); this provides us with a
function whose gradient is proportional to N2.
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thus, the fact that the profiles (and their gradients, in particular) are quite
distinct testifies to the importance of compressibility.

It now follows immediately from (3.17) that

N2(z) = − g

ρ0

dρΘ

dz
(z) +

g2

ρ0

∫ z

0

dz′ ρ0(z′)
∂c−2

s

∂z
(z, z′) . (3.19)

Due to the presence of the second term on the right-hand side, the signs of N2

and −dρΘ/dz need not be the same; in other words, the sign of the gradient
of ρΘ is not, in principle, indicative of static (in)stability. In practice, however,
the second term on the right-hand side usually turns out to be negligible unless
the stratification comes close to neutral stability, N ≈ 0. In other words, it
is a fact of experience that the gradient of potential density is indicative of
(in)stability under most, but not all oceanographic conditions. The deeper parts
of the South-Atlantic Ocean provide a negative example; here the exact criterion
proves that the stratification is stable, whereas the sign of dρΘ/dz is positive
(see [68, §7.352]). One usually deals with this problem by dividing the water
column in a certain number of layers, and choosing a separate reference level
zr for each layer. This is certainly more accurate, but it still does not produce
the exact result, for this requires the introduction of infinitely many reference
levels, as in the previous section. Hence it is advisable to use always the exact
criterion (3.4), together with either (3.7) or (3.12).

It is only for the special case of uniform salinity that one finds a simple
expression in terms of potential density. From its definition it follows that
potential density ρΘ is a function only of the parcel’s entropy and salinity.
Thus we can write

dρΘ

dz
=

(∂ρΘ

∂η

)
S

dη0

dz
+

(∂ρΘ

∂S

)
η

dS0

dz
.

Recalling (3.16), we see that if salinity is uniform (S0(z) = Sc), the following
identity holds:

N2 = − g

ρ0

(∂ρ

∂η

)
pS

(∂ρΘ

∂η

)−1

S

dρΘ

dz
. (3.20)

If the partial derivatives on the right-hand side have constant signs through-
out the fluid, then one can conclude that the sign of dρΘ/dz is indicative of
(in)stability.

3.7 Limitations of the concept of local stability

So far we have assumed that vertical displacements are infinitesimal, hence
we speak of local stability. This concept works fine if the entire column is
stably stratified. However, layers that are locally unstable will collapse and be
subject to turbulent mixing. This means that we have to take into account the
finite displacement of parcels; the criterion of local stability is then no longer
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necessarily meaningful. In fact, convective mixing may extend into locally stable
layers.

To find the vertical extent of the region affected by local instability, a simple
rule can be established. Parcels at the top of the locally unstable layer will
descend, parcels at its base will rise. These descending and rising movements are
not necessarily limited to the locally unstable layer itself; they will continue until
the parcels arrive in a surrounding that matches their instanteneous density.
This is illustrated in Figure 3.5. In this atmospheric example, effects of humidity
are neglected. Local stability can then be defined by the gradient of potential
density (see (3.20)), or of the similarly defined potential temperature. The
criterion of local stability identifies a layer of unstable stratification (Figure
3.5a). The descending parcel from the top of this layer, and the rising parcel
from its base (denoted by circles), will continue their vertical motion until they
arrive at a level at which the potential temperature equals their own (Figure
3.5b). So, the effectively unstable layer is much thicker than the criterion of
local stability would suggest.

Fig. 3.5: A fictitious atmospheric profile of potential temperature. Negative (positive)

gradients are indicative of locally unstable (stable) layers, as shown in a. However,

descending and rising parcels from the locally unstable layer will continue their move-

ment until they arrive at a level that matches their own potential temperature (b). As

a result, neighbouring locally stable layers will be subject to convective mixing as well.

(The question marks in b refer to the possibility that surface heating may render the

locally neutrally stratified bottom layer unstable.) From [81].
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Chapter 4

Approximations

4.1 Introductory remarks

The fundamental equations of geophysical fluid dynamics defy direct analytical
treatment. Even in a numerical approach one faces formidable complications.
Hence it is desirable to introduce approximations and thereby to simplify the
problem. The procedure by which this is done usually consists of a series of
steps. First each variable in the equation is replaced by its typical scale times a
dimensionless variable. Then, by collecting scales in each term, certain dimen-
sionless parameters are identified, some of which may be considered small on
empirical grounds, or just by assumption. Finally, the terms involving a small
parameter are neglected.

Implicit in this procedure is the idea ‘the smaller a term, the less important’.
An utterly trivial example may serve to make this look less obvious. Consider
the algebraic equation a = b + c, and let us assume that all terms are of order
one; hence none of them is negligible. Next we rewrite the equation by defining
b̃ = b + 1000 and c̃ = c − 1000, giving a = b̃ + c̃. The term on the left-hand
side is now three orders of magnitude smaller than either of the terms on the
right, and (according to a naive way of reasoning) can therefore be considered
negligible. At the same time, obviously, the term cannot have become negligible
merely by rewriting the equation.

The problem lies in the mistaken notion that terms can be negligible in an
equation as such. Upon closer examination, what happens in an approximating
procedure is this: we approximate, i.e. replace, the exact fields (e.g. current
velocity, density etc.) by slightly different ones. Not surprisingly, these ap-
proximated fields satisfy an equation that differs from the original one. This
may seem a rather scholastic point, but the following example will illustrate its
specific meaning.

In a later section we will encounter an equation that provides the boundary
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condition at the upper surface; after having been scaled, the equation reads:

ε
∂p̂′

∂t̂
= ŵ , (4.1)

where a ’hat’ indicates that the variable is scaled and dimensionless (p̂′ denotes
the departure of pressure from its hydrostatic value). Empirically it is known
that the dimensionless parameter ε is much smaller than one. What can we infer
from that? Obviously, one cannot say that “the left-hand side is small compared
with the right” (a lapsus in a famous textbook); the equality sign, after all, tells
us that the two sides are equal. What we can do, however, is to expand the
variables p̂′ and ŵ in a series, in which ε serves as the small parameter:

p̂′ = p(0) + εp(1) + ε2p(2) + · · · ŵ = w(0) + εw(1) + ε2w(2) + · · · ,

where all the p(i) and w(i) are assumed to be of order one. Subsitution in (4.1)
then gives, to first order,

w(0) = 0 , (4.2)

showing that w(0) vanishes at the surface. This is a simpler equation than (4.1),
but notice that (4.1) and (4.2) are about different variables; the former deals
with the original vertical velocity ŵ, the latter with its first-order approximation
w(0).

However, this precise way of writing becomes unwieldy when several approx-
imations are made, involving different small parameters; in the end, we would be
working with things like w(0,0,0,0,0,0). This is why the explicit expansion is usu-
ally left out altogether, so that we jump directly from (4.1) to (4.2), the latter
moreover being written as ŵ = 0 (incorrectly suggesting that we are still dealing
with the original variable; and opening the trap of substituting approximated
expressions back into the original equations. . . ). Furthermore, we describe the
process somewhat fuzzily by saying that we have approximated (4.1) by (4.2);
in the next sections we often follow this parlance, for the sake of brevity.

4.2 Overview

Our starting point is the set (2.19). For later convenience, we rewrite the con-
tinuity equation (2.19b) using the energy equation (2.19c):

ρ
(D~u

Dt
+ 2~Ω× ~u

)
= −∇p− ρgẑ (4.3a)

ρ∇ · ~u = − 1
c2
s

Dp

Dt
(4.3b)

Dρ

Dt
=

1
c2
s

Dp

Dt
(4.3c)

DS

Dt
= 0 (4.3d)

cs = Γ(ρ, p, S) , (4.3e)
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Approximation: meaning: removes:

Quasi-incompressibility divergence-free velocity, a.o. sound waves
Linearization (*) advective terms removed wave interactions
f -plane fixed latitude Rossby/planetary waves

’Traditional Approx.’ (*) f̃ -terms neglected short low-freq. int. IGW
Hydrostaticity (*) vertical acceleration neglected gyroscopic waves
Geostrophy (**) Coriolis balances pressure grad. (internal) IGW

Table 4.1: Various approximations, what they mean, and what phenomenon is
removed by making them. ’IGW’ stands for inertio-gravity waves.

from which the unknowns ~u, ρ, p and S are to be solved.
This set appears intractable; in an attempt to derive analytical solutions, we

would encounter a number of hurdles. Mathematically, the hurdles appear in the
form of nonlinear terms, as well as terms with non-constant coefficients. Below
we discuss under what circumstances these terms can be neglected. Physically,
the hurdles just mean that the equations in their present form are ’too rich’;
they contain phenomena in which we are not (or not primarily) interested, such
as sound waves, large-amplitude waves etc. By making the approximations
discussed below, we discard these phenomena one by one.

Common approximations and their consequences to wave phenomena are
listed in Table 4.1; approximations marked by an asterisk will not (**), or not
always (*), be adopted in this book.

4.3 Quasi-incompressibility

All approximations discussed in this section rest on the assumption that den-
sity varies relatively little in the domain under consideration.1 In other words,
we assume that the (vertical) scale over which density varies by one order of
magnitude is much larger than the scale of the phenomena we are looking at.
This requirement is very well satisfied in the ocean, and reasonably well in the
atmosphere if we restrict ourselves to vertical scales of the order of 100 m.

4.3.1 Momentum equations

In classical mechanics, two concepts of mass are sometimes distinguished: in-
ertial and gravitational mass.2 Inertial mass is a measure of how strongly a
body resists a change in velocity when subjected to a force; gravitational mass
determines the force by which a body is attracted in a field of gravity. The
former has a passive connotation, the latter an active one.

1In the literature, these approximations, or a subset of them, are often referred to as “the”
Boussinesq approximation. Since opinions differ on exactly what is to be understood by this
term, its usage tends to confuse rather than to clarify the issue; for this reason, we avoid the
term altogether.

2It was shown observationally by Eötvös that the two can be identified numerically; later,
conceptual equality was implied by Einstein’s theory of general relativity.
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It is instructive to consider first a simple mechanical problem: Atwood’s
machine, see Figure 4.1. The net force working on the connected bodies is
g∆m; this force pulls at a total mass of 2m + ∆m. Hence the acceleration is

a =
g∆m

2m + ∆m
.

Now, if ∆m ¿ m, then we can approximate this expression by

a ≈ g∆m

2m
.

This amounts to neglecting the difference in mass, but only so far as the inertial
mass is concerned; in the gravitational mass the difference remains essential
since otherwise their would be no net force.

Fig. 4.1: Atwood’s machine: two bodies are connected by a string passing over a

pulley. The mass of body II, m + ∆m, slightly exceeds that of body I, m.

In the ocean, density varies by at most a few percentage points (see Figure
2.2e, solid line). This suggests that we may replace density by a constant ref-
erence value ρ∗ in the momentum equations (4.3a), but of course only where
density plays its “inertial” role. Hence

ρ∗
(D~u

Dt
+ 2~Ω× ~u

)
= −∇p− ρgẑ . (4.4)

This natural and seemingly innocent approximation deserves further comment.
One important quantity in fluid dynamics is vorticity, ∇ × ~u. Now, how can
vorticity be created? According to (4.3a) we have

∂

∂t
(∇× ~u) + · · · = −∇×

(∇p

ρ

)
, (4.5)
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stating that pressure gradients can create vorticity, while gravity cannot. (The
advective and Coriolis terms play no role in this argument and are rendered by
dots.)

Repeating the same procedure in (4.4), we find

∂

∂t
(∇× ~u) + · · · = −∇×

(ρgẑ

ρ∗

)
, (4.6)

stating that gravity can create vorticity, while pressure gradients cannot – the
exact reverse of what we found in the original equation (4.5)!

Lest we conclude that this consequence wholly discredits the validity of the
approximation, we should realize that gravity and pressure gradients are closely
connected in geophysical flows. For example, horizontal density gradients result
in pressure gradients due to gravity. In practice, the reversal of roles is thus
fairly harmless.

4.3.2 Mass and energy equations

As in the previous chapter, we will think of internal waves as a perturbation of
a (known) static background state that has only vertical dependences; thus

p = p0(z) + p′(t, ~x) (4.7)

ρ = ρ0(z) + ρ′(t, ~x) (4.8)

(and similarly for salinity); the primed fields are associated with the internal-
wave motion. The static fields obey the hydrostatic balance:

dp0

dz
= −ρ0g . (4.9)

At this stage, these steps neither presume nor imply anything, for the fields p

and ρ can always be written like this. The right-hand side of (4.4) can now be
written as

−∇p′ − ρ′gẑ

and (4.3b,c) become

ρ∇ · ~u = − 1
c2
s

Dp′

Dt
+ w

ρ0g

c2
s

(4.10)

Dρ′

Dt
+ w

dρ0

dz
=

1
c2
s

Dp′

Dt
− w

ρ0g

c2
s

. (4.11)

To proceed, we must assume something about the time-scale of the motion
in question.3 In geophysical fluid dynamics, one may (roughly) distinguish two

3In scaling procedures like this, there is always an element of reasoning in a circle: the
resulting approximated equations we “prove” to be valid simply reflect the primary balance we
assumed in the first place; in other words, ’what you want is what you get’. Indeed, nothing
is strictly proven; we only delineate the conditions under which the approximated equations
can be expected to be valid; and, in the end, only a comparison with empirical observation
can bear out their validity.

55



types of motion. One is the large-scale flows, with time scales (much) larger
than f−1; here, the primary balance in the horizontal momentum equations is
between the Coriolis force and the pressure gradient (geostrophy). The other
one is inertio-gravity waves, with time scales smaller than f−1; here the primary
balance is typically between acceleration and the pressure gradient. For our
purposes, the second assumption is the most appropriate one. Denote the scales
of t, x, u and p′ by T , L, U and P ; then, by assumption:

ρ∗
U

T
∼ P

L
.

Since we are dealing with waves, the length and time scales are related by
L/T = C, the phase speed, which for internal waves in the oceans typically is
of the order of 1 m s−1. We may thus write

P ∼ ρ∗CU . (4.12)

At this stage, it is useful to introduce one more type of velocity, namely the
phase speed of long surface waves: csf = (gD)1/2, where D is water depth. We
summarize the typical orders of magnitude of the four speeds we have introduced
so far, all in meters per second:

U ∼ O(10−1) ; C ∼ O(1) ; csf ∼ O(101 , 102) ; cs ∼ O(103) m s−1 .

They denote the particle velocity and phase speed of internal waves, the phase
speed of surface waves, and the speed of sound in seawater, respectively. We
thus have

U ¿ C ¿ csf ¿ cs . (4.13)

These estimates form an important guide to the approximations made below.
We first consider (4.10), and denote the typical scales above each term:

ρ∗U/L︷︸︸︷
ρ
∂u

∂x
+

ρ∗U/L︷︸︸︷
ρ
∂v

∂y
+

ρ∗W/H︷ ︸︸ ︷
ρ
∂w

∂z
= −

P/(Tc2
s)︷ ︸︸ ︷

1
c2
s

∂p′

∂t
−

UP/(Lc2
s)︷ ︸︸ ︷

u

c2
s

∂p′

∂x
−

UP/(Lc2
s)︷ ︸︸ ︷

v

c2
s

∂p′

∂y
−

WP/(Hc2
s)︷ ︸︸ ︷

w

c2
s

∂p′

∂z
+

ρ∗Wg/c2
s︷ ︸︸ ︷

w
ρ0g

c2
s

.

Here we introduced the vertical internal-wave scales W and H,4 as yet unrelated
to the other scales. By comparing the first term on the right with the first term
on the left, we find from (4.12) and (4.13) that their ratio is C2/c2

s ¿ 1, so
the latter dominates. We find the same for the first two advective terms on the
right, even if we would take U ∼ C (as is the case for strongly nonlinear waves,
see next section). Similarly, we find that the third term on the left dominates
the fourth term on the right. It also dominates the fifth term on the right, since

4For clarity, we emphasize that H does not represent the scale of the amplitude of the
internal wave, but rather the vertical scale over which the internal-wave field varies by one
order of magnitude; this may often be simply water depth itself.
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gH < gD = c2
sf ¿ c2

s. 5 In other words, each of the terms on the right is much
smaller than at least one of the terms on the left, so we can conclude that the
velocity field is to a close approximation given by a field ~u(0) that obeys (cf.
Section 4.1)

∇ · ~u(0) = 0 . (4.14)

An immediate consequence is that volumes of water parcels are now conserved,
which combines awkwardly with the variation in density that is still allowed.
As a result, mass is no longer conserved. For wave-phenomena, this problem is
not too serious, because the oscillatory nature of the motion implies that mass
gains are followed by, and indeed annulled by mass losses, and vice versa.

For later usage, we note that the scale W can be expressed via (4.14) as

W ∼ UH/L . (4.15)

We now consider the energy equation (4.11), and focus our attention on the
right-hand side:

· · · = +

P/(Tc2
s)︷ ︸︸ ︷

1
c2
s

∂p′

∂t
+

UP/(Lc2
s)︷ ︸︸ ︷

u

c2
s

∂p′

∂x
+

UP/(Lc2
s)︷ ︸︸ ︷

v

c2
s

∂p′

∂y
+

WP/(Hc2
s)︷ ︸︸ ︷

w

c2
s

∂p′

∂z
−

Wρ∗g/c2
s︷ ︸︸ ︷

w
ρ0g

c2
s

Using (4.12) and (4.15), we find that the ratio of the first and last term scales as
C2/(gH). Now, the vertical scale of internal waves is often nearly waterdepth
itself, in which case C2/(gD) = C2/c2

sf ¿ 1 by (4.13). Even if we have much
smaller scales (for example when an internal-wave is trapped in the thermocline),
then we would still have H ∼ 101 to 102 m, so that the condition is still met.
The first term on the right is thus much smaller than the last one; the advective
terms too are much smaller, as one sees by a similar argument. Hence, the fields
are to a good approximation given by

Dρ′(0)

Dt
+ w(0)

(dρ0

dz
+

ρ0g

c2
s

)
= 0 , (4.16)

where we brought the remaining term from the right-hand side to the left.

4.3.3 Resulting equations

In summary, we have reduced (4.3a-c) – via (4.4), (4.14) and (4.16) – to

D~u

Dt
+ 2~Ω× ~u = − 1

ρ∗
∇p′ + bẑ (4.17a)

∇ · ~u = 0 (4.17b)
Db

Dt
+ N2w = 0 , (4.17c)

5Notice that this condition may pose a problem in the atmosphere, where the speed of
sound is much smaller than in the ocean: cs ∼ 300m s−1. In that case one must assume
that H, the vertical scale of the internal-wave, is sufficiently small (i.e. much smaller than the
thickness of the troposphere); otherwise the approximation (4.14) will be invalid.
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where we dropped the scripts {·}(0), and introduced a convenient quantity called
buoyancy:

b = −gρ′/ρ∗ . (4.18)

Buoyancy can be interpreted as (minus) the effective gravity, associated with
the Archimedean force. We also used the definition of the buoyancy frequency
from (3.7):

N2 = − g

ρ∗

(dρ0

dz
+

ρ0g

c2
s

)
, (4.19)

but with ρ0 replaced by ρ∗ in the denominator on the right-hand side, in line with
the approximation made in the previous section. Since N refers to the static
state, we can evaluate the speed of sound cs as a function of the prescribed
static fields, i.e. cs = Γ(ρ0, p0, S0); cs can thus be regarded as a known function
of z.

The upshot is that effects of compressibility can be neglected except in the
definition of the background stratification (4.19). The importance of the second
term on the right-hand side of (4.19) was earlier demonstrated in Section 3.2.

The simplifications introduced in this section come at a price, in that they
distort a number of fundamental balances; we discussed this already for the
vorticity balance and mass conservation. It is beyond the scope of this text
to discuss in detail that the energy balance, too, can get distorted. If diabatic
processes were included, one would find that a supply (or loss) of heat is repre-
sented by an extraction (or supply) of mass; in other words, in the approximated
equations heat is represented as a form of mass, not energy (an ironic reversal
of 19th-century progress in thermodynamics). In thermodynamic cycles, e.g.
thermal convection, one then finds that gravity is doing net work in the model
equations, as opposed to pressure in reality [89].

Notwithstanding these problems, the set (4.17) has the merit that sound
waves have been filtered out from the equations; this is due to the approximation
of (4.3b) by (4.17b).

4.4 The ‘Traditional Approximation’

The so-called ‘Traditional Approximation’ consists in neglecting the terms with
f̃ , i.e. the Coriolis terms involving the cosine of latitude. In the momentum
equations (4.17a), written out in its components, there are two such terms:

Du

Dt
− fv + f̃w = − 1

ρ∗

∂p′

∂x
(4.20a)

Dv

Dt
+ fu = − 1

ρ∗

∂p′

∂y
(4.20b)

Dw

Dt
− f̃u = − 1

ρ∗

∂p′

∂z
+ b . (4.20c)

At mid-latitudes the parameter f̃ is of course equally large as f ; it seems odd,
then, to neglect the terms with f̃ while retaining those with f . However, the
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difference between the two is that f̃ is always associated with vertical motions
(either a vertical velocity or a vertical acceleration), whereas f is associated
with horizontal motions alone. Low-frequency motions are usually predomi-
nantly horizontal, so that the effects of f̃ are generally slight. Moreover, strong
stratification, in the sense that N À Ω, tends to suppress vertical motions, thus
diminishing the role of f̃ . Still, weakly stratified regions occur in the abyssal
ocean (see Figure 1.6); in these regions, ‘non-traditional’ effects can be quite
significant, especially for near-inertial internal waves (i.e. internal waves at fre-
quencies close to |f |). More generally, other kinds of motions can be affected as
well, such as deep convection, Ekman layers, and equatorial flows, see [30].

The mathematical structure of the problem depends on whether one makes
the Traditional Approximation or not. With f̃ included, solutions can no longer
be obtained by separation of horizontal and vertical variables. For the standard
internal-wave problems, however, this obstacle proves illusory. In the following
chapters, we therefore include sections on ‘non-traditional’ results, which are
obtained without any difficulty.

4.5 Linearization

Nonlinear terms are those that contain products of unknowns. So in (4.17a),
we identify the nonlinear term (~u · ∇)~u; (4.17c) similarly contains advective
terms. These terms are responsible for interactions among waves. Omitting
them greatly simplifies the problem, for this allows wave solutions to be super-
posed, the superposition being a solution, too. Generally speaking, nonlinear
terms are negligible if the wave amplitude is sufficiently small. In the remainder
of this section, we specify what is here meant by ‘small’.

In (4.17a), we consider the material derivative Du/Dt:

U/T︷︸︸︷
∂u

∂t
+

U2/L︷︸︸︷
u

∂u

∂x
+

U2/L︷︸︸︷
v
∂u

∂y
+

UW/H︷ ︸︸ ︷
w

∂u

∂z
+ · · ·

where the dots stand for the Coriolis terms and pressure gradient. Using the
scales of Section 4.3.2, we find that the ratio of each of the nonlinear terms and
the time-derivative is U/C, where C = L/T is the phase speed of the internal
wave. Thus, nonlinear terms can be neglected if U ¿ C, i.e. if the horizontal
velocity of the water parcels is much smaller than the phase speed. Typically,
internal-wave phase speeds are of the order of 1 meter per second, so horizontal
currents should be less than, say, 10 cm per second, for nonlinear terms to be
negligible. The other momentum equations yield the same criterion, and so does
(4.17c).
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4.5.1 Resulting equations

Under the assumption, then, that all nonlinear terms can be neglected, (4.17)
reduces to

∂u

∂t
− fv + f̃w = − 1

ρ∗

∂p′

∂x
(4.21a)

∂v

∂t
+ fu = − 1

ρ∗

∂p′

∂y
(4.21b)

∂w

∂t
− f̃u = − 1

ρ∗

∂p′

∂z
+ b (4.21c)

∂u

∂x
+

∂v

∂y
+

∂w

∂z
= 0 (4.21d)

∂b

∂t
+ N2w = 0 . (4.21e)

From these five equations, it is easy to derive a single equation for one of the
unknowns. Taking ∂/∂z of (4.21b), and ∂/∂y of (4.21c), and subtracting the
results, gives

∂

∂t

(∂w

∂y
− ∂v

∂z

)
=

(
f̃

∂

∂y
+ f

∂

∂z

)
u +

∂b

∂y
. (4.22)

Similarly, taking ∂/∂z of (4.21a), and ∂/∂x of (4.21c), gives

∂

∂t

(∂u

∂z
− ∂w

∂x

)
=

(
f̃

∂

∂y
+ f

∂

∂z

)
v − ∂b

∂x
, (4.23)

where we used the continuity equation, (4.21d). Finally, combining ∂/∂y of
(4.21a) and ∂/∂x of (4.21b):

∂

∂t

(∂v

∂x
− ∂u

∂y

)
=

(
f̃

∂

∂y
+ f

∂

∂z

)
w , (4.24)

where we used, again, (4.21d). On the left-hand sides of (4.22), (4.23) and
(4.24), we recognize the vorticity, ∇ × ~u, discussed in Section 4.3.1. Vorticity
is a measure of the rotation of water parcels, i.e. their change in orientation.6

We noted earlier that the creation of vorticity by gravity (here represented by
buoyancy b), rather than by pressure gradients, is an artifact of assuming quasi-
incompressibility.

Subtracting ∂2/∂y∂t of (4.22) and ∂2/∂x∂t of (4.23), gives

∂2

∂t2

(
∇2

hw − ∂

∂z

[∂u

∂x
+

∂v

∂y

])
+

(
f̃

∂

∂y
+ f

∂

∂z

) ∂

∂t

(∂v

∂x
− ∂u

∂y

)
−∇2

h

∂b

∂t
= 0 ,

where we defined

∇2
h =

∂2

∂x2
+

∂2

∂y2
.

6This type of movement should not be confused with those of parcels traversing for example
a circle in a translational movement, in which case the orientation of the parcels stays the
same.
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The term in square brackets can be rewritten with (4.21d); the Coriolis terms,
with (4.24); and the last term, with (4.21e). The end result is an equation for
w alone:

∂2

∂t2
∇2w + (~f · ∇)2w + N2∇2

hw = 0 , (4.25)

where ~f = (0, f̃ , f) and

∇2 =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
.

It can be shown that the other variables (u, v, p′ and b) satisfy the same equa-
tion. The reason for selecting the vertical velocity component lies in the fact
that the boundary conditions, to be introduced later, are most easily posed in
terms of this variable.

Eq. (4.25) will be the starting point for further analysis in following chapters.
We note that the buoyancy frequency N is allowed to vary with z, in which case
(4.25) has a non-constant coefficient.

4.5.2 Energy equation

A simple but instructive equation can be derived from (4.17a,b,c,e); multiplying
them by u, v, w and b/N2, respectively, and adding up the resulting equations,
one obtains

1
2

ρ∗
∂

∂t

[
u2 + v2 + w2 + b2/N2

]
+ ~u · ∇p′ = 0 . (4.26)

This is an energy equation: the energy density E, being the sum of kinetic and
potential energy, is given by7

E =
1
2

ρ∗
[
u2 + v2 + w2 + b2/N2

]
. (4.27)

The other term in (4.26), ~u · ∇p′, can also be written as ∇ · (~up′) (because of
(4.21d)) and thus represents the divergence of a flux. If we integrate (4.26)
over a volume, we find that temporal changes in the volume-integrated energy
density must be equal to the flux through the boundaries of the volume. In
other words, (4.26) expresses conservation of energy. Note that the Coriolis
force plays no role in this equation; it acts as a deflecting force, perpendicular
to the motion itself, and hence does no work.

7It is important to note that (4.27) is only valid if one of the following conditions is fulfilled:
a) waves are linear, or b) the buoyancy frequency N is constant, or both. For nonlinear waves in
a medium with variable N , the expression becomes more complicated, and involves derivatives
in N : E = 1

2
ρ∗ [u2 + v2 + w2 + b2/N2 − 1

3
(b3/N6) d(N2)/dz + · · · ], see [42] and [58, p. 211].
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4.6 Rigid-lid approximation

The ocean supports not only internal waves, but of course also surface waves.
We wish to concentrate on the former. Yet, we cannot simply assume that the
surface is still, because internal-wave propagation is accompanied by small ele-
vations and depressions of the surface; this merely reflects the pressure gradients
inherent to the passage of an internal wave. These vertical excursions of the
surface are very small compared to those in the ocean’s interior. The reason
for this is simple: the same force that is able to give isopycnals in the interior
large vertical excursions, can only produce a very small excursion of the surface,
because the latter has a much larger vertical density gradient (that between air
and water) than has the ocean’s interior. This fact can be exploited to sim-
plify the boundary condition at the surface, leading to the so-called ’rigid-lid
approximation’.

Let the free surface be described by

z = η(t, x, y) ,

whence follows

w(t, x, y, η) =
Dη

Dt

=
∂η

∂t
+ u

∂η

∂x
+ v

∂η

∂y
.

Moreover, we suppose that the atmospheric pressure at the free surface, pa, is
constant:

p(t, x, y, η) = p0(η) + p′(t, x, y, η) = pa .

where we wrote pressure p as the sum of the static (p0) and dynamic (p′) parts,
as in (4.7). A Taylor expansion about z = 0 gives

w(t, x, y, 0) + η
∂w

∂z
+ · · · =

∂η

∂t
+ u(t, x, y, 0)

∂η

∂x
+ · · ·

+ v(t, x, y, 0)
∂η

∂y
+ · · ·

p0(0) + p′(t, x, y, 0) + η
(dp0

dz
+

∂p′

∂z

)
+ · · · = pa .

Assuming amplitudes to be small, we can, like in Section 4.5, neglect product
of perturbation terms (i.e. involving u, v, w, η and p′), so that

w =
∂η

∂t
at z = 0

p0 + p′ + η
dp0

dz
= pa at z = 0 .

Using the hydrostatic balance, (4.9), we can combine the two equations into

∂p′

∂t
= wρ0g at z = 0 . (4.28)
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We cast this equation in a nondimensional form, by using the scale for pressure
p′ from (4.12), and that for w from (4.15). Moreover, we take for the constant
reference density, ρ∗, the static surface value: ρ0(0) = ρ∗. By writing w = Wŵ,
p′ = P p̂′ and t = T t̂, we then obtain

C2

c2
sf

∂p̂′

∂t̂
= ŵ at z = 0 . (4.29)

Recall that C = L/T is a measure of the phase speed of internal waves, while
csf is that of surface gravity waves (c2

sf = gH, H water depth). Now, according
to (4.13), the ratio of the two is small. The underlying reason is that these
phase speeds are proportional to the square root of effective gravity; for surface
waves, this is simply g, but for internal waves, it is the much smaller g′, being
proportional to relative differences in density in the ocean’s interior. Hence
C ¿ csf , or expressed in terms of a small parameter ε,

ε =
C2

c2
sf

¿ 1 .

We thus arrive at (4.1). As explained in Section 4.1, we can now expand p̂ and
ŵ in a series in which ε serves as the small parameter, and to lowest order one
finds

w(0) = 0 at z = 0 . (4.30)

This is the so-called ’rigid-lid approximation’. It means that surface elevations
are neglected, as if the surface were covered by a rigid plate. At such a plate,
vertical velocities would be zero, as in (4.30). The pressure, however, is not zero
at the plate: pressure variations that would otherwise have been associated with
elevations of the free surface, are now exerted by the rigid plate, in response to
the internal-wave motions. (An example of the pressure field is shown in Figure
5.4).

At the bottom, the boundary condition is more straightforward, namely that of
no normal flow. We describe the bottom by

z = −h(x, y) .

The boundary condition can then be written as

w = −u
∂h

∂x
− v

∂h

∂y
at z = −h . (4.31)

Slopes of the ocean floor are predominantly less than 0.02, see Figure 4.2.
In many cases we will assume, for the sake of simplicity, that the bottom is

horizontal, with water depth H, in which case (4.31) becomes

w = 0 at z = −H . (4.32)

The idealized character of this assumption is evident from a look at real ocean
topography, see for example Figure 1.6!

63



0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0

10

20

30

40

50

60

70

80

tangent of slope, γ

di
st

rib
ut

io
n 

D
(γ

)

Fig. 4.2: Slope distribution based on several profiles from a topographic database.

Slopes are mostly gentle; 67% of the slopes is less than 0.02. The red curve shows a

fit with a Burr distribution a(1 + γb)−c, with a = 91, b = 0.65 and c = 25. From [29].

4.7 Preview: methods of solution

As a preparation for the following two chapters, in which we discuss linear
internal-wave solutions, we first take a closer look at (4.25):

∂2

∂t2
∇2w + (~f · ∇)2w + N2∇2

hw = 0 . (4.33)

Supposing waves to be sinusoidal in time, at frequency ω, i.e.

w ∼ exp(−iωt) ,

we find from (4.25), 8

(N2 − ω2 + f̃2)wyy + 2ff̃wyz + (f2 − ω2)wzz + (N2 − ω2)wxx = 0 . (4.34)

Recall that x is the west-east coordinate, and y, south-north. These coordinates
play different roles in (4.34). In other words, there is an anisotropy in the
horizontal plane: northward propagating waves, say, behave differently from
eastward propagating ones.

However, under the Traditional Approximation, where f̃ is neglected, the
anisotropy disappears, since (4.34) then becomes

(N2 − ω2)∇2
hw − (ω2 − f2)wzz = 0 . (4.35)

8Strictly, another symbol than w should be used in (4.34); from the context it will however
be always clear whether w is meant to indicate the time-dependent w from (4.33), or the
purely spatially dependent one from (4.34).
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Here x and y play identical roles. This means that if we consider propagating in
the x-direction, taking ∂/∂y = 0, we may apply the results thus obtained also
to any other direction of wave propagation.

Taking ∂/∂y = 0, then, (4.35) becomes

(N2 − ω2)wxx − (ω2 − f2)wzz = 0 . (4.36)

There are now two main roads to solution, which we briefly outline here; a
detailed discussion follows in Chapters 5 and 6.

For uniform stratification, i.e. N = const, all coefficients of (4.36) are con-
stant, and the general solution can be written

w = F (µ+x− z) + G(µ−x− z) , (4.37)

where F and G are arbitrary functions. The coefficients µ± are given by

µ± = ±
( ω2 − f2

N2 − ω2

)1/2

. (4.38)

As discussed below, the physical significance of the coordinates µ±x − z, the
so-called characteristic coordinates, lies in the fact that internal-wave energy
propagates along lines µ±x − z = const., which are diagonals in the x, z-plane
(cf. Figure 1.9).

This method of characteristics forms the subject of Chapter 6. It rests on the
assumption of constant N , but involves no assumption concerning the bound-
aries of the system. It can therefore be applied to, for example, the problem of
internal-wave reflection from a sloping bottom.

If, on the other hand, the buoyancy frequency varies with the vertical – as it
does particularly strongly in the seasonal thermocline, see Figures 1.6 and 3.3b
– then another method may be used that involves no assumption on N(z), but
does require boundaries (bottom, surface) to be horizontal. This is the method
of vertical modes, in which we write

w = W (z) exp ikx , (4.39)

substitution of which into (4.36) gives

W ′′ + k2 N2(z)− ω2

ω2 − f2
W = 0 . (4.40)

(Primes denotes derivatives to z.) Together with the boundary conditions W =
0 at z = −H, 0 (bottom, surface), this constitutes a Sturm-Liouville problem.
Its solution is formed by a set of eigenvalues kn and corresponding eigenfunctions
Wn. For some special choices of N(z), Wn can be obtained in analytical form;
otherwise (4.40) has to be solved numerically. Either way, the general solution
consists of an arbitrary superposition of modes. This method forms the subject
of the next chapter.

We thus have two methods at our disposal, involving different assumptions.
The case of overlapping validity occurs when stratification is constant and
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boundaries are horizontal. Despite their different appearances, (4.37) on the
one hand, and the solution to (4.39,4.40) on the other, are then entirely equiv-
alent (see Section 6.3). There is however also a case in which neither method
works: when both stratification and water depth vary. This occurs, for example,
in the upper part of the water column, near the seasonal thermocline, over the
continental slope. This is a very important region in the study of internal waves,
since internal tides are generated here. To treat this problem satisfactorily, one
thus has to resort to numerical methods. Nonetheless, the two analytical meth-
ods discussed in the following chapters already provide important clues to how
internal waves propagate. We also discuss how the two methods of solution can
be applied in the more general ’non-traditional’ case.
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Chapter 5

Internal-wave propagation

I: method of vertical modes

The ocean’s boundaries in the vertical, bottom and surface, naturally confine
the propagation of internal waves; the boundaries act as a waveguide. A more
subtle form of waveguide is a region of strong stratification in the water column,
which acts as a waveguide for high-frequency internal waves. In either case, the
internal wave has the character of a standing wave in the vertical, while it
propagates in the horizontal. These properties are exploited in the method of
vertical modes. It has the advantage that it works for any buoyancy profile
N(z), but it requires boundaries to be horizontal, since the solution is obtained
by a separation of the horizontal and vertical variables.

5.1 General formulation

The starting point is (4.25),

∂2

∂t2
∇2w + (~f · ∇)2w + N2∇2

hw = 0 . (5.1)

Recall that ~f = (0, f̃ , f). We assume first that f̃ = 0 (Traditional Approxi-
mation), and defer a discussion of non-traditional effects to Section 5.6. This
assumption renders the horizontal plane isotropic, in the sense that the direc-
tion of wave propagation becomes immaterial. Withous loss of generality, then,
we can consider wave propagation in the west-east direction, i.e. along x; the
results will similarly apply to any other direction. We seek solutions of the form

w = W (z) exp i(kx− ωt) . (5.2)
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(We take ω to be positive.) Substitution in (5.1), with f̃ = 0, results in an
ordinary differential equation for W :

W ′′ + k2 N2(z)− ω2

ω2 − f2
W = 0 . (5.3)

Primes denote derivatives to z. Since k here occurs as a square, k2, solutions
with positive k (describing rightward propagating waves), which we will denote
by k+, imply that another solution exists with k− = −k+, describing leftward
propagating waves. So, without loss of generality, we can assume k to be posi-
tive, adding afterward solutions with −k, if needed.

In addition to (5.3), we pose the boundary conditions at the surface (regarded
as a rigid-lid, see Section 4.6) and the horizontal bottom:

W = 0 at z = 0, −H . (5.4)

Together, (5.3) and (5.4) form a Sturm-Liouville problem, which for fixed ω

has an infinite number of solutions Wn (eigenfunctions, vertical modes) with
corresponding eigenvalues kn.

The other variables u, v, p and b can be expressed similarly as (5.2), with

U =
i

k
W ′ ; V =

f

ωk
W ′ ; P = iρ∗

ω2 − f2

ωk2
W ′ ; B = − iN2

ω
W . (5.5)

These expressions follow from (4.21). Notice that (5.4) and (5.5) imply that the
vertically integrated horizontal velocities are zero, i.e.,

∫ 0

−H

dz u = 0 ;
∫ 0

−H

dz v = 0 .

This property distinguishes internal waves from surface waves.
The general solution of w consists of the superposition

w =
∑

n

Wn(z)
[
a±n exp i(k±nx− ωt)

]
, (5.6)

with arbitrary complex constants a±n . The terms with index ’plus’ describe
rightward propagating waves, those with ’minus’, leftward propagating ones. It
is understood that the real part is being taken.

5.1.1 Oscillatory versus exponential behaviour

For convenience, we introduce

m2(z) = k2 N2(z)− ω2

ω2 − f2
. (5.7)

Solutions to (5.3) may exhibit two kinds of behaviour, depending on the sign of
m2. Firstly, oscillatory in those parts of the water column where m is real, i.e.
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m2(z) ≥ 0. For this to be possible, one of the two following inequalities must
hold throughout this part of the water column:

(I) N(z) ≤ ω ≤ |f | or (II) |f | ≤ ω ≤ N(z) . (5.8)

The prevailing situation in the ocean and atmosphere is N > |f |, but |f | may
exceptionally exceed N in extremely weakly stratified regions, such as convective
layers. In either case, the range of allowable wave frequencies is delineated by
a lower and upper bound.

For internal waves, of a given frequency ω, to exist at all, one of the in-
equalities in (5.8) should be satisfied in at least part of the water column.
Elsewhere, the opposite may hold, m2(z) < 0, which gives rise to the second
type of behaviour: exponential-like decay, describing the rapid decrease of the
wave-amplitude outside the waveguide. Here neither of the inequalities (5.8) is
fulfilled.

5.1.2 Orthogonality

Suppose Wn satisfies (5.3), with eigenvalue kn:

W ′′
n + k2

n

N2(z)− ω2

ω2 − f2
Wn = 0 . (5.9)

Let Wl be another eigenfunction , with kl 6= kn. Multiplying W ′′
n by Wl, and

applying partial integration twice, gives
∫ 0

−H

dz WlW
′′
n = WlW

′
n|0−H −

∫ 0

−H

dz W ′
l W

′
n

= −W ′
l Wn|0−H +

∫ 0

−H

dz W ′′
l Wn

=
∫ 0

−H

dz W ′′
l Wn ,

where we used the boundary conditions (5.4), stating that W vanishes at the
surface and bottom. Hence, multiplying (5.9) by Wl gives

∫ 0

−H

dz W ′′
l Wn + k2

n

∫ 0

−H

dz
N2(z)− ω2

ω2 − f2
WlWn = 0 . (5.10)

Since Wl with associated kl, too, satisfies (5.9), we have

(k2
n − k2

l )
∫ 0

−H

dz
N2(z)− ω2

ω2 − f2
WlWn = 0 .

Since, by assumption, kl 6= kn, it follows that
∫ 0

−H

dz
N2(z)− ω2

ω2 − f2
WlWn = 0 . (5.11)
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i.e. Wn and Wl are orthogonal.
This is, in fact, a general property of Sturm-Liouville problems, a more

general formulation of which is

(pW ′)′ − qW + λrW = 0 ,

with W (z1) = W (z2) = 0 (or, more generally still, boundary conditions in-
volving its derivative); λ is the eigenvalue. Here q and r are supposed to be
continuous functions, and p continuously differentiable. Moreover, a common
restriction is p > 0, q ≥ 0 and r > 0. Eq. (5.3) is a special case, with p = 1 and
q = 0, λ = k2 being the eigenvalue. However, as hinted in Section 5.1.1, the
coefficient r = (N2−ω2)/(ω2−f2) may change its sign in the vertical, contrary
to the common assumption r > 0. This more complicated case is discussed
in [44, p. 237]. The main outcome is that there exists both an infinite set of
negative eigenvalues λ−n and of positive eigenvalues λ+

n , tending to −∞ and ∞,
respectively, for n → ∞. Only the positive ones are physically meaningful in
our case. The upshot is that we can expect a set of eigenvalues extending to
infinitely short waves, kn →∞, for large n.

5.1.3 Hydrostatic approximation

For low-frequency internal waves, such as internal tides, the hydrostatic approx-
imation is often appropriate, i.e. the vertical acceleration ∂w/∂t in (4.17c) can
be neglected. It can be readily verified that this amounts to assuming N À ω

in (5.3), so that we can write

W ′′ + k̄2N2(z)W = 0 . (5.12)

with k̄ = k/(ω2−f2)1/2. The vertical structure of the modes Wn now no longer
depends on the wave frequency ω. The hydrostatic approximation thus brings
about a considerable simplification.

5.2 Uniform stratification

We start with the simple case: that of uniform stratification, i.e. N = const.
There are two things to be resolved from (5.3): 1) the eigenvalues kn and their
relation to wave frequency ω, which constitutes the dispersion relation; and 2)
the vertical structure of the modes Wn.

In this case the solution of the eigenfunctions Wn is obvious and could be
written down immediately, but we derive them here in a systematic way to
illustrate the general procedure that works also for non-constant N :

• Derive the general solution of (5.3), which involves two arbitrary (real)
constants;

• Pose the boundary conditions in matrix form;
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• To have non-trivial solutions, the matrix has to be singular; this require-
ment yields the dispersion relation;

• Finally, one constant can be chosen arbitrarily, fixing the eigenfunction
Wn.

We can write (5.3) as
W ′′ + m2W = 0 ,

where m, defined in (5.7), is now independent of z. Wave-like solutions are
found if m is real. We thus restrict ourselves to wave frequencies satisfying
(5.8). Unless stated otherwise, we shall assume N > |f |, a condition that is
usually satisfied in the ocean and lower atmosphere. Hence

|f | ≤ ω ≤ N .

The general solution now reads

W = C1 sinmz + C2 cosmz .

The boundary conditions (5.4) can be gathered in a matrix:
(

0 1
− sinmH cosmH

)(
C1

C2

)
=

(
0
0

)
. (5.13)

5.2.1 Dispersion relation

To have non-trivial solutions for the pair (C1, C2), the determinant of the matrix
in (5.13) must be zero, implying sin mH = 0; hence

mn = ±nπ

H
, for n = 1, 2, 3, · · · .

Using the definition of m, (5.7), we obtain the dispersion relation:

kn = ±nπ

H

( ω2 − f2

N2 − ω2

)1/2

, n = 1, 2, 3, · · · . (5.14)

For a given frequency ω, one thus finds an infinite number of eigenvalues kn,
which serve as horizontal wavenumbers. Waves become shorter, i.e. |kn| in-
creases, with increasing modenumber n. Alternatively, taking the wavenumber
k and modenumber n as the independent variables, we can rewrite (5.14) to
express the wave frequency as a function of k and n:

ω2 =
N2k2 + f2(nπ

H )2

k2 + (nπ
H )2

. (5.15)

The lower bound of the frequency domain, |f |, is attained in the long-wave limit
|k| → 0; the upper bound, N , in the short-wave limit |k| → ∞, see Figure 5.1
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(upper panel). For positive k, the function ω(k) is monotonically increasing,
as is clear from the fact that its derivative is positive. This derivative, the
horizontal group velocity cg = dω/dk, is obtained from differentiating (5.15):

cg =
k(nπ

H )2(N2 − f2)
[N2k2 + f2(nπ

H )2]1/2 [k2 + (nπ
H )2]3/2

(5.16)

= ±
( H

nπ

) (ω2 − f2)1/2(N2 − ω2)3/2

ω(N2 − f2)
. (5.17)

In (5.17), the plus-sign applies if k is positive, the minus-sign if k is negative.
We thus see that k and cg have the same horizontal direction if |f | < N , and
the opposite direction if |f | > N . The horizontal phase speed c = ω/k is given
by

c =
[N2k2 + f2(nπ

H )2]1/2

k[k2 + (nπ
H )2]1/2

(5.18)

= ±
(Hω

nπ

)(N2 − ω2

ω2 − f2

)1/2

. (5.19)

The group velocity cg indicates how fast the wave energy travels; the phase
speed c, how fast the wave’s crests and troughs travel. Clearly, the former is the
most relevant quantity because it determines where the internal waves manifest
themselves (there are no waves if there is no wave-energy).

For fixed ω, we see from (5.17) and (5.19) that the group velocity and phase
speed both are inversely proportional to modenumber n; higher modes propagate
more slowly. Eq. (5.17) moreover implies that the group velocity vanishes at
the extremes of the frequency domain, i.e. for ω = |f |, N . The phase speed, on
the other hand, tends to infinity at the lower bound |f |. This is illustrated in
Figure 5.2.

Next we consider how cg and c vary if we take modenumber n fixed (n = 1,
say) and choose k as the independent variable; here we use (5.16) and (5.18),
see Figure 5.1 (middle and lower panels). The phase speed c varies with k,
i.e. internal waves are dispersive. Differentiating c = ω/k to k, we obtain the
generally valid identity

k
dc

dk
= cg − c .

So, for dispersive waves the group and phase velocity are unequal. The dis-
persiveness means that a superposition of first-mode waves (or any other fixed
mode-number) involving different wavenumbers, and hence different frequen-
cies, cannot propagate as a coherent entity, but will disperse, because different
components have different phase and group speeds.

Finally, we consider the low-frequency limit, or equivalently, long-wave limit.
Assuming kH ¿ 1, we can expand (5.15) as

ω2 = f2 +
(NH

nπ

)2

k2 + · · · , (5.20)
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0

Fig. 5.1: Profiles of wave frequency ω, group velocity cg, and phase speed c, each as

a function of wavenumber k (chosen positive), for arbitrary but fixed modenumber n;

these plots illustrate (5.15), (5.16) and (5.18), respectively. In the middle and lower

panels, the behaviour for f = 0 is also shown (dashed line). The value c0 = NH/nπ

denotes the linear long-wave phase and group speed for f = 0.

c
g

c

|
|f|

|
N

ω →

Fig. 5.2: Group and phase speeds as a function of wave frequency ω, illustrating (5.17)

and (5.19) for arbitrary but fixed modenumber n, taking N > |f | and k positive.
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where we retained only the first two terms of the expansion. This expression
follows also directly from (5.14), if we suppose ω ¿ N . Still another way of
obtaining (5.20) would have been to make the hydrostatic approximation (see
Section 5.1.3); these are all different renderings of the same statement. In (5.14),
the waves are still dispersive (i.e. c = ω/k depends on k), but this is now entirely
due to Coriolis effects. If f = 0, long waves become dispersionless, having a
group and phase speed c0 ≡ NH/nπ (see dashed lines in Figure 5.1, middle and
lower panels). Typical values for c0 in the ocean are of the order of 1 m s−1 (take,
for example, n = 1, N = 1 × 10−3 rad s−1, H = 4000m). A useful measure of
the importance of Coriolis effects is the ratio rd = c0/|f |, the so-called internal
Rossby radius of deformation. Internal waves having a wavelength of the order
of rd, or larger, are significantly affected by Coriolis effects. For waves much
shorter than rd, Coriolis effects can generally be neglected (but see Section
5.6.2!). Notice that short waves are dispersive due to gravity, an effect neglected
in (5.20), but present in the exact dispersion relation (5.15).

5.2.2 Modal structure

Returning to (5.13), we see that C2 must be zero, while C1 may take any (real)
value. Without loss of generality, we can choose C1 = 1 for all n (thus nor-
malizing the amplitude at 1), since we already included an arbitrary (complex)
constant an in the series (5.6). With this, the vertical modes become

Wn = sin
(nπz

H

)
, n = 1, 2, 3, · · · . (5.21)

They have the remarkable property of being independent of the wave frequency
ω. This is a peculiarity of the case N = const; for general profiles N(z), the
modes take different structures for different frequencies (see following sections).
The first three verical modes of (5.21) are shown in Figure 5.3.
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0

W
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)

 

 

 n=1
 n=2
 n=3

Fig. 5.3: The first three vertical modes Wn, from (5.21), for H = 4000 m.
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With (5.21), the general solution for rightward propagating waves is ob-
tained from (5.6), by selecting positive k (i.e. k+; hereafter, we drop the ’plus’).
Assuming an to be real, and taking the real part of (5.6), we find

w =
∑

n

an sin
(nπz

H

)
cos(knx− ωt) . (5.22)

Using (5.5), we obtain for the horizontal velocity component u, the tranverse
velocity v, pressure p and buoyancy b,

u = −
∑

n

an
nπ

knH
cos

(nπz

H

)
sin(knx− ωt) (5.23)

v =
f

ω

∑
n

an
nπ

knH
cos

(nπz

H

)
cos(knx− ωt) (5.24)

p = −ρ∗
ω2 − f2

ω

∑
n

an
nπ

k2
nH

cos
(nπz

H

)
sin(knx− ωt) (5.25)

b =
N2

ω

∑
n

an sin
(nπz

H

)
sin(knx− ωt) . (5.26)

Another important quantity is the displacement of the isopycnals (levels of con-
stant potential density, strictly speaking). Let the isopycnal that lies at depth
z0 in the state of rest be described by

z = z0 + ζ(t, x, z0) .

Then
w(t, x, z) =

∂ζ

∂t
(t, x, z0) + u(t, x, z)

∂ζ

∂x
.

Making a Taylor expansion about z = z0, and neglecting nonlinear terms, gives

w(t, x, z0) =
∂ζ

∂t
(t, x, z0) .

Hence the solution for ζ,

ζ = − 1
ω

∑
n

an sin
(nπz

H

)
sin(knx− ωt) , (5.27)

where we substituted z0 by z. Comparing this with (5.26), we see that ζ =
−b/N2.

We now show examples of u, v, w, b and ζ for the first three modes individ-
ually, using (5.22)–(5.27) at t = 0, with an = 1. From (5.23) and (5.25) we see
that u and p differ only by a positive coefficient; they have identical structures
and are therefore represented in one and the same plot. Similarly, b and ζ differ
in essence only by a minus sign. The results are shown in Figure 5.4. Notice
that v owes its presence to the Coriolis force, and would be zero for f = 0. For
the n-th mode, u changes its sign n times in the vertical (as does v); w and ζ
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Fig. 5.4: Spatial structure of the first three modes, for constant stratification, at t = 0.

Upper panels show the horizontal velocity component u; the second row, the tranverse

velocity v; the third row, the vertical velocity w; and the lowest panels the isopycnal

elevation ζ. The first and fourth rows also represent pressure p and minus buoyancy

b, respectively. White denotes negative values; black, positive ones. Parameters are:

N = 1 × 10−3, f = 1 × 10−4, and ω = 1.405 × 10−4 (the semi-diurnal lunar tidal

frequency, M2), all in rad s−1. Along the vertical is water depth, with H = 4 km;

horizontal distances are also in km.

each n−1 times. So, for example, at a certain horizontal position the isopycnals
corresponding to the second mode are elevated in one part of the water column,
and depressed in the other part.

Notice that the pressure is not zero at the surface (rigid-lid); on the contrary,
it has a local extremum there. If the surface were allowed to move freely, these
regions of high (low) pressure at z = 0 would be associated with an elevation
(depression) of the surface. By comparing the pattern of p with that of ζ for
the first mode, we see that depressions in the interior are accompanied by an
elevated pressure at z = 0, and vice versa. In other words, surface displacements
would be in anti-phase with the displacements in the interior.

In time, the patterns all move steadily to the right (not shown), but at lower
speeds for higher modenumbers, because the phase speed c in (5.19) is inversely
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proportional to n.

5.2.3 Superposition of modes

We also see from Fig. 5.21 that the second mode is twice as short as the first one;
the third three times as short, etc. Indeed, (5.14) implies that the wavenumbers
are commensurable:

kn/kl = n/l .

(We note that this property does not hold for general N(z); it is a peculiarity of
the case of constant N .) As a consequence, a superposition of modes must be
horizontally periodic. An example of a superposition of 10 modes, representing
u, is shown in Figure 5.5 at several stages during half a period (for clarity, we
have enlarged the horizontal domain by a factor of two). At first sight, Figure 5.5
is very surprising: it shows that the modes – each of which travels to the right at
its own phase speed cn –, when superposed give rise to ’beams’ that stay in place!
The water parcels oscillate predominantly within these beams, in a parallel
direction, as is shown by the red arrows depicting the (u,w) vectorial velocity
field. (Due to Coriolis effects, there is also a component v in the transverse
direction, which is not shown.)

Upon closer examination, we see that phase propagation is in a direction
perpendicular to the beam. For example, in the interval x = 0 − 40 km, the
phases move up- and rightward, perpendicularly to the beam itself. The energy,
meanwhile, must flow along the beam, which is, in this interval, down- and
rightward. Vertical opposition of direction in phase and energy propagation is
found in the other intervals as well. As shown in Chapter 6, this rule holds
generally when N > |f |.

The regular pattern of diagonals of Figure 5.5 invites the question as to what
underlying principle imposes this orderliness. For this, we have to reconsider the
nature of the modal solution. With (5.2), we consider rightward propagating
waves, whose vertical structure is described by W (z). This structure turns out
to be sinusoidal, as shown in (5.21) and Figure 5.3. We can thus interpret each
Wn as a standing wave in the vertical, i.e. a combination of up- and downward
propagating waves; here, mn = nπ/H serves as the vertical wavenumber. Now,
from (5.7), we find that the ratio of the vertical and horizontal wavenumbers,
mn and kn, is given by

mn

kn
= ±N2 − ω2

ω2 − f2
, (5.28)

which is independent of modenumber n. In other words, one and the same
angle, in the x, z-plane, pervades all modes. So it is, after all, not surprising to
find a well-defined pattern of diagonals in Figure 5.5. More specifically, (5.28)
denotes the tangent of the angle that the wavevector ~k = (k, m) makes with the
horizontal, the wavevector pointing in the direction of phase propagation. We
inferred earlier that energy propagates perpendicularly to this; hence its slope
must be given by the inverse of (5.28), namely ±(ω2 − f2)/(N2 − ω2). These
properties will be established in a much more direct way in Chapter 6.
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Fig. 5.5: Snapshots of a superposition of 10 modes, showing the horizontal current

velocity u at intervals of one-eighth of wave period T . In total, the panels cover half

a period. Time progresses downward. White denotes negative values; black, positive

ones. For all modes, an = 1. The arrows, in red, depict the u, w-field. Parameters as

in Figure 5.4.

Finally, we consider how the pattern changes if we add more modes. This
is illustrated in Figure 5.6: the more modes are involved, the clearer the beam
becomes. In this case it becomes also much finer with more modes, but the
extent of this effect depends on the way modes are superposed. Here we have
an = 1, but for an = 1/n, say, the high modes would have less influence on the
structure of the beam. We note that decreasing an with n are generally found
in generation problems, such as for internal tides (Chapter 7).

In conclusion, we emphasize that the case of constant N is simple and in-
structive, but in some ways atypical. Two key properties – independence of the
modal structure on wave frequency, and commensurability of wavenumbers –,
which lend much simplicity to this case, do not in general hold for profiles N(z).

5.3 Varying N : two layers

In the previous section, it was shown that a superposition of modes gives rise
to internal-wave beams, directed along diagonals in the x, z-plane. As an aside,
we note that the frequency ω chosen in Figures 5.4-5.6, corresponds to the
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Fig. 5.6: Superpositions with an increasing number of modes, each at t = 0, showing

the horizontal current velocity u. White denotes negative values; black, positive ones.

Parameters as in Figure 5.4.

semi-diurnal lunar frequency M2. It is therefore interesting to compare the
pattern found in Figure 5.5 with that of an observed internal-tide beam, shown
in Figure 1.9. We see that the angles are roughly similar: for every kilometer
the beam traverses in the vertical, it traverses about 10 km in the horizontal. A
noticeable difference between the figures is, however, that the beams in Figure
5.5 are straight, while the observed beam is bended; it becomes steeper in the
deep ocean. A clue to this behaviour is found in Figure 1.6, which shows that
stratification N generally decreases with depth in the abyssal ocean.

To take into account this effect, we have to abandon the assumption of
constant N . A simple way of doing this is to take two layers of different constants
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N1 and N2:

N(z) =
{

N1 −d < z < 0 (upper layer)
N2 −H < z < −d (lower layer) .

(5.29)

The governing equation is still (5.3), which we now apply to each layer sepa-
rately. Accordingly, we define, as in (5.7),

m2
1,2 = k2

N2
1,2 − ω2

ω2 − f2
.

The solution to (5.3) can now be written, with arbitrary constants C1 and C2,

W (z) =
{

C1 sin m1z −d < z < 0 (upper layer)
C2 sin m2(z + H) −H < z < −d (lower layer) ,

(5.30)

where the boundary conditions at surface and bottom, W (0) = W (−H) = 0, are
already satisfied. However, continuity of W and W ′ at the transition between
the layers has to be imposed as well. These conditions can together be written
in matrix form as

(
sin m1d sin m2(H − d)
m1 cosm1d −m2 cosm2(H − d)

)(
C1

C2

)
=

(
0
0

)
. (5.31)

Requiring the determinant to be zero yields the dispersion relation

m2 sin m1d cos m2(H − d) + m1 cos m1d sin m2(H − d) = 0 . (5.32)

For given wave frequency ω (and constants f , N1, N2, d and H), we find the
wavenumbers k as zeros of this equation, whence we obtain m1,2. However, the
equation is transcendent (i.e. cannot be solved by analytical means), so we have
to resort to numerical methods to find the eigenvalues k. In fact, one can simply
plot the left-hand side and pick out the zeros, see, e.g., Figure 5.8. Finally, using
(5.31), we can express C2 in terms of C1:

C2 = − sin m1d

sin m2(H − d)
C1 .

The remaining coefficient C1, which fixes the amplitude, can be chosen arbitrar-
ily.

The physics contained in this simple solution is already rich; in the next
sections, we consider three cases to illustrate this.

5.3.1 Refraction and internal reflection

We choose the lower layer to be less strongly stratified than the upper one, see
Figure 5.7a. Furthermore, we take f = 1 × 10−4 and ω = 1.4 × 10−4 rad s−1.
As result the following inequalities are satisfied:

f < ω < N1,2 ,
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Fig. 5.7: Stratification with two layers of constant N , with |f | < ω < N2 < N1

(a). Panel b shows the first three eigenmodes (5.30), with C1,n chosen such that their

amplitudes are one. Modal coefficients are an = 1/n. The resulting superposition of

20 modes, representing the amplitude of u, is shown in c. White denotes zero; black,

maximum values.

which implies that internal waves of the chosen frequency can propagate in both
layers.

Eigenvalues are easily found as the zeros of (5.32), as shown in Figure 5.8;
the first three corresponding vertical modes are shown in Figure 5.7b. From
(5.2) and (5.5), we obtain u as

u = −
∑

n

1
kn

W ′
n sin(knx− ωt) ,

with Wn given by (5.30), and normalized to one. A superposition of 20 modes,
representing the amplitude of u, is shown in Figure 5.7c. It demonstrates that
the beam is slightly steeper in the lower layer (in qualitative agreement with
Figure 1.9), which must be due to the weaker stratification in that layer. So,
non-uniformity in N causes refraction.

Moreover, we see that internal reflections occur at the transition between
the two layers, yielding a complex pattern. Clearly, the pattern is no longer
periodic in x (as it was for constant N , Section 5.2). This reflects the fact that
the wavenumbers are now incommensurable: kn/kl 6= n/l. Indeed, the kn’s
obtained from Figure 5.8 yield: k2/k1 = 2.34, k3/k1 = 3.52, k4/k1 = 4.40 etc.

81



0 2 4

x 10
−4

−0.01

0

0.01

k
le

ft−
ha

nd
 s

id
e 

of
 d

is
pe

rs
io

n 
re

la
tio

n
 

 

lhs
k

n

Fig. 5.8: The left-hand side of (5.32) plotted against k; zeros denote eigenvalues kn,

with n increasing from 1 to 12, from left to right.

5.3.2 Trapping of high-frequency waves (ω > |f |)
We now choose a higher wave frequency such that |f | < N2 < ω < N1. This
means that m2 becomes imaginary: m2 = i=(m2). Cosines and sines containing
m2 can be rewritten using the identities

sin(ix) = i sinh(x) ; cos(ix) = cosh(x) . (5.33)

As a consequence, the modal solution becomes exponential in z in the lower
layer. (Notice that C2 too becomes imaginary, hence the factor i drops out
from (5.30), which thus remains real.)

The dispersion relation (5.32) remains the same, but we can rewrite it as

=(m2) sin m1d cosh=(m2)(H − d) + m1 cosm1d sinh=(m2)(H − d) = 0 .

We choose the same parameters as in Figure 5.7, except that the wave fre-
quency ω is now higher, see Figure 5.9a. The first three modes are shown in
panel Figure 5.9b. Their structure clearly is very different from that in Figure
5.7b. This demonstrates that the modal structure now depends on the wave fre-
quency, in contrast to the absence of any such dependence in the case of uniform
N (Section 5.2.2). Specifically, the modes now oscillate only in the upper layer,
and decay exponentially in the lower one. Since higher modes have larger kn,
and hence larger |m2|, they decay more rapidly than lower modes. Figure 5.9c
shows a superposition of 15 modes; they add up to form a beam that is trapped
in the upper layer. In other words, the upper layer now acts as a waveguide.

5.3.3 Trapping of low-frequency waves (ω < |f |)
In contrast with the previous case, internal waves can also be trapped in the
layer of weakest stratification. For this to happen, wave frequencies need to
be sub-inertial, i.e. ω < |f |. As an extreme example, we consider a neutrally
stratified lower layer, N2 = 0. Furthermore, we take f = 1 × 10−4 and N1 =
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Fig. 5.9: Stratification with two layers of constant N ; parameters are as in Figure

5.7, except for the wave frequency, which is now such that |f | < N2 < ω < N1 (a).

Panel b shows the first three eigenmodes (5.30), normalized to one. The resulting

superposition of 15 modes, representing the amplitude of u, is shown in c. White

denotes zero; black, maximum values.

5×10−4 rad s−1. For the wave frequency ω we choose the diurnal tidal frequency
K1(= Ω), 7.292× 10−5 rad s−1. So we have

N2 < ω < |f | < N1 .

According to (5.8), wave propagation can now only occur in the lower layer.
Moreover, since N2 = 0, the Coriolis force acts as the sole restoring force, in
which case internal waves are called gyroscopic (Section 1.2.2).

Figure 5.10c confirms that it is now the lower layer that acts as a waveguide;
hardly any signal penetrates into the upper layer. This is confirmed by the fact
that the eigenvalues are very nearly given by

kn ≈ nπ

H/2

(ω2 − f2

−ω2

)1/2

,

as if the total water depth were just that of the lower layer, H/2.
From (5.16) we see that group velocity is now negative, implying that energy

propagates to the left, while phase propagation is to the right (k being positive).
This horizontal opposition is typical of gyroscopic waves.

A final comment concerns the effect of the hydrostatic approximation, briefly
discussed in Section 5.1.3. This approximation amounts to assuming N À ω.
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Fig. 5.10: Stratification with two layers of constant N , the lower layer being neutrally

stable, N2 = 0, with N2 < ω < |f | < N1 (a). Panel b shows the first three eigenmodes

(5.30), normalized to one. A superposition of 15 modes, representing the amplitude

of u, is shown in c. White denotes zero; black, maximum values.

Obviously, one cannot assume this and later take N = 0. This indicates that
the hydrostatic approximation is inappropriate in the presence of very weakly
stratified layers; in fact, it would remove the entire class of sub-inertial waves.

5.4 A simple model for the ocean’s stratification

There is not, in principle, a limitation to extending the procedure of the previ-
ous section to any number of layers. There is a good reason, indeed, to consider
a three-layer system. The models of stratification discussed in Sections 5.2 and
5.3 miss an important feature of the ocean’s stratification as depicted in, for
example, Figure 3.3b, namely the strong peak in N , representing the seasonal
thermocline. Schematically the structure, from surface to bottom, is as follows:
a very weakly stratified upper mixed layer, a seasonal thermocline, and a fairly
weakly stratified abyssal ocean, in which N decreases slowly with depth (apart
from the presence of a second, less pronounced maximum, the permanent pycn-
ocline, which we will ignore here). These features can be captured, though in an
idealized way, by a model of stratification consisting of three layers of constant
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N :

N2(z) =





0 −d < z < 0 (mixed layer)
g′/ε −d− ε < z < −d (thermocline)
N2

c −H < z < −d− ε (abyss) .

(5.34)

see Figure 5.11. In the upper mixed layer, we take N = 0. The thermocline is
represented by a thin layer of thickness ε and amplitude N2 = g′/ε. Notice that
the area of N2 enclosed by the thermocline equals g′, irrespective of the value of
ε; this property makes it easy to estimate the key parameter g′ from empirical
profiles of N2. The whole ’abyssal’ lower layer, finally, is simply represented by
constant N = Nc.

|
N

c
2

|
g′/ε N2→

−−d } ε

−−H

Fig. 5.11: Three-layer representation of the ocean’s stratification: an upper mixed

layer of thickness d, a thermocline of thickness ε, and a weakly stratified deep layer.

Notice that the area enclosed by the thermocline is g′, which serves as a measure of

its strength.

We take the idealization one step further by taking ε → 0; this reduces the
thermocline to an interface. In this limit, g′ has a simple interpretation: it is g

times the relative jump in density across the interface (this will be demonstrated
in Section 8.3.2). We can now write (5.34) succinctly as

N2(z) = g′δ(z + d) + N2
c Θ(−z − d) , (5.35)

where δ and Θ are the delta-distribution and Heaviside stepfunction, respec-
tively (see Appendix).

5.4.1 Dispersion relation and vertical modes

We assume wave frequencies to lie in the interval

|f | < ω < Nc .
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We solve (5.3) separately for the mixed and abyssal layer. In the mixed layer,
where N = 0, the solution to (5.3) is exponential and can be written

Wu = C1 sinh quz , for − d < z < 0 , (5.36)

with

qu = k
( ω2

ω2 − f2

)1/2

.

The other solution, cosh(· · · ) can be ignored a priori in view of the bound-
ary condition at the surface, (5.4). In the abyssal layer, solutions to (5.3) are
sinusoidal:

Wl = C2 sin ql(z + H) , for −H < z < −d , (5.37)

with

ql = k
(N2

c − ω2

ω2 − f2

)1/2

.

The cosine solution cos(· · · ) can be ignored in view of the boundary condition
at the bottom.

We now have two pieces of the solution, Wu and Wl; they need to be matched
at the thermocline. One obvious matching condition is continuity of W , i.e.

Wu(−d) = Wl(−d) . (5.38)

We have yet to take into account the presence of the thermocline. This can be
done by returning to the original profile (5.34), and taking the integral of (5.3)
over the thermocline:

∫ −d

−d−ε

dz
{

W ′′ + k2 N2(z)− ω2

ω2 − f2
W

}

= W ′(−d)−W ′(−d− ε) + k2 g′/ε− ω2

ω2 − f2

∫ −d

−d−ε

dz W = 0 .

For small ε, the last integral reduces to εW (−d); hence in the limit ε → 0,

W ′
u(−d)−W ′

l (−d) +
g′k2

ω2 − f2
W (−d) = 0 . (5.39)

For the evaluation of the last term, it is immaterial which of the two, Wu or
Wl, is taken, because of (5.38). Without a thermocline (g′ = 0), the first
derivative of W would be continuous. We see from (5.39) that the presence of
the thermocline creates a discontinuity in W ′, and hence, by (5.5), a jump in
the horizontal velocities u and v across the interface. Thus, the thermocline is
accompanied by a strong vertical shear.

We gather (5.38) and (5.39) in a matrix
(

sinh qud sin ql(H − d)
qu cosh qud− g′q2

u

ω2 sinh qud −ql cos ql(H − d)

)(
C1

C2

)
=

(
0
0

)
.

(5.40)
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The dispersion relation follows from the requirement that the determinant be
zero:

ql cos ql(H−d) sinh qud+qu sin ql(H−d)
[
cosh qud− g′qu

ω2
sinh qud

]
= 0 . (5.41)

One can obtain numerically the zeros kn of this transcendental equation. We
choose C2 = 1; using (5.36), (5.37) and (5.51), we obtain the vertical modes

Wn(z) =

{
− sin ql(H−d)

sinh qud sinh quz −d < z < 0
sin ql(z + H) −H < z < −d .

(5.42)

Notice that the coefficients qu and ql depend on modenumber n, via kn.

5.4.2 Scattering at the thermocline

An example of the first five vertical modes is shown in Figure 5.12a, and a
superposition of 25 modes in 5.12b. The value used here for g′ is 0.005m s−2.
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Fig. 5.12: The first five modes for the three-layer system (a), here with g′ =

0.005m s−2. Other parameters are: d = 60m (mixed-layer depth), Nc = 2 × 10−3,

f = 1 × 10−4 and ω = 1.4 × 10−4, all in rad s−1; modal coefficients are an = 1/n. In

b, a superposition of 25 modes, representing the amplitude of u. White denotes zero;

black, maximum values.

In the lower layer internal-wave beams are clearly visible, as in previous
sections, but where they impinge on the thermocline, strong currents appear
in the mixed layer; the beam, meanwhile, becomes slightly less intense. Fur-
ther rightward, we see broad, rather weak beams radiating downward from the
thermocline. There is not really a transfer of energy, of course; this is a linear
solution, and there is no interaction among modes. It is just the superposition of
modes that at some places yields strong currents in the mixed layer. A different
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way to look at this is as the occurrence of internal reflections, discussed in Sec-
tion 5.3.1. The thermocline forms a strong inhomogeneity in the stratification,
and causes an impinging beam to scatter, due to internal reflections. Observa-
tional evidence from the Bay of Biscay, discussed in Chapter 8, demonstrates
that this process may lead to the generation of so-called solitary waves.

In is instructive to consider also the case of an extremely strong thermocline,
taking, for example, g′ = 0.5m s−2 (this is an admittedly unrealistic value!). The
result is shown in Figure 5.13. The thermocline is now so strong that beams
in the lower layer reflect from it as if it were a rigid surface, leaving almost no
trace in the mixed layer (Figure 5.13c). The first mode, on the other hand, is
accompanied by strong currents in the upper mixed layer, which show a periodic
pattern (Figure 5.13b). The interpretation of these results is further explored
in the next section.
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Fig. 5.13: The first five modes for the three-layer system (a), now with g′ = 0.5m s−2.

Other parameters as in previous figure. In b, the contribution of the first mode to u,

at t = 0, is shown; in c, a superposition of modes 2 to 14. In b and c, white denotes

negative values; black, positive.

5.4.3 Interfacial waves

A special case of interest is Nc = 0. Obviously, we then have to drop the
restriction ω < Nc. The other restriction, ω > |f |, is however retained. With
Nc = 0, the stratification of (5.35) becomes that of a so-called two-layer model,
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i.e. there are two neutrally stratified layers (N = 0) separated by an interface.1

This model can sometimes be applied to internal waves in shallow regions such
as the continental shelf, or to high-frequency internal waves trapped at the
thermocline, such as solitons (see Chapter 8). A two-layer model is however
wholly unsuitable for the description of internal waves in the deep ocean.

With Nc = 0, ql becomes imaginary, and we can write ql = iqu. Using the
identities (5.33), we can derive the dispersion relation for the two-layer system
from (5.41):

ω2 =
g′qu

coth qud + coth qu(H − d)
(5.43)

= f2 +
g′k2

qu(coth qud + coth qu(H − d))
. (5.44)

The connection between ω and k is implicitly contained in (5.43),2 which yields
ω as a function of qu; then k follows from

k = qu

(ω2 − f2

ω2

)1/2

.

The result is shown in Fig 5.14. For any choice of ω, there is now only one k,
and hence only one mode, the interfacial mode,

W (z) =

{
− sinh qu(H−d)

sinh qud sinh quz −d < z < 0
sinh qu(z + H) −H < z < −d .

(5.45)

This expression follows from (5.42), leaving out the factor i. The maximum
of W occurs at the interface (thermocline); from there, it decreases steadily
towards the surface and bottom. This means that W ′ scales as [W ]/d in the
upper layer ([W ] being the scale of W ), and as [W ]/(H − d) in the lower layer.
The continuity equation (4.21d) implies that u must scale with d−1 in the upper
layer, and with (H − d)−1 in the lower layer. Typically d is much smaller than
H, and this explains the strong currents in the mixed layer in Figure 5.13b.

Without rotation (f = 0), we can replace qu with k in (5.44). For long

1This is not be confused with the stratification considered in Section 5.3, which consists of
two layers with constant buoyancy frequency N ; there N is discontinuous, but density itself is
continuous. In the present section, the latter is no longer the case: a jump in density occurs
across the interface, at which N is infinite, i.e. a delta-peak.

2Notice that an explicit dependence is found for high-frequency waves (ω À |f |), in which
case qu ≈ k. In fact, replacing qu by k in (5.44) yields a relation that turns out to be very
accurate even for low-frequency waves.
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Fig. 5.14: The dispersion relation (5.44), plotted as ω vs. k. Here for the parameter

values g′ = 0.01m s−2, d = 100 m, H = 4000m, and f = 1×10−4 rad s−1. The function

is monotonically increasing; hence for every ω > |f | there is only one wavenumber k.

waves, kH ¿ 1, we then find3

ω2 =
g′k2d(H − d)

(H − d)[kd coth kd] + d[k(H − d) coth k(H − d)]

=
g′k2d(H − d)

(H − d)[1 + 1
3 (kd)2 + · · · ] + d[1 + 1

3 (k(H − d))2 + · · · ]

= g′k2 d(H − d)
H

1
1 + 1

3k2d(H − d) + · · ·
= c2

0k
2 [1− 1

3k2d(H − d) + · · · ] , (5.46)

with

c2
0 = g′

d(H − d)
H

,

the linear long-wave phase speed for interfacial waves. Interfacial waves propa-
gate horizontally, just like surface waves. The main difference between the two
is the strongly reduced effective gravity, g′ instead of g. For surface waves, the
long-wave phase speed is given by gH; so g is here replaced with g′, and total
water depth H with an ’equivalent’ depth d(H − d)/H, i.e. the product of the
thickness of each layer, divided by the total water depth. In practice, we often
have d ¿ H so that c2

0 ≈ g′d. Typical values are g′ = 0.01 m s−2 and d = 100 m,
giving a phase speed of one meter per second.

Returning now to the interpretation of Figure 5.13, we first notice that modes
2 to 4 strongly resemble modes 1 to 3 for a layer of constant stratification, cf.
Figure 5.3; in particular, the second mode in Figure 5.13a has one maximum
halfway down the water column, and vanishes at the thermocline, as if it were
a rigid surface. Thus, a superposition of modes 2, 3, 4 · · · creates beams in the
lower layer, as illustrated in Figure 5.13c. The first mode in Figure 5.13a stands

3Using the Taylor expansion, for x ¿ 1, x coth x = 1 + 1
3
x2 − 1

45
x4 + · · · .
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apart from the higher modes in that it has its maximum at the thermocline; in
this, we recognize the interfacial mode (5.45). Thus, the wave propagation in
Figure 5.13b,c consists of two distinct, independent elements: 1) an interfacial
mode, and 2) the higher modes which form beams in the lower, constantly strati-
fied layer. The two kinds of motion are here uncoupled, because the thermocline
is extremely strong. For a weaker, and indeed more realistic thermocline, like
in Figure 5.12, the two are coupled, as is clear from the fact that the third and
fifth modes also have a local extremum at the thermocline. So, in that case,
one cannot really speak of pure interfacial waves or pure beams; they appear in
mixed form.

To conclude the discussion on interfacial waves, we mention that there is a
caveat to the notion that the two-layer system supports only one mode. If we
relax the restriction ω > |f |, we find that there is an infinite number of sub-
inertial modes, ω < |f |, both in the upper mixed layer and in the lower neutrally
stratified layer (Nc = 0). These are the gyroscopic waves already discussed in
Section 5.3.3.

5.5 Linearly varying N 2: Airy functions

There are various choices of profiles N(z) that allow for a solution in terms of
special functions. Several of them are conveniently listed in [72, §3.4]. We will
not repeat them here; the physics contained in these solutions is not essentially
different from what has been discussed in previous sections. There is however
one case that deserves our attention, because it provides a generic description
of the behaviour near a ’turning point’, i.e. the depth where internal waves turn
from oscillatory to exponentially decaying.

We consider continuous profiles N(z), and assume that N(z) > |f | through-
out the water column. Suppose that at some depth z∗, a transition occurs from
N(z) > ω to N(z) < ω. A Taylor expansion around this depth gives

N2(z) = N2
0 + λz + · · · , (5.47)

with λ = N2′(z∗) and N2
0 = N2(z∗)−λz∗. In other words, in the vicinity of the

depth where internal waves turn from oscillatory to exponentially decaying, we
may regard the profile of N2 as linear in z.

This provides the motivation for examining the case (5.47) more closely. We
do this by applying (5.47) to the whole water column. The equation for vertical
modes, (5.3), can then be written

W ′′ + k̂2 (z + A0)W = 0 . (5.48)

with k̂2 = k2λ/(ω2− f2) and A0 = (N2
0 −ω2)/λ. With the coordinate transfor-

mation ẑ = −k̂2/3[z + A0], (5.48) reduces to the Airy equation:

d2W

dẑ2
− ẑW = 0 . (5.49)
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Its general solution can be written in terms of the Airy functions Ai and Bi:

W = C1Ai(ẑ) + C2Bi(ẑ) .

As illustrated in Figure 5.15, Ai and Bi are oscillatory for ẑ < 0; for ẑ > 0, Ai
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Fig. 5.15: The Airy functions Ai and Bi, which are two independent solutions of

(5.49).

decays exponentially, while Bi grows exponentially.4 Transformed back to the
original coordinate z, the solution reads

W = C1Ai(−k̂2/3[z + A0]) + C2Bi(−k̂2/3[z + A0]) . (5.50)

Application of the boundary conditions (5.4) gives
(

Ai(−k̂2/3A0) Bi(−k̂2/3A0)
Ai(−k̂2/3[A0 −H]) Bi(−k̂2/3[A0 −H])

)(
C1

C2

)
=

(
0
0

)
. (5.51)

The determinant has to be zero to have non-trivial solutions for (C1, C2); this
requirement yields the dispersion relation

Ai(−k̂2/3A0)Bi(−k̂2/3[A0 −H])−Bi(−k̂2/3A0)Ai(−k̂2/3[A0 −H]) = 0 . (5.52)

This transcendent equation can be solved numerically (for example by simply
plottoing the left-hand side and picking out the zeros), and yields the eigenvalues
kn, n = 1, 2, 3 . . . .

Using (5.51), we can express C2 in terms of C1 (which we give an additional
index n, because different values may be chosen for different modes); the vertical

4We do not here dwell on the analytical properties of Airy functions; for integral represen-
tations, Taylor series, asymptotic expansions etc., see [4].
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modes (5.50) can then be written

Wn = C1,n

(
Ai(−k̂2/3

n [z + A0])− Ai(−k̂
2/3
n A0)

Bi(−k̂
2/3
n A0)

Bi(−k̂2/3
n [z + A0])

)
. (5.53)

In the examples discussed below, we choose C1,n such that max{Wn} = 1.
We consider two examples, for different wave frequencies; the first showing

refraction, the second, trapping. In both cases, we choose H = 4000 m, N0 =
1.5 × 10−3 rad s−1, λ = 5 × 10−10 rad2 m−1 s−2, and f = 10−4 rad s−1. The
buoyancy frequency N thus decreases from N0 at the surface to 5×10−4 rad s−1

at the bottom; this covers more or less the range of values found in the deeper
layers of the ocean, see Figure 1.6.
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Fig. 5.16: Solution for a linearly varying N(z); the amplitude of u is shown for a

superposition 15 modes, with modal coefficients a(n) = 1/n. White denotes zero;

black, maximum values. In a, internal-wave beams can propagate at any depth, but

are refracted due to the decrease of N with depth. In b, a higher wave frequency is

chosen, such that |f | < N < ω in the deeper part of the water column; hence, internal

waves are trapped in the upper layer.

First we choose ω = 1.4 × 10−4 rad s−1 (semi-diurnal internal tides). For
this value, we have |f | < ω < N(z) for all z; the waves can thus propagate
throughout the water column. A superposition of 15 modes, depicting the am-
plitude of u, is shown in Figure 5.16a. The beams are slightly bended due to
the decreasing stratification N with depth.

Taking now a higher frequency, ω = 1.0 × 10−3 rad s−1, for which the in-
equality N(z) > ω is satisfied only in the upper 2500m of the water column,
so that the waves are trapped there; they reflect at the base of that layer, as is
illustrated in Figure 5.16b.

5.6 Non-traditional effects

To conclude this chapter, we briefly discuss how the results obtained so far
would change if one abandons the Traditional Approximation. We return to
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(5.1):
∂2

∂t2
∇2w + (~f · ∇)2w + N2∇2

hw = 0 , (5.54)

where ~f = (0, f̃ , f). It is convenient to rotate the coordinate system in the
horizontal plane, at an arbitrary angle α in anti-clockwise direction:

x′ = x cos α + y sin α ; y′ = −x sin α + y cosα ,

as illustrated in Figure 5.17. Hence

∂

∂x
=

∂x′

∂x

∂

∂x′
+

∂y′

∂x

∂

∂y′
= cos α

∂

∂x′
− sin α

∂

∂y′

∂

∂y
=

∂x′

∂y

∂

∂x′
+

∂y′

∂y

∂

∂y′
= sin α

∂

∂x′
+ cos α

∂

∂y′
.

With this transformation, (5.54) becomes

∂2

∂t2
∇′2w + (~f ′ · ∇′)2w + N2∇′h2w = 0 , (5.55)

with

∇′2 =
∂2

∂x′2
+

∂2

∂y′2
+

∂2

∂z2
; ∇′h2 =

∂2

∂x′2
+

∂2

∂y′2
; ~f ′ ≡ (f̃ sin α, f̃ cosα, f) .

Notice that the angle α is exclusively connected to the non-traditional f̃ , con-
firming the fact that the angle becomes immaterial under the Traditional Ap-
proximation (isotropy).

x

y

east →

north
↑

x′

y′

α

Fig. 5.17: Coordinate transformation to the primed system, at an angle α with respect

to the original east-north system.

We consider waves travelling in the x′-direction, with ∂/∂y′ = 0; this leaves
the geographical direction of propagation still arbitrary, via α. Moreover, we
assume

w ∼ exp(−iωt) .
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With this, (5.55) reduces to

A
∂2w

∂x′2
+ 2B

∂2w

∂x′∂z
+ C

∂2w

∂z2
= 0 . (5.56)

The coefficients A, B and C are defined by

A = N2 − σ2 + f2
s ; B = ffs ; C = f2 − σ2 ; with fs = f̃ sin α .

Non-traditional effects are now represented by fs. Of particular significance
is the mixed derivative in (5.56), which would disappear under the Traditional
Approximation (fs = 0, hence B = 0). This term precludes solutions obtained
by separation of variables, i.e. real solutions of the form F (x)G(z). Still, it is
straightfoward to solve (5.56) if we use the transformation

w = W (z) exp ik(x′ −Bz/C) , (5.57)

by which (5.56) becomes

d2W

dz2
+ k2 B2 −AC

C2
W = 0 . (5.58)

This expression replaces the ’traditional’ (4.40), and solutions are obtained sim-
ilarly as in previous sections. We consider here the case of constant N , so that
A is constant.

5.6.1 Frequency range

For sinusoidal solutions to be possible in (5.58), B2−AC must be positive. This
condition can be rewritten as

ωmin < ω < ωmax ,

with

ωmin,max =
1√
2

(
[N2 + f2 + f2

s ]∓
{

[N2 + f2 + f2
s ]2 − (2fN)2

}1/2)1/2

. (5.59)

A principal difference with the ’traditional’ range (i.e. ωmin = min(|f |, N) and
ωmax = max(|f |, N)) is that both bounds now depend on both latitude (via f

and fs) and stratification N . Moreover, it can be proven that the range is, in
general, enhanced:

ωmin ≤ min(|f |, N) < ω < max(|f |, N) ≤ ωmax .

The only exception is for waves travelling in the west-east direction, so that
α = 0, in which case (5.59) reduces to the traditional bounds.

The width of the extension of the range depends on stratification N ; in a
strongly stratified fluid, N À Ω, (5.59) can be approximated by

ωmin = |f |
[
1− f2

s

2N2
+ O

( Ω4

N4

)]
; ωmax = N

[
1 +

f2
s

2N2
+ O

( Ω4

N4

)]
. (5.60)
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Thus, in this limit, the lower and upper bounds approach the traditional values.
However, it can be seen from Figure 1.6 that the condition N À 2Ω = 1.5 ×
10−4 (rad s−1) is not satisfied in the deeper layers of the ocean, and here non-
traditional effects can be expected to be important.

The contrast between traditional and non-traditional ranges is most clearly
seen for south-north propagation (α = π/2) in regions where N ≈ 0 ¿ |f | (in
convective layers, for example); then we have, taking N = 0,

0 < ω < |f | (Traditional Approximation) ; 0 < ω < 2Ω (non-traditional) .

The difference is stark for an important class of internal waves: the semi-diurnal
internal tides, whose frequency is slightly less than 2Ω. The latter range indi-
cates that they can exist at all latitudes in neutrally stratified waters, whereas
the former range resticts their habitat to polar seas.

More generally, under the Traditional Approximation the ranges N > |f | and
N < |f | are mutually exclusive; internal waves existing in one range are pre-
cluded from the other. Without the Traditional Approximation, however, there
is always an overlap, especially around near-inertial frequencies; this overlap
includes a band of sub-inertial (ω < |f |) and super-inertial (ω > |f |) frequen-
cies. In stratified fluids, the former range may be small (as indicated by (5.60)),
but as will be demonstrated in the following sections, the behaviour of these
sub-inertial waves is altogether different from that of ’traditional’ low-frequency
internal waves.

5.6.2 Dispersion relation for constant N

For constant stratification, solutions of (5.58), satisfying the boundary condi-
tions (5.4), are given by

Wn = sin
(nπz

H

)
. (5.61)

This is identical to the traditional expression (5.21), but notice that it no longer
represents the sole dependence on z; there is now an extra vertical dependence
via (5.57). Substitution of (5.61) in (5.58) yields the dispersion relation

kn = ∓nπ

H

C

(B2 −AC)1/2
= ±nπ

H

ω2 − f2

[(ω2 − ω2
min)(ω2

max − ω2)]1/2
, (5.62)

where ωmin,max are given by (5.59). (The second equality is readily verified by
noticing that the zeros of B2 − AC occur, by definition, at ω = ωmin, ωmax.)
One important consequence of (5.62) is immediately clear: waves become short
not only in the high-frequency limit ω → ωmax (as under the Traditional Ap-
proximation), but now also in the low-frequency limit ω → ωmin. This affects,
moreover, the vertical scale as well, via (5.57). The sub-inertial short-wave limit
is illustrated in Figure 5.18.

It is also clear that the thick solid and dashed lines in Figure 5.18 cross
the frequency |f | at an angle, instead of horizontally as under the Traditional
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−ω
min

−ω
max

k →

↑ω

− |f|

−N

Fig. 5.18: The dispersion relation (5.62), showing both the plus-branch (solid thick

line), and the minus-branch (dashed thick line). For comparison, the traditional result

(5.14) is also shown (thin solid and dashed lines). After [28].

Approximation. This indicates the group velocity does not vanish at ω = |f |
if non-traditional terms are included; indeed, it vanishes only at the upper and
lower bounds, ωmax and ωmin. (This can be verified by actually deriving cg,
which we leave as an exercise for the reader.)

5.6.3 Expressions of other fields

The expressions listed in (5.5) undergo a modification if non-traditional terms
are included. To derive them, we need to return to (4.21), now in terms of the
rotated coordinate system (Figure 5.17):

∂u

∂t
− fv + fcw = − 1

ρ∗

∂p′

∂x′
(5.63a)

∂v

∂t
+ fu− fsw = − 1

ρ∗

∂p′

∂y′
(5.63b)

∂w

∂t
+ fsv − fcu = − 1

ρ∗

∂p′

∂z
+ b (5.63c)

∂u

∂x′
+

∂v

∂y′
+

∂w

∂z
= 0 (5.63d)

∂b

∂t
+ N2w = 0 . (5.63e)

Here u and v now denote the velocity components in the x′ and y′ direction,
respectively. In line with (5.57), we take w of the form

w =
∑

n

anWn(z) exp[ikn(x′ −Bz/C)− iωt] . (5.64)
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From this, incidentally, the non-separable nature of the solution is evident.
Using (5.64), we obtain from (5.63):

Un =
i

kn
W ′

n −
ffs

ω2 − f2
Wn (5.65a)

Vn =
f

ωkn
W ′

n +
iωfs

ω2 − f2
Wn (5.65b)

Pn = iρ∗
ω2 − f2

ωk2
n

W ′
n + iρ∗

fc

kn
Wn (5.65c)

Bn = − iN2

ω
Wn . (5.65d)

Notice that all expressions except the one for Bn have an extra term with respect
to the ’traditional’ (5.5). The full expression for u is now formed by replacing
Wn with Un in (5.64), and similarly for the other variables.

5.6.4 Superposition of modes

We show two examples of internal-wave beams as they manifest themselves
without the Traditional Approximation. Starting from the general solution for
rightward propagating waves (5.64), with kn positive, we obtain the expression
for u using (5.65a). We assume N constant with N > |f |, and consider a
sub-inertial and super-inertial case.

z 
(k

m
)

(a) non−traditional, super−inertial: ω=1.2×f

0 50 100 150 200
−4

−3

−2

−1

0

x (km)

z 
(k

m
)

(b) non−traditional, sub−inertial: ω=0.98×f

0 50 100 150 200
−4

−3

−2

−1

0

Fig. 5.19: A superposition of 25 modes, showing |u| at t = 0. In a the wave frequency

is super-inertial, in b, sub-inertial. In both panels, parameter values are: N = 5 ×
10−4 rad s−1, φ = 45◦N (latitude), and α = π/2 (i.e. the x-axis is directed south-north,

positive northward). The modal coefficients are an = 1/n. White denotes zero; black,

maximum values.
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The sub-inertial case shown in Figure 5.19b would not exist under the Tradi-
tional Approximation. It is marked by a curious retrograde kind of propagation.
Phase propagation is of course to the right, since we have chosen kn positive.
The direction of energy propagation can be inferred from Figure 5.18. We have
here a sub-inertial wave, ω < |f |, with k positive, so the dashed thick line on
the right applies. It descends, hence dω/dk is negative, implying that energy
propagates to the left, opposite to phase propagation.

In the super-inertial case (Figure 5.19a), the thick solid line applies, so energy
propagates to the right. An obvious difference from earlier ’traditional’ examples
(see, e.g., Figure 5.6) is that there is now an asymmetry in the zigzag pattern
of beams; the up- and downward beams are not equally steep. This fact will be
derived in a straightfoward way in the following chapter, Section 6.6.

Appendix: the delta-distribution

Consider the family of functions fε, with ε > 0, defined by

fε(x) =
{

1
2ε |x| ≤ ε

0 |x| > 0 .

This family forms a δ-approximation, i.e. fε(x) → δ(x). Because of its singular
character, δ is not a function in the proper sense of the word (unlike fε), but
a so-called distribution (an object that maps a function onto a number). The
mathematical details need not concern us here. One property of practical im-
portance can be derived us follows. For an arbirary continuous function g, we
find ∫ ∞

−∞
dx fε(x)g(x) =

1
2ε

∫ ε

−ε

dx g(x) = g(c) ,

for a certain −ε < c < ε (mean-value theorem for integrals). In the limit ε → 0
we thus find ∫ ∞

−∞
dx δ(x)g(x) = g(0) . (5.66)

A second useful property of the δ-distribution follows from the the primitive of
the family fε:

Fε(x) =





0 x < −ε
x+ε
2ε |x| ≤ ε

1 x > ε ,

so F ′ε = fε. In the limit ε → 0, Fε becomes the Heaviside stepfunction:

Θ(x) =
{

0 x < 0
1 x ≥ 0 .

Thus, the δ-distribution can be interpreted as the derivative of stepfunction:

dΘ
dx

(x) = δ(x) . (5.67)
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Chapter 6

Internal wave-propagation

II: method of characteristics

In the previous chapter, we found that a superposition of modes produces
internal-wave beams, which propagate diagonally in the x, z-plane. In this chap-
ter we derive this fact in a much more direct way. Also, we treat problems that
are beyond the scope of the method of vertical modes, such as reflection from
sloping boundaries, which is a particularly relevant topic, given the distinctly
bumpy nature of ocean bottom topography (as illustrated in Figure 1.6).

6.1 Basic properties of internal waves

Our starting point is (4.35), which governs the spatial structure of internal
waves:

(N2 − ω2)∇2
hw − (ω2 − f2)wzz = 0 . (6.1)

This expression is based on the Traditional Approximation; we defer a discussion
of non-traditional effects to Section 6.6. We first consider plane waves, i.e.
∂/∂y = 0. Since the roles of x and y are entirely similar in (6.1), the results
obtained for propagation in the x direction will equally apply to any other
horizontal direction. We note that a fully three-dimensional problem is discussed
in Section 6.4. Hereafter we assume N to be constant; effects of vertically
varying N are discussed in Section 6.5.

6.1.1 Dispersion relation and corollaries

With ∂/∂y = 0, then, (6.1) reduces to

(N2 − ω2)
∂2w

∂x2
− (ω2 − f2)

∂2w

∂z2
= 0 . (6.2)
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The dispersion relation, which provides the connection between wave frequency
and wavenumbers, can be found by substituting w = exp i(kx + mz) into (6.2):

ω2 =
N2k2 + f2m2

k2 + m2
. (6.3)

We can simplify this expression by writing the wavevector in polar coordinates,

~k = (k, m) = κ(cos θ, sin θ) ; κ = (k2 + m2)1/2 , (6.4)

where κ is the length of the wavevector, and θ the angle between the wavevector
and the horizontal. With this, (6.3) becomes

ω2 = N2 cos2 θ + f2 sin2 θ . (6.5)

This relation lies at the heart of internal-wave theory. It contains the two key
parameters N and f , which represent the two restoring forces at work in internal
waves: buoyancy and the Coriolis force. Remarkably, (6.5) shows that the wave
frequency depends on the direction θ of the wavevector, but not on its length κ.
This has as an immediate and important consequence that the group velocity
vector

~cg =
(∂ω

∂k
,

∂ω

∂m

)

must be perpendicular to the wavevector. In other words, the propagation of
internal-wave energy is perpendicular to that of lines of constant phase, see
Figure 6.1. To prove this, we write, in a general way,

ω(k(κ, θ),m(κ, θ)) = ω̄(κ, θ) .

(Here we introduce a new symbol ω̄, to be identified with (6.5), because its
functional dependence on κ and θ is formally different from that of ω(k,m).)
Hence

∂ω̄

∂κ
=

∂ω

∂k

∂k

∂κ
+

∂ω

∂m

∂m

∂κ
= ~cg · ~k/κ .

Now, since ω in (6.5) does not depend on κ, it follows that ~cg · ~k = 0, i.e.

~cg ⊥ ~k . (6.6)

As a result, the group velocity makes an angle θ with the vertical.
Another way to arrive at this property is of course by calculating the com-

ponents of the group velocity explicitly from (6.3); cast in polar coordinates,
the result is

~cg =
(N2 − f2) cos θ sin θ

κω
(sin θ,− cos θ) . (6.7)

This confirms (6.6). It does, however, provide some extra information. The sign
of the horizontal component of the group velocity vector is determined by (N2−
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→

→

Fig. 6.1: Properties of an internal-wave beam, depicted schematically. The dashed

and solid diagonals denote lines of constant phase; they propagate in the direction of

the wavevector, ~k, which in this example points right- and downward. The energy, on

the other hand, propagates in the direction of the group velocity vector, ~cg, which is

perpendicular to ~k. In this example, we assume N > |f |; the vectors ~k and ~cg then

point in the same horizontal direction, but are vertically opposite. (If N < |f |, it is

the other way round.)

f2) cos θ (the remaining factor being positive), implying that it has the same
sign as k if N > |f |, and the opposite sign if N < |f |. The sign of the vertical
component of the group velocity vector is determined by −(N2−f2) sin θ, which
is opposed to the sign of m if N > |f |, and the same if N < |f |.

Writing ω2 = ω2(cos2 θ + sin2 θ) in (6.5), we obtain an alternative form of
the dispersion relation,

cot2 θ =
ω2 − f2

N2 − ω2
. (6.8)

This implies that the right-hand side must be non-negative, hence either

(I) N ≤ ω ≤ |f | or (II) |f | ≤ ω ≤ N (6.9)

must hold, depending on which of the two, |f | or N , is the largest. These
expressions delineate the range of allowable internal-wave frequencies, and are
in agreement with the earlier result (5.8). Two extreme cases can occur: ω → |f |
if θ → π/2, see (6.5); then the wavevector ~k becomes vertical, and the group
velocity vector ~cg, horizontal. The other extreme is ω → N (if θ → 0), then the
wavevector becomes horizontal, and the group velocity vector, vertical.

Wave motions in fluids are of course associated with oscillating parcels. Their
movements follow directly from the continuity equation (4.21d), by substituting
~u = exp i(kx + ly + mz − ωt), which implies

~u ⊥ ~k . (6.10)

103



In this section we assumed l = 0, and so the parcels oscillate parallel to the
lines of constant phase (the dashed and solid lines in Figure 6.1), so far as the
x, z-plane is concerned. Due to Coriolis effects, there is also a component v

perpendicular to that plane.

6.1.2 General solution

The steepness of the group velocity ~cg follows from (6.7) as − cos θ/ sin θ =
− cot θ. We denote this steepness by µ±, with two possible signs, according to
(6.8),

µ± = ±
( ω2 − f2

N2 − ω2

)1/2

. (6.11)

Given the physical significance of µ± as the steepness at which energy propagates
in the x, z-plane, it makes sense to introduce new coordinates that are in line
with this propagation:

ξ± = µ±x− z , (6.12)

see Figure 6.2. Energy thus propagates along lines ξ± = const.

x

z

ξ
+
= 0ξ

−
= 0

ξ
+

ξ
−

Fig. 6.2: Characteristic coordinates ξ+ = µ+x − z and ξ− = µ−x − z (solid thick

lines), here for |µ±| = 0.4. Internal-wave energy propagates along lines ξ+ = const or

ξ− = const, two examples of which are shown as dashed lines; they have steepness µ±.

Notice that lines with ξ± = const > 0 lie below the ones sketched here, implying that

both ξ+ and ξ− increase in the downward direction, as indicated by the arrows.

Adopting ξ+ and ξ− as the new independent variables, instead of x and z,
in fact translates into a mathematical simplification of (6.2). Writing

w(x, z) = w̄(ξ+(x, z), ξ−(x, z)) ,

we have
∂w

∂x
=

∂w̄

∂ξ+

∂ξ+

∂x
+

∂w̄

∂ξ−

∂ξ−
∂x

= µ+

∂w̄

∂ξ+

+ µ−
∂w̄

∂ξ−
,
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and similarly for ∂w/∂z and second derivatives. As a result, (6.2) reduces to
the simple form

∂2w̄

∂ξ+∂ξ−
= 0 . (6.13)

The general solution of this equation can be written (dropping the bar)

w = F (ξ+) + G(ξ−) , (6.14)

for arbitrary functions F and G.
To show an example, we take

F = exp(−ξ2
+) exp ikξ+ , (6.15)

and the same functional dependence for G(ξ−). Together with the time factor
exp−iωt, the real part becomes

w = exp(−ξ2
+) cos(kξ+ − ωt) + exp(−ξ2

−) cos(kξ− − ωt) , (6.16)

and is illustrated in Figure 6.3 for t = 0. (Notice that positive k here means
downward phase propagation, corresponding to the direction of increasing ξ±,
see Figure 6.2.) The Gaussian factor gives the beams their confined form, while
the cosine describes the phase propagation within the beams, in a direction
perpendicular to the beams themselves (as sketched in Figure 6.1).

x

z

F

x

z

FG

Fig. 6.3: On the right, the magnitude of the solution (6.16), |w|, shown at t = 0 for

k = 5 and µ+ = −µ− = 0.4 (cf. Figure 6.2). On the left, only F is shown.

6.1.3 Kinetic and potential energy

From (4.27) we have the expressions for kinetic and potential energy,

Ek =
1
2

ρ∗
[
u2 + v2 + w2

]
; Ep =

1
2

ρ∗ b2/N2 .
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From the general solution for w, (6.14), we can derive the expressions for u, v

and b, using (4.21b,d,e), with ∂/∂y = 0 and f̃ = 0; this gives

u = µ−1
+ F (ξ+) + µ−1

− G(ξ−) (6.17)

v = −i
f

ω

[
µ−1

+ F (ξ+) + µ−1
− G(ξ−)

]
(6.18)

b = −i
N2

ω

[
F (ξ+) + G(ξ−)

]
. (6.19)

Selecting now either F or G, but not both, we find for the ratio of potential and
kinetic energy,1

Ep

Ek
=

N2(ω2 − f2)
ω2(N2 − f2) + f2(N2 − ω2)

. (6.20)

This expression is remarkably simple; in particular, it is spatially uniform. How-
ever, this would no longer be the case if one includes both F and G. The easiest
way to see this is by considering a basin of finite depth (such as the ocean!), in
which case it does not suffice to include just F , because wave reflections from
the boundaries (bottom or surface) will result in propagation along the other
characteristic, and hence require the inclusion of G. In particular, near a hori-
zontal bottom the potential energy must vanish (hence Ep/Ek → 0) because no
vertical excursions can occur there; in that case, (6.20) is clearly not applicable.
Still, (6.20) would remain valid in a depth-averaged sense, as can be checked
using the modal expressions (5.5) with constant N .

6.2 Reflection from a sloping bottom

In the previous section we considered plane waves extending into infinity, spa-
tially. Physical boundaries like a (sloping) bottom of course render these so-
lutions invalid. However, they can be easily modified to accomodate for the
presence of such boundaries. We consider here the effect of a uniformly slop-
ing bottom whose normal lies in the same vertical plane as the wavevector
~k = (k, 0,m); a more general situation is examined in Section 6.4.

We have seen from the dispersion relation (6.5) that the wave frequency is
determined by the angle of propagation (θ). Vice versa, for a given frequency ω,
the angle θ is fixed (modulo π). This has an important implication for internal-
wave reflection from boundaries, such as a sloping bottom: after reflection,
energy must again propagate at an angle θ with the vertical, since the wave
frequency has not changed. This property is quite unlike that of for example
reflection of light from a mirror, where the angle of incidence also equals that of
reflection but with both angles being defined with respect to the normal of the
reflecting surface.

1In view of the complex nature of the expressions, we calculate Ep as Ep = 1
2
ρ∗bb∗/N2

etc.
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The precise way in which internal waves reflect can be readily established
from the general solution (6.14). Without loss of generality, we take F to rep-
resent the incident wave. We consider reflection from a uniform slope z = γx,
with γ < 0. Applying the boundary condition at the slope enables us to express
the reflected wave G in terms of F . Let u be the velocity component in the
direction x; using the continuity equation ux + wz = 0, we obtain

u = µ−1
+ F (ξ+) + µ−1

− G(ξ−) .

The boundary condition to be posed at the slope is that of zero normal velocity,
i.e. w = γu at z = γx. Hence

(1− γ/µ+)F ([µ+ − γ]x) + (1− γ/µ−)G([µ− − γ]x) = 0 for all x .

Since this must hold for all x, we can express G in terms of F as

G(ξ−) = λF (λξ−) with λ =
µ+ − γ

µ− − γ
. (6.21)

(Here we used µ−/µ+ = −1, implied by (6.11).) This expression has no meaning
if λ →∞, or

µ− = γ ,

i.e. the direction of energy propagation of the reflected wave coincides with the
bottom slope; this is called critical reflection. The linear solution then breaks
down because G becomes infinite; to treat this case properly, nonlinear and
viscous effects need to be included. We restrict ourselves to examining the case
of non-critical reflection, µ− 6= γ.

Substituting (6.21) into (6.14) provides the general solution of the linear
internal-wave reflection problem:

w = F (ξ+) + λF (λξ−) . (6.22)

Figure 6.4 shows two examples, with the incident beam F as defined in (6.15).
The upper panel shows a case of sub-critical reflection, i.e. the slope is less steep
than the reflected beam (G); as a result, the reflected beam continues in the
same horizontal direction as the incident beam. In the lower panel, reflection
is super-critical, the slope being steeper than the reflected beam, which now
bounces back horizontally. In both cases, the reflected beam is less wide, and
more intense than the incident beam; that this must be so is readily understood
from geometric arguments (trace the lines within which the incident beam is
confined, and follow their reflection from the sloping wall). Conversely, reflection
from a slope with positive γ would result in defocussing. This is also evident
from the way λ modifies the argument in the reflected F (λξ−) in (6.22); writing
µ ≡ µ+ = −µ−, we have |λ| = |(µ − γ)/(µ + γ)|, which is smaller than 1 for
positive γ, and larger than 1 for negative γ.
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(a)
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G
(b)

Fig. 6.4: Reflection from a uniform slope, showing |w|, for µ+ = 0.4. The incident

beam F (ξ+), entering from the upper right corner, is prescribed by (6.15), with k =

−5 (i.e. upward phase propagation); the total solution then follows from the general

expression (6.22). In a, the slope is γ = −0.2, so |γ| < |µ−|, in which case we

speak of sub-critical reflection; here λ < 0, so the reflected beam has downward phase

propagation. In b, we have γ = −0.8, so |γ| > |µ−|, giving super-critical reflection; here

λ > 0, so the reflected beam has upward phase propagation, like the incident beam.

This is consistent with the assumption that F (ξ+) is the incident beam, provided that

N > |f |; for N < |f |, consistency requires a reversal of roles.

6.3 Propagation between two horizontal bound-

aries

A special case of reflection occurs for a horizontal boundary, γ = 0. Then
λ = µ+/µ− = −1, and the solution (6.22) becomes

w = F (ξ+)− F (−ξ−) . (6.23)

We interpret this as a reflection from the surface (rigid-lid), at z = 0. If we
moreover include a horizontal bottom, placed at z = −H where w = 0, then
(6.23) implies

F (µ+x + H) = F (−µ−x−H) for all x .

With −µ− = µ+ ≡ µ, this condition means that F must be periodic in x, with
period 2H/µ. This is the distance between subsequent reflections at the surface
(or bottom).

Since F is periodic, we can write it as a (complex) Fourier series of period
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2H:

F (ξ+) =
∞∑

n=0

an exp(inπξ+/H) ,

with complex coefficients an. Using this series in (6.23) gives

w =
∞∑

n=0

an

[
exp(inπξ+/H)− exp(−inπξ−/H)

]

=
∞∑

n=0

an

[
exp(inπ(µx− z)/H)− exp(inπ(µx + z)/H)

]

= −2i

∞∑
n=0

an sin(nπz/H) exp(inπxµ/H) .

Adding the time-factor finally results in

w = −2i

∞∑
n=0

an sin
(nπz

H

)
exp(i[knx− ωt]) . (6.24)

where we introduced horizontal wavenumbers kn = nπµ/H. In this expression,
we recognize the solution for rightward propagating waves in terms of vertical
modes, (5.22). This proves the equivalence between the two methods of Chapters
5 and 6; the present configuration, viz. horizontal boundaries and constant
N , allows both methods to be applied. At the same time, each has its own
advantage. The usage of the coordinates x and z, in the method of vertical
modes, is natural in view of the geometry of the problem, but makes it less
easy to grasp how the waves actually propagate. In this respect, the solution is
easier to interpret when expressed in terms of characteristic coordinates, since
they reflect the direction of energy propagation.

6.4 Three-dimensional reflection

So far we have considered plane waves propagating in the x, z-plane, and their
reflection from a sloping boundary whose normal lies in the same vertical plane.
We now examine the more general case of a given incident wave

wi = exp i(kx + ly + mz − ωt)

reflecting from an arbitrarily oriented uniform slope

z = γx + δy .

The incident wave w satisfies (6.1), as does the reflected wave

wr = Q exp i(Kx + Ly + Mz − ωt) ,

where Q, K, L and M are to be found. The total vertical velocity is w = wi+wr.
In view of the boundary condition, we need the other velocity components as
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Fig. 6.5: A schematic view of the three-dimensional reflection problem: an incident

wave (in red), with wavevector ~k = (k, l, m) reflects from a uniform slope whose normal

does not lie in the same vertical plane as the wavevector ~k. The problem is to find the

reflected wave (in blue), i.e. its wavevector ~K as well as its amplitude Q.

well. They can be obtained from (4.21d) and (4.24), with f̃ = 0 (Traditional
Approximation):

ui =
m(fl − iωk)
iω(k2 + l2)

wi ; vi = −m(fk + iωl)
iω(k2 + l2)

wi , (6.25)

and analogous expressions for the reflected wave (replace index i by r, and k, l,m

by K, L,M). These expressions, incidentally, determine also the polarization of
the horizontal velocity field.

The boundary condition to be applied is that of zero normal velocity at the
slope, i.e.

w = γu + δv at z = γx + δy . (6.26)

This condition takes the form

(· · · ) exp i
(
[k + γm]x + [l + δm]y

)
+ (· · · ) exp i

(
[K + γM ]x + [L + δM ]y

)
= 0 ,

for all x and y. For this to hold, we must have

k + γm = K + γM ; l + δm = L + δM .

Writing M = qm (q to be found) gives

K = k + γ(1− q)m ; L = l + δ(1− q)m. (6.27)

The problem has thus been reduced to finding just two coefficients: q and Q.
Both the incident and reflected wave have to satisfy the dispersion relation that
follows from (6.1),

(N2 − ω2)(k2 + l2)− (ω2 − f2)m2 = 0 , (6.28)
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or, in short-hand notation,

Cm2 + D(k2 + l2) = 0 , (6.29)

with C = f2 − ω2 and D = N2 − ω2. The wavevector (K, L,M) too satisfies
(6.29); hence, using (6.27),

C[qm]2 + D([k + γ(1− q)m]2 + [l + δ(1− q)m]2) = 0 .

Here the terms D(k2 + l2) can be replaced using (6.29); this produces a common
factor (1 − q). Since q = 1 represents the trivial but unphysical solution of an
incident wave passing through the slope, which we ignore, we can divide by this
factor to obtain

q =
D((k + γm)2 + (l + δm)2)

m2(C + D(γ2 + δ2))
. (6.30)

Applying the boundary condition (6.26), finally, yields the complex amplitude
factor of the reflected wave; after some rewriting

Q = −q
ω[Cm−D(γk + δl)] + iDf(δk − γl)

ω[CM −D(γK + δL)] + iDf(δK − γL)
. (6.31)

With this, the reflected wave has been fully determined.
Critical reflection occurs when the factor q, and hence Q, becomes infinite,

i.e.

γ2 + δ2 = −C

D
=

ω2 − f2

N2 − ω2
, (6.32)

stating that the bottom slope has the same angle with the horizontal plane as
has energy propagation. This can be seen as follows. The direction of energy
propagation is found by differentiating (6.28) to k, l and m, respectively,

~cg =
(∂ω

∂k
,

∂ω

∂l
,

∂ω

∂m

)
=

1
ωκ2

(
(N2 − ω2)k, (N2 − ω2)l, (f2 − ω2)m

)
, (6.33)

with κ the length of the wavevector, κ2 = k2+l2+m2. As in the two-dimensional
case, we have ~cg ⊥ ~k; this can be seen by taking the inner product of (6.33) with
~k and using (6.28). Now, the angle θ of the wavevector ~k with the horizontal
plane follows from (6.29): tan2 θ = −D/C. Since this angle depends only on
the wave frequency, it must be the same for the reflected wavevector (K, L, M).
Hence the energy propagation of both the incident and reflected waves has an
angle with the horizontal plane whose tangent is given by the square root of the
right-hand side of (6.32).

Finally, we note that taking l = 0 and using (6.5) leads us from (6.33) to
the earlier expression (6.7).

6.5 Non-uniform stratification

So far we have assumed N to be constant. We now return to (6.2) to see what
happens when N is allowed to vary vertically:

(N2(z)− ω2)
∂2w

∂x2
− (ω2 − f2)

∂2w

∂z2
= 0 . (6.34)
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6.5.1 WKB approximation

We will first assume that N varies weakly with z (the meaning of ’weak’ is
specified below), and proceed in a heuristic way. Trying a solution of the form

w = exp i[kx + ϕ(z)] , (6.35)

we find from substitution in (6.34):

−k2(N2(z)− ω2)− (ω2 − f2)[−(ϕ′)2 + iϕ′′] = 0 ,

(primes denote derivatives to z). Or, in short-hand notation,

−(ϕ′)2 + iϕ′′ + q2(z) = 0 , with q2 = k2 N2 − ω2

ω2 − f2
. (6.36)

If N were constant, we would have ϕ(z) = mz, and hence ϕ′′ = 0. So, for weakly
varying N , it makes sense to assume that this second derivative is a relatively
small term in (6.36). We thus find by successive approximation:

(ϕ′1)
2 = q2

(ϕ′2)
2 = q2 + iϕ′′1

(ϕ′n)2 = q2 + iϕ′′n−1 (n ≥ 3) .

Here ϕ1, ϕ2 etc are increasingly accurate representations of ϕ. The lowest-order
approximation satisfies ϕ′1 = ±q, hence

ϕ1 = ±
∫

dz q .

(More precisely, the integrals are to be read as
∫ z

0
dz̄ q(z̄).) The second-order

approximation ϕ2 now satisfies

ϕ′2 = ±
(
q2 ± iq′

)1/2

= ±q
(
1± i q′

q2

)1/2

≈ ±q
(
1± iq′

2q2

)
(6.37)

= ±q + iq′

2q .

(In the first three expressions, the two ±’s must have the same sign, so either
both +, or both −, because of the relation between the ϕ’s: ϕ2 = ϕ1 + · · · .)
Hence

ϕ2 =
i

2
ln q ±

∫
dz q .

We thus find for the z-dependent part of w in (6.35),

w ∼ C−
1√
q

e−i
R

dz q + C+

1√
q

e+i
R

dz q , (6.38)
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with arbitrary constants C±. This describes vertically propagating waves. We
may interpret q as a kind of vertical wavenumber, since for constant N we
would have found ϕ = mz. The approximation (6.37) hinges on the assumption
q′ ¿ q2. Now, q′ is related to the vertical variation of N , so the inequality can
be interpreted as requiring that N varies slowly compared to the vertical scale
of the wave, q−1. In other words, waves have to be sufficiently short for the
approximation to be valid.

The assumption breaks down, of course, near vertical positions where N(z)
approaches ω, in which case q → 0. These are the so-called turning points, at
which the local behaviour can be described by Airy functions (see also Section
5.5, and, in particular, Figure 5.16b). The solution then consists of various
parts, close to and away from the turning point; they can matched by techniques
commonly used in quantum mechanics (see, e.g., [56]). We do not pursue this
topic here.

If we assume q2 > 0, then no turning points occur. Still, as pointed out above
already, the approximation (6.38) loses its validity if N varies too strongly.
Physically, this can be interpreted as follows. In (6.38), the terms describe
up- and downward propagating waves, which are entirely independent of one
another; this is expressed by the fact that the constants C+ and C− can be
prescribed independently. Now, if N varies strongly, this will no longer be the
case because internal reflections occur, as sketched in Figure 6.6.

Fig. 6.6: A schematic view of how an upward propagating beam (on the left), in a

vertically varying medium, undergoes not only refraction but also internal reflections;

these reflected beams, in turn, also undergo reflections, giving rise to an increasingly

complicated pattern of beams. On the right, the same for a downward main beam.

From [6].

Having outlined the restrictions of the approximation, we now turn to the
case in which all the assumptions are satisfied. The vertical wavenumber m(z)
can then be defined by

m(z) =
dϕ

dz
≈ q(z) = ±k

(N2(z)− ω2

ω2 − f2

)1/2

.

So, whereas the horizontal wavenumber remains constant, the vertical wavenum-
ber is affected by the vertically varying medium.2

2This is a special case of the more general ‘ray theory’, see [48, §6].

113



6.5.2 Characteristic coordinates

We start with a short mathematical excursion. We can still define characteristic
coordinates ξ±; they are constant along the curves

dz

dx
= µ±(z) ≡ ±

( ω2 − f2

N2(z)− ω2

)1/2

. (6.39)

This equation cannot be solved analytically except for very special choices of
N(z); thus, one cannot, in general, obtain the characteristic coordinates in
explicit form. Whether explicitly obtainable or not, using these coordinates as
the independent variables does not reduce (6.34) to the previous simple form
(6.13); its right-hand side is no longer zero. Hence (6.14) no longer provides
a solution.3 This is, again, due to the occurrence of internal reflections, which
connects the flow of energy on one characteristic ξ+ = const with that on the
other ξ− = const; thus the two can no longer be independently prescribed, as
was the case in (6.14).

However, if the stratification varies sufficiently weakly, we may ignore inter-
nal reflections, and find the path of energy propagation by numerically integrat-
ing (6.39). This is a sensible approach in the deep ocean, but is bound to be
invalid in the seasonal thermocline (see Figure 1.6 for a typical distribution of
N). For strongly varying N , the method of vertical modes (Chapter 5) is the
more suitable one, at least in the absence of strongly varying depth.

6.6 Non-traditional effects

To conclude this chapter, we briefly discuss how the results obtained so far
would change if one abandons the Traditional Approximation. We return to
(5.56),

A
∂2w

∂x′2
+ 2B

∂2w

∂x′∂z
+ C

∂2w

∂z2
= 0 , (6.40)

with A = N2 − ω2 + f2
s , B = ffs, C = f2 − ω2, and fs = f̃ sin α. We recall

that α is the angle of the axis x′ with the west-east direction (Figure 5.17). We
assume N = const.

Requiring hyperbolicity of (6.40), B2 − AC > 0, translates into the bounds
of the frequency domain as stated in (5.59).

We can again introduce characteristics coordinates as in (6.12) and Figure
6.2 (but now respect to the x′, z-system rather than x, z),

ξ± = µ±x′ − z . (6.41)

However, µ± are now defined differently:

µ± =
−B ± (B2 −AC)1/2

A
. (6.42)

3For a special class of profiles with (ω2 − f2)/(N2(z)− ω2) = (c1z + c2)2, with arbitrary
c1,2, a simple solution can still be obtained, see [47, §151].
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An important departure from traditional theory is that they are not equally
large: |µ+| 6= |µ−|. This means that internal-wave energy propagates at two
different slopes, depending on which of the two, ξ+ = const or ξ− = const,
applies. This is sketched in Figure 6.7.

ξ
+

ξ
−

super−inertial

ξ
+

ξ
−

inertial

ξ
+

ξ
−

sub−inertial

Fig. 6.7: A schematic view of the direction of the lines of constant ξ+ and ξ−, assuming

|f | < (N2 + f2
s )1/2 (a condition usually satisfied in the ocean). Three important cases

are distinguished, from left to right: (N2 + f2
s )1/2 > ω > |f |, ω = |f |, and ω < |f |.

Notice that the first and third cases are in qualitative agreement with the direction of

the beams shown in Figure 5.19a and 5.19b, respectively.

Using the characteristic coordinates instead of x′ and z, (6.40) transforms
into wξ+ξ− = 0; hence the general solution has the same form as the traditional
expression (6.14):

w = F (ξ+) + G(ξ−) . (6.43)

The problem of reflection from a uniform slope can thus be easily solved, as in
Section 6.3. However, the expressions derived there are not all carried over to
the non-traditional case, because we no longer have µ−/µ+ = −1.

Assuming solutions of the form w = exp i(kx + mz), we find that the tradi-
tional dispersion relation (6.5) is now to be replaced by

ω2 = N2 cos2 θ + (fs cos θ + f sin θ)2 . (6.44)

But, again, ω depends only on the angle θ of the wavector, not on its length κ,
so ~cg ⊥ ~k still holds. From this, the group velocity can be easily derived; the
qualitative behaviour of the components is shown in Figure 6.8.

Segments where the wave frequency increases (decreases) as a function of θ

correspond to energy propagation along a µ+ (µ−) characteristic. The wavevec-
tor and group velocity vector are either vertically or horizontally opposed, but
not both (Figure 6.8b,c). In Figure 6.8a, dotted lines are drawn at two fre-
quency levels: ω = (N2 + f2

s )1/2 and ω = |f |. These are precisely the values
at which the coefficients A and C in (6.40) change sign, respectively. Their
special significance is furthermore seen from the simple rule that one can distill
from Figure 6.8: for the µ+ characteristic, the wavevector and group velocity
are vertically opposed if ωmin < ω < (N2 + f2

s )1/2, and horizontally opposed if
(N2 + f2

s )1/2 < ω < ωmax; for the µ− characteristic, they are vertically opposed
if |f | < ω < ωmax, and horizontally opposed if ωmin < ω < |f |. This rule
is modified for weak stratification, when (N2 + f2

s )1/2 < |f |. All the possible
situations are summarized in Table 6.1.
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Fig. 6.8: The dispersion relation (6.44) for internal inertio-gravity, and related quanti-

ties, for |f | < (N2+f2
s )1/2 (regime I of Table 6.1). In a, wave frequency ω versus θ, the

angle of the wavevector with the horizontal. Segments where ω increases (decreases)

correspond to the characteristic µ+ (µ−). In b, the horizontal and vertical components

of the wavevector are shown (normalized), also as a function of θ. Panel c shows the

components of the group velocity factor (multiplied by ω and normalized). Parameter

values are φ = 45◦N and α = π/2 (i.e. the x-axis is directed south-north, positive

northward); for optimal clarity, N has been chosen only marginally larger than 2Ω

(N = 1.5× 10−4rad s−1).

Parameter regime: Frequency intervals: Characteristics:
regime I: ωmin < ω < |f | µ+ > 0 (V) & µ− > 0 (H)
|f | < (N2 + f2

s )1/2 |f | < ω < (N2 + f2
s )1/2 µ+ > 0 (V) & µ− < 0 (V)

(N2 + f2
s )1/2 < ω < ωmax µ+ < 0 (H) & µ− < 0 (V)

regime II: ωmin < ω < (N2 + f2
s )1/2 µ+ > 0 (V) & µ− > 0 (H)

(N2 + f2
s )1/2 < |f | (N2 + f2

s )1/2 < ω < |f | µ+ < 0 (H) & µ− > 0 (H)
|f | < ω < ωmax µ+ < 0 (H) & µ− < 0 (V)

Table 6.1: The two possible regimes, depending on which of the two, |f | or
(N2 + f2

s )1/2, is the largest. Each regime gives rise to three frequency inter-
vals, for which the signs of µ+ and µ− are listed, as well as the corresponding
behaviour of the wavevector and group velocity vector: ‘H’ indicates that they
are horizontally opposed; ’V’, that they are vertically opposed.

This variety of behaviour is to be contrasted with the traditional limit (fs =
0), where one finds that they are always vertically opposed in the ‘strongly’

116



stratified regime (i.e. N > |f |), and always horizontally opposed in the ‘weakly’
stratified regime (N < |f |).

Finally, we emphasize that properties such as the steepness of characteris-
tics, the dispersion relation, and the lower and upper bounds of the frequency
window, all depend on the angle α in fs = f̃ sin α, i.e. on the orientation in
the horizontal geographical plane. There is a horizontal anistropy, unlike under
the Traditional Approximation, where internal waves behave the same way for
all horizontal directions of wave propagation. Non-traditional effects are weak-
est for zonal propagation (α = 0, π) and strongest for meridional propagation
(α = ±π/2).
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Chapter 7

Internal tides

At the origin of internal waves in the ocean lie two major sources: the wind,
which generates near-inertial internal waves, and the barotropic tide, which
generates internal tides. In this chapter we discuss the latter. We start with
a simple model of the barotropic tide, propagating along a continental slope,
which serves as a basis for developing the theory of internal-tide generation.

7.1 Barotropic tides

There are many tidal components, but the two main classes are those of diurnal
and semi-diurnal periods, and of the latter, the lunar component M2 is the
most important one. Although surface tides have been measured for centuries
in coastal regions, it has only recently become clear exactly how they propagate
in the deep ocean. The advancements in satellite altimetry now make it possible
to measure ocean surface displacements as small as a centimeter. An example
of how the surface tides propagate is shown in Figure 7.1.

As explained qualitatively in Section 1.3, the surface tides are responsible
for the generation of internal tides. To put this idea into a more quantitative
but tractable form, we need first of all a simple model for the propagation of
barotropic tides near topographic features. We shall consider a barotropic tide
propagating along a continental slope, described by z = −h(x). The equations
to be satisfied are the linear shallow-water equations,

Ut − fV = −gηx ; Vt + fU = −gηy ; ηt + (hU)x + hVy = 0 . (7.1)

Here U is the cross-slope component, V the along-slope one, and η the surface
displacement, all associated with the barotropic tide.

Suppose first that this slope were a vertical wall (at x = 0), covering the
entire water column. Clearly, we must require U = 0 at the wall. If we further-
more assume that there is no cross-slope component away from the slope either,
then we arrive at the well-known Kelvin-wave solution:

U = 0 ; V =
ag

c0
efx/c0 exp i(ly − ωt) ; η = aefx/c0 exp i(ly − ωt) ,
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Fig. 7.1: The pattern of the semi-diurnal lunar tidal component M2, established

using Topex/Poseidon altimetry data. Colours indicate the amplitude of the surface

elevation (in cm); white lines represent lines of constant phase. They are organized

around so-called amphidromic points: points where the amplitude vanishes and at

which phase lines come together. Phases move counterclockwise around amphidromic

points in the Northern Hemisphere, and clockwise in the Southern Hemisphere. Figure

from http://svs.gsfc.nasa.gov/stories/topex/tides.html.

with c0 = (gH)1/2 (with H the water depth in the deep ocean, typically 4 km),
l = ω/c0, ω the tidal frequency, and a an arbitrary amplitude factor. The wave
propagates as a long wave in the along-slope direction, with the wall on its
right-hand side (Northern Hemisphere). Both the surface excursion η and the
along-slope velocity V decay exponentially off the wall, obeying the geostrophic
balance. These features are illustrated in Figure 7.2.

A real continental slope, even if conceived as purely vertical, differs crucially
from the previous model in that it does not cover the whole water column, but
leaves a narrow opening in the upper part of it (typically of a height of the order
of 200 m), connecting the deep ocean to a continental shelf. This opening, small
as it may seem in comparison with H, profoundly changes the solution.

To see this, consider the configuration shown in Figure 7.3, where the shelf
has width L. The equations to be satisfied are again (7.1); here h(x) equals H

in the deep ocean (x < 0) and Hs on the shelf (x > 0). We anticipate that, not
unlike the Kelvin wave, the tide propagates along the continental slope, i.e. each
of the fields is proportional to exp i(ly−ωt). This implies that the x dependent
parts (denoted by hats) must satisfy

Û =
ig

ω2 − f2
(flη̂ − ωη̂′) ; V̂ =

g

ω2 − f2
(ωlη̂ − fη̂′) ,
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Fig. 7.2: The classical Kelvin wave (top view), travelling over uniform depth along

a vertical wall at x = 0. Propagation is in the positive y-direction. The fields η and

V decay exponentially off the wall. Note the total absence of a cross-slope velocity

component. Units are: η in m, U and V in m s−1. Parameters are ω = 1.4 × 10−4

rad s−1, f = 1 × 10−4 rad s−1, H = 4 km. The along-slope wavenumber is l =

7.071× 10−7 radm−1.

and

η̂′′ −
[
l2 − ω2 − f2

gh

]
η̂ = 0 ,

where primes denote derivatives to x. We assume the factor in brackets to be
positive in the deep ocean (and denote it by m2), and negative on the shelf
(−m2

s).1 We thus impose an exponential solution in the deep ocean, and a

1This assumption presupposes that we are considering super-inertial tides, i.e. ω > |f |,
which applies to diurnal tides at latitudes lower than approximately 30◦N/S, and to semi-
diurnal tides everywhere except in polar regions. For sub-inertial tides, on the other hand, a
different type of solution applies, the so-called double Kelvin-wave, see [48].
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Fig. 7.3: A schematic representation of the transition between the deep ocean and the

continental shelf.

sinusoidal one on the shelf:

η̂ =
{

a exp mx x < 0
a(cos msx + γ sin msx) x > 0 .

Here a is an arbitrary coefficient, fixing the amplitude of the signal; γ is de-
termined below. The choice on m and ms implies a restriction on l; it is now
bounded by

ω2 − f2

gH
< l2 <

ω2 − f2

gHs
.

The two conditions to be imposed at x = 0 are continuity of η (already satisfied)
and continuity of cross-slope transport: HU |0− = HsU0+ ; the latter implies

H(fl − ωm) = Hs(fl − ωγms) ,

so that

γ =
Hωm− (H −Hs)fl

Hsωms
.

Finally, we impose the condition U |x=L = 0 (zero normal velocity at the end of
the shelf), implying

(fl − ωmsγ) cos msL + (flγ + ωms) sin msL = 0 . (7.2)

This is the dispersion relation; it yields wavenumber l for given tidal frequency
ω (and fixed constants f , H, Hs and L). The equation is transcendental and
cannot be solved by analytical means, but it can easily be solved numerically
(e.g. using the Newton algorithm, or simply by inspection, plotting the left-hand
side as a function of l).

An example is shown in Figure 7.4. The presence of the shelf has two
principal consequences: the wave is shortened (i.e. l is larger) and hence its phase
speed is decreased; and, more importantly, there is now a cross-slope velocity.
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Fig. 7.4: The presence of a continental shelf (at x > 0) leads to a modified Kelvin

wave. Note the presence of a cross-slope velocity component in b, and the associated

cross-slope transport (m2s−1) in d. Here Hs = 200 m and L = 200 km; remaining

parameters as in Figure 7.2. The dispersion relation (7.2) gives l = 7.968 × 10−7

radm−1.

From Figure 7.4b this is obvious for the shelf-region, although in the deep ocean
the component is too weak to be visible. Yet, it is there, too, as becomes clear
when we look at the cross-slope transport, Q (Figure 7.4d). In accordance with
the boundary conditions we imposed, the transport is continuous over the shelf
break (x = 0), where it takes its largest values, and vanishes at the end of the
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shelf (x = L).
Despite the utter simplicity of the model, the value for the cross-slope trans-

port in Figure 7.4d is realistic (given that we have chosen a realistic value for
the surface amplitude, η, cf. Figure 7.1). In the Bay of Biscay, for example, the
cross-slope transport near the shelf break typically lies in the range 30-40 m2 s−1

[49], although at some locations values as high as 100 m2 s−1 may be attained
[27].

The presence of a cross-slope velocity component, in combination with varia-
tion in depth, implies the presence of a vertical velocity, because of the boundary
condition W = Uhx at the bottom. In the present case, the vertical veloc-
ity has a singular character (a δ-peak), being concentrated at x = 0. For a
smoother topography, this singularity disappears. In either case, the presence
of this barotropically induced vertical velocity in a stratified fluid means that
the isopycnal surfaces are periodically lifted up and pulled down. Like in a
stretched rope or string, an imposed oscillation at one point engenders waves
travelling away from that point. Here these waves are the internal tides, which
propagate away from their source according to the laws established in previous
chapters. In the remainder of this chapter, we work out some specific examples.

First, we will simplify the problem a bit further. As can be seen from Figure
7.4d, the cross-slope transport Q varies spatially, both in the along- and cross-
slope direction. However, so far as the generation of internal tides is concerned,
the transport matters only in the generation region itself, i.e. over the slope
(which in the above example is concentrated at x = 0). The transport typically
varies over scales of order thousand km in the along-slope direction, and of order
hundred km in the cross-slope direction. So, if we zoom in into a region around
the shelf break, within a distance of the order of a few tens of km, the transport
will appear nearly spatially uniform. This leads us to a somewhat crude but
very convenient idealization: we will henceforth ignore the spatial variability
altogether, and prescribe the cross-slope transport simply as Q = Q0 sin ωt,
with amplitude Q0, a constant.

7.2 Boundary vs. body forcing

Our starting point is, again, (4.25),

∂2

∂t2
∇2w + (~f · ∇)2w + N2∇2

hw = 0 . (7.3)

To simplify matters, we adopt the Traditional Approximation (f̃ = 0); moreover,
we assume uniformity in one of the horizontal directions, ∂/∂y = 0. Notice that
a velocity component v will still be present in the y direction, due to Coriolis
effects.

The assumption ∂/∂y = 0 allows us to introduce a streamfunction Ψ, de-
fined via u = Ψz and w = −Ψx, by which the continuity equation (4.21d) is
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automatically satisfied. In terms of the streamfunction, (7.3) becomes

∇2Ψtt + f2Ψzz + N2Ψxx = 0 . (7.4)

with ∇2 = ∂2/∂x2 + ∂2/∂z2.
In previous chapters we have interpreted w in (7.3) as an internal-wave field,

but it need not be restricted to that, as is clear from the derivation in Section
4.5.1. In this chapter, w, or Ψ, will stand for the internal-tide field plus a
prescribed barotropic tide field. We can effectuate this by imposing the following
boundary condition for Ψ:

Ψ = 0 at z = 0 ; Ψ = Q0 exp(−iωt) at z = −h(x) , (7.5)

where −h(x) describes the bottom topography; Q0 is a constant, and ω, the
tidal frequency. Together, these conditions impose a spatially uniform, time-
oscillating transport, as envisaged at the end of the previous section. This is
immediately clear from vertically integrating u = Ψz, which gives

∫ 0

−h(x)

dz u = Ψ|0−h(x) = −Q0 exp(−iωt) .

Moreover, (7.5) imply that the boundary conditions (4.30) and (4.31) are ful-
filled. For the latter, this can be seen by writing the second condition in (7.5)
as

Ψ(t, x, z)|z=−h(x) = Ψ(t, x,−h(x)) = Q0 exp(−iωt) ,

whose total derivative to x is zero, hence

Ψx − hxΨz = 0 at z = −h(x) ,

which is equivalent to (4.31).
The problem is to solve, for given N(z) and h(x), eq. (7.4) along with the

boundary conditions (7.5). The solution Ψ will contain the prescribed barotropic
tide (here simplified to an oscillating transport), which acts as the forcing mech-
anism, and a baroclinic field, which is the response to the forcing.

In this formulation of the problem, the forcing is imposed via the boundary
conditions. An alternative, equivalent way of posing the problem is to include
the forcing in the equation itself, as a body-force term. Following [22], we write

Ψ = Ψ0 + ψ , with Ψ0 = − zQ0

h(x)
exp(−iωt) , (7.6)

substitution of which into (7.4) gives

∇2ψtt + f2ψzz + N2ψxx = zQ0(N2 − ω2)
( 1

h

)
xx

exp(−iωt) . (7.7)

In terms of ψ, the boundary conditions (7.5) become

ψ = 0 at z = 0 ; ψ = 0 at z = −h(x) . (7.8)
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The forcing is no longer present in the boundary conditions; instead, it is now
imposed via the right-hand side of (7.7).

From (7.8) it is immediately clear that the vertically integrated horizontal
velocity associated with ψ must be zero. Still, we cannot interpret ψ as a
purely baroclinic field; over the slope, it also contains the nonhydrostatic part
of the barotropic field [22]. However, under the hydrostatic approximation (i.e.
assuming ω ¿ N), the interpretation of ψ as the baroclinic field is correct.

7.3 Generation over a step-topography

We return to the configuration shown in Figure 7.3, with one important modi-
fication: we remove the vertical boundary on the continental shelf, so that the
shelf is now open and extends to x →∞. Assuming constant N , we reproduce,
in slightly modified form, the solution previously derived by [79].

The problem is to solve (7.4), subject to the boundary conditions (7.5).
Without loss of generality, we may write Ψ as in (7.6). Since the deep ocean
(x < 0) and the continental shelf (x > 0) both have a horizontal bottom, we
can, for each separately, write ψ in terms of the modal expressions of Section
5.2. Thus,

Ψ =

{
− zQ0

H exp(−iωt) +
∑

n an sin(nπz
H ) exp i(−knx− ωt) for x < 0 ;

− zQ0
Hs

exp(−iωt) +
∑

n as,n sin(nπz
Hs

) exp i(ks,nx− ωt) for x > 0 ,

(7.9)
where an and as,n are arbitrary complex coefficients; kn and ks,n are positive
wavenumbers defined by (5.14):

k(s,)n =
nπ

H(s)

( ω2 − f2

N2 − ω2

)1/2

, n = 1, 2, 3, · · · . (7.10)

In (7.9) we anticipate that waves will propagate away from the source, i.e. to
the left in the deep ocean, and to the right over the shelf. Also, by using sine
series in (7.9), the boundary conditions (7.5) are automatically satisfied.

The problem has thus been reduced to finding the coefficients an and as,n.
They are obtained from imposing appropriate matching conditions at x = 0.
Moreover, the second boundary condition in (7.5) is to be taken into account
at x = 0; specifically, this means that the ‘deep-sea’ solution Ψ− (i.e. the upper
expression in (7.9)) should satisfy, at the vertical slope,

Ψ−|x=0 = Q0 exp(−iωt) for −H < z < −Hs .

Hence
−zQ0

H
+

∑
n

an sin
(nπz

H

)
= Q0 for −H < z < −Hs . (7.11)

Moreover, above the slope, we impose continuity of the streamfunction Ψ as
well as of its horizontal derivative Ψx (the latter condition implies continuity of
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the vertical velocity, w). So, for −Hs < z < 0,

−zQ0

H
+

∑
n

an sin
(nπz

H

)
= −zQ0

Hs
+

∑
n

as,n sin
(nπz

Hs

)
(7.12)

−
∑

n

ankn sin
(nπz

H

)
=

∑
n

as,nks,n sin
(nπz

Hs

)
. (7.13)

Since (7.11)–(7.13) contain no complex parts, the coefficients an and as,n will
be real.

The conditions (7.11) and (7.12) have identical left-hand sides, and can be
combined to

−zQ0

H
+

∑
n

an sin
(nπz

H

)
=

{
Q0 for −H < z < −Hs

− zQ0
Hs

+
∑

n as,n sin(nπz
Hs

) for −Hs < z < 0 .

We multiply this expression by sin(mπz/H) and integrate over the vertical
interval (−H, 0) to obtain, after some rewriting,

am = − 2Q0

α(mπ)2
sin(mπα) +

2α

π
sin(mπα)

∑
n

n(−1)n

(mα)2 − n2
as,n . (7.14)

with α = Hs/H. Here we used the integral identities listed in Appendix A, at
the end of this chapter.

We multiply the remaining condition (7.13) by sin(mπz/Hs) and integrate
over (−Hs, 0); this yields

as,m = −2α(−1)m

π

∑
n

n sin(nπα)
(nα)2 −m2

an , (7.15)

where we used (7.10) and the last two expressions of Appendix A.
If we truncate the series at a certain modenumber M , we can write (7.14)

and (7.15) in matrix form as a = F + Aas and as = Ba, respectively, where
A and B are M × M matrices, and F a vector. Hence a can be obtained by
matrix inversion: a = (I − AB)−1F , where I is the identity matrix. For given
parameters, this is easily done using numerical tools.

A solution thus obtained, involving 25 modes, is shown in Figure 7.5. Here
the horizontal baroclinic velocity is shown,

u′ =
{ ∑

n an
nπ
H cos(nπz

H ) exp i(−knx− ωt) for x < 0 ;∑
n as,n

nπ
Hs

cos(nπz
Hs

) exp i(ks,nx− ωt) for x > 0 .
(7.16)

Figure 7.5 demonstrates that there are two beams, one propagating into the
deep ocean, the other onto the shelf. The extent (i.e. width) of the former is in
this case determined by the two oceanward characteristics that can be drawn
from the shelf break: one left- and downward, the other, left- and upward. The
latter leads, after reflection from the surface, to a characteristic parallel to the
former; the beam is confined precisely between these two characteristics. We
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Fig. 7.5: Internal-tide generation over a steep continental slope: the horizontal baro-

clinic velocity (in m s−1) at five instances during half a tidal period. Parameter values

are: N = 2 × 10−3, f = 1.0 × 10−4 (latitude φ = 45◦N), ω = 1.4 × 10−4 rad s−1;

H = 4000 m, Hs = 300 m, and Q0 = 100m2 s−1; 25 modes are included.

note that this is rather due to the presence of a sharp corner; for a more realistic,
smoother topography, no such surface reflection occurs (see Section 7.5).

From the development in time in Figure 7.5, we see that in the beam de-
scending into the deep ocean, phase propagation is upward, implying that en-
ergy must propagate downward (see Section 6.1.1); after bottom reflection, this
is reversed.

As noted before (Section 7.1), the present value of Q0 = 100m2 s−1 is rep-
resentative for some locations the Bay of Biscay. Apart from a qualitiative
similarity between the descending beams in Figures 1.9 and 7.5, the horizontal
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velocities found here, of a few tens of cm s−1, indeed correspond to observed
values [69]. This similarity even extends to the so-called conversion rate, the
amount of energy transferred from barotropic to baroclinic tides, per unit of
time and unit of lateral extent. This amount must be equal to the vertically-
integrated energy flux in the deep ocean and over the shelf together. As noted
in Section 4.5.2, the energy flux is given by u′p′, the primes here denoting baro-
clinic fields. Without entering into the technical details here, we mention the
result from [79], which states the vertically-integrated flux in terms of the modal
coefficients,

F =
∫

dz 〈u′p′〉 =
ρ∗π
4ω

[(N2 − ω2)(ω2 − f2)]1/2
∑

n

n(a2
n + a2

s,n) .

Here 〈·〉 denotes the mean over a tidal period. The outcome for the parameters
of Figure 7.5 is 9.7 × 103 kWm−1. By far the largest part goes into the deep
ocean; the energy flux onto the shelf is only 2% of the total amount.

Finally, we look at the convergence of the solution. There are two aspects
to this. First, how quickly the coefficient an, for any fixed n, converges as
one increases the number of modes (M) involved in the matrix inversion. This
convergence is rapid; for example, for the first mode a1, the difference between
using M = 1 or M = 25 amounts to an increase of only 0.2%. Second, and
physically more interesting, the behaviour of an with n. This is illustrated in
Figure 7.6, where we plot |nan| (the reason for including a factor n is that the
horizontal velocity u′ is proportional to nan rather than to an). Clearly, the
lowest modes are the most important ones. We note, however, that this result
hinges on the assumption of constant N . In the Bay of Biscay, for example, it
was found that the third mode is the dominant one [69]; this can be explained
by the fact that this mode has a local maximum in the seasonal thermocline
(cf. Figure 5.12), and is more strongly forced than other modes. In this respect,
it is worthwhile to note that the forcing of internal tides tends to be stronger
in regions of high N , as is seen from the fact that the body-force term on the
right-hand side of (7.7) increases with increasing N .
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Fig. 7.6: The contribution of the lowest modes to u′, for the parameters of Figure 7.5.
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7.4 Solutions for infinitesimal topography

Our starting point is again the equation for internal tides, with the barotropic
forcing term on its right-hand side, (7.7),

∇2ψtt + f2ψzz + N2ψxx = zQ0(N2 − ω2)
( 1

h

)
xx

exp(−iωt) , (7.17)

which is to be solved subject to the boundary conditions (7.8),

ψ = 0 at z = 0 ; ψ = 0 at z = −h(x) . (7.18)

In the previous section, the problem was solvable due to the fact that the deep-
ocean basin and continental shelf were both assumed to be of constant depth.
In this section, we make an even more radical assumption: we assume the
topography to be infinitesimal, so that we can solve the equation with the same
set of vertical modes for the entire domain. However, the topographic form is
left arbitrary (provided that it has a small amplitude); moreover, we pose the
problem in terms of an arbitrary profile of stratification, N(z).

For constant h the forcing term in (7.17) would of course vanish altogether.
However, if we write

h(x) = H − r(x) , with |r| ¿ H ,

and constant H, we can make the following approximation in the forcing term,
using the Taylor expansion (1 + y)α = 1 + αy + · · · ,

1
h

=
1

H − r(x)
=

1/H

1− r(x)/H
≈ 1

H

(
1 +

r(x)
H

)
.

Eq. (7.17) then becomes

∇2ψtt + f2ψzz + N2ψxx = zQ0(N2 − ω2)H−2rxx exp(−iωt) . (7.19)

Furthermore, we may apply the second boundary condition in (7.18) simply at
z = −H, so

ψ = 0 at z = 0 ; ψ = 0 at z = −H . (7.20)

The problem to be solved is now (7.19), subject to (7.20), for arbitrary r(x) and
N(z). We try a solution of the form

ψ =
∑

n

an(x)φn(z) exp(−iωt) , (7.21)

where φn are solutions of (5.3),

φ′′n + k2
n

N2(z)− ω2

ω2 − f2
φn = 0 , (7.22)

and hence are orthogonal (see Section 5.1.2). Substitution of (7.21) in (7.19),
then multiplication by φm and vertical integration, gives,

a′′n(x) + k2
nan(x) =

dnQ0

H2
rxx , (7.23)
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with

dn =

∫ 0

−H
dz z φ′′n∫ 0

−H
dz φ′′nφn

. (7.24)

The problem has thus been reduced to solving (7.22) and (7.23). In Chapter
5 several examples were given of profiles N(z) for which (7.22) can be solved
analytically; we will consider some of them in the following sections.

The other equation, (7.23), is easy to solve; its general solution reads

an = C1,n exp(iknx)+C2,n exp(−iknx)+
dnQ0

H2

∫ x

0

dy cos kn(x−y)ry(y) , (7.25)

in which the first two terms (with arbitrary complex coefficients C1,n and C2,n)
describe free left- and rightward propagating waves; the third term is a particular
solution to (7.23), as can be verified by substitution.

However, this is not by itself an appropriate solution to our problem; in
order that the solution contain only waves emanating from the forcing region,
we need to exclude unforced waves entering from ±∞. This is done by imposing
radiation conditions; for kn > 0, they read2

an ∼
{

exp(−iknx) as x → −∞
exp(iknx) as x → +∞ .

These requirements allow us to determine the constants C1,n and C2,n. Writing,
in (7.25), the cosine in terms of complex exponential functions, we have

∫ x

0

dy cos kn(x− y)ry(y) = 1
2 exp(iknx)

∫ x

0

dy exp(−ikny) ry(y)

+ 1
2 exp(−iknx)

∫ x

0

dy exp(ikny) ry(y) ,

so that an becomes

an = exp(iknx)
[
C1,n +

dnQ0

2H2

∫ x

0

dy exp(−ikny) ry(y)
]

+exp(−iknx)
[
C2,n +

dnQ0

2H2

∫ x

0

dy exp(ikny) ry(y)
]
.

To satisfy the radiation conditions, we must choose

C1,n =
dnQ0

2H2

∫ 0

−∞
dy exp(−ikny) ry(y)

C2,n = −dnQ0

2H2

∫ ∞

0

dy exp(ikny) ry(y) .

2NB: The radiation conditions concern the direction of energy propagation. We implicitly
assume here that |f | < N , in which case phases and energy have the same horizontal direction
of propagation (see Sections 5.2.1 and 6.1.1), so that we may pose the conditions by requiring
that phases leave the domain at infinity.
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Hence

an =
dnQ0

2H2

[
An(x) exp(iknx)−Bn(x) exp(−iknx)

]
, (7.26)

with

An(x) =
∫ x

−∞
dy exp(−ikny) ry(y)

Bn(x) =
∫ ∞

x

dy exp(ikny) ry(y) .

With this, a closed solution satisfying the radiation conditions has been obtained
for general (small) topography r(x).

|
L

|
−L

r
0

x→

z↑

Fig. 7.7: A seamount, defined by (7.27).

As an example, we consider a symmetric seamount, described by a continu-
ously differentiable function:

r(x) =





0 for x < −L
1
2r0[1 + cos(πx/L)] for − L < x < L

0 for x > L ,

(7.27)

with amplitude r0 and width 2L (Figure 7.7). For this r, the functions An(x)
and Bn(x) can be evaluated (Appendix B). One important feature deserves
mention: it turns out that the modes travelling away from the topography are
proportional to

R(knL) =
sin(knL)

π2 − (knL)2
,

which is one of the two factors determining the strength of each mode (the other
one being dn in (7.26)). The dependence of R on the product knL is shown in
Figure 7.8; the response is strong for a certain range of values (2 to 5, say), and
very weak as knL becomes large. Still, even for certain low values the response
may vanish altogether.

7.4.1 Uniform stratification

Here and in later sections, we consider various types of stratification. The
simplest choice is, of course, a constant N , as in Section 5.2.2. We then have
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Fig. 7.8: The response function R, one of the factors determing how strongly each

mode contributes to the internal tidal signal.

from (7.22),
φn = sin

(nπz

H

)
, n = 1, 2, 3, · · · . (7.28)

and, from the dispersion relation (5.14),

kn =
nπ

H

( ω2 − f2

N2 − ω2

)1/2

, n = 1, 2, 3, · · · . (7.29)

where we selected positive kn, in accordance with the way the solution was
constructed in the previous section.

Notice that we need not include a constant coefficient in (7.28), since it would
automatically disappear from the problem through the combination dnφn. So,
the solution is fully determined by (7.21),

ψ =
∑

n

an(x)φn(z) exp(−iωt) , (7.30)

with an from (7.26), and φn from (7.28). The real part of (7.30) is implied. The
coefficient dn is here given by

dn = −2H

nπ
(−1)n .

It follows from the expressions in Appendix B that An, Bn ∼ k−2
n for large n.

Together with dn ∼ n−1 and φ′n ∼ n, this means that, for mode n, un = ψn,z ∼
n−2, implying convergence of the series u =

∑
n un. (This, however, depends on

the choice of the topography, r(x); if it were not continuously differentiable, i.e.
if it were having sharp corners, the series would yield logarithmic singularities
on the characteristics emanating from these corners.)

The baroclinic horizontal cross-slope velocity,

u =
∑

n

an(x)φ′n(z) exp(−iωt) . (7.31)
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Fig. 7.9: Internal-tide generation over a small seamount (depicted in Figure 7.7):

the horizontal baroclinic velocity u (in m s−1) at five instances during half a tidal

period. Parameter values are: N = 2 × 10−3, f = 1.0 × 10−4 (latitude φ = 45◦N),

ω = 1.4052× 10−4 rad s−1 (M2 tidal frequency); H = 4000m, r0 = 500 m, L = 10 km,

and Q0 = 100 m2 s−1; 25 modes are included.

is shown in Figure 7.9, at five different moments during half a tidal cycle. We see
that two beams emanate from the seamount, which is centered around x = 0:
one leftward propagating, the other, rightward. This fact is easily deduced
from the direction of phase propagation and the rules for energy and phase
propagation established in Section 5.2.1, here for N > |f |.

7.4.2 Three-layer model

The assumption of constant N , made in the previous section, provides a rather
inadequate description of the ocean’s stratification; notably, it lacks the ther-
mocline. To capture this important feature, we return to the 3-layer model
discussed in Section 5.4:

N2(z) =





0 −d < z < 0 (mixed layer)
g′/ε −d− ε < z < −d (thermocline)
N2

c −H < z < −d− ε (abyss) ,
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see also Figure 5.11. Again, we will take the middle, representing the thermo-
cline, to be infinitely thin (ε → 0), thus reducing it to an interface.

We recapitulate the earlier results that we need here. The wavenumbers kn

are solved (numerically) from the dispersion relation (5.41),

ql cos ql(H−d) sinh qud+qu sin ql(H−d)
[
cosh qud− g′qu

ω2
sinh qud

]
= 0 , (7.32)

where H is water depth, d the thickness of the upper mixed layer, g′ a measure
of the strength of the thermocline. The abyssal stratification Nc (a constant)
features in

ql = kn

(N2
c − ω2

ω2 − f2

)1/2

.

The vertical wavenumber associated with the mixed layer is

qu = kn

( ω2

ω2 − f2

)1/2

.

The vertical modes are given by (5.42),

φn(z) =

{
− sin ql(H−d)

sinh qud sinh quz −d < z < 0
sin ql(z + H) −H < z < −d .

(7.33)

The coefficients dn are defined by (7.24); the integral expressions needed here are
listed in Appendix B. With kn and dn thus obtained, (7.21) is fully determined,
with an given by (7.26). From this, we can derive u as in (7.31). Its real part is
shown in Figure 7.10.

The presence of the thermocline clearly has a marked influence on the wave
pattern, as is evident from a comparison with Figure 7.9, which lacked a ther-
mocline. As in the previous example, the beams emanate from the seamount,
but when they impinge on the thermocline (near x = ±80 km), they are strongly
’scattered’. As a result, the energy is no longer concentrated in one beam, but
is spread out widely. The physical mechanism behind this is the occurrence of
internal reflections, which are due to the strong inhomogeneity of the medium,
i.e. the strongly vertically varying N(z). Successive internal reflections then
cause the spreading, as sketched in Figure 6.6.

The effect of the beams, as they hit the thermocline, can also be seen from
the interfacial displacement itself. They follow from w = ηt, where w can
expressed in terms of the streamfunction. To find the total displacement, we
have to return to the original streamfunction Ψ = Ψ0 + ψ, as introduced in
(7.6); we then have ηt = −Ψx. Since we assume the topography to be small
(h = H − r, |r| ¿ H), we can approximate the derivative Ψ0,x as

Ψ0,x = −
( zQ0

h(x)

)
x

exp(−iωt) ≈ −zQ0

H2
rx exp(−iωt) .

Hence

η = i
zQ0

ωH2
rx exp(−iωt)− i

ω

∑
n

an,x(x)φn(z) exp(−iωt) . (7.34)
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Fig. 7.10: Internal-tide generation over a small seamount (depicted in Figure 7.7): the

horizontal baroclinic velocity u (in m s−1) at five instances during half a tidal period.

Here the stratification of Figure 5.11 is used (for ε → 0), with d = 100m (mixed-layer

thickness), g′ = 0.005m s−2 (strength of the thermocline), and Nc = 2× 10−3 rad s−1

(abyssal stratification). The remaining parameters (H, f , ω, r0, L and Q0) are as in

the previous figure; here, too, 25 modes are used.

The derivative of an follows from (7.26):

an,x =
dnQ0

2H2

[
2rx(x) + ikn

(
An(x) exp(iknx) + Bn(x) exp(−iknx)

)]
,

where the term 2rx stems from taking the derivatives of An and Bn; the effect
of this term is of course restricted to the layer over the seamount, like the
term Ψ0,x. The result of (7.34), evaluated at z = −d, i.e. at the thermocline, is
shown in Figure 7.11, for different stages during a full tidal cycle (time progresses
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downward). Clearly, the interface is virtually at rest over the seamount, and at
some distance away from it. However, at the location where the beam impinges
on the thermocline (x = ±80 km), the interface is brought into oscillation; waves
propagate away from this point. They become gradually smaller, and the cause
of this attenuation is seen in Figure 7.10: they leak into the deep ocean as
beams. The upshot of this simple example is that internal tides are neither
purely interfacial nor pure beams for this kind of stratification; they appear in
mixed form. This is an important feature of some internal-tide observations, as
is further discussed in Section 8.5.2.
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Fig. 7.11: The evolution of the interfacial (i.e. thermocline) displacement, at intervals

of 1/8 tidal period; time progresses downward; subsequent profiles are given a shift of

-5, for better visibility. The same parameters as in the previous figure.

7.4.3 Interfacial tides

A special case of the stratification used in the previous section is that with
Nc = 0; the stratification is then confined to the interface (Section 5.4.3). As a
consequence, there is only one mode (as long as ω > |f |): the interfacial mode.
The barotropic tidal forcing will in this case produce purely interfacial tides.
Its wavenumber follows from (5.44), and the modal structure is given by (5.45):

φ(z) =

{
− sinh qu(H−d)

sinh qud sinh quz −d < z < 0
sinh qu(z + H) −H < z < −d .

(7.35)

The expression for dn is given in Appendix B.
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The two-layer system, which involves only one mode, is rather inadequate for
a description of internal tides in the deep ocean, but can sometimes be applied to
shallower regions such as the continental shelf. We therefore choose parameters
suitable for this region. In the modal sum of the velocity field u, (7.31), there is
now of course only one mode involved; the result is shown in Figure 7.12. The
propagation is purely horizontal, with oppositely directed currents in upper
and lower layer. The currents are approximately inversely proportional to the
thickness of the respective layers; hence the stronger currents in the thin upper
mixed layer.
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Fig. 7.12: Internal-tide generation over a small ridge (depicted in Figure 7.7) on

the continental shelf: the horizontal baroclinic velocity u (in m s−1) at five instances

during half a tidal period. Here the stratification of Figure 5.11 is used (for ε → 0),

with d = 50m (mixed-layer thickness), g′ = 0.01m s−2 (strength of the thermocline),

and Nc = 0. The remaining parameters are H = 200 m and r0 = 50m; L, f , ω, and

Q0 are as in previous figures.

The total interfacial displacement η is given by (7.34), involving now only
one mode. The result and is shown in Figure 7.13, for 8 different phases of the
tide.
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better visibility. On the right, arrows indicate the direction of the barotropic tidal

flow at each stage.

7.5 Energetics and conversion rates

One can roughly distinguish two main regions of internal-tide generation: 1) the
continental slope, where generation is concentrated near the shelf break, and 2)
deep ocean ridges and seamounts. For the latter, the geographical distribution
of internal-tide sources is obtained from estimates of barotropic tidal energy
dissipation, based on satellite altimetry; an example is shown in Figure 1.8.

This pattern is reproduced fairly well by results from numerical modelling,
see Figure 7.14. Here the topography was assumed to be infinitesimal, as in
preceding sections, but two-dimensionality was taken into account. The three
essential ingredients of any internal-tide generation model are stratification,
topography, and the barotropic flow. The three were here based on empirical
data sets; for the stratification, a constant value, representative of the deepest
layer, was used for each position. Despite all the caveats and simplications, the
resulting pattern looks sensible, and the total amount internal-tide energy flux
was found to be about 1 TW, in agreement with estimates based on satellite
altimetry. The major influence of topographic features such as the Mid-Atlantic
Ridge is obvious from Figures 1.8 and 7.14.

As briefly discussed in Section 1.4, internal tides (and, more generally, inter-
nal waves) are thought to play an important role in ocean mixing. This happens
through a transfer of energy to shorter scales, the first stage of which may be, for
example, near-critical reflection from slopes, or nonlinear evolution to shorter
waves such as solitons (see the next chapter). This goes down to the scales at
which waves break and turbulent mixing occurs (Figure 1.10). The very un-
even distribution of internal-tide sources, as demonstrated in Figures 1.8 and
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Fig. 7.14: Global distribution of M2 internal tidal energy fluxes, in W/m2, calculated

numerically from an internal-tide generation model. The color scale is logarithmic,

e.g., -3 means 10−3 W/m2. From [63].

7.14, means that deep ocean mixing, too, must be distributed unevenly. This
is an important point in the modelling of ocean circulation; it means that one
should not prescribe a simple uniform eddy diffusivity throughout the ocean, but
rather take into account the geographical distribution of the mixing intensity.
The ocean circulation, in turn, contributes to the meridional heat transport
(the lion share of which, though, is due to atmospheric circulation). So the
heat transport, too, is influenced by the way mixing is distributed through the
geographical spreading of internal-wave sources. This is illustrated in Figure
7.15.

Fig. 7.15: The meridional heat transport for the global ocean. The gray band and

circles are indirectly based on empirical data. The solid and dashed lines are results

from a global circulation model, one with uniform mixing (dashed), in the other (solid),

the geographical distribution of internal tide generation sources was taken into account.

The latter seems to correspond better to the data; at any rate, the difference between

the solid and dashed lines is conspicuous. From [77].

The continental slope, too, forms an important source region of internal tides.
A very simplified analysis of this problem was made in Section 7.3. Attempts to
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model analytically a more realistic setting are thwarted by the complications of
variable topography and stratification, which imply that neither the method of
vertical modes (Chapter 5) nor that of characteristics (Chapter 6) is applicable.
However, the equations can be solved numerically, and this provides valuable
insights. For one thing, the steepness of the slope matters; in Section 6.2 we dis-
cussed the distinction between sub- an supercritical slopes. Continental slopes
are, generally, supercritical (apart from, of course, the upper and lower parts).
An example of internal tide generation at a supercritical slope is shown in Figure
7.16 (left). We see a beam emanating from the shelf break; by comparison, very
little goes onto the continental shelf. It is now interesting to see how the ocean-
ward energy flux (F1) depends on the steepness of the slope. This is illustrated
in Figure 7.16 (right); note that the vertical scale is logarithmic. The angle α is
a measure of the steepness of the slope; α > 1 means supercritical slopes; α < 1,
subcritical slopes. We see that the flux varies only weakly with the angle of the
slope as long as we are in the supercritical regime. The most extreme case of a
supercritical slope would be the vertical slope considered in Section 7.3, and, as
noticed there, the energy flux derived from this model is fairly close to results
from more sophisticated modelling, involving realistically shaped slopes. This
fits in with the result from Figure 7.16 for supercritical slopes. For subcritical
slopes, on the other hand, we see that the oceanward flux is much smaller, and
now depends strongly on the angle of the slope.

Fig. 7.16: Results from a numerical model. Left: The streamfunction showing internal-

tide generation over a supercritical slope. Right: Dependence of the oceanward energy

flux (F1) on the steepness of the slope, α (α < 1, subcritical; α > 1, supercritical).

The dashed lines are from numerical model calculations; the solid lines are from a

representation in terms of powers of α: F1 ∼ α5 for the subcritical domain, F1 ∼ α

for the supercritical domain. From [8].

Turning, finally, to a more realistic setting, we show model results based
on topography and stratification in the Bay of Biscay (Figure 7.17). In the
left panel we see the conversion rate, in W/m3. It shows where the energy is
converted from barotropic into baroclinic tides. The conversion rate forms a
source term in the energy equation, which can be written,

Et +∇(p′~u) = −ρ∗bW ,
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where E is the energy density, p′ baroclinic pressure, ~u the baroclinic velocity,
ρ∗ a constant reference value for density, b the buoyancy, and W the vertical
velocity component of the barotropic tide. We derived earlier an energy equation
but without source term (Section 4.5.2); now the barotropic tide is responsible
for an input of energy, represented by the term on the right-hand side. Since
internal tides are periodic in time, time-averaging over a tidal period will make
the first term disappear (in other words, at every position, the mean energy
density stays the same), resulting in a balance between the flux gradient and
the source term. Stated otherwise, we may take a surface (or volume) integral,
implying that the nett flux through the boundaries of the chosen area must
equal the integral input of energy by the source. In this sense we can take
the surface integral in 7.17 (left panel). This gives the value of the integrated
conversion rate, as stated at the bottom of the figure, in W/m. The ’per meter’
refers to the transverse direction; so if the slope would stretch over one thousand
kilometers (say) in the Bay of Biscay, we would have to multiply by this number
to get the total conversion for this region.
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Fig. 7.17: Results from a numerical model, here applied to the Bay of Biscay. Left:

The spatial distribution tidally-averaged conversion rate, C = −ρ∗〈bW 〉, in W/m3

(the brackets stand for tide averaging); the integrated value over the entire area is also

stated. Right: The internal tide emanating from the continental slope, here depicted

in terms of the amplitude of the cross-slope velocity u, in m/s. The white dots denote

the position of the observed beam, derived from Figure 1.9. From [27].

An important aspect of the conversion rate is its dependence on buoyancy
b, which contains the baroclinic field itself. In other words, we cannot derive
the conversion rate from the barotropic field (W ) alone, one needs to know the
internal tide as well. This means that the conversion rate at any position is not
only determined by the local barotropic forcing, but also by the internal tide
generated there as well as by internal tides passing that position but generated
elsewhere.

The resulting field is shown in Figure 7.17 (right panel), representing the
cross-slope baroclinic velocity. A clear beam is present, emanating from the
slope, propagating downward, and then reflecting from the bottom. The circles
from the observations shown in Figure 1.9 have been inserted for comparison.
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We note that these model results were obtained for winter stratification, lacking
the seasonal thermocline. The beam is generated too deeply to be influenced by
the thermocline (which occupies a layer from about 50 to 150 meters beneath the
surface), but after bottom reflection the beam returns to the surface, and would,
in summer, cross the thermocline. This gives rise to an interesting phenomenon
discussed in Section 8.5.2.

Appendix A: Integral expressions I

Here we list the identities used in Section 7.3 to solve the internal-tide generation
problem over a step-topography. To obtain (7.14), we used

∫ 0

−H

dz z sin
(mπz

H

)
= −H2 (−1)m

mπ
∫ 0

−H

dz sin
(nπz

H

)
sin

(mπz

H

)
=

H

2
δnm

∫ −Hs

−H

dz sin
(mπz

H

)
=

H

mπ

[
(−1)m − cos(mπα)

]

∫ 0

−Hs

dz z sin
(mπz

H

)
=

( H

mπ

)2[
sin(mπα)−mπα cos(mπα)

]

∫ 0

−Hs

dz sin
(nπz

Hs

)
sin

(mπz

H

)
=

Hsn

π

(−1)n sin(mπα)
(mα)2 − n2

.

and to obtain (7.15),
∫ 0

−Hs

dz sin
(nπz

H

)
sin

(mπz

Hs

)
=

Hsm

π

(−1)m sin(nπα)
(nα)2 −m2

∫ 0

−Hs

dz sin
(nπz

Hs

)
sin

(mπz

Hs

)
=

Hs

2
δnm .

Appendix B: Integral expressions II

The solution (7.26) contains the integral expressions An(x) and Bn(x). For the
seamount given by (7.27), they read:

An = r0





0 for x < −L
π2 exp(iknL)+[iπknL sin(πx/L)+π2 cos(πx/L)] exp(−iknx)

2[π2−(knL)2] for − L < x < L
iπ2 sin(knL)
π2−(knL)2 for x > L ,

and

Bn = r0





− iπ2 sin(knL)
π2−(knL)2 for x < −L

−π2 exp(iknL)+[iπknL sin(πx/L)−π2 cos(πx/L)] exp(iknx)
2[π2−(knL)2] for − L < x < L

0 for x > L .
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In Sections 7.4.2 and 7.4.3 we use the three-layer model, in which the middle
layer (describing the thermocline) is in fact reduced to an interface. We provide
here the technical details of the calculation of dn for these cases. Recall that dn

is given by (7.24):

dn =

∫ 0

−H
dz z φ′′n∫ 0

−H
dz φ′′nφn

. (7.36)

The function φn is given by (7.33); φn itself is continuous, but its derivative is
not: at the thermocline (z = −d) it jumps from one value to another. As a
consequence, its second derivative will contain a delta-distribution. This is also
evident from (7.22), since N2 can here be written as

N2(z) = g′δ(z + d) + N2
c Θ(−z − d) .

So, the integrals that feature in (7.36) can be split up into three parts: a term
due to the presence of the thermocline (concentrated at z = −d), and integrals
over the upper and lower layers (

∫ 0

−d
and

∫ −d

−H
, respectively). The latter are

given by

I1 =
∫ 0

−d

dz z φ′′n = cq2
u

∫ 0

−d

dz z sinh(quz)

= c[qud cosh(qud)− sinh(qud)] ,

I2 =
∫ −d

−H

dz z φ′′n = −q2
l

∫ −d

−H

dz z sin ql(z + H)

= qlH − sin ql(H − d)− qld cos ql(H − d) ,

I3 =
∫ 0

−d

dz φ′′nφn = c2q2
u

∫ 0

−d

dz sinh2(quz)

= 1
4c2qu[sinh(2qud)− 2qud] ,

I4 =
∫ −d

−H

dz φ′′nφn = −q2
l

∫ −d

−H

dz sin2 ql(z + H)

= 1
4ql[sin 2ql(H − d)− 2ql(H − d)] ,

with

c = − sin ql(H − d)
sinh qud

.

The coefficient dn is thus given by

dn =
k2

ng′d(ω2 − f2)−1 sin ql(H − d) + I1 + I2

−k2
ng′(ω2 − f2)−1 sin2 ql(H − d) + I3 + I4

, (7.37)

where the first term in the numerator and denominator represents the effect of
the thermocline.

These expressions are to be modified for the case examined in Section 7.4.3;
there the stratification in the lower layer is removed (Nc = 0), making φn

hyperbolic in the lower layer, as expressed in (7.35). Replacing ql by iqu in
(7.37), including the integrals I1,2,3,4, we obtain a complex dn; multiplying it
by i then yields the proper expression for the interfacial case.
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Chapter 8

Internal solitons

In previous chapters we considered the linear equations, which can be assumed
to be valid as long as the amplitude of the waves is small (Section 4.5). This
assumption is however not always satisfied in observed internal waves. In this
chapter, we turn to a particular class of waves in which nonlinearity is essential,
the so-called internal solitons. They consist of a single depression (or elevation),
and retain their form while propagating, and even when interacting with other
solitons. They are often observed in the oceans and atmosphere.

Linear problems are relatively easy to solve because the sum of any two
solutions is itself a solution (the superposition of modes in Chapter 5 is a case in
point); thus, one solution engenders an infinite number of solutions. In nonlinear
problems, this convenient property holds no longer. However, soliton equations
are special in that a method has been developed to obtain the evolution of a
given initial profile by analytical means. This is discussed in this chapter for
the most well-known soliton equation, the Korteweg-de Vries equation, which is
widely applied to describe oceanic internal solitons.

8.1 Observations

One of many observations of solitons was made in the Andaman Sea [64]. A
single soliton is shown in Figure 8.1 (left panel). Its largest vertical excursions
occur in the thermocline, which here lies between 50 and 200m depth. The
depression forms, in fact, part of a train of solitons (right panel); an increase
in temperature at a given depth means that isotherms undergo a depression, in
agreement with the panel on the left. One noticeable property is the amplitude-
ordering of the train: the largest peak arrives first, and each subsequent peak
is smaller than its predecessor. A surface manifestation of a group of solitons
in the Andaman Sea is shown in Figure 1.1. Further observations (not shown
here) reveal that such groups appear every tidal period, suggesting a relation
to the internal tide, which is further discussed in Section 8.5.

In this chapter we focus on solitons in the ocean, but spectacular manifesta-
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Fig. 8.1: Observations of solitons in the Andaman Sea. Left: Isothermal displace-

ments showing a large depression, with vertical excursions of more than 60m in the

course of just ten minutes. Levels of isotherms were here determined by using expend-

able bathythermographs (XBTs), giving a series of vertical temperature profiles, from

which follows the temporal evolution of selected isotherms. Right: A train of solitons;

temperature was measured continuously at certain fixed depths: a 53, b 87, c 116, d

164, and e 254m. The total water depth at this location is about 1100m. From [64].

146



tions have also been observed in the atmosphere. In Australia, this phenomenon
is known as ’Morning Glory’ (Figures 8.2 and 8.3). In the atmosphere, solitons
(and internal waves, in general) are rendered visible by adiabatic cooling of ris-
ing parcels, leading to condensation of water vapour in the crests of the waves,
and hence cloud formation.

Fig. 8.2: Interacting ‘Morning Glories’ over Northern Australia. Left: Map of the

location and sketch of the passage in time of two trains of solitary waves, coming from

northeastern and southern directions. Right: NOAA-12AVHRR satellite imagery at

the early morning of 3 October 1991, showing two interacting trains. From [71].

In the atmosphere, two main types of solitons can be distinguished [73]. The
first type is confined to the lower few kilometers of the troposphere, and has hor-
izontal length scales of 100m to a few kilometers; the ’Morning Glory’ solitons
belong to this category. They may be generated by, for example, gravity currents
or katabatic winds. The second type extends over the entire troposphere and
has a much larger horizontal scale, of the order of 100 km; proposed generation
mechanisms are shear instability or geostrophic adjustment of large-scale frontal
systems. The vertical confinement of solitons, either to the lower few kilometers
or to the troposphere as a whole, invites the question as to what causes this
confinement. The atmosphere, unlike the ocean, has of course no well-defined
upper boundary. Mechanisms that may nevertheless impose a waveguide are a
neutrally stratified upper layer, or a very strongly stratified upper layer (caus-
ing internal reflections), as discussed in Sections 5.3 and 5.4; shear layers may
similarly cause reflections (from so-called critical levels). For a more extensive
discussion on the two types of solitons, we refer to [73].

8.2 Korteweg-de Vries (KdV) equation

One of the most well-known equations admitting solitons is the Korteweg-de
Vries equation, which was derived at the end of the 19th century, but received
little attention until remarkable properties were discovered numerically some
sixty years later. It was found that localized solutions exist which regain their
form after interactions with similar waves; to emphasize their robust character,
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Fig. 8.3: Surface pressure signatures of interacting Morning Glory waves on 3 October

1991 from an array of portable microbarograph stations deployed over the southern

Gulf of Carpentaria region of Northern Queensland. The passage of a soliton is marked

by a change in pressure of about 1 mb. (’LST’ stands for Australian Eastern Standard

time, i.e. UTC plus 10 h.) From [71].

the name ’soliton’ was coined, the suffix “-on” giving it the flavour of an elemen-
tary particle [91]. A second discovery, made soon after, concerned the evolution
of a given initial profile; it turned out that this problem can be reduced to
solving two linear equations [59], as is further discussed in Section 8.4.1 The
equation surfaces in many branches of physics, such as fluid mechanics, plasma
physics, and quantum gravity [9].

The KdV equation contains two effects that together allow for the existence
of a soliton solution: nonlinearity and dispersion. We first discuss each of them
separately.

8.2.1 Effect of nonlinearity

The simplest equation describing the propagation of nonlinear waves is

∂η

∂t
+

∂η

∂x
+ ε η

∂η

∂x
= 0 . (8.1)

1For more on the history of the KdV equation, see [86, 57]. In fact, the history of the
KdV equation (and the question how the paper by Korteweg and De Vries relates to previous
works, notably by Boussinesq) seems to get more intricate as more documents, among them
notes by De Vries, are unearthed; for a recent overview, see [11].
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Here we have some dimensionless parameter ε (the precise form of which is
immaterial in the present discussion) serving as a coefficient of the nonlinear
term. The field η may describe, for example, an isopycnal excursion.

In implicit form, the general solution of (8.1) can be expressed in terms of
an arbitrary function F :

η(x, t) = F (ξ) , with ξ = x− (1 + εη(x, t)) t . (8.2)

It is easily verified that this is indeed a solution; differentiation of (8.2) gives

∂η

∂t
=

∂ξ

∂t
F ′ = −

(
1 + εη + εt

∂η

∂t

)
F ′ ,

∂η

∂x
=

∂ξ

∂x
F ′ =

(
1− εt

∂η

∂x

)
F ′ ,

with F ′ = dF/dξ. Hence

∂η

∂t
= − (1 + εη)F ′

1 + εtF ′

∂η

∂x
=

F ′

1 + εtF ′
. (8.3)

Substitution now demonstrates that (8.1) is satisfied.
We have here introduced a ’characteristic’ coordinate ξ, which in a mathe-

matical sense is analogous to the characteristics of Chapter 6. Physically, the
meaning is of course very different, for in Chapter 6 only spatial coordinates
were involved in the transformation, whereas ξ = const here represents a path
in x,t-space, on which η is constant. For constant ξ = x0, we have the charac-
teristic

x = x0 + (1 + εη(x, t)) t . (8.4)

On it, we must have, according to (8.2),

η(x, t) = F (x0) = constant .

Hence (8.4) describes a straight line,

x = x0 + (1 + εF (x0)) t . (8.5)

This expression indicates where, at a certain moment t, the value η = F (x0)
is to be found. It moreover shows that higher elevations (i.e. larger F (x0))
propagate faster. An example is shown in Figure 8.4. On the left we have the
line

x = xA + (1 + εF (xA)) t ,

and the other lines are similarly defined. (Notice that time is shown on the
vertical axis in Figure 8.4.) The line in the middle, starting at x = 0 shows the
location of the wave crest, η = F (xB), as time passes. The crest propagates
faster than the neighbouring elevations F (xA) and F (xC); in other words, the
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Fig. 8.4: Lower panel: An initial profile of η. Upper panel: Characteristics indicating

where, at time t, the elevation F is located that was initially at xA, xB , or xC . The

intersection of lines is indicative of a multi-valued η at that point in t, x-space, and

signals wave breaking.

phase speed depends on the elevation F . At a certain moment the lines B and
C cross; this is the moment of wave breaking.

This wave breaking is clearly a result of the nonlinear term, since the char-
acteristics would all be equally steep if ε = 0. The moment of breaking can also
derived directly from (8.3). If the wave breaks, ∂η/∂x becomes infinite, and
this happens at

t = − 1
εF ′

= O(ε−1) .

(The minus sign indicates that a rightward propagating wave of elevation will
break on its descending side, i.e. where F ′ is negative.) This expression reveals
also that a time scale, of order 1/ε, is associated with wave breaking. So, no
matter how small ε, the nonlinear term will become important after a sufficiently
long time. In other words, for the linear approximation to be valid, smallness
of ε is not sufficient; a limit is posed as well on the stretch of time that one may
consider.
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8.2.2 Effect of dispersion

In (5.46), we found that long interfacial waves in a rotationless system (f = 0)
satisfy the dispersion relation

ω2 = c2
0k

2 [1− 1
3d(H − d)k2 + · · · ] (8.6)

with

c2
0 = g′

d(H − d)
H

. (8.7)

Here H is the total water depth, d the thickness of the upper layer, and g′

reduced gravity, measuring the strength of the thermocline, here represented by
an interface. If we restrict ourselves to rightward propagating waves, we can
approximate (8.6) by

ω = c0k [1− 1
6d(H − d)k2 + · · · ] . (8.8)

From this expression we see that interfacial are dispersive, i.e. the phase speed

c(k) =
ω

k
= c0 [1− 1

6d(H − d)k2 + · · · ] (8.9)

varies with wavenumber k. This type of dispersion may be termed non-hydrostatic
dispersion, since it disappears in the hydrostatic (or long-wave limit, or shallow-
water) limit, i.e. if kd, k(H − d) → 0.

A certain initial profile, such as in Figure 8.4 (upper panel), can be described
in terms of a Fourier integral,

η(x, 0) =
∫ ∞

−∞
dk F (k) eikx ,

for a certain function F . The profile evolves in time according to

η(x, t) =
∫ ∞

−∞
dk F (k) ei(kx−ω(k)t)

=
∫ ∞

−∞
dk F (k) eik(x−c(k)t) .

Because of the dispersive character of (8.9), different Fourier components will
travel at different speeds. As a result, the the initial profile will lose its form as
it falls apart in its Fourier components.

It is easy to verify by substitution of the Fourier integral, that the evolution
equation associated with the dispersion relation (8.8) reads

∂η

∂t
+ c0

∂η

∂x
+

1
6

c0d(H − d)
∂3η

∂x3
= 0 . (8.10)

The third term represents the effect of non-hydrostatic dispersion.
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8.2.3 KdV for interfacial waves

From the previous two sections it is clear that

• non-linearity alone will make a solitary wave profile steepen and break;

• non-hydrostatic dispersion alone will make a solitary wave profile fall apart
in its Fourier components.

So, neither of the effects, taken in isolation, can sustain a solitary wave. The crux
of the KdV equation is that a combination of the effects can. Intuitively this can
be understood as follows: nonlinearity, by its steepening effect, tends to drive
energy to a short scale; dispersion, on the other hand, tends to spread it out.
In a sense, then, the effects are opposed, and the KdV equation demonstrates
that they can balance to produce form-preserving waves.

For interfacial waves, described by η, the displacement of the interface from
its level of rest, the KdV equation reads

∂η

∂t
+ c0

∂η

∂x
+

3
2

h1 − h2

h1h2
c0 η

∂η

∂x
+

1
6

c0h1h2
∂3η

∂x3
= 0 . (8.11)

Here we write the thickness of the upper layer as h1 = d, and that of the lower
layer as h2 = H − d. The linear long-wave speed for interfacial waves, c0, is
again defined by (8.7), which in terms of h1,2 reads

c2
0 = g′

h1h2

h1 + h2
. (8.12)

The effects of nonlinearity and non-hydrostatic dispersion, discussed in the pre-
vious sections, recur in the second and third term of (8.11), respectively.

This form of the KdV equation will be derived in Section 8.3. The essential
underlying assumption is that nonlinear and non-hydrostatic effects are weak
and of the same order of strength. The derivation then proceeds in two steps; at
lowest order, a linear hydrostatic equation is derived, consisting of the first two
terms of (8.11). Then, at the next order, nonlinear and non-hydrostatic effects
appear, completing (8.11).

From this outline of the derivation it will already be clear that the KdV
equation is not exact. It is sometimes indeed necessary to proceed to a higher
order. A configuration in which h1 = h2 (i.e. the upper and lower layer are of
equal thickness) is a case in point: the nonlinear term in (8.11) then vanishes
altogether. A higher-order extension is then needed (Section 8.6).

8.2.4 A heuristic ‘derivation’

If we cast the linear dispersive equation (8.10) in terms of the parameters h1 = d

and h2 = H − d, we obtain

∂η

∂t
+ c0

∂η

∂x
+

1
6

c0h1h2
∂3η

∂x3
= 0 , (8.13)
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which is (8.11), except for the nonlinear term. There is a simple heuristic way
to obtain the correct form of this term from (8.13), apart from a numerical
factor. So, although the equation thus obtained will not be entirely correct, the
reasoning leading to it gives some more insight in the nature of the nonlinear
term.

The starting point is the term c0∂η/∂x, in which c0 is given by (8.12),

c2
0 = g′

h1h2

h1 + h2
.

Here h1 and h2 are the thickness of the upper and lower layer, respectively. The
important thing to realize is that if waves attain an appreciable amplitude η,
the actual thickness of the upper layer will not be h1 but h1 − η. Similarly,
the thickness of the lower layer becomes h2 + η. If we substitute this in the
expression for c0, we get

[
g′

(h1 − η)(h2 + η)
h1 + h2

]1/2

=
[
g′

h1h2 + η(h1 − h2)− η2

h1 + h2

]1/2

= c0

[
1 + η

h1 − h2

h1h2
− η2 1

h1h2

]1/2

= c0

[
1 + η

h1 − h2

2h1h2
+ · · ·

]
,

where we neglected quadratic terms in η. If replace c0∂η/∂x in (8.13) with the
last expression, we obtain the nonlinear term

c0
h1 − h2

2h1h2
η

∂η

∂x
,

which is of the same form as the nonlinear term in (8.11), but lacks the factor
three.

This ’derivation’ makes clear why the nonlinear term cancels if h1 = h2; the
increase of the phase speed by the enlargement of one layer is then precisely
compensated by the decrease of the phase speed due to the thinner other layer.

8.2.5 Soliton solution

In short-hand notation, we write (8.11) as

∂η

∂t
+ c0

∂η

∂x
+ Aη

∂η

∂x
+ B

∂3η

∂x3
= 0 . (8.14)

We seek form-preserving solutions,

η(x, t) = F (ξ) , with ξ = x− Ct .

The function F and phase speed C are to be determined. We denote the deriva-
tive of F by a prime, F ′ = dF/dξ. The derivatives of η can be written

∂η

∂t
= −CF ′ ,

∂η

∂x
= F ′ .
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Substitution in (8.14) gives

−(C − c0)F ′ + AFF ′ + BF ′′′ = 0 .

The second term can be written as 1
2A(F 2)′, so that we can integrate the equa-

tion to obtain

−(C − c0)F + 1
2AF 2 + BF ′′ = 0 .

Here we have taken the constant of integration equal to zero, as we are looking
for solitary-wave solutionsz, for which F and derivatives vanish as |ξ| → ∞.
Multiplying by F ′ now gives

−(C − c0)FF ′ + 1
2AF 2F ′ + BF ′′F ′ = 0 ,

or, equivalently,

− 1
2 (C − c0)(F 2)′ + 1

6A(F 3)′ + 1
2B(F ′2)′ = 0 .

After one more integration (and again setting the constant of integration equal
to zero), we obtain

−(C − c0)F 2 + 1
3AF 3 + B(F ′)2 = 0 .

Taking the square root,

B1/2 F ′ = [(C − c0)F 2 − 1
3AF 3]1/2 ,

so that

dξ =
B1/2 dF

[(C − c0)F 2 − 1
3AF 3]1/2

=
B1/2 dF

(C − c0)1/2 F [1− A
3(C−c0)

F ]1/2
. (8.15)

The second square root can be removed via the transformation

F =
3(C − c0)

A
sech 2q , (8.16)

and using the identity
tanh2 q = 1− sech 2q .

Using moreover the identity

d

dq
sech q = −sech q tanh q ,

we have
dF = −2F tanh q dq ,
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so that (8.15) reduces to

dξ = −2 dq
[ B

C − c0

]1/2

,

or integrated,

q = −ξ
[C − c0

4B

]1/2

,

where we left out the constant of integration, which would give a mere phase
shift. Finally, substitution in (8.16) gives

F =
3(C − c0)

A
sech 2

(
ξ
[C − c0

4B

]1/2
)

.

This is the soliton solution. It can be more conveniently written in terms of the
amplitude and length of the wave,

a =
3(C − c0)

A
l =

[ 4B

C − c0

]1/2

.

With this, the soliton solution becomes

η = a sech 2
(x− Ct

l

)
, (8.17)

where

C = c0 +
aA

3
, l =

(12B

aA

)1/2

.

Using the explicit form of the coefficients A and B for the two-layer system,

C = c0

[
1 + 1

2 a
h1 − h2

h1h2

]
, l =

2h1h2

[3a(h1 − h2)]1/2
. (8.18)

An example of a soliton profile is shown in Figure 8.5.
Eq. (8.18) demonstrates that the phase speed C (as well as the length l)

depend on the wave amplitude; this is a manifestation of the nonlinear character
of the soliton. It furthermore follows from the second expression in (8.18) that

a (h1 − h2) > 0 , (8.19)

since the argument of the square root must be positive. From (8.18) and (8.19)
follow four important properties of KdV solitons:

1. The phase speed of the soliton, C, exceeds the linear long-wave phase speed
c0;
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2. Eq. (8.19) implies that the amplitude a must be negative if h1 < h2 (i.e. if
the upper layer is relatively thin, as is normally the case in the ocean); the
soliton then manifests itself as a depression, as in Figure 8.1 (left panel);

3. Larger solitons (i.e. larger |a|) propagate faster than smaller ones. This
means that a train of solitons emanating from the same source will be
ordered in amplitude, the largest leading the group. We recall that this
was indeed observed in Figure 8.1 (right panel);

4. Larger solitons are shorter than smaller ones, since l is inversely propor-
tional to a1/2; an example is shown in Figure 8.5.

η↑

|
−5

|
5

x →

−

−

−

−

−

−

−

−

10

−10

−70

Fig. 8.5: Examples of the soliton solution (8.17), with different amplitudes: a =

−60m (solid line) and a = −20m (dashed line). For both, the parameters are g′ =

0.01m s−2, h1 = 200m, h2 = 1200m. The phase speeds C are 1.47m s−1 (solid

line) and 1.37m s−1 (dashed line); for comparison, the linear long-wave phase speed

is c0 = 1.31m s−1. On the horizontal axis, distances are in kilometers; on the vertical,

in meters.

Apart from a single-soliton solution, the KdV equation also admits multi-
soliton solutions, involving solitons of different amplitudes. We will not dwell
on this, but remark that they pass each other (since the phase speed depends on
the amplitude), yet come out of the interaction with unchanged shape. During
the interaction, they do of course not superpose in a linear way; in fact, the total
amplitude during interaction is less than the sum of their amplitudes before (or
after) the interaction.
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8.3 Derivation of the KdV equation

8.3.1 Basic equations

Our starting point is the set (4.17), where nonlinear terms are retained,

D~u

Dt
+ 2~Ω× ~u = − 1

ρ∗
∇p′ + bẑ (8.20a)

∇ · ~u = 0 (8.20b)
Db

Dt
+ N2w = 0 . (8.20c)

We simplify the problem by neglecting Coriolis effects altogether (a short dis-
cussion on Coriolis effects and solitons follows in Section 8.5); moreover, we
assume ∂/∂y = 0. In the two-layer system, the upper and lower layer are each
neutrally stratified (N = 0), the stratification being concentrated as a δ-peak
at the interface that separates the layers (see Section 5.4.3). So, if we consider
the upper and lower layers separately, we have N = 0 in each, and hence b = 0,
so that (8.20) becomes

ui,t + uiui,x + wiui,z = − 1
ρ∗

p′i,x (8.21)

wi,t + uiwi,x + wiwi,z = − 1
ρ∗

p′i,z (8.22)

ui,x + wi,z = 0 . (8.23)

Here index i takes the value 1 for the upper layer, and 2 for the lower layer.
We choose the z-axis such that the level of rest of the interface lies at z = 0;

the upper surface (rigid-lid) lies at z = h1, the bottom at z = −h2. We introduce
a new notation for these levels, which proves convenient in later scaled forms:
h1 = αH and h2 = (1 − α)H, where H = h1 + h2 is the total water depth
(Figure 8.6).

The the upper surface (rigid-lid) and bottom the vertical velocity w must
vanish,

w1|z=αH = 0 (8.24)

w2|z=(α−1)H = 0 . (8.25)

At the interface, z = η(t, x), we find by taking D/Dt,

wi|z=η = ηt + ηxui|z=η (i = 1, 2) . (8.26)

We have yet to to take into account the presence of a density jump across
the interface, which produces the delta-peak in N2. This is done by requiring
continuity of total pressure, for which we have to return to (4.7),

p = p0(z) + p′(t, ~x) , (8.27)
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z=h
1
=αH

z=−h
2
=(α−1)H

z=η(t,x)

upper surface (rigid−lid)

interface

bottom

layer 1

layer 2

Fig. 8.6: The two-layer system for which the KdV equation is derived. Both upper

and lower layer are neutrally stratified, N = 0. Across the interface there is a jump

in density, giving a delta-peak N2 = g′δ(z). The horizontal dotted line indicates the

level z = 0, the level at which the interface resides at rest.

in which p0 is given by the hydrostatic balance (4.9),

dp0

dz
= −ρ0g . (8.28)

To obtain p0 we need to know the static density profile ρ0. In a two-layer
system, the densities in each layer are commonly assumed to be constant. This
is however in contradiction with the assumption that N = 0 in each layer, as is
easily seen from (4.19),

N2 = − g

ρ∗

(dρ0

dz
+

ρ0g

c2
s

)
. (8.29)

Assuming ρ0 to be constant produces a layer in which N2 < 0, i.e. an unstably
stratified layer. So, if we stick to the assumption N = 0, we cannot also assume
that ρ0 is constant.

We thus proceed from (8.28), integrating for each layer to obtain the hydro-
static pressure:

p0,1(z) = g

∫ h1

z

dζ ρ0,1(ζ) , p0,2(z) = g

∫ h1

0

dζ ρ0,1(ζ) + g

∫ 0

z

dζ ρ0,2(ζ) .

Requiring now the total pressure, p0,i + p′i to be continuous at the interface,
gives

p′2|z=η − p′1|z=η = g

∫ η

0

dζ ρ0,2(ζ)− g

∫ η

0

dζ ρ0,1(ζ) .
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For small η, the right-hand side can be expanded as

g

∫ η

0

dζ
[
ρ0,2(0) + ζ

dρ0,2

dz
(0) + · · ·

]
− g

∫ η

0

dζ
[
ρ0,1(0) + ζ

dρ0,1

dz
(0) + · · ·

]

g
[
ηρ0,2(0) + 1

2η2 dρ0,2

dz
(0) + · · ·

]
− g

[
ηρ0,1(0) + 1

2η2 dρ0,1

dz
(0) + · · ·

]

g
[
ηρ0,2(0)− 1

2η2 ρ0,2g

c2
s,2

+ · · ·
]
− g

[
ηρ0,1(0)− 1

2η2 ρ0,1g

c2
s,1

+ · · ·
]
.

In the last expression, we used the fact that N2 = 0 within each layer, and
(8.29). Now, the quadratic terms in square brackets scale with the linear terms
as ηg/c2

s, which even for large solitons (η ∼ 100m) is very small, namely of
order O(10−3). We will therefore neglect them; we can thus write the condition
for continuity of pressure as

p′2|z=η − p′1|z=η = (ρ0,2(0)− ρ0,1(0))gη . (8.30)

(Hereafter we will drop the argument in ρ0,i, it be understood that they are
evaluated at the interface.) This condition states that baroclinic pressure is dis-
continuous across the interface, due to a jump in density. It is clear from (8.21)
that this discontinuity will similarly create a discontinuity in the horizontal
velocity ui.

8.3.2 Scaling and small parameters

For ui we introduce the scale [ui] = εc, where c is a measure of the phase speed
of the wave (to be specified below). Here ε acts as the parameter of nonlinearity,
in accordance with the argument presented in Section 4.5, according to which
the ratio of particle velocity and phase speed is a measure of the strength of
nonlinearity. Time and length scales of the waves are denoted by [t] = T and
[x] = cT = L. We scale the vertical with H, the water depth.

As we assume nonlinear terms to be weak, the dominant balance in (8.21)
will be between the linear acceleration term and the pressure gradient, giving
as a scale for pressure: [p′i] = ρ∗εc2. The scale for wi follows from (8.23) as
[wi] = εcH/L, and hence from (8.26), [η] = εH. This provides us with an
alternative interpretation of the parameter of nonlinearity, namely as the ratio
of the wave amplitude and water depth.

Using these scales, we can cast the equations (8.21)–(8.23) in a nondimen-
sional form,

ui,t + εuiui,x + εwiui,z = −p′i,x (8.31)

δ(wi,t + εuiwi,x + εwiwi,z) = −p′i,z (8.32)

ui,x + wi,z = 0 , (8.33)

where we used the same symbols as for the dimensional variables, for conve-
nience. (No confusion will arise from this as we will consider only the nondimen-
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sional form in the remainder of this section.) We introduced a new parameter

δ =
(H

L

)2

,

which is a measure of the strength of non-hydrostatic dispersion; the limit δ → 0
corresponds to the hydrostatic (or long-wave) limit, in which case the waves
become dispersionless (Section 8.2.2).

The boundary conditions (8.24)-(8.26) and (8.30) become, in nondimensional
form,

w1|z=α = 0 (8.34)

w2|z=α−1 = 0 (8.35)

wi|z=εη = ηt + εηxui|z=εη (8.36)

p′2|z=εη − p′1|z=εη = η . (8.37)

Here we identified c, the measure of the phase speed, with c2 = g′H, where g′

is the reduced gravity g′ = g(ρ0,2 − ρ0,1)/ρ∗; the last expression provides an
interpretation of g′ in terms of density, rather than in terms of N2, as in Figure
5.11.

The crucial assumption, which leads to the KdV equation, is

ε = O(δ) ¿ 1 . (8.38)

This means we consider weakly nonlinear, weakly non-hydrostatic effects, which
are of similar strength. The last assumption means that we are, in essence,
dealing with only one small parameter, and we can write

δ = εδ∗

with δ∗ = O(1).
The goal is now to reduce the set (8.31)–(8.37) to a single equation for the

interfacial displacement η. We thus seek an equation of the form

D0(η) + εD1(η) + ε2D2(η) + · · · = 0 (8.39)

where Di are differential operators. To obtain the KdV equation, it suffices to
determine D0 and D1.

We develop the variables p′i, ui, wi and η in a series, in which ε serves as the
small parameter; so, for example,

p′i = pi
(0) + εpi

(1) + ε2pi
(2) + · · ·

with pi
(n) = O(1).
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As a preparation for the following sections, we develop the boundary condi-
tions (8.36) and (8.37) in a Taylor series about z = 0; for the left-hand side of
(8.36), this gives

wi|z=εη = wi|z=0 + εηwi,z|z=0 +O(ε2)

= wi|z=0 − εηui,x|z=0 +O(ε2)

(in the second equality we used (8.33)), so (8.36) becomes

wi = ηt + ε(ηui)x +O(ε2) at z = 0 . (8.40)

Similarly, we obtain from (8.37):

η = (p′2 − p′1)|z=0 + εη(p′2,z − p′1,z)|z=0 +O(ε2) . (8.41)

For later reference, we define the jump in u (’shear’) across the interface as
ū = (u2 − u1)|z=εη, the Taylor expansion of which is

ū = (u2 − u1)|z=0 + εη(u2,z − u1,z)|z=0 +O(ε2) . (8.42)

8.3.3 Lowest order

At the lowest order, ε0, (8.31)–(8.33) read

ui,t
(0) + pi,x

(0) = 0

pi,z
(0) = 0

ui,x
(0) + wi,z

(0) = 0 .

So, at this order, pi
(0) and ui

(0) are independent of z, which is characteristic
of the hydrostatic approximation, which applies at this order because we have
neglected the terms with δ∗. The boundary conditions (8.34), (8.35), (8.40) and
(8.41) are, at lowest order,

w1
(0)|z=α = 0

w2
(0)|z=α−1 = 0

wi
(0)|z=0 = ηt

(0)

p2
(0) − p1

(0) = η(0) .

The horizontal momentum equation and boundary condition for pressure
can be combined into

ūt
(0) + ηx

(0) = 0 . (8.43)

where ū(0) is the lowest-order shear from (8.42).
Integration of the continuity equation over the upper and lower layers gives,

respectively,

ηt
(0) − αu1,x

(0) = 0

ηt
(0) + (1− α)u2,x

(0) = 0 .

161



Multiplying the first by 1−α, the second by α, and adding up the results gives

ηt
(0) + ν2ūx

(0) = 0 (8.44)

with ν2 = α(1− α).
We combine (8.43) and (8.44) to

ηtt
(0) − ν2ηxx

(0) = 0 .

This equation decribes linear long waves, both left- and rightward propagat-
ing. Its general solution can be written as F (x + νt) + G(x − νt) (cf. Section
6.1.2 for a mathematically similar problem). We restrict ourselves to rightward
propagating waves; they are described by

ηt
(0) + νηx

(0) = 0 . (8.45)

At lowest order, (8.39) reads

D0(η(0)) = 0 . (8.46)

Comparing this with (8.45), we see that the operator D0 is given by

D0(η) = ηt + νηx . (8.47)

Finally, we derive some expressions that are useful at the next order. From
(8.44) and (8.45), we have

η(0) = νū(0) . (8.48)

The integrated continuity equations imply

u1
(0) = (α− 1)ū(0) u2

(0) = αū(0) (8.49)

w1
(0) =

α− z

α
ηt

(0) w2
(0) =

α− 1− z

α− 1
ηt

(0) . (8.50)

From (8.49) we see that the horizontal velocities in each layer are inversely
proportional to their thickness. Thus, in a shallow upper layer, the currents will
be strongest. Moreover, they are directionally opposed, with the total transport
being zero.

8.3.4 Next order

At the next order, ε1, (8.31) and (8.33) read

ui,t
(1) + ui

(0)ui,x
(0) = −pi,x

(1)

δ∗wi,t
(0) = −pi,z

(1)

ui,x
(1) + wi,z

(1) = 0 .
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In the first equaion we used ui,z
(0) = 0. The boundary conditions (8.34), (8.35),

(8.40) and (8.41) read

w1
(1)|z=α = 0

w2
(1)|z=α−1 = 0

wi
(1)|z=0 = ηt

(1) + (ui
(0)η(0))x

p2
(1)|z=0 − p1

(1)|z=0 = η(1) .

(In the last equation we used pi,z
(0) = 0.) The vertical shear, (8.42), becomes

at this order ū(1) = (u2
(1) − u1

(1))|z=0.
From the horizontal momentum equation, together with the boundary con-

dition for pressure, we find, using also (8.49):

ūt
(1) + (2α− 1)ū(0)ūx

(0) + ηx
(1) = 0 . (8.51)

We now take ∂/∂z of the horizontal momentum equation (by which the nonlin-
ear terms disappear because ui,z

(0) = 0), and ∂/∂x of the vertical momentum
equation, and substract the results; after one time integration, this gives

ui,z
(1) = δ∗wi,x

(0) .

Substitution of (8.50) gives, after one intergration to z,

u1
(1) = δ∗

αz − z2/2
α

ηxt
(0) + u1

(1)|z=0

u2
(1) = δ∗

(α− 1)z − z2/2
α− 1

ηxt
(0) + u2

(1)|z=0 .

Using these expressions, we integrate the continuity equation over the upper
and lower layers, to obtain,

ηt
(1) + (u1

(0)η(0))x − αu1,x
(1)|z=0 − 1

3δ∗α
2ηxxt

(0) = 0

ηt
(1) + (u2

(0)η(0))x + (1− α)u2,x
(1)|z=0 − 1

3δ∗(1− α)2ηxxt
(0) = 0 .

where we used the boundary conditions for wi
(1). Multiplying these expressions

by 1− α en α, respectively, and adding up the results, yields

ηt
(1) + (2α− 1)(ū(0)η(0))x + ν2ūx

(1) − 1
3δ∗ν

2ηxxt
(0) = 0 (8.52)

where we simplified the nonlinear term using (8.49).
Combining (8.51) and (8.52) gives

ηtt
(1) − ν2ηxx

(1) + 3(1− 2α)(η(0)ηx
(0))x − 1

3δ∗ν
4ηxxxx

(0) = 0 , (8.53)

where we used (8.45) and (8.48). Because of (8.45), we may split the spatial
derivative at lowest order as

ηx
(0) = − 1

2ν (ηt
(0) − νηx

(0)) .
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Hence we can extract the operator ∂/∂t− ν∂/∂x from (8.53):

ηt
(1) + νηx

(1) + 3
2ν (2α− 1)η(0)ηx

(0) + 1
6δ∗ν

3ηxxx
(0) = 0 . (8.54)

At this order, (8.39) reads

D0(η(1)) + D1(η(0)) = 0 . (8.55)

Comparing this with (8.54), we find that the operator D1 is given by

D1(η) = 3
2ν (2α− 1)ηηx + 1

6δ∗ν
3ηxxx . (8.56)

8.3.5 Final result

Now that we have obtained the operators D0 and D1, we can write (8.39) in
explicit form as

ηt + νηx + 3
2ν ε (2α− 1)ηηx + 1

6δν3ηxxx + · · · = 0 . (8.57)

The KdV equation now follows if we neglect the higher-order terms (cubic etc.),
which are here rendered by dots. When we cast this equation back into dimen-
sional variables, we obtain (8.11). With this, the derivation has been completed.

8.4 Inverse-scattering theory

So far, we have obtained only one solution of the KdV equation, the soliton
(8.17), which preserves its form while propagating. Other initial profiles than
the soliton will not, in general, be form-preserving. Yet, they may give rise to
solitons during their evolution. The question is now, how we can determine
whether this is the case, and, more specifically, how many solitons are to be
expected. At the end of this section, it will become clear that these questions
are surprisingly easy to answer, but to arrive at that simple result, we first need
to go through a subject from quantum mechanics, called ’inverse scattering
theory’.

In the following sections, we briefly explain this method, which is remark-
able because it reduces the initial-value problem for the KdV equation, which is
nonlinear, to the problem of solving two linear equations, the Schrödinger and
Marchenko equations. In practice, the method is applicable in only some cases,
because these linear equations are not, in general, easy to solve. However, if we
are only interested in the number of solitons that will appear from an arbitrary
initial profile, then, as it turns out, we need to solve only part of the problem
(namely determine the number of discrete eigenvalues of the Schrödinger equa-
tion). What is more, it actually turns out that we do not even have to solve
that problem, because the number of eigenvalues depends merely on the overall
integral shape of the initial profile; its specifics are immaterial. So, finally, a
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simple expression is obtained for the number of solitons, N , arising from an
initial profile η ≤ 0:

N ∼
∫ ∞

−∞
dx

√
|η(x, 0)| . (8.58)

In Section 8.5.1 we adapt this expression to conform with the parameters in a
two-layer system.

8.4.1 The scattering problem

We start in medias res and consider the scattering problem of the Schrödinger
equation:

−d2ψ

dx2
+ qψ = λψ . (8.59)

The problem is to determine, for a given localized potential q(x),2 the eigen-
functions ψ, along with its corresponding eigenvalues λ.

As we assume q be localized, (8.59) becomes for large |x|

−d2ψ

dx2
∼ λψ . (8.60)

There are two cases to be distinguished: λ > 0 and λ < 0. In the first case
we write λ = k2 (k being real). One solution of (8.60) then is e−ikx, which we
interpret as a wave coming from +∞. When it arrives in the region where the
potential is active, part of the wave will be reflected, giving R(k)eikx as x →∞,
and the other part will be transmitted, giving T (k)e−ikx as x → −∞ (Figure
8.7). The reflection coefficient R(k) and transmission coefficient T (k) depend
on the potential q. Asymptotically, we thus have

ψ(x, k) ∼
{

e−ikx + R(k)eikx x →∞
T (k)e−ikx x → −∞ .

The second case, λ < 0, gives rise to a finite number of discrete eigenvalues,
together with the corresponding eigenfunctions ψ describing bound states; both
will be labeled by n. We write λ = −p2

n, with pn real, and choose, without loss
of generality, pn to be positive. For x →∞, the bound state ψn looks like

ψn(x) ∼ cne−pnx .

We fix the constant cn by the requirement that
∫∞
−∞dxψ2

n(x) = 1.
The direct scattering problem consists in determining R(k), T (k), cn for a

given potential q. The inverse scattering problem consists in determining q from
given ’scattering data’. For the class of potentials considered here, it suffices
to know {R(k), cn, pn} to uniquely determine the potential (see [1, Theorem
2.5.1]).

2i.e. q → 0 for |x| → ∞; some of the later theorems also presume
R∞
−∞dx (1+|x|) |q(x)| < ∞.
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x→

Fig. 8.7: The scattering problem in quantum mechanics: an incoming wave, from

the right, is partially reflected at the potential q, and partially transmitted; hence the

reflection and transmission coefficients R(k) and T (k).

We now briefly outline. how the inverse scattering problem is solved.3 For
given scattering data {R(k), cn, pn}, we define

M(x) =
∑

n

c2
ne−pnx +

1
2π

∫ ∞

−∞
dk R(k)eikx . (8.61)

Then we solve the function K(x, y) from the so-called Marchenko equation,

K(x, y) + M(x + y) +
∫ ∞

x

dz K(x, z)M(y + z) = 0 (8.62)

for y > x. Finally, we calculate K(x, x) ≡ limy→x K(x, y), from which the
potential q is found as

q(x) = −2
d

dx
K(x, x) . (8.63)

We now show that there is a connection, indeed a very useful one, between
the KdV equation and this scattering problem. We first slightly generalize the
scattering problem, by allowing the potential in (8.59) to depend on a certain
parameter, τ say. (This parameter will later be taken to represent time.) The
eigenfunction ψ and scattering data {R(k), cn, pn} will then, in general, also
depend on τ . However, the eigenvalue λ (and hence pn) are independent of τ

for certain classes of potentials; for example, for q’s satisfying

qτ − 6qqx + qxxx = 0 (8.64)

which is, in scaled form, the KdV equation!
Stated more generally, we define operator L by

L = − d2

dx2
+ q(x; τ) ,

3Proofs of the correctness of the method are beyond the scope of this text; see, e.g., [1].
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and suppose that
ψτ = Bψ (8.65)

for a certain differential operator B (which may contain derivatives to x only).
We then find by taking the derivative of (8.59) to τ ,

(qτ + [L, B])ψ = λτψ , (8.66)

where [L,B] = LB − BL. The eigenvalues λ are independent of τ if B is such
that the left-hand side of (8.66) is zero. This is the case if, for example,

B = −4
d3

dx3
+ 6q

d

dx
+ 3qx (8.67)

in which case the left-hand side of (8.66) becomes the KdV equation (8.64).
The procedure for solving the KdV equation (8.64) for a given initial profile

q(x; 0) is now as follows. First, we use q(x; 0) as the potential in (8.59), and
solve the direct scattering problem, which yields {R(k; 0), cn(0), pn}. Then, in a
way yet to be specified, we derive from this the time-dependent scattering data,
{R(k; τ), cn(τ), pn}. This forms the starting point of the inverse problem, in
which we solve (8.61), to determine K, in which τ now serves as a parameter;
with (8.63), this yields q(x; τ), the evolution of the initial profile.

It remains to be explained, how the τ -dependence in the scattering data may
be obtained. Since k and pn are, by construction, τ -independent, we need only
determine R(k; τ) and cn(τ). Asymptotically, the expression for B, in (8.67), is

B ∼ −4
d3

dx3
.

Eq. (8.65) then implies
ψτ ∼ −4ψxxx (8.68)

for |x| → ∞. For the continuous spectrum, we try an expression of the form

ψ(x, k; τ) ∼ h(τ)
{

e−ikx + R(k; τ)eikx x →∞
T (k; τ)e−ikx x → −∞ .

By substitution in (8.68), we find h(τ) = exp(−4ik3τ) and

R(k; τ) = R(k; 0)e8ik3τ , T (k; τ) = T (k; 0) . (8.69)

For the discrete spectrum, we have

ψn(x; τ) ∼ cn(τ)e−pnx

as x →∞, so that
cn(τ) = cn(0)e4p3

nτ . (8.70)

With this, the τ -dependence of the spectrum has been established.
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8.4.2 The meaning of the discrete spectrum

We now show that the presence of a single discrete eigenvalue p in the scattering
data implies the emergence of one soliton. Let the scattering data, corresponding
to the initial profile, be given by p > 0, c(0) and R(k; 0) = 0, a reflectionless
case with one bound state. From (8.69) and (8.70), one finds their evolution in
time,

c(τ) = c(0)e4p3τ

R(k; τ) = R(k; 0)e8ik3τ = 0 .

Hereafter, we will write c = c(τ), for the sake of brevity.
We now solve the inverse problem. The definition of M , in (8.61), gives

M(x) = c2e−px .

(The τ dependence of M and c is implied.) With this M , we solve the Marchenko
equation, (8.62),

K(x, y) + c2e−p(x+y) + c2

∫ ∞

x

dz K(x, z)e−p(y+z) = 0 ,

which we rewrite as

K(x, y) = −c2e−py
{

e−px +
∫ ∞

x

dz K(x, z)e−pz
}

.

Substitution of K(x, y) = e−pyw(x) gives

w(x) = −c2e−px − c2w(x)
∫ ∞

x

dz e−2pz

= −c2e−px − c2

2p
w(x)e−2px ,

from which we obtain w, and hence

K(x, y) = − c2e−py

epx + c2

2pe−px
.

The limit y → x gives

K(x, x) = − c2e−px

epx + c2

2pe−px
= − c2

e2px + c2

2p

.

Finally, the potential is obtained from (8.63):

q(x) = −2
d

dx
K(x, x) = − 4pc2

(epx + c2

2pe−px)2

= − 8p2

(
√

2p
c epx + c√

2p
e−px)2

= − 8p2

(epx+γ + e−px−γ)2

= −2p2sech 2(px + γ) ,
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with γ = ln
√

2p
c . Restoring the τ -dependence, due to c = c(0)e4p3τ , we find,

q(x; τ) = −2p2sech 2(p[x− 4p2τ ] + γ0) ,

with γ0 = ln
√

2p
c(0) . This is the soliton. Here p2 serves as the amplitude, which

is proportional to the phase speed, and inversely proportional to the square of
the length scale, precisely as in (8.18).

This straightforward derivation shows that a single discrete eigenvalue, with
a reflectionless potential, corresponds to one soliton. In fact, this connection
can be generalized: irrespective of whether the reflection coefficient is zero or
not, the number of solitons always equals the number of discrete eigenvalues.4

This is a very convenient result, since it means that it suffices to determine the
number of discrete eigenvalues for the initial profile if we want to know how
many solitons will arise from it. An example of such a calculation is given in
the next section.

8.4.3 Calculation of the number of emerging solitons

We now calculate the number of discrete eigenvalues for the initial profile de-
scribing a ’aquare well’,

q(x; 0) =
{ −A0 |x| < L

0 |x| > L ,
(8.71)

for constant A0 > 0 (Figure 8.8).

|
L

|
−L

−A
0

x→

Fig. 8.8: The initial profile for which the number of emerging solitons is calculated.

The discrete eigenvalues of (8.59) follow from

−d2ψ

dx2
+ q(x; 0)ψ = −p2

nψ .

For |x| > L,
d2ψ

dx2
= p2

nψ ,

so that the bound solution is there given by

ψ =
{

c+
ne−pnx x > L

c−nepnx x < −L ,

4The demonstration of this fact is beyond the scope of this text, but see [14, §2.8].
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with constants c±n . For |x| < L,

d2ψ

dx2
+ (A0 − p2

n)ψ = 0 .

We assume p2
n < A0 (otherwise there would be no bound states), and write

r2
n = A0 − p2

n. The solution in the interval |x| < L is then

ψ = an sin rnx + bn cos rnx ,

with arbitrary constants an and bn. We now require continuity of ψ and dψ/dx

at x = ±L. This gives four conditions,

c+
ne−pnL = an sin rnL + bn cos rnL

c−ne−pnL = −an sin rnL + bn cos rnL

−pnc+
ne−pnL = anrn cos rnL− bnrn sin rnL

pnc−ne−pnL = anrn cos rnL + bnrn sin rnL .

The third equation plus pn times the first one, and the fourth equation minus
pn times the second one, gives, respectively,

an(pn sin rnL + rn cos rnL) + bn(pn cos rnL− rn sin rnL) = 0

an(pn sin rnL + rn cos rnL)− bn(pn cos rnL− rn sin rnL) = 0 .

For non-trivial solutions (i.e. an and bn not both zero), the determinant has to
be zero. Hence

pn

rn
= tan rnL , or − rn

pn
= tan rnL .

The first equality implies an = 0, giving an even solution, cos rnx; the second
one implies bn = 0, giving the odd solution, sin rnx. Introducing y = rnL, we
can write these equalities more conveniently as

[(L
√

A0)2 − y2]1/2

y
= tan y , or − y

[(L
√

A0)2 − y2]1/2
= tan y . (8.72)

It is now easy to see by graphical inspection (see Figure 8.9), that there are N

intersections (excluding y = 0) for

(N − 1)π
2

≤ L
√

A0 <
Nπ

2
.

(For convenience, we treat the special case L
√

A0 = (2n+1)π/2 as if there were
an intersection on the asymptote, at −∞.) The number of bound states is thus
the largest integer satisfying

N ≤ 1 +
2L
√

A0

π
. (8.73)
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)1/2=π/2
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0
)1/2=π
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L(A
0
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Fig. 8.9: The expressions in (8.72): the right-hand sides (tan y) are shown as thick solid

lines; the left-hand sides give a positive profile (first expression) and a negative one

(second expression). Four cases are shown, clarifying how the number of intersections

depends on the value of L
√

A0.

The means that, for large N , the number of emerging solitons is proportional
to the length scale of the initial profile, and to the square root of its amplitude.

This result holds more generally. For arbitrary initial profiles q ≤ 0, decaying
for x → ±∞, the number of solitons is given by

N ≈ 1
π

∫ ∞

−∞
dx

√
|q(x)| , (8.74)

again for large N , see [90, p. 598]. The specifics of its form are thus immaterial
to the number of emerging solitons; it is the overall size that matters.

8.5 Internal tides and solitons

Groups of internal solitons, like in Figure 8.1, have been observed at many
locations in the oceans, and also in shallow seas. The passage of such groups is
not a unique event; on the contrary, they usually appear every tidal period (an
example is shown in Figure 8.15). This suggests that their origin is related to
the internal tide. Two mechanisms have been identified by which an internal
tide may give rise to internal solitons. In the first, a low-mode internal tide
steepens by nonlinear effects, and at some point splits up into a train of solitons
(Section 8.5.1). In the other, the starting point is an internal-tide beam, which
necessarily involves several modes; if such a beam impinges on the (seasonal)
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thermocline, it locally creates a wave-like disturbance, which may evolve into a
train of internal solitons (Section 8.5.2).

8.5.1 Disintegration of an interfacial tide

To get an idea of how many solitons may arise from an internal tide, we apply
the result (8.73) from Section 8.4.3, which was obtained for the initial profile
(8.71), Figure 8.8. First we have to bring the KdV equation for the two-layer
system, (8.11), or its short-hand form (8.14),

∂η

∂t
+ c0

∂η

∂x
+ Aη

∂η

∂x
+ B

∂3η

∂x3
= 0 ,

into the canonical form (8.64):

qτ − 6qqy + qyyy = 0 ,

(where we replaced x with y, for convenience). This is done via the transforma-
tions

η = −6
B1/3

A
q − c0

A
, x = B1/3y .

In (8.73) we found that the number of solitons emerging from a square well of
amplitude A0 and length 2L equals the largest integer N satisfying

N ≤ 1 +
2L
√

A0

π
.

Using the inverse transformation, we find

A0 =
c0 −Aa0

6B1/3
, L =

l

B1/3
,

where a0 > 0 and l are the depth and halflength of the initial profile in the two-
layer system. Substituting the coefficients of the nonlinear and nonhydrostatic
terms from (8.11), A and B, respectively, we find for the number of solitons:

N ≤ 1 +
2l

π(h1h2)1/2

(
1− a0

3(h1 − h2)
2h1h2

)1/2

. (8.75)

This expression is remarkable for its absence of c0, and hence of g′, the impor-
tant parameter determining the strength of the stratification at the interface.
This absence is, however, only apparent, since the initial profile with amplitude
−a0 and halflength l does itself depend on the stratification, via the generation
mechanism of internal tides. There is a further caveat, for in the transforma-
tion which led to (8.75) it must be assumed that A 6= 0 (the coefficient of the
nonlinear term), so we may not afterward choose h1 = h2 in (8.75). Restrict-
ing its usage to h1 < h2, we find for realistic parameters such as h1 = 50m,
h2 = 150 m, a0 = 10 m and 2l = 5 km, the following number of solitons: N ≈ 21.
This suggests that solitons should be quite ubiquitous in the ocean. They are,
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Fig. 8.10: Numerical model results simulating the generation of internal tides in the

Celtic Sea (northern part of the Bay of Biscay), here during neap tides (i.e. weak

forcing). Successive moments during a tidal cycle are shown in a downward sequence

of profiles, at an offset of 25 m. At the bottom of the figure the continental slope is

shown, whose real height is 3830m. The actual simulation is shown as thick lines;

clearly, no solitons emerge from the internal tide. However, if Coriolis effects are

artificially switched off (as if the Celtic Sea were at the equator), then solitons do arise

(blue thin lines). This demonstrates that Coriolis dispersion may prevent the internal

tide from disintegrating into solitons. We note that during periods of stronger forcing

(spring tides), internal solitons do appear even in the presence of rotation (not shown).

The arrows on the right indicate the direction of the barotropic flow at each moment.

Notice the effect of the barotropic flow on the propagation of internal tides and soliton

packets over the continental shelf; when the flow is leftward, they are nearly blocked.

After [25].

indeed, but trains of solitons usually consist of much fewer solitons. There is
an effect, ignored in this chapter so far, which tends to diminish the number of
solitons considerably: the Coriolis force.

This force also produces a dispersive effect, as is clear from (5.44). However,
it differs in a fundamental way from non-hydrostatic dispersion: whereas the
latter becomes stronger at shorter length scales, Coriolis dispersion becomes
stronger at longer length scales. So, even if one would not expect a strong
effect on the relatively short internal-soliton scales, Coriolis dispersion is still
important because the solitons emerge from the much longer internal-tide scale.
Specifically, Coriolis dispersion tends to counteract nonlinearity, in the sense

173



that it diminishes the latter’s steepening effect. As a result, less solitons appear
than would have been the case without Coriolis effects. It is not accidental that
most of the largest solitons have been observed in tropical regions (such as the
Andaman and Sulu Seas), where f is nearly zero.

Two examples from a numerical model are shown in Figure 8.10, one with
and one without Coriolis effects, all other things being the same. This figure
illustrates how internal solitons emerge from the internal tide, and how Coriolis
effects affect this process. This numerical model solves a set of equations that
combines the KdV effects of nonlinearity and nonhydrostatic dispersion with
the generation mechanism of internal internal tides in a rotating system, as
described in Chapter 7.

Fig. 8.11: Composite of internal solitary wave packets observed in SAR (Synthetic

Aperture Radar) images. The packets are largely concentrated in two distinct regions:

close to the shelf break (the dashed 200m line), and near 150 km off the shelf break,

in the deep central part of the basin. The latter are due to an impinging internal-tide

beam coming from the deep (‘local generation’). Significantly, all the observations

were made during summer (July to early September), when the seasonal thermocline

is well-developed, a sine qua non for internal solitons. From [62].

8.5.2 ’Local generation’ by internal-tide beams

In the previous section we have treated the internal tide as an interfacial wave.
This is only one way in which internal solitons can arise from internal tides. A
very different mechanism was discovered in the Bay of Biscay. Figure 8.11 shows
a collection of renderings of SAR images. As in Figure 1.1, the stripes are surface
manifestations of internal solitons. Near the continental shelf break (dashed
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line), i.e. close to where internal tides are generated, trains of internal solitons
appear. Further off the slope, oceanward, they tend to disappear. However, in
the central bay, about 150 kilometers off the shelf break, new groups of internal
solitons appear. The site of their generation turns out to coincide with the
position where the internal tidal beam, after having reflected from the bottom,
impinges on the seasonal thermocline. This is illustrated in another example,
from the southern Bay of Biscay (Figure 8.12).

Fig. 8.12: Illustration of the process of local generation. One particular group of

solitary waves (along the staight line in the left panel) arises near the location where

the internal tidal beam hits the seasonal thermocline (right panel). From [10].

The mechanism of local generation can be regarded as a two-stage process.
We showed above that even in linear theory, the internal tidal beam is strongly
perturbed as it encounters the seasonal thermocline (Figure 7.10). The beam
brings the seasonal thermocline into oscillation (Figure 7.11). So the first stage
is essentially linear. It is followed by a second stage, in which nonlinear and
nonhydrostatic effects come into play, allowing the depressions to evolve into
internal solitons [26, 2].

8.5.3 Decay and dissipation

Little is yet known about the decay and dissipation of internal solitons. Some
propagate all the way from the deep ocean into shallow harbours, causing no-
ticeable surface oscillations there [32].

In any case, the generation of internal solitons implies a transfer of energy
from the long internal-tide scale to the much shorter soliton scale, and thus
forms one step in a chain towards ever shorter scales, down to the one at which
viscous dissipation takes place. Since solitons have large amplitudes, and hence
a strong shear, instabilities may develop as illustrated particularly clearly in
Figure 8.13. By processes like these, turbulent mixing may occur in and around
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the seasonal thermocline – a process that is also of biological significance as
it brings nutrients upward from the nutrient-rich deeper layers into the upper
layer where light penetrates and photosynthesis takes place; solitons thus act as
a ’nutrient-pump’.

Fig. 8.13: An acoustic backscatter record showing an internal soliton accompanied

by Kelvin-Helmholtz billows arising from shear instabilities; the wave is propagating

from left to right. This observation was made off the Oregon coast. From [60].

8.6 Limitations of KdV

Apart from the neglect of Coriolis dispersion, the KdV equation has two other
limitations. One is that waves are assumed to be long. One can think of
configurations in which this assumption is not valid, for example a two-layer
system with a very deep lower layer. For such a system, too, a soliton equation
can be derived, the so-called Benjamin-Ono equation. To this end, we return to
(5.44), with f = 0 (hence qu = k),

ω2 =
g′k

coth kd + coth k(H − d)
. (8.76)

We assume that waves are long with respect to the upper layer (|kd| ¿ 1), but
short with respect to the total water depth (|kH| → ∞). This implies, of course,
H À d. We can now use the fact that coth kH → sgn(k) for |kH| → ∞; the
denominator of (8.76), multiplied by kd, can thus be approximated as

kd coth kd + kd coth k(H − d) = 1 + 1
3 (kd)2 + · · ·+ kd sgn(k) + · · · ≈ 1 + |k|d .

Selecting rightward propagating waves, we find

ω = c0k(1− 1
2 |k|d + · · · ) , (8.77)
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with c2
0 = g′d. For d ¿ H, the nonlinear term in (8.11) becomes−(3c0)/(2d)ηηx.

Thus, we expect the governing equation to be given by

∂η

∂t
+ c0

∂η

∂x
− 3c0

2d
η

∂η

∂x
+

c0d

2π

∫ ∞

−∞
dx′

η(t, x′)
x′ − x

= 0 , (8.78)

where the integral is a Cauchy Principal Value integral (which in this particular
form is also known as the Hilbert transform). The linearized form of (8.78) leads
to the dispersion relation (8.77) via the identity

∫ ∞

−∞
dx′

eikx′

x′ − x
= iπeikx sgn(k) .

The Benjamin-Ono equation (8.78) admits an algebraic soliton solution,

η(t, x) =
−Ar2

r2 + (x− Ct)2
,

with C = c0(1 + 3
8A/d), r = 4

3d2/A and A > 0. Here, too, the solitons appear
as a depression. The Benjamin-Ono is largely of theoretical interest, because
the observed solitons are usually better described by the KdV equation.

Fig. 8.14: Examples of solitary wave solutions (here as elevations) of the extended KdV

equation; they are given by (8.80). As the wave amplitude approaches its maximum

value (here normalized at 1), the wave crest becomes increasingly broad. From [40].

However, a sometimes severe limitation of the KdV equation is the under-
lying assumption of weak nonlinearity. Observed solitons may have amplitudes
so large as to render this assumption inappropriate. An extended form of the
KdV equation can be derived by proceeding to a higher order, which produces
a cubic nonlinear term,

∂η

∂t
+ c0

∂η

∂x
+

3
2

h1 − h2

h1h2
c0η

∂η

∂x
+

1
6
c0h1h2

∂3η

∂x3
= c0

h2
1 + 6h1h2 + h2

2

8(h1h2)2
∂

∂x
(η3) .

(8.79)
Notice that the coefficient of the cubic term is always positive.5 Equation (8.79)

5In the literature, the coefficient appears in various forms; in [12], for example, it is stated
without recourse to the assumption that the difference in density between the layers is small.
For (ρ2 − ρ1)/ρ2 ¿ 1, their coefficient reduces to the form given in (8.79).
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is called the extended KdV equation. In the appendix to this chapter, we demon-
strate that (8.79) admits solitons of the form

η =
1

c + a cosh[b(x− Ct)]
. (8.80)

This soliton solution departs from the classical KdV soliton in several ways; we
here summarize its main properties (for proofs and details, see the Appendix).

As in the classical KdV equation, the amplitude a has the same sign as the
quadratic nonlinear term; so, for h1 < h2, solitons will be depressions. However,
a crucial difference is that the amplitude cannot now take arbitrary large values;
it has an upper bound, which depends solely on h1 and h2. As the solitary
wave approaches this upper bound, it becomes increasingly broad (as opposed
to small-amplitude, classical KdV solitons, which become slightly narrower with
increasing amplitude); the top becomes a broad plateau, terminated at each end
by dissipationless bores, as illustrated in Figure 8.14.

Although the extended KdV equation contains a higher-order nonlinear
term, it is based on a perturbation approach, and thus still subject to the
assumption of weak nonlinearity. Yet, in practice, it turns out that the range of
validity is widened considerably by the inclusion of the cubic term. Specifically,
it is found that the soliton solution of the extended KdV equation, and the
corresponding dependences of phase speed and length scale on amplitude, are
fairly close to those found in fully nonlinear theories, as long as h1 and h2 are
not very different [40]. The extended KdV equation then provides a satisfactory
description of large-amplitude solitons. An example of such solitons is shown in
Figure 8.15; they have amplitudes of about 25m, whereas the thickness of the
upper layer is only 7 m. (Notice that for thin upper layers the coefficient of the
quadratic nonlinear term scales with 1/h1; the strength of nonlinearity is then
determined by a/h1.) They are due to a disintegration of the internal tide, as
is clear from the fact that groups of solitons are separated by a tidal period.

Stanton & Ostrovsky compared observed solitons from Figure 8.15 with so-
lutions from the KdV and extended KdV equations; they found that the former
produces solitons that are much narrower than observed; the broader solitons
from the extended KdV equation, on the other hand, give a good match [80].

They also found that observed amplitudes slightly exceed the theoretical
maximum amplitude (which for their parameters is about 20 m). This discrep-
ancy may be due to the simplified nature of the two-layer stratification adopted
here, rather than being a limitation of the extended KdV equation per se. As
a matter of fact, for other types of stratification N(z), too, an extended KdV
equation can be derived; it takes the same form, but with the coefficients defined
differently [50]. One caveat should be noted. As will be shown in Section 9.2, for
constant stratification the nonlinear terms vanish for a uni-modal solution. This
means that one has either to drop the assumption of constant N , or (implicitly)
include higher modes to arrive at a KdV equation.
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Fig. 8.15: An observation of two groups of solitons, separated by the semi-diurnal

tidal period. The lower panel shows an enlargement, covering the first 100 minutes;

the solitons have a period of about ten minutes. These measurements were made off

the coast of Northern Oregon, over the continental shelf, at a water depth 147m. The

upper 35 m were covered by a Loose-tethered Microstructure Profiler (LMP), which

measured temperature and salinity (the latter not shown here), and was raised and

then allowed to free-fall through the water column; thus vertical profiles were obtained

every 40 seconds. From [80].

Further reading

Good introductory papers on solitons in the ocean are those by Osborne &
Burch [64] and Ostrovsky & Stepanyants [65]; much on theory and observations
can also be found in the review report by Apel et al. [3]. On solitons in
the atmosphere, see Rottmann & Grimshaw [73]. An overview on generalized
KdV equations (including, for example, a dissipative term) can be found in
Grimshaw [36]. More general reviews on long nonlinear internal waves are those
by Grimshaw et al. [37] (on the effects of rotation), and Helfrich & Melville [40].
Many interesting pictures can be found on the soliton atlas website
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http://www.internalwaveatlas.com/Atlas2_index.html.

Appendix: Form-preserving solutions of the ex-

tended KdV equation

In this appendix we derive form-preserving solutions of the extended KdV equa-
tion (8.79),6 which we write in short-hand notation as

∂η

∂t
+ c0

∂η

∂x
+ Aη

∂η

∂x
+ B

∂3η

∂x3
= D

∂

∂x
(η3) . (8.81)

Seeking, then, solutions of the form η = F (x − Ct), we obtain, after one inte-
gration,

−(C − c0)F + 1
2AF 2 + BF ′′ = DF 3 + µ , (8.82)

where primes denote derivatives to the argument ξ = x−Ct; we included a con-
stant of integration µ, in order not to restrict ourselves to solutions that vanish
at infinity. The point is that (8.82) admits a solution describing a stationary
shock wave,

F = a tanh(bξ) + c . (8.83)

This can be seen by substitution in (8.82), which gives

−(C − c0)(a tanh bξ + c) + 1
2A(a tanh bξ + c)2 − 2ab2B sech2bξ tanh bξ

= D(a tanh bξ + c)3 + µ .

Using sech2y = 1− tanh2 y, and gathering equal powers of tanh, we find

−c(C − c0) + 1
2c2A− c3D − µ + [−a(C − c0) + acA− 2ab2B − 3ac2D] tanh bξ

+[ 12a2A− 3a2cD] tanh2 bξ + [2ab2B − a3D] tanh3 bξ = 0 .

Hence,

c =
A

6D
; b = a

( D

2B

)1/2

; C = c0 +
A2

12D
− a2D ; µ =

A

6D

(
a2D − A2

36D

)
.

The constant c depends only on the thickness of the layers, h1 and h2. We can
choose the amplitude a arbitrarily. The wavenumber b then follows from the
second expression; it is proportional to the wave amplitude. The phase speed C

follows from the third expression; it contains a term proportional to the square
of the wave amplitude. The essential role of the cubic nonlinear term, via D,
is evident. The constant of integration µ, finally, follows from the fourth ex-
pression. Notice that the solution has a zero nett mass (c, µ = 0) when the
quadratic nonlinear term vanishes (A = 0), which happens when the two layers

6These solutions are mentioned in the literature, e.g. in [45], but with no derivation or
proof being given; here we fill this gap.
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are of equal thickness.

Seeking now localized solutions – i.e., F and its derivatives vanish at infinity –
we must take µ = 0 in (8.82). Multiplying by F ′ and integrating once (again
leaving out the constant of integration), we obtain

− 1
2 (C − c0)F 2 + 1

6AF 3 + 1
2B(F ′)2 = 1

4DF 4 ,

or, equivalently,

B1/2F ′ = ±F
[
(C − c0)− 1

3AF + 1
2DF 2

]1/2

.

It is convenient to introduce F = 1/G, so that

B1/2G′ = ∓
[
(C − c0)G2 − 1

3AG + 1
2D

]1/2

. (8.84)

In order to get rid of the square root on the right-hand side, we introduce

G = c + a cosh(bξ) . (8.85)

(The idea is to bring the part in square brackets in a form proportional to
[cosh2 bξ − 1]1/2, which equals sin bξ, and cancels against G′.) Substituting
(8.85) in (8.84), we find for the part in square brackets,

[· · · ] = (C − c0)(c + a cosh bξ)2 − 1
3A(c + a cosh bξ) + 1

2D

= a2(C − c0) cosh2 bξ + (2ac(C − c0)− 1
3aA) cosh bξ

+c2(C − c0)− 1
3cA + 1

2D . (8.86)

For the last expression to take the form

a2(C − c0)[cosh2 bξ − 1] , (8.87)

we must pose the following two requirements,

C − c0 =
A

6c
; c2(C − c0)− 1

3cA + 1
2D = −a2(C − c0) . (8.88)

Combining the two gives

c2A− 3cD − a2A = 0 .

Hence

c =
3D ± (9D2 + 4a2A2)1/2

2A
.

In order that C > c0, the signs of A and c have to be the same, which implies
that we must select the plus-sign in ±:

c =
3D + (9D2 + 4a2A2)1/2

2A
. (8.89)
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We first consider the limit D → 0, in which case we should find the earlier
results of the classical KdV equation. In this limit, we have c → a, so

F =
1
G

=
1

c + a cosh(bξ)
→ 1

a(1 + cosh(bξ))
=

1
2a cosh2(bξ/2)

(In the last step we used an identity for hyperbolic functions.) This is indeed
the classical KdV soliton, in which (2a)−1 serves as the amplitude; the corre-
sponding expression for the phase speed C is then readily recovered from the
first equation in (8.88).

Returning now to the general result, with D included, we have c given by
(8.89). Substition of (8.85) in (8.84) gives

b = ∓
(C − c0

B

)1/2

. (8.90)

where we used G′ = ab sinh(bξ). (The sign in ∓ is immaterial because cosh is
an even function.) This expression is, in fact, identical to that found for the
classical KdV equation. To summarize, we have obtained a soliton solution of
the form

F =
1

c + a cosh(bξ)
, (8.91)

with c given by (8.89), the phase speed C by the first expression in (8.88), and
the wavenumber b by (8.90).

An interesting limit is a → 0, the large-amplitude limit. We then have, for
sufficiently small ξ,

F ≈ 1
c
→ 1

3D/A
=

A

3D
,

showing that the soliton becomes constant around its crest, giving the plateau-
like shape depicted in Figure 8.14; this expression implies that solitons cannot
have amplitudes larger than A/(3D). The presence of such an upper bound
forms a radical departure from the classical KdV soliton.

It is clear from (8.89) that c has the same sign as A (D being always positive),
and so has a, otherwise singularities would occur. This means that the sign of A

determines whether the soliton is a depression or an elevation, as in the classical
KdV equation.
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Chapter 9

Miscellaneous topics

In this chapter we discuss various topics. We saw already above, in Section 6.2,
that an internal-wave beam becomes more intense (or the opposite), when it
reflects from a sloping boundary. In Section 9.1 it is shown how, in a closed
basin, a repetition of this process may lead to an increasingly focussed pattern,
the so-called internal-wave attractor. Including nonlinear effects, one finds that
reflection from boundaries is accompanied by the generation of higher harmonics
(Section 9.3). More generally, interactions among waves of different frequencies
may occur (Section 9.4), and these processes are thought to be reponsible for
the distribution of energy throughout the internal-wave spectrum (Section 9.5).

9.1 Internal-wave attractors

In Chapter 6 it was explained how internal-wave energy propagates along charac-
teristic coordinates, i.e. lines defined by ξ± = const. Reflection from a boundary
involves a change from one characteristic to the other: if the incident wave prop-
agates along ξ+ = const, then the reflected one will propagate along ξ− = const,
and vice versa. In a closed basin, there will be successive reflections from the
boundaries the wave encounters, giving rise to a ‘web’ of characteristics. These
webs have some remarkable properties that have been confirmed in laboratory
experiments. We outline them in this section.

Our starting point is the equation for linear internal-wave dynamics (6.2),
now written as

∂2w

∂z2
− α2 ∂2w

∂x2
= 0 , (9.1)

with

α2 =
N2 − ω2

ω2 − f2
.

In this section we assume N to be constant. This is, of course, a crude assump-
tion with regard to the stratification in the ocean (depicted in Figure 1.6), and
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this puts some limitations on the applicability of the theory (see Section 9.1.3).
We consider a basin of length 2L and height H, and introduce new spatial

coordinates, indicated by primes,

x = Lx′ ; z =
L

α
z′ .

With this, (9.1) becomes

∂2w

∂z′2
− ∂2w

∂x′2
= 0 .

The characteristic coordinates associated with this equation are

ξ± = ±x′ − z′ .

So, in this scaled system, the characteristics make an angle of 45◦ with the
vertical; the internal-wave energy thus propagates at this angle. The bottom,
originally at z = −H, is now given by

z′ = −τ = −αH

L
.

We will regard H and L, as well as N and f , as fixed parameters; the scaled
water depth τ then varies only with wave frequency ω, via α. The closed basin
considered here is depicted in Figure 9.1; the wall on the right-hand side is tilted.
The parameter defining the tilt is s (= 1 − d), being the horizontal distance
covered by the slope. For s = 1 we have the slope shown in Figure 9.1, while for
s = 0 we get a rectangular basin of width 2 and height τ . We shall assume that
the slope is supercritical, i.e. the slope τ/s is steeper than the characteristics:

τ > s .

We now construct a web, starting from an arbitrary point at the surface,
(x0, 0), see Figure 9.1. From this point, we follow the characteristic in the right-
ward direction (I); it meets the slope at a certain point (x1, z1). From there,
a characteristic (II) departs downward (since the slope is supercritical), meet-
ing the bottom at (x2,−τ). Next we follow the upward characteristic (III),
which encounters the vertical wall at (−1, z3). From there, finally, goes a char-
acteristic IV towards the surface, arriving at (x4, 0). (In Figure 9.1 this point
coincides with the starting point, but this is, of course, not in general the case.)
Specifically, we can describe the characteristics by

I: z′ = −x′ + bI with bI = x0 = z1 + x1

II: z′ = x′ + bII with bII = z1 − x1 = −τ − x2

III: z′ = −x′ + bIII with bIII = −τ + x2 = z3 − 1

IV: z′ = x′ + bIV with bIV = z3 + 1 = −x4 .

Combining the expressions for the b’s, we find

x4 = −2 + 2τ − 2x1 + x0 .
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Fig. 9.1: A closed basin with a slope, filled with a stratified fluid. The dimensions

have been scaled such that characteristics have a slope of 45◦ with the horizontal. The

scaled depth is τ = αH/L, which depends on the wave frequency via α. The thick

lines depict a closed web of characteristics. This is a special case; in general, starting

from a horizontal position x0 at the surface, one will reach a different point x4 after

traversing the basin once in a clockwise direction. From [54].

Moreover, since (x1, z1) lies both on characteristic I and on the slope, which is
given by z′ = τ(x′ − 1)/s, it follows that

x1 =
sx0 + τ

τ + s
.

Combining the last two expressions,

x4 = 2
(τ − 1)(τ + s)− τ

τ + s
+ x0

τ − s

τ + s
. (9.2)

This expression provides the connection between the starting point at the sur-
face, x0, and the arrival point x4, reached after traversing the basin once in a
clockwise direction. Of special interest are those points x∗ for which the start-
ing and arrival points coincide (x∗ = x4 = x0); the web is then closed. This
happens when

x∗ =
(τ − 1)(τ + s)− τ

s
. (9.3)

9.1.1 Vertical wall

If the sloping wall is vertical, i.e. if s = 0, then (9.2) reduces to

x4 = 2(τ − 2) + x0 .

There is only one value of τ for which the web is closed, namely τ = 2. The
value of x0 is then immaterial, indicating that the web is closed for every starting
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point at the surface. The fact that there is only one value of τ , implies that
there is only one frequency ω for which this situation occurs.

The solution corresponding to this case can be interpreted as a standing
wave, of mode one. This can be seen as follows. The criterion for a standing
wave is, for a basin of length 2L: mλ/2 = 2L, for m = 1, 2, 3 · · · . Here λ denotes
the wavelength, which is given by λn = 2π/kn = 2αH/n, for n = 1, 2, 3 · · · ,
where we used (5.14). Using the definition of τ , we can write this criterion as
τ = 2n/m. Here we have the lowest-mode case, with n = m = 1. The bottom
line is that we have a discrete set of eigenvalues, which leads to discrete values
of τ for which the web is closed.

9.1.2 Slope

The situation becomes very different if there is a slope; we examine the case
s = 1, depicted in Figure 9.1. Closed webs occur when (9.3) is fulfilled,

x∗ = (τ − 1)(τ + 1)− τ .

We should of course require that −1 < x∗ < 1; hence

1 < τ < 2 .

There is now a continuum of frequencies for which a closed web occurs. These
webs have a remarkable property: they form an attractor. Starting from some
nearby point, x0 = x∗ + ε, and traversing the basin once clockwise, the charac-
teristic IV meets the surface at

x4 = x∗ + ε
(τ − 1

τ + 1

)
,

as follows from (9.2). The factor in brackets lies between 0 and 1, implying that
x4 is nearer to x∗ than is x0. Repeating this procedure, one find that, after K

cycles, the distance with x∗ has become

ε
(τ − s

τ + s

)K

.

In the limit K → ∞, the point x∗ is thus reached. Physically, this means that
internal-wave energy, originally distributed over the basin, tends to converge to
the closed web shown in Figure 9.1. The energy thus gets increasingly concen-
trated. As an aside, we note that the above reasoning can be reversed if we take
the anti-clockwise direction; the roles of x0 and x4 are then interchanged and
we find a defocusing of energy.

This notion of internal-wave atttractors in closed basins has been confirmed
experimentally; an example is shown in Figure 9.2.

9.1.3 Discussion

The notion of an internal-wave attractor has thus been firmly established both
theoretically and experimentally (for an insightful overview, see [53]). In the
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Fig. 9.2: The result of a laboratory experiment, with τ = 1.74. The basin, filled with

a constantly stratified fluid, was brought into a gentle vertical oscillation, at frequency

ω0; this creates instabilities, in the form of internal waves, of half the forcing frequency

(i.e. ω = ω0/2). Initially, they are spread over the entire basin, but by the process of

focussing, described in this section, the energy finally gets concentrated near a closed

web, the attractor, as predicted by theory. Using optical techniques, the isopycnal

displacements are visualized; they are largest in the light areas. From [54].

ocean, however, they have not yet been observed. In fact, there are a number of
factors at work that may make their appearance unlikely. First of all, N varies
in the ocean, especially in the thermocline (see Figures 1.6 and 3.3b). These
inhomogeneities cause internal-wave beams to suffer from internal reflections,
as sketched in Figure 6.6. As a result, the beams become less intense; see, for
example, Figure 7.10. These internal reflections counteract the focusing effect
that would otherwise lead to attractors. Another factor lies in the required
longevity of the waves; they may be dissipated, or be severely weakened by
wave-wave interactions, before having traversed the basin a couple of times.
Finally, basins need to have an appropriate shape for attractors to occur; in
practice, channel-shape basins, for example, are not entirely closed, and internal-
wave beams propagating in a cross-section of the channel may escape onto the
shelves. Three-dimensional effects further add to the complexity of the problem.

Still, the discovery of internal-wave attractors calls for a revised view on
internal-wave propagation in general. In Chapter 5 we examined internal waves
using vertical modes; this is convenient because it leads to a description in terms
of a discrete set of modes. It is tempting to extend this notion of discreteness to
situations where separation of variables no longer applies: over sloping bottoms,
notably. However, the suggestion from the theory of internal-wave attractors, as
outlined above, is that the occurrence of a discrete set of modes is the exception
rather than the rule; only for a very special geometry, namely rectangular basins,
do discrete modes appear (Section 9.1.1). The general case is that where slopes
occur, and there we find a continuum (here exemplified by a range of τ), along
with a novel kind of wave forms.
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9.2 Nonlinear effects – or the absence thereof:

general remarks

We return to the set of nonlinear equations (4.17), written out in full, but under
the Traditional Approximation (i.e. f̃ = 0),

Du

Dt
− fv = − 1

ρ∗

∂p′

∂x
(9.4a)

Dv

Dt
+ fu = − 1

ρ∗

∂p′

∂y
(9.4b)

Dw

Dt
= − 1

ρ∗

∂p′

∂z
+ b (9.4c)

ux + vy + wz = 0 (9.4d)
Db

Dt
+ N2w = 0 . (9.4e)

Recall that the material derivative D/Dt stands for ∂/∂t + ~u · ∇ and contains
the advective terms, which render the equations nonlinear.

If we assume uniformity in the y-direction, i.e. ∂/∂y = 0, we can introduce
a streamfunction, defined via u = ψz and w = −ψx. Eq. 9.4d) is then automat-
ically satisfied. Furthermore, we can combine (9.4a) and (9.4c) to obtain

∇2ψt + J(∇2ψ, ψ)− fvz + bx = 0 , (9.5)

where J(a, b) = axbz − azbx (the Jacobian), and ∇2 = ∂2
x + ∂2

z . In terms of the
streamfunction, (9.4b) and (9.4e) become

vt + J(v, ψ) + fψz = 0 (9.6)

bt + J(b, ψ)−N2ψx = 0 . (9.7)

In Chapters 5 and 6 we have derived solutions of the linear equations. Sur-
prisingly, some of them also satisfy the nonlinear equations! In the remainder
of this section, we examine for which classes of solution this is the case.1

For constant N , we have the modal solutions from Section 5.2.2:

ψ = −
∑

n

ank−1
n sin mnz sin(knx− ωt) (9.8)

v =
f

ω

∑
n

ank−1
n mn cosmnz cos(knx− ωt) (9.9)

b =
N2

ω

∑
n

an sin mnz sin(knx− ωt) , (9.10)

1We should note at the outset that the approximation made in Section 4.3.1 removed a
different kind of nonlinearity, namely ρ∂~u/∂t + · · · in the momentum equations, to which the
following arguments do not apply.
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where mn = nπ/H denotes the vertical wavenumber. We will now select just
one mode. Dropping the index n, we elaborate on the Jacobian J(∇2ψ, ψ).
First, notice that ∇2ψ = −(k2 + m2)ψ; hence

J(∇2ψ, ψ) = (∇2ψx)ψz − (∇2ψz)ψx = −(k2 + m2)[ψxψz − ψzψx] = 0 .

Also, since b ∼ sin mz sin(kx−ωt) and ψ ∼ sin mz sin(kx−ωt) (leaving out the
constant factors), it is clear that J(b, ψ) = 0 in (9.10).

However, with v ∼ cos mz cos(kx− ωt), we find that

J(v, ψ) = vxψz − vzψx ∼ km(cos2(kx− ωt)− cos2 mz) ,

which does not vanish. From this we can conclude that, in the absence of
Coriolis effects (so that v plays no role), we are left with the equations (9.8) and
(9.10), which are satisfied by a uni-modal solution, provided that N is constant.
If N were variable, this would no longer be true: not even a uni-modal solution
would in that case satisfy the nonlinear equations.

Next we consider the general solution in terms of the characteristics, (6.14),
which also rests on the assumption of constant N . We will show in the next
section that this is not a solution of the nonlinear equations. However, if we
select just one the functions, F say, and take the other zero (G = 0), then the
nonlinear equations (9.8)-(9.10) are automatically satisfied. This assumption
implies that we are now considering a medium of infinite extension, since any
boundary would engender a reflection and hence a non-zero G (see Section 6.2).

We use the expressions (6.17)–(6.19), with G = 0,

u = µ−1F (ξ)

v = −i
f

ω
µ−1 F (ξ)

b = −i
N2

ω
F (ξ) ,

along with w = F (ξ). For convenience, we have dropped the ’plus’ in µ+ and
ξ+. We recall that ξ = µx− z. Calculating now the Jacobians, we find,

J(∇2ψ,ψ) = −u∇2w + w∇2u = −µ−1F (µ2 + 1)F ′′ + Fµ−1(µ2 + 1)F ′′ = 0

J(v, ψ) = uvx + wvz = −i
f

ω
µ−1FF ′ + i

f

ω
µ−1FF ′ = 0

J(b, ψ) = ubx + wbz = −i
N2

ω
FF ′ + i

N2

ω
FF ′ = 0 .

Hence a beam F (ξ), taken in isolation (as in Figure 6.3, panel on the left),
also fulfills the nonlinear equations! The same holds, of course, for G if F = 0.
However, wherever F and G occur together (as in Figure 6.3, panel on the right),
nonlinear effects will, in general, set in. This forms the topic of the next section.
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9.3 Generation of higher harmonics

In Chapter 6 we discussed internal-wave beams, whose general form is (6.14)

w = F (ξ+) + G(ξ−) ,

where F and G are arbitrary functions, and ξ+ and ξ− the characteristic coor-
dinates. This was a solution of the linear equations. We now examine nonlinear
effects. Specifically, two key properties will be demonstrated: 1) in the previous
section it was shown that all nonlinear terms cancel if only one of the two, F

or G, is present; now we show that nonlinear effects do arise at junctions of
F and G; 2) these interactions between F and G generate higher harmonics,
i.e. waves at frequencies that are a multiple of the basic frequency ω: 2ω, 3ω

etc. Such junctions occur, for example, when an internal-wave beam reflects
from a (sloping) bottom; the incident F (ξ+) is then reflected as G(ξ−), and
in the region where the reflection occurs, the two interact. Notice that higher
harmonics must travel more steeply than the basic wave, as follows from the
dispersion relation (6.8), which shows that the steepness of energy propagation
increases with frequency. These features have been demonstrated in laboratory
experiments, see Figures 9.3 and 9.4.

Fig. 9.3: Experimental setup: a wavemaker in a constantly stratified fluid, creating

beams, one which reflects from the slope. In the region where the primary incident

and reflected beams interact, higher harmonics are created. From [66].

Junctions of two crossing beams can also occur, of course, in the interior of
the fluid. This may be due to the presence of different internal-wave sources, or
due to internal reflections in regions of strongly varying N .

9.3.1 Formulation of the problem

An elegant derivation has been given by [83], which we generalize here by in-
cluding Coriolis effects, under the Traditional Approximation. We thus start
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Fig. 9.4: Results from the laboratory experiments of Figure 9.3: from the region

where interaction between the incident and reflected beam occurs, a steeper higher

harmonic emanates. In a, a case of sub-critical reflection, for parameters N = 1.28 and

ω = 0.536 rad s−1, with a slope of 15◦; in b, super-critical reflection, with parameters

N = 1.16 and ω = 0.538 rad s−1, and a slope at 35◦. Horizontal and vertical scales are

in meters. From [66].

with (9.5)–(9.7):

∇2ψt + J(∇2ψ, ψ)− fvz + bx = 0 (9.11)

vt + J(v, ψ) + fψz = 0 (9.12)

bt + J(b, ψ)−N2ψx = 0 , (9.13)

where ψ is the streamfunction, v the tranverse velocity, and b buoyancy. The
buoyancy frequency N is assumed constant. Recall that the Jacobian is defined
by J(a, b) = axbz − azbx, and ∇2 = ∂2

x + ∂2
z .

We consider weakly nonlinear waves, monochromatic (with frequency ω) at
lowest order, and write the fields in a formal expansion in which ε, a measure
of the intensity of the wave, serves as the small parameter:

ψ = ε{Ψexp(−iωt) + c.c.}+ ε2{Ψ0 + [Ψ2 exp(−2iωt) + c.c.]}+ · · · (9.14)

v = ε{V exp(−iωt) + c.c.}+ ε2{V0 + [V2 exp(−2iωt) + c.c.]}+ · · · (9.15)

b = ε{Γ exp(−iωt) + c.c.}+ ε2{Γ0 + [Γ2 exp(−2iωt) + c.c.]}+ · · · (9.16)

where we anticipate that mean fields (with index 0) and second harmonics (with
index 2) will appear at order ε2; the former is time-independent, the latter has
frequency 2ω. (Notice that no complex conjugates are added to the mean fields;
they will be found to be real by themselves.)
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9.3.2 General solution

Lowest order

By substituting (9.14)–(9.16) into (9.11)–(9.13), we obtain, at lowest order,

−iω∇2Ψ− fVz + Γx = 0 (9.17)

−iωV + fΨz = 0 (9.18)

−iωΓ−N2Ψx = 0 , (9.19)

implying

(N2 − ω2)Ψxx − (ω2 − f2)Ψzz = 0 , (9.20)

which is the familiar linear equation, (6.2). Its general solution is given by

Ψ = F (ξ+) + G(ξ−) , (9.21)

for arbitrary functions F and G, each describing propagation of wave-energy
along one of the two characteristic coordinates, which are given by

ξ+ = µ+x− z ; ξ− = µ−x− z ,

with

µ± = ±
( ω2 − f2

N2 − ω2

)1/2

.

The other fields can be expressed in terms of Ψ:

Γ =
iN2

ω
Ψx ; V = − if

ω
Ψz . (9.22)

With this, the lowest-order problem has been fully solved.

Order ε2; mean field

Gathering the time-independent terms resulting from the substitution of (9.14)–
(9.16) in (9.11)–(9.13), we find

[J(∇2Ψ, Ψ∗) + c.c.]− fV0,z + Γ0,x = 0 (9.23)

[J(V, Ψ∗) + c.c.] + fΨ0,z = 0 (9.24)

[J(Γ, Ψ∗) + c.c.]−N2Ψ0,x = 0 . (9.25)

We can use (9.22) to rewrite the Jacobian in (9.25), and then use the general
identity iJ(Px, P ∗) + c.c. = iJ(P, P ∗)x to obtain

Ψ0 =
i

ω
J(Ψ, Ψ∗) . (9.26)

Specifically, substitution of the lowest-order general solution (9.21) yields

Ψ0 =
2
ω

(µ+ − µ−)Im[F ′(ξ+)G′(ξ−)∗] . (9.27)
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(Primes denote derivatives with respect to the characteristic coordinates.) This
expression confirms that no nonlinear contributions arise from an interaction
of one plane internal wave (F , say) with itself; only junctions of plane waves,
involving both F and G, provide nonlinear terms.

Equation (9.24) is now automatically satisfied, too. The remaining fields V0

and Γ0 cannot be uniquely determined because of geostropic degeneracy, as is
clear from (9.23). This is a common problem in rectification studies; we do not
pursue this point further, because the residual fields play no role in finding the
second harmonics, which is the primary aspect of this section.

Order ε2; second harmonic

Gathering the second harmonics exp(−2iωt) resulting from the substitution of
(9.14)–(9.16) in (9.11)–(9.13), we find

−iω2∇2Ψ2 + J(∇2Ψ, Ψ)− fV2,z + Γ2,x = 0 (9.28)

−iω2V2 + J(V, Ψ) + fΨ2,z = 0 (9.29)

−iω2Γ2 + J(Γ, Ψ)−N2Ψ2,x = 0 , (9.30)

where we introduced ω2 = 2ω, the second harmonic. The set can be reduced to

(N2 − ω2
2)Ψ2,xx − (ω2

2 − f2)Ψ2,zz = 2iωJ(∇2Ψ,Ψ)− fJ(V, Ψ)z + J(Γ, Ψ)x .

The left-hand side is identical to that in the lowest order, (9.20), but with ω

replaced by the double frequency ω2. The last two terms on the right-hand side
can be simplified using the lowest-order eqs. (9.17)–(9.19), giving

(N2 − ω2
2)Ψ2,xx − (ω2

2 − f2)Ψ2,zz = 3iωJ(∇2Ψ,Ψ) . (9.31)

The left-hand side of this equation describes the propagation of free waves at
frequency 2ω; the right-hand side, the nonlinear forcing by the lowest-order
terms. The general solution can be written

Ψ2 = F2(ξ2,+) + G2(ξ2,−) + Ψ2,p , (9.32)

where F2 and G2 are arbitrary functions, representing solutions in the absence
of forcing; ξ2,+ and ξ2,− are the characteristic coordinates defined similarly as
ξ+ and ξ−, but now for frequency ω2:

ξ2,+ = µ2,+x− z ; ξ2,− = µ2,−x− z ; µ2,± = ±
( ω2

2 − f2

N2 − ω2
2

)1/2

.

The forcing, on the right-hand side of (9.31), is taken into account via Ψ2,p, a
particular solution to (9.31); an expression for Ψ2,p is derived below.

For later reference, we note that the right-hand side of (9.31) can be written
in a more explicit form by using the lowest-order general solution (9.21), with
µ = µ+ = −µ−:

J(∇2Ψ, Ψ) = −2µ(1 + µ2)
[
F ′′′(ξ+)G′(ξ−)−G′′′(ξ−)F ′(ξ+)

]
. (9.33)

Again we see that only products of F and G contribute.
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9.3.3 Solutions for reflection from a uniform slope

We now introduce a uniform slope z = γx, at which we require ψ = 0 (implying
w = γu). In the following sections we derive the solution for internal-wave
reflection from the slope. The procedure is straightforward: we use the general
solution obtained at first and second order, viz. (9.21), (9.27) and (9.32), and
impose the boundary condition at each order.

Order ε; primary wave

We use the general solution (9.21), and require Ψ = 0 at the slope (thereby
satisfying the boundary condition). This provides a coupling between F and G:

F ([µ+ − γ]x) + G([µ− − γ]x) = 0 for all x ,

as is natural since one of them (G, say) now results from a reflection of the other
(F ). Hence, for all ξ−,

G(ξ−) = −F (λξ−) , (9.34)

with
λ =

µ+ − γ

µ− − γ
. (9.35)

Without loss of generality, we may write F as

F (ξ+) =
∫ ∞

0

dk a(k) eikξ+ . (9.36)

It is crucial that k be either exclusively positive or exclusively negative, since
otherwise F cannot represent a purely incident wave. (We can ensure later that
F (ξ+) actually does describe an incident wave by giving the frequency ω the
appropriate sign.) The reflected wave is then represented by G in (9.34), so the
total solution (9.21) becomes

Ψ = F (ξ+) + G(ξ−) =
∫ ∞

0

dk a(k)
[
eikξ+ − eikλξ−

]
. (9.37)

Hereafter it will be understood that integrals are taken from zero to infinity
without explicitly stating so.

Order ε2; mean field

From (9.27), with (9.36) and (6.21), we obtain:

Ψ0 = −4λµ

ω

∫ ∫
dkdk′a(k)a(k′)kk′ sin(kξ+ − k′λξ−) . (9.38)

The boundary condition is automatically satisfied. (This can be seen by splitting
the sine into the sum of its two halves, and interchanging k and k′ in the second
term; one then finds that the two terms cancel at the slope.)
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Order ε2; second harmonic

The right-hand side (9.33) can now be written

J(∇2Ψ,Ψ) = 2λµ(1 + µ2)
∫ ∫

dkdk′a(k)a(k′)kk′
[
(k2 − (k′λ)2

]
ei(kξ++k′λξ−) .

Hence a particular solution to (9.31) is

Ψ2,p = 6iωλµ

∫ ∫
dkdk′S(k, k′)ei(kξ++k′λξ−) , (9.39)

with

S(k, k′) = −
(1 + µ2)a(k)a(k′)kk′

[
k2 − (k′λ)2

]

µ2(N2 − ω2
2)(k − k′λ)2 − (ω2

2 − f2)(k + k′λ)2
. (9.40)

However, (9.39) does not by itself satisfy the boundary condition at the slope.
We must add a solution of the homogeneous part of (9.31), which is given by
F2 + G2 in (9.32). Moreover, it must be associated with the reflected wave,
so we take F2 = 0, and select the appropriate form of G2(2, ξ−); this will be
the higher harmonic that travels away from the region of interaction. We thus
arrive at

Ψ2 = 6iωλµ

∫ ∫
dkdk′S(k, k′)

[
ei(kξ++k′λξ−) − eiR(k,k′)ξ2,−

]
, (9.41)

where
R(k, k′) =

µ− γ

µ2,− − γ
(k + k′) .

9.3.4 Examples

We show an example in Figure 9.5, corresponding qualitatively to the experi-
mental situation in Figure 9.4a. We evaluate the integrals from Section 9.3.3
numerically, choosing a(k) = 1 in a certain range (k1, k2), and a(k) = 0 else-
where. In Figure 9.4, the wavemaker is a cylinder with a diameter of 12.5 mm;
using this value, we find k = 5.0× 102 m−1. We take this to be k2, and choose
k1 = k2/2. The strength of the harmonics depends on the amplitude of the
primary wave (ε); however, for a qualitative comparison it suffices to show the
normalized solutions of Ψ and Ψ2. Also, we plot the streamfunction rather than
the isopycnal displacements.

This qualitative comparison suggests that reflected beams are more confined
in the theoretical results than in the laboratory experiments, probably due to
viscous effects in the latter.

9.4 Wave-wave interactions

In the previous section we examined interactions between two waves of the same
frequency. The concept of wave interaction is however more general. Here we
heuristically outline the idea of resonant triads.
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Primary wave, incident and reflected: Ψ
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Fig. 9.5: On the left, the primary incident and reflected waves (9.37); the incident

wave enters from the left. On the right, the nonlinearly generated second harmonic,

(9.41). Parameters as in Figure 9.4a.

Suppose we have two waves with wavevectors ~k1 and ~k2, and frequencies ω1

and ω2. Each of them, exp i(~k1,2 · ~x − ω1,2t), is assumed to satisfy the linear
wave equation,

∇2wt + f2wzz + N2∇2
hw = 0 ,

which means that each must satisfy the dispersion relation

H(ω,~k) = (N2 − ω2)(k2 + l2)− (ω2 − f2)m2 = 0 .

Now, nonlinear terms like the Jacobians in (9.5)–(9.7), give rise ’forcing’ terms
to the linear remainder, symbolically written as L(w),

L(w) = exp i(~k1 · ~x− ω1t)[exp i(~k2 · ~x− ω2t) + c.c.]

= exp i([~k1 + ~k2] · ~x− [ω1 + ω2]t) + exp i([~k1 − ~k2] · ~x− [ω1 − ω2]t) .

If either the sum or the difference is itself a solution of the linear equation, i.e.
either H(ω1 + ω2,~k1 + ~k2) = 0 or H(ω1 − ω2,~k1 − ~k2) = 0, then the right-hand
side will act as a resonant forcing, giving rise to a rapid growth of a wave with
wavevector ~k3 = ~k1 ±~k2 and frequency ω3 = ω1 ± ω2 (the plus or minus chosen
according to which of them satisfies the dispersion relation).

In such cases it is necessary to modify the solution from the start to allow
for a ’slow’ growth or decay; in other words, to include an amplitude factor
depending on a long time-scale T = εt. At lowest order, this term acts simply
as a constant factor; but at the next order, it gives rise to a time-derivative
ε∂/∂T , which should match the resonant forcing terms, appearing at the same
order. This yields the amplitude equations describing the interaction among the
three waves.

One important case is ’parametric subharmonic instability’ in which energy
is transferred from low to high wavenumbers of half the basic frequency. This
mechanism may be at work near ’critical latitudes’. At 28.8◦N/S, for example,
half the semi-diurnal lunar frequency, 1

2ωM2 , exactly matches the local Coriolis
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parameter |f |. Equatorward of this latitude these diurnal tides can exist as a
free internal wave. Numerical and observational evidence suggests that they are
resonantly forced by M2 in the vicinity of this latitude.

9.5 Internal-wave spectra

The previous sections described mechanisms that transfer internal-wave energy
to other frequencies. As discussed in Section 1.3, the principal sources of internal
waves – wind, and tidal flow over slopes – produce low-frequency waves. The
transfer to other, mostly higher frequencies causes the internal-wave spectrum
to be filled and smoothed; as a result, internal waves are found in the whole
range of possible frequencies, |f | to N . Internal-wave spectra deduced from
observations usually share some general characteristics, which are described by
the so-called Garrett-Munk spectrum (of which various versions exist). This
spectrum has not been derived on theoretical grounds, but is rather based on –
as one of its creators has put it – “rank empiricism” [61].

Fig. 9.6: The Garrett-Munk spectrum, at different latitudes, showing a peak at the

inertial frequency (f), and a steady fall-off for higher frequencies. From [61].

The form given by [61] for the energy-density distribution is

EGM (ω, n, z) = b2N0N(z)E0B(ω)H(n) , (9.42)
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which contains the following functions

B(ω) =
2f

πω

1
(ω2 − f2)1/2

(9.43)

H(n) =
(n2 + n2

∗)
−1

∑∞
m=1(m2 + n2∗)−1

(9.44)

N(z) = N0 exp(z/b) . (9.45)

The constant parameters are

b = 1.3 km ; N0 = 5.2× 10−3 rad s−1 ; n∗ = 3 ; E0 = 6.3× 10−5 .

The profile N(z) gives a model profile of the stratification in the ocean below
the seasonal thermocline; n is the modenumber. An example is shown in Figure
9.6. The important features are that most energy is contained at the lower
frequencies, with a decay for higher frequencies at a power -2.

However, in observed internal-wave spectra, the inertial peak is often more
pronounced than in the Garrett-Munk spectrum. As matter of fact, the inertial
band – the generation and propagation of near-inertial waves – is not yet well
understood. Other departures from the Garrett-Munk spectrum occur close
to generation regions of internal tides; there one finds a strong peak at the
dominant tidal frequency (usually M2), as well as peaks at frequencies that
are multiples of the basic frequency (e.g., M4, M6, etc). That they should
be present is not surprising in the light of the analysis of the generation of
higher harmonics in Section 9.3. An internal-wave spectrum derived from ADCP
(current) measurements in the Bay of Biscay is shown in Figure 9.7; the tidal
peak and corresponding higher harmonics are conspicuous.
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Fig. 9.7: Mean power spectrum of the horizontal velocity, obtained by summing the

power spectra of the east and north velocity components. The inserted figure shows

the entire internal-wave band (the arrows delineate the range of N). The main figure

shows the low-frequency part, containing the inertial and tidal peaks; D2 stands for

“semi-diurnal”. The grey line is added to show that the overall decay follows a ω−0.9

curve. From [85].

199



200



Bibliography

[1] M. J. Ablowitz and P. A. Clarkson. Solitons, nonlinear evolution equations
and inverse scattering. Cambridge University Press, 1991.

[2] T. R. Akylas, R. H. J. Grimshaw, S. R. Clarke, and A. Tabaei. Reflect-
ing tidal wave beams and local generation of solitary waves in the ocean
thermocline. J. Fluid Mech., 593:297–313, 2007.

[3] J. R. Apel, L. A. Ostrovsky, Y. A. Stepanyants, and J. F. Lynch. Internal
solitons in the ocean. Technical Report WHOI-2006-04, Woods Hole., 2006.

[4] C. M. Bender and S. A. Orszag. Advanced mathematical methods for sci-
entists and engineers. McGraw-Hill, New York, 1978.

[5] V. Bjerknes. Die Meteorologie als exakte Wissenschaft. Vieweg, Braun-
schweig, 1913.

[6] L. M. Brekhovskikh. Waves in layered media. Academic Press, New York,
1960.

[7] D. E. Cartwright. Tides: a scientific history. Cambridge University Press,
1999.

[8] P. D. Craig. Solutions for internal tidal generation over coastal topography.
J. Mar. Res., 45:83–105, 1987.

[9] D. G. Crighton. Applications of KdV. Acta Appl. Math., 39:39–67, 1995.

[10] J. C. B. Da Silva, A. L. New, and A. Azevedo. On the role of SAR for
observing ”local generation” of internal solitary waves off the Iberian Penin-
sula. Can. J. Remote Sensing, 33(5):388–403, 2007.

[11] E. M. De Jager. On the origin of the Korteweg-de
Vries equation. arXiv:math/0602661, v1:1–23, 2006. [see
http://arxiv.org/abs/math/0602661].

[12] V. D. Djordjevic and L. G. Redekopp. The fission and disintegration of
internal solitary waves moving over two-dimensional topography. J. Phys.
Oceanogr., 8:1016–1024, 1978.

201



[13] J. A. Dutton. Dynamics of atmospheric motion. Dover, 1995. [NB: formerly
titled The ceaseless wind].

[14] W. Eckhaus and A. van Harten. The inverse scattering transformation and
the theory of solitons: an introduction. North-Holland Publishing Com-
pany, 1981.

[15] G. D. Egbert and R. D. Ray. Semi-diurnal and diurnal tidal dissi-
pation from TOPEX/Poseidon altimetry. Geophys. Res. Lett., 30, 17,
1907:doi:10.1029/2003GL017676, 2003.

[16] A. Einstein and L. Infeld. The evolution of physics. Simon and Schuster,
New York, 1938.

[17] R. Feistel and E. Hagen. On the Gibbs thermodynamic potential of seawa-
ter. Prog. Oceanog., 36:249–327, 1995.

[18] N. P. Fofonoff. Physical properties of sea-water. In M. N. Hill, editor, The
Sea, Vol. I, pages 3–30. Wiley, New York, 1962.

[19] D. C. Fritts and M. J. Alexander. Gravity wave dynamics
and effects in the middle atmosphere. Rev. Geophys., 41(1):1003,
doi:10.1029/2001RG000106, 2003.

[20] C. Garrett. Internal tides and ocean mixing. Science, 301:1858–1859, 2003a.

[21] C. Garrett. Mixing with latitude. Nature, 422:477–478, 2003b.

[22] C. Garrett and T. Gerkema. On the body-force term in internal-tide gen-
eration. J. Phys. Oceanogr., 37(8):2172–2175, 2007.

[23] C. Garrett and E. Kunze. Internal tide generation in the deep ocean. Annu.
Rev. Fluid Mech., 39:57–87, 2007.

[24] C. Garrett and L. St. Laurent. Aspects of deep ocean mixing. J. Oceanogr.,
58:11–24, 2002.

[25] T. Gerkema. A unified model for the generation and fission of internal tides
in a rotating ocean. J. Mar. Res., 54(3):421–450, 1996.

[26] T. Gerkema. Internal and interfacial tides: beam scattering and local gen-
eration of solitary waves. J. Mar. Res., 59(2):227–255, 2001.

[27] T. Gerkema, F. P. A. Lam, and L. R. M. Maas. Internal tides in the
Bay of Biscay: conversion rates and seasonal effects. Deep-Sea Res. II,
51(25/26):2995–3008, 2004.

[28] T. Gerkema and V. I. Shrira. Near-inertial waves in the ocean: beyond the
’Traditional Approximation’. J. Fluid Mech., 529:195–219, 2005.

202



[29] T. Gerkema and V. I. Shrira. Non-traditional reflection of internal waves
from a sloping bottom, and the likelihood of critical reflection. Geophys.
Res. Lett., 33(L06611):doi:10.1029/2005GL025627, 2006.

[30] T. Gerkema, J. T. F. Zimmerman, L. R. M. Maas, and H. van Haren.
Geophysical and astrophysical fluid dynamics beyond the Traditional Ap-
proximation. Rev. Geophys., doi:10.1029/2006RG000220, 2008. [in press].

[31] J. W. Gibbs. The Collected Works of J. Willard Gibbs. Volume I: Ther-
modynamics. Yale University Press, New Haven, 1948.

[32] G. S. Giese, D. C. Chapman, M. G. Collins, R. Encarnacion, and G. Jac-
into. The coupling between harbor seiches at Palawan Island and Sulu Sea
internal solitons. J. Phys. Oceanogr., 28:2418–2426, 1998.

[33] A. E. Gill. On the behavior of internal waves in the wakes of storms. J.
Phys. Oceanogr., 14:1129–1151, 1984.

[34] E. E. Gossard and W. H. Hooke. Waves in the atmosphere. Elsevier,
Amsterdam, 1975.

[35] H. P. Greenspan. The theory of rotating fluids. Cambridge University Press,
1968.

[36] R. Grimshaw. Internal solitary waves. In R. Grimshaw, editor, Environ-
mental stratified flows, pages 1–27. Kluwer, 2001.

[37] R. Grimshaw, L. A. Ostrovsky, V. I. Shrira, and Yu. A. Stepanyants. Long
nonlinear surface and internal gravity waves in a rotating ocean. Surv.
Geophys., 19:289–338, 1998.

[38] R. H. J. Grimshaw. A note on the β-plane approximation. Tellus,
27(4):351–356, 1975.

[39] P. Groen. The Waters of the Sea. Van Nostrand, London, 1967.

[40] K. R. Helfrich and W. K. Melville. Long nonlinear internal waves. Annu.
Rev. Fluid Mech., 38:395–425, 2006.

[41] B. Helland-Hansen and F. Nansen. The Norwegian Sea – its Physical
Oceanography based upon the Norwegian researches 1900-1904. (Report
on Norwegian Fishery and Marine Investigations, Vol. II, No. 2). Det
Mallingske Bogtrykkeri, Kristiania, 1909.

[42] D. Holliday and M. E. McIntyre. On potential energy density in an incom-
pressible, stratified fluid. J. Fluid Mech., 107:221–225, 1981.

[43] P. M. Holligan, R. D. Pingree, and G. T. Mardell. Ocean solitons, nutrient
pulses and phytoplankton growth. Nature, 314:348–350, 1985.

[44] E. L. Ince. Ordinary differential equations. Dover, 1956.

203



[45] T. Kakutani and N. Yamasaki. Solitary waves on a two-layer fluid. J. Phys.
Soc. Jap., 45(2):674–679, 1978.

[46] D. K. Kondepudi and I. Prigogine. Modern thermodynamics: from heat
engines to dissipative structures. Wiley, 1998.

[47] W. Krauss. Methoden und Ergebnisse der theoretischen Ozeanographie II:
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