What is Computer Science?

An Information Security Perspective

Daniel Page) and Nigel P. Smart (

git # b4055dd3 @ 2019-05-13

mailto:dan@phoo.org
mailto:csnps@bristol.ac.uk

© Daniel Page (dan@phoo.org) and Nigel P. Smart (csnps@bristol.ac.uk)

git # b4055dd3 @ 2019-05-13

mailto:dan@phoo.org
mailto:csnps@bristol.ac.uk

© Daniel Page (dan@phoo.org) and Nigel P. Smart (csnps@bristol.ac.uk)

GENERATION AND TESTING OF
RANDOM NUMBERS

It might seem unlikely, but there are some really great stories about randomness [15]. The way Michael Larson
used knowledge of the lack of randomness on the US game show Press Your Luck in 1984, for example, is so
great that it warrants being made into a film of some sort [13]. Part of the game involved the players moving
around an eighteen square board. The squares were either empty, contained a prize or contained the so-called
Whammy character: landing on a prize square won you that prize, landing on the Whammy square lost all
prizes won so far.

To make things exciting, the contents of the squares was updated every second or so in a “random” manner.
Except it was not random at all. Larson video taped Press Your Luck episodes and played them back frame-by-
frame. Then, by writing down the sequence of board states, he discovered that the board in fact cycled through
just five simple patterns. Better still, during a given turn there were some squares that would never contain
the Whammy. So armed with this knowledge, Larson reasoned that he could carry on playing without really
gambling at all: provided he could remember the patterns and which turn he was on, he could always avoid the
Whammy. Larson went on the game show and stayed on so long it had to be split into multiple episodes; the
look on the presenters face as he consistently avoided the Whammy with seemingly steel-eyed bravery must
have been priceless. Well, not exactly priceless: Larson walked off with $110,000 after lawyers from the TV
station conceded that he had not cheated. You can still find video of the now legendary episodes on YouTube:

http://www.youtube.com/results?search_query=Press+Your+Luck

I hear a more mundane story much more often: my mother has a love/hate relationship with the UK National
Lottery game Lotto [11]. The idea is that she picks six numbers between 1 and 49 and then every Saturday,
a machine selects six numbers at random. If her numbers match the ones the machine picked, she wins
something: typically the more numbers that match, the more money she gets. But invariably the numbers do
not match and she is left to contemplate the injustice of it all. This takes the form of a ritual tirade against the
machine: “it’s a fix, having 21 and 22 cannot be random”.

Examples like this beg some questions about what random numbers are and how we generate them. These
are quite important questions because random numbers are used in lots of different areas of Computer Science.
A good example is that the security of many cryptographic schemes relies on the fact that one can make random
choices and choose random numbers. For example, it is common to assume that any key we choose is done so
in a random way; if there was some way to predict how we selected it, the key would be more easily guessed
and security more easily breached. Setting a password to “X4$ia0'l” is arguably better than “password” for
example!

1 What is randomness?
The term entropy is often used by scientists to describe disorder: if a physical system has high entropy it

behaves in an unpredictable way. For example as you heat up a gas, predicting how it will behave starts to
become harder than if it is in a more stable, cooled state. When we say something is random we mean more or

git # b4055dd3 @ 2019-05-13 3

mailto:dan@phoo.org
mailto:csnps@bristol.ac.uk
http://www.youtube.com/results?search_query=Press+Your+Luck

© Daniel Page (dan@phoo.org) and Nigel P. Smart (csnps@bristol.ac.uk)

less the same thing: the behaviour we observe follows no deterministic or predictable pattern. As a result we
can not write an algorithm to describe it; instead we have to describe it in terms of probability, or chance.

Randomness is quite an abstract concept. To make things more concrete, we will talk exclusively about
sequences of random numbers. Imagine we want to generate a sequence of such numbers, e.g.,

X =(0,1,0,1).

The idea is to use coin flips (or tosses) [3]: in order to generate each X;, we first throw the coin in the air then
and inspect which side it lands on. A real coin has two sides, normally called the tails side and heads side,
but we can make life easier by using the number 0 with tails and 1 with heads; we also rule out any freak
occurances such as the coin landing on anything other than one of the sides (e.g., on the edge). As a result,
we can say each coin flip makes a random selection from the set S = {0,1}. Clearly we cannot write down an
algorithm to describe how the coin behaves, so instead we use a probability distribution:

if x =0 i.e., the coin flip was a tail

NI=

P(x) =
ifx =1 i.e., the coin flip was a head

NI—=

Looking at P, for a given output x we can say what the probability of selecting x from S is. In this case, we
have a special name for the probability distribution: when the probability for each x is the same we say the
distribution is uniform.

The subject of randomness is one where it is quite difficult to prove things categorically. More usually, we
define randomness in terms of properties which we can measure. Typically we generate a sequence of random
numbers and then use statistical tests of randomness [17] on the sequence. For example we might say that a
sequence contains some feature that mean it is not random; we discuss two such features below.

1.1 Biased versus unbiased

Imagine we get a friend to flip a coin eight times, resulting in the sequence
Y=<1,11,1,1,1,1,0).

We would have to ask ourselves whether or not this friend is cheating somehow: intuitively, we might say that
the coin is biased. On the other hand, this sequence is just as probable as any other. The probability of getting
Yis

11111111 1 1

2 2 22222 2 287 25

which is the same as any other sequence of the same length. So given Y is just as likely to occur as any other
sequence, why would we conclude that the coin is unfair?
In more general terms, if we select uniformly at random from a set of m numbers the probability of selecting

a number x is ,
P(x) = —.
()=

If we repeat the selection n times, we would expect each of the numbers to appear roughly I times on average. If
some number x is selected significantly more or less than . times, we could conclude that the selection process
is not random at all: it is biased in favour or against x somehow. This means that there exists a number x with
P(x) # 1, but we expected that for all x we would have P(x) = L. This is another way of saying the selection
process is biased, i.e., P is not uniform.

The “on average” part in the previous paragraph is important in the sense that we need 7 to be large before
we start talking about average behaviour. For example if we flip a coin twice and get 1 twice, we cannot
conclude that the coin is unfair because we do not have enough evidence. If we flip a coin eight hundred times
and get 1 seven hundred times however, we can be more confident that something fishy is going on.

Looking again at the sequence Y, we can start to see why our friend might be cheating. We are selecting
from m = 2 numbers and have repeated the selection n = 8 times so we would expect each number to occur
§ = 4 times. But they do not: we get 1 seven times and 0 just once, so we could conclude that for this limited
sample the coin is biased toward 1 and is therefore unfair. Rather than being uniform, based on having seen Y
we might say the behaviour of the coin is better described by

ifx=0

o=

P(x) =
ifx=1

®IN

Maybe we should get some more trustworthy friends!

git # b4055dd3 @ 2019-05-13 4

mailto:dan@phoo.org
mailto:csnps@bristol.ac.uk

© Daniel Page (dan@phoo.org) and Nigel P. Smart (csnps@bristol.ac.uk)

You can get some statistics about the UK National Lottery here

Implement

(task #1) http://www.lottery.co.uk/statistics/

Based on the discussion above, i.e., explaining your answer in terms of Mathematics, proba-
© bility in particular, is it biased or not?

1.2 Predictable versus unpredictable

Now imagine we get a different friend to flip another coin eight times, and that this time the resulting sequence
is
Z=(,0,1,0,1,0,1,0).

The probability of getting this sequence is still
11111111 1 1

22 22222 2 287 25

so again we cannot really infer anything from it occurring rather than some other sequence. Also, we can see
that the coin is not biased in the same way the other one was: we get 1 four times and 0 four times so the coin is
not biased toward either case. On the other hand, we might intuitively say the new coin is still unfair because
there is a clear pattern: if a given flip of the coin gives 1, there seems a strong chance the next flip will give 0. If
we believe the pattern will continue to hold, this means we can predict the next result with some confidence.

You can think of this in terms of conditional probability [2]: the result of a given coin flip should not
depend on anything other than the probability distribution. It especially should not depend on the results from
previous coin flips: imagine you flip the coin ten times and every time you get 1. We might say a 0 was “due”.
But looking at our description of the behaviour, it clearly is not: the probability of getting a 0 on the eleventh
flip is still 1 and the probability of getting a 1 is still 1. The tendency for people to ignore this is sometimes
called the gambler’s fallacy [6]. In our case, we can see that the result of the i-th coin flip probably is dependent
on the (i — 1)-th coin flip. For example if Z;_; = 1 then it is more probable that Z; = 0 than Z; = 1. Therefore we
could conclude that the coin behaviour is not as well described by the probability distribution as expected.

There is another, perhaps neater way to think about this. Imagine we want to take Z and compress it by
coming up with a shorter way to describe the sequence, just as we did in Chapter 2. For example, imagine we
say that the symbol * represents the sequence (1,0). We might then describe Z as the sequence

Z = {3k, %, %, %).

Why does this work? Well, we know what * “means” so we can take Z and reconstruct Z by just replacing
each occurrence of x with (1,0). But the way we describe Z is shorter than the way we describe Z (even if
we include the definition of x), so in some sense we have used the fact there is a “pattern” to compress the
information. We have glossed over a lot of the detail, but there is a fancy name for this general concept: we
call it Kolmogorov-Chaitin complexity [8]. Very roughly, this concept says that the more we can compress
a sequence the less random it must be; equivalently, the more we can compress a sequence the more usable
structure there must be in the sequence.

1.3 Random versus arbitrary

There used to be a joke about messages from computers that would prompt the user to “press any key” [1]; the
joke was that users would find the space key and the escape key, but could not find the “any” key. It seems
debatable whether this was ever actually funny, but looking at things more closely highlights an important
point: the message did not read “press a random key”, the choice of key does not matter so really what we
mean is “press an arbitrary key”.

The difference between arbitrary and random is sometimes important however. For example, many files
used within a UNIX-based operating system start with a magic number [10] which allows us to easily identify
their type; if the file starts with the number 8993 this tells us that we can execute it for example. In a sense the
choice of 8993 is arbitrary; there is no real reason to choose 8993 rather than say 1234 or 9999, we just needed
“any” number. In this sort of situation, it is tempting to just select the numbers at random.

Test this claim using BASH. Remember, the od command can display the content of files in
Implement) various ways: the option -tux1 will print the content as a sequence of hexadecimal bytes

(task #2) for instance. If you can locate some different file types (e.g., JPEG images, PDF documents,
BASH scripts, Java class files and so on) you should be able to see the magic number in the
first few bytes (the file command uses this information to guess the file type).

git # b4055dd3 @ 2019-05-13 5

mailto:dan@phoo.org
mailto:csnps@bristol.ac.uk
http://www.lottery.co.uk/statistics/

© Daniel Page (dan@phoo.org) and Nigel P. Smart (csnps@bristol.ac.uk)

In cryptography, this approach can have some disadvantages. The most famous example is illustrated by the
Data Encryption Standard (DES) [4] which was designed and standardised in the US in the late 1970s. DES
is a block cipher; it encrypts messages. One of the components in the algorithm is a large table called the
S-box whose contents is chosen carefully but somewhat arbitrarily. The problem is, there was no explanation
of how the content was generated. People began to become suspicious that the content had been chosen in a
special way so that, for example, the US government could decrypt their messages. In turned out that the US
government had not selected the S-box content either randomly or arbitrarily. They had actually been selected
to prevent an attack which, at the time, only the US governments cryptographers knew about. Even so, the
lack of openness over the design choices for the S-box sparked a trend toward use of so-called “nothing up my
sleeve” numbers [12]. This idea is used when we want “any” number, but one which we can prove has not
been selected with special properties. For example, the number = might not be a good random number, but
if all you need is an arbitrary number then it is probably a good choice. For example, people would be hard
pushed to prove your choice of 7 was underhand: it cannot have been generated in some special way.

2 Real randomness

2.1 Generating randomness

When we talk about real random numbers, we typically mean numbers that come from some physical process.
The idea is that we cannot control, or to some extent understand, how these processes might work. In other
words, we cannot write down an algorithm that describes them. Radioactive decay is a good candidate. The
idea is that an unstable atom will decay by emitting energy in the form of radiation; we know the average
rate at which this might happen, but when exactly a given atom will decay is unpredictable. So we could
generate random numbers by simply taking a measuring device such as a Geiger counter [7] and have it tell
us whenever radioactive decay is detected.

Another candidate is atmospheric noise. In the same way as radioactive decay, it is difficult to predict the
level and characteristics of the noise around us. Sampling such noise using even a basic radio or microphone
can give quite effective results: Mads Haahr, a lecturer at Trinity College, Dublin has rigged up such a system
to the Internet at

http://www.random.org/

The web-site offers a neat interface which we can easily use from BASH by employing the wget command.
The idea is to issue a command that mimics what happens when we type a URL into the address bar of a
web-browser:

<tegers/?num=100&min=0&max=255&col=5&base=10&format=plain&rnd=new’
243 161 55 11 19

205 21 115 159 68
1 236 213 147 155
31 10 84 94 14
186 168 43 170 238
180 84 249 155 64
183 49 77 215 157
227 86 249 137 239
211 163 103 28 188
134 34 43 152 123
202 8 218 185 222
183 236 79 53 30
195 103 227 236 2
62 254 148 24 179
44 204 7 177 138
164 60 129 219 44
230 174 99 210 84
147 60 222 148 12
27 148 169 168 205
121 70 72 177 210
bash$

Of course having a Geiger counter attached to every computer is not ideal, and neither is having to access a
remote computer over the Internet every time we need to generate random numbers. Fortunately there are
lots of devices already connected to your local computer which could do a similar job. Most operating systems
have a mechanism for collecting together random events from such devices into what is called an entropy
pool [5]. You can think of the entropy pool as a sequence of numbers; the idea is that each time a random event
happens, we mix it into the entropy pool by adding some numerical representation of the event onto the end
of the sequence. You could imagine that every time someone moves the mouse, the computer might add the
mouse speed and direction to the sequence. Then, when someone or something needs to generate a random
number, we take one from the start of the sequence.

UNIX systems commonly have two types of entropy pool which they let users access via the /dev/random
and /dev/urandonm files. Except the files are not really files at all: when we read from them, behind the scenes

git # b4055dd3 @ 2019-05-13 6

mailto:dan@phoo.org
mailto:csnps@bristol.ac.uk
http://www.random.org/

© Daniel Page (dan@phoo.org) and Nigel P. Smart (csnps@bristol.ac.uk)

we are taking random numbers from an entropy pool. The difference between the two is that /dev/random
will wait for enough entropy to exist before allowing us to read from it, while /dev/urandom will let us read
whenever we want. You can see this as a choice between the quality of the numbers we read and the length of
time required to read them. On one hand, if there have not been enough random events to fill the entropy pool
it does not make sense to start taking numbers from it; the numbers we read from /dev/random should be more
random. On the other hand, waiting until enough random events happen might take a long time; although
they might be less random, we can read numbers /dev/urandom with less of a delay.
Again, we can easily read some numbers from /dev/urandom using BASH:

bash$ cat /dev/urandom | od -Ad -tul -w5 -N50 | cut -c 9-
21 150 7 129 204
231 101 44 9 33
244 130 163 100 94
62 12 192 130 148
82 36 17 243 23
39 26 76 22 177
158 30 206 110 194
119 46 15 133 85
154 176 251 151 115
40 120 18 131 48

That is quite a horrible looking command, so it makes sense to look at what is going on in more detail. Basically,
we take /dev/urandom and pass it through a command called od which is controlled using a number of options:
we tell od to give us fifty bytes of the input using -N50, to format the output in five columns using -w5, and
to format the content as unsigned decimal integers in the range 0. ..255 inclusive using -t with the format ul.
Finally we pass the output of od through cut to remove some information we do not need, i.e., to get just the
random numbers.

2.2 Testing randomness

So we can generate random numbers, but can we apply similar statistical tests as those discussed earlier to
show they are random? As an example, we will look at the tests for bias and predictability; we will compare the
real random numbers against English text, which is not random at all. Again we will use Project Gutenberg as
a source of text:

http://www.gutenberg.org/

For the sake of argument, we fetch the text for War and Peace by Tolstoy (which is quite large) and save it as the
file A. txt. Using the du command we can see that it weighs in at roughly 3MB:

<A.txt 'http://www.gutenberg.org/files/2600/2600.txt"'
bash$ du -b A.txt

0 A.txt

bash$

Next we take the same amount of random data from /dev/urandom (using du and cut to provide the number
of bytes as an option for head), then save it as the binary file B.bin as follows:

bash$ cat /dev/urandom | head -c “du -b A.txt | cut -f 1° > B.bin
bash$

Remember that testing for bias in A. txt and B.bin basically means testing that each possible number we could
select has the same probability of selection. The test will be performed in two steps:

1. Take the input file and chop it up into decimal numbers in the range 0. ..255. The output will need some
cleaning up, but the end result will essentially be a long sequence of decimal numbers (one per-line) that

represents the file content.

2. Take the sequence and count how many times each number occurs in it.

There are two main things to notice in the output for A. txt:

bash$ cat A.txt | od -Ad -tul -wl -v | cut -c 9- | grep [0-9]* > D.txt
bash$ cat D.txt | tr -d [:blank:] | grep -v | sort -n | uniq -c | paste -s
Usage: grep [OPTION]... PATTERN [FILE]...

Try 'grep --help' for more information.

bash$

git # b4055dd3 @ 2019-05-13 7

mailto:dan@phoo.org
mailto:csnps@bristol.ac.uk
http://www.gutenberg.org/

© Daniel Page (dan@phoo.org) and Nigel P. Smart (csnps@bristol.ac.uk)

First, some numbers do not appear at all; for example the output starts at 10 so clearly 0...9 appear zero
times. Second, among the numbers that do appear, some appear much more often than others. For example
the number 32 appears many times whereas the number 90 appears fewer times. The reason for this is simple.
Since A. txt is an ASCII text file, the numbers will be biased toward those which relate to printable ASCII codes.
Looking back to Chapter 5, we find that 32 is the ASCII code for SPC, the characters ‘a’...‘z" have ASCII codes
97...122, and ASCII codes 10 and 13 produce a new line; unsurprisingly these all appear very often! What
about B.bin?

bash$ cat B.bin | od -Ad -tul -wl -v | cut -c 9- | grep [0-9]* > D.txt
bash$ cat D.txt | tr -d [:blank:] | grep -v | sort -n | uniq -c | paste -s
Usage: grep [OPTION]... PATTERN [FILE]...

Try 'grep --help' for more information.

bash$

The difference is quite obvious: all numbers appear in the output and do so roughly 12600 times on average.
There are a few cases which vary a little, but basically we can conclude that there is no bias in B.bin to the
same extent there was in A.txt. We might use some further statistics to back this up, for example if we were
to measure the standard deviation of B.bin it would not be very large.

Measuring predictability is a little more tricky. One thing we could do quite easily is to approximate the
Kolmogorov-Chaitin complexity by seeing how easy it is to compress the file content. The command bzip2
performs a full blown version of the compression ideas we discussed in Chapter 2. bzip2 processes an input
file to identify patters and replaces them with shorter symbols to produce a compressed output file. It needs
to define what those symbols mean so it adds a dictionary to the start of the compressed file so that we can
decompress it later if we want to. Using bzip2 to compress A. txt and B.bin is simple; to be fair, we instruct
bzip2 to make the best effort it can at compressing the files rather than worrying about producing the result
quickly:

bash$ bzip2 -c -9 A.txt > A.txt.bz2
bash$ bzip2 -c -9 B.bin > B.bin.bz2
bash$

We then inspect how big the resulting files are, again using the du command we used earlier:

bash$ du -b A.txt A.txt.bz2

0 A.txt

14 A.txt.bz2

bash$ du -b B.bin B.bin.bz2
0 B.bin

14 B.bin.bz2

bash$

Inspecting the results confirms more or less what we expected: the War and Peace text A.txt was compressed
into A.txt.bz2, which is roughly a quarter of the size. This is what we would expect since A.txt represents
English text; for example the word “and” probably appears very often so we might imagine replacing each
occurrence with a one character symbol. However, the randomness produced by /dev/urandom in B.bin is
processed by bzip2 to produce the file B.bin.bz2. In this case the output of /dev/urandom is so hard to
compress that the overhead of adding the dictionary to the compressed file has meant the end result is larger
than what we started with!

Maybe bzip?2 is just not very good at compressing files (or at least this file? To test this, we can try the same
thing with some other compression tools like gzip and get similar results:

bash$ gzip -c -9 A.txt > A.txt.gz
bash$ gzip -c -9 B.bin > B.bin.gz
bash$ du -b A.txt A.txt.gz

0 A.txt

26 A.txt.gz

bash$ du -b B.bin B.bin.gz
0 B.bin

26 B.bin.gz

bash$

Or perhaps using the zip compression method:

bash$ zip -q -9 A.zip A.txt
bash$ zip -q -9 B.zip B.bin
bash$ du -b A.txt A.zip

0 A.txt

1660 A.zip

bash$ du -b B.bin B.zip
0 B.bin

160 B.zip

bash$

Of course, this still does not prove anything; perhaps bzip2, gzip and zip are all missing some obvious way
to compress the files. But basically we conclude from our tests that A. txt is quite easy to compress whereas

git # b4055dd3 @ 2019-05-13 8

mailto:dan@phoo.org
mailto:csnps@bristol.ac.uk

© Daniel Page (dan@phoo.org) and Nigel P. Smart (csnps@bristol.ac.uk)

B.bin is at least harder to compress. This means the Kolmogorov-Chaitin complexity of A. txt is quite low:
we can make a shorter description of A.txt, so it is not very random. On the other hand, for B.bin the
Kolmogorov-Chaitin complexity is higher: it is not as easy to describe B.bin in a shorter way, so in a sense it
is more random.

Using the commands described above for compressing files, set yourself a challenge: what is
the

1. largest file you can create that can be compressed into the smallest size, and

Implement

(task #3) 2. smallest file you can create that can be compressed into the largest size.

Q. Put more precisely, imagine the original and compressed files have sizes x and y bytes
respectively: you are trying to maximises or minimise the compression ratio x/y. In each
case, explain what your strategy for constructing the original file is, i.e., what features does it
have that make it a good choice?

3 Fake randomness

3.1 Generating randomness

The problem with real random numbers is that sometimes they are too random for our purposes. Yes, really:
imagine we want to simulate a scientific experiment using a computer; this is a good idea if the real experiment
would be impractical. For example, maybe we would like to experiment with things that expand very fast
and generate large amounts of heat; usually we call these things explosions and doing real experiments can
be quite hazardous! So instead, we simulate the explosion on a computer. On one hand it is quite possible
we would want a source of random numbers to model parts of the experiment, for example randomness in
atomic-level behaviour. On the other hand it would be a good idea if we could repeat the simulation and get
the same results. Using real random numbers is not ideal because of the second reason: we cannot reproduce
the real randomness so we would need to generate all the numbers, store them somewhere and then look them
up if we needed them again.

A solution is to use pseudo-random numbers [14]. Whereas real randomness cannot be described using
an algorithm, pseudo-randomness can. The idea is to think of the pseudo-random numbers we generate as a
sequence called R. We start by specifying the first element in the sequence Ry, this is called the seed. Then,
to generate the next element R; we apply the algorithm to compute it for us; we can perform this over and
over again so that more generally if we have R;, the i-th element in the sequence, we can generate the next
element R;;;. The thing we need to be very careful about is that the sequence we generate still passes the tests
for randomness we looked at previously: although pseudo-random numbers are in a sense fake, they should
still satisfy our definition of what randomness looks like. If we are successful, reproducing pseudo-random
numbers becomes a matter of using the algorithm over and over again rather than storing a large amount of
real random numbers: we have traded more computation for less storage.

A Linear Congruence Generator (LCG) is one way to generate pseudo-random numbers [9]. The algorithm
we use to compute the next element of the sequence given the current element is

Rivi=a-Ri+c (mod p).

This means that we take R;, multiply it by some number 4, and finally add another number c: the result R;,; is
produced by using modular arithmetic where the modulus we are using is p. Imagine we selecta =5,b =1,
p = 8 and set the seed value Ry = 2. We can apply the LCG equation to generate successive elements in the
sequence

Ry = 2
Ry = 5:Ry+1mod8 = 11mod8 = 3
R, = 5 Ri+1mod8 = 16mod8 = 0
Ry = 5-R2+11’1’10d8 = Imod8 = 1
Ry = 5R3+1mod8 = 6mod8 = 6
Rs = 5-R4+1mod8 = 31mod8 = 7
Re = 5Rs+1mod8 = 36mod8 = 4
R; = 5-Rg+1mod8 = 2Imod8 = 5
Rg = 5:Ry+1mod8 = 26mod8 = 2

5 3

Ry = -R8+1m0d8 = 11lmod8 =

git # b4055dd3 @ 2019-05-13 9

mailto:dan@phoo.org
mailto:csnps@bristol.ac.uk

© Daniel Page (dan@phoo.org) and Nigel P. Smart (csnps@bristol.ac.uk)

Think back to our example application of pseudo-randomness where we wanted to use a computer to simulate
something, and imagine we want to start the simulation half way through. Normally this would be tricky:
we would first have to start our random number generator at the beginning using the seed element, and then
repeatedly compute the next element until we got to the point we actually wanted to start. Depending on
where this is, we might waste quite a bit of time just finding the R; we want.

Research The LCG is just one example of a Pseudo-Random Number Generator (PRNG). Find out
(task #4) about at least one other type, including how it works; compare it with the LCG in terms of any
advantages and disadvantages each might offer given a particular context or application.

(®)
o

The LCG has a nice property which allows us to avoid this wasted time by skipping ahead in the sequence. We
already have a way to skip ahead by one element, namely

Rii=a-R;+c (mod P)

What if we take R;;1 and apply the equation again? We would skip ahead two elements, and the result would
look a bit like
Riyp=a-S+c (mod p).

where S = a - R; + ¢; writing things out fully gives a way to go straight from R; to R;;»
Ripo=a-(@-Ri+c)+c (mod p).
Pulling the same trick again we can compute what the result of skipping ahead three elements would be
Riz=a-T+c (mod p).

where T = a- (a- R; + c) + ¢; things are starting to get a bit of a mess, but we can again write things out to get
straight from R; to Ri.3
Riz=a-(a-(a-Ri+c)+c)+c (mod p).

The aim of all this is not to give you a headache, but rather to show that there is a pattern emerging: if we start
at R; then to skip ahead k elements means that first we multiply R; by a a total of k times, but also add c a total
of k times as we go. The problem is, the multiplications by 2 and additions of ¢ are sort of mixed up. We can
unravel the mess by rewriting things a bit

Riz = a-@ @R +c)+c)+c (mod p)
= a-@ -Ri+a-c+c)+c (mod p)
= a® - Ri+a*-c+a-c+c (mod p)

The important thing to notice from the above is that given R; we just need to compute two values which we
can write down as

Ay = df

Ck) = a“lec+ad2.c+ - +a®-c+a-c+c

and then we can use them to compute
Risk = A(k) - R; + C(k) (mod p).
If we plug in the specific case of k = 3 the terms are as we expect, i.e.

AB) = a
CB) = a*-c+a-c+c

which gives
Ris =a> Ri+a*-c+a-c+c.

The great thing is, since a and ¢ are constant values, so if we know k before we start then we can also compute
A(k) and C(k) before we start. But what if we do not know k before we start? What is the best way to compute
A(k) and C(k)? Certainly we want to do this in an inexpensive way, otherwise we might as well perform k steps,
skipping ahead 1 element each time.

The A(k) part is quite easy, but the C(k) part looks much less pleasant. We have got an expression of the
form

k-1

adlc 4+ 42

c+-a’-c+a-c+c

git # b4055dd3 @ 2019-05-13 10

mailto:dan@phoo.org
mailto:csnps@bristol.ac.uk

© Daniel Page (dan@phoo.org) and Nigel P. Smart (csnps@bristol.ac.uk)

to compute. This looks bad because for a large value of k, the number of additions and multiplications we need
to do is also quite large. However, we are saved because this large expression is actually the same as the much
nicer looking
@-1)-c
a-1 -~
To see why, multiply the first expression by (a — 1), to obtain

k-2

@' c+d?cr o vacto)(a-1)=@ " c+d e+’ c+a-c+c)-a

@ c+d e+ a2 cHa-c+0)

=@ c+adVc+d e+ +a®-cta-o)
@V c+d? e+ +a2cta-c+o)

=d.c-c

=@-1)-c

Now dividing both sides by (a2 — 1) we obtain

k-1

k
a‘—1)-c
a1+ a2 —() .

C+-ta’cHa-ctc=
a-1

This is great news because we already have to compute a* in order to get A(k), so given thata — 1 is also just a
constant value we only need to do one subtraction, one multiplication and one division to get C(k) rather than
the mass of multiplications and additions that we started with. In other words we have

(AR —1)-c

-1 ’
Computing the sequence an LCG produces by hand is somewhat tedious, so how might we automate the
process? One way would be to write a dedicated program for the task; since we want to focus on the
concepts rather than teach programming, we will instead try to automate the process using only existing BASH
commands. Our approach is to write a small BASH script [16] which will generate 1 elements of the sequence
given Ry, a, c and p. You can think of the script as creating a new command which we can use as follows:

C(k) =

bash$./P.sh nR a cp

In other words it will produce the output of the LCG for values of i in the range 1,2, ..., n, starting at position
Ro. We create the script, which we call P. sh, as follows:

bash$ cat > P.sh
#!/bin/bash

R=

for ((1i=0; i< ;1i+=1)) ; do
echo ""
R=$[C C * >+)% 1

done

bash$ chmod 775 P.sh

bash$

Note that cat is used to capture input from the user and save it into a file called P.sh'. The permissions of
P.sh are set using chmod so we can use it as a script (rather than just a normal file). For example, to replicate
the sequence we looked at above, we might run P. sh as follows:

bash$./P.sh 100 2 5 1 8 | paste -s -d ' '
./P.sh: line 5: ((: i < : syntax error: operand expected (error token is "< ")

bash$

where we read ${1} as 100 meaning n = 100, ${2} as 2 meaning Ry = 2, ${3} as 5 meaning a = 5, ${4} as 1
meaning ¢ = 1, and finally ${5} as 8 meaning p = 8.

Although overall it might seem unfamiliar, each step of the script is easy to explain: you can think of it as
an algorithm, but written in a slightly different way. First we assign R to ${2} which is the second option given
to P.sh on the command line (i.e., the seed). Then we use a loop to iterate over a block of statements ${1}
times, where ${1} is the first option given to P.sh on the command line (i.e., the value 7). The block does two
things. First it writes the current value of R (i.e., the value R;) to standard output using the echo command,
then updates R to the next value (i.e., R;+1) using the method we have already seen. Note that ${3}, ${4} and
${5} are the third, forth and five options given to P. sh on the command line (i.e., the values of 4, c and p).

1 Using cat here is a bit awkward: we do so simply to show this example within the same BASH-based setting as the others. An easier
way to create P.sh might of course be to use a text editor.

git # b4055dd3 @ 2019-05-13 11

mailto:dan@phoo.org
mailto:csnps@bristol.ac.uk

© Daniel Page (dan@phoo.org) and Nigel P. Smart (csnps@bristol.ac.uk)

3.2 Testing randomness

Hang on a second: that sequence we just generated looks like it just repeats over and over again! We call the
number of elements before this repetition occurs the period of the sequence and in fact, the case where the
period is equal to p is the best we can hope for. Since we are computing elements modulo p there are only p
possibilities, i.e., numbers in the range 0...p — 1. So in our case, after the eighth element the sequence must
repeat because the next element must be one we have already seen. It turns out that depending on the choices
of a, c and p things can get even worse:

bash$./P.sh 100 2 ® ® 8 | paste -s -d ' '
./P.sh: line 5: ((: i < : syntax error: operand expected (error token is "< ")

bash$./P.sh 100 2 1 ® 8 | paste -s -d ' '
./P.sh: line 5: ((: i < : syntax error: operand expected (error token is "< ")

bash$./P.sh 100 2 ® 1 8 | paste -s -d ' '
./P.sh: line 5: ((: i < : syntax error: operand expected (error token is "< ")

bash$./P.sh 100 2 1 1 8 | paste -s -d ' '
./P.sh: line 5: ((: i < : syntax error: operand expected (error token is "< ")

bash$./P.sh 100 2 2 2 8 | paste -s -d ' '
./P.sh: line 5: ((: i < : syntax error: operand expected (error token is "< ")

bash$./P.sh 100 0 2 1 10 | paste -s -d ' '
./P.sh: line 5: ((: i < : syntax error: operand expected (error token is "< ")

bash$

The first four cases are a bit dumb: it we select 2 or ¢ as zero for example, we do not really update R; to get a
new R;,1 as we would like. The fifth and sixth cases are a bit more subtle however. In the fifth case the period
is one: we always get 6 from the generator after the seed even though, at face value, our choices of 2, c and p are
not very special. In the sixth case a slightly better situation occurs: the period is four which is less disastrous,
but also less than the value of ten which we would hope to get given the choice of p. Hopefully it is clear that
none of these cases are attractive: if the sequence repeats itself after p elements (or less) and we generate more
than that many elements, then there will be a pattern that we can use to compress the sequence and it does not
pass our tests for randomness any more. So in some sense, the smaller the period the less randomness there is
for us to use.

We can use some rules of thumb to avoid these problems. An often used approach is to select the seed
element Ry as the current time and date; this ensures that we get a different starting point (more or less) every
time we generate the sequence. We also need to select p so that it is large enough that there would not be any
(or at least very few) cycles. Finally, we should select a and c in such a way that the sequence we generate is
not trivially bad (like those above). Putting all this together we can run P. sh as follows for example:

bash$./P.sh 100 “date +'%Y%m%d'"~ 16807 ® 2147483647 | paste -s -d ' '
./P.sh: line 5: ((: i < : syntax error: operand expected (error token is "< ")

bash$

and get an output which reassuringly looks like nonsense!

Here we selected p = 231 — 1 = 2147483647 so we would expect there to be no repetitions in the sequence
unless we generated a huge amount of output. But how can we be sure that what we have generated passes
our tests for randomness? The easy answer to this is to actually run those tests. To do this we need to update
our script a little. We create the new script, which we call Q. sh, as follows:

bash$ cat > Q.sh
#!/bin/bash

R=

for ((i=0; i< ; i+=1)) ; do
r="printf '\%030' $[% 256 1"
printf ""
R=$[C C *)+)% 1

done

bash$ chmod 775 Q.sh

bash$

The new Q. sh script is used in exactly the same way as P. sh. There are two main differences however. Firstly,
we do not write each R; exactly, but instead compute r; = R; mod 256. So basically, the LCG is generating the

git # b4055dd3 @ 2019-05-13 12

mailto:dan@phoo.org
mailto:csnps@bristol.ac.uk

© Daniel Page (dan@phoo.org) and Nigel P. Smart (csnps@bristol.ac.uk)

sequence R which looks like

Ro = 461110000
R; = 16807 - Ry + 0 mod 2147483647 = 7749875770000 mod 2147483647 = 1754771624
R, = 16807 - Ry + 0 mod 2147483647 = 29492446684568 mod 2147483647 = 1053760317
Rs = 16807 - Ry + 0 mod 2147483647 = 17710549647819 mod 2147483647 = 252011010
Ry = 16807 - Rz + 0 mod 2147483647 = 4235549045070 mod 2147483647 = 711293186
Rs = 16807 - Ry + 0 mod 2147483647 = 11954704577102 mod 2147483647 = 1810597900
R¢ = 16807 - Rs + 0 mod 2147483647 = 30430718905300 mod 2147483647 = 875627310
R; = 16807 - Rg + 0 mod 2147483647 = 14716668199170 mod 2147483647 = 2110249926
Rg = 16807 - Ry + 0 mod 2147483647 = 35466970506282 mod 2147483647 = 1278076077

R9 = 16807 - Rg + 0 mod 2147483647 = 21480624626139 mod 2147483647 = 1493188845

but we are actually using

ro = Romod256 = 461110000 mod 256 = 240
r1 = Rymod256 = 1754771624 mod 256 = 168
rn = Rpymod256 = 1053760317 mod 256 = 61
r3 = Rymod256 = 252011010 mod 256 = 2
ra = Rymod256 = 711293186 mod 256 = 2
r5 = Rsmod256 = 1810597900 mod 256 = 12
¢ = Remod256 = 875627310 mod 256 = 46
r7 = Rymod 256 = 2110249926 mod 256 = 198
rg = Rgmod256 = 1278076077 mod 256 = 173

r9 = Romod256 = 1493188845 mod 256 = 237

Secondly, we do not write each r; directly to standard output as text; instead we add some nasty looking
printf commands that result in the script writing binary output. The idea behind both alterations is that Q. sh
generates output in the same format as /dev/urandom (i.e., binary values in the range 0...255) so we can use
the same testing strategy.

Running Q. sh with the parameters above that we eventually decided on for P. sh, we can generate a binary
file called C.bin which is the same size as our original tests:

bash$./Q.sh 3288738 “date +'%Y%m%d'" 16807 ® 2147483647 > C.bin
./Q.sh: line 5: ((: i < : syntax error: operand expected (error token is "< ")
bash$

This takes quite a long time; BASH is not really intended for this sort of thing so our script is not exactly tuned
for performance. Even so, it gives us a result eventually and we can perform the same analysis as before:

bash$ cat C.bin | od -Ad -tul -wl -v | cut -c 9- | grep [0-9]* > D.txt
bash$ cat D.txt | tr -d [:blank:] | grep -v | sort -n | uniq -c | paste -s
Usage: grep [OPTION]... PATTERN [FILE]...

Try 'grep --help' for more information.

bash$

This looks good: in a similar way to B.bin, the output of /dev/urandom, we can see that every number is
appears in the output and do so roughly 12800 times on average. Again there are a few cases which vary a
little, but again we can conclude that there is no significant bias in C.bin. What about the test for predictability?
Running bzip2 again gives a positive result:

bash$ bzip2 -c -9 C.bin > C.bin.bz2
bash$ du -b C.bin C.bin.bz2

0 C.bin
14 C.bin.bz2
bash$

The randomness produced by the LCG in C.bin is processed by bzip2 to produce the file C.bin.bz2; again
slightly larger than the original. Aninteresting thing to note is that this proves bzip2 is not a perfect compression
algorithm: if it was perfect it would have detected that the file contained the output of our LCG, and then
compressed the entire file into a description of the LCG (i.e., Q. sh), plus the requisite parameters.

We know that the output of the LCG is only pseudo-random so what can we conclude? The first thing to
highlight repeats what we already said: we cannot really prove anything about randomness, we can just test
for features. In a way, this perhaps hints that our tests are not good enough to capture the difference between
real randomness and pseudo-randomness. The second thing is that we have to be pragmatic about what we

git # b4055dd3 @ 2019-05-13 13

mailto:dan@phoo.org
mailto:csnps@bristol.ac.uk

© Daniel Page (dan@phoo.org) and Nigel P. Smart (csnps@bristol.ac.uk)

actually want: the pseudo-random results look random, and we have shown that for our application their
generation is perhaps more attractive than using real randomness. So in a way, who cares? They might not
really be random but as long as we can test them and they are good enough for our purposes, then their use
should not be viewed as invalid.

References
[1] Wikipedia: Any key. http://en.wikipedia.org/wiki/Any_key (see p. 5).
[2] Wikipedia: Bayes theorem. http://en.wikipedia.org/wiki/Bayes’ _theorem (see p.5).
[3] Wikipedia: Coin flipping. http://en.wikipedia.org/wiki/Coin_flipping (see p. 4).
[4] Wikipedia: Data Encryption Standard (DES). http://en.wikipedia . org/wiki /Data_Encryption_
Standard (see p. 6).
[5] Wikipedia: /dev/random. http://en.wikipedia.org/wiki//dev/random (see p. 6).
[6] Wikipedia: Gambler’s fallacy. http://en.wikipedia.org/wiki/Gambler’s_fallacy (see p. 5).
[7] Wikipedia: Geiger counter. http://en.wikipedia.org/wiki/Geiger_counter (see p. 6).
[8] Wikipedia: Kolmogorov randomness. http://en.wikipedia.org/wiki/Kolmogorov_randomness (see p. 5).
[9] Wikipedia: Linear Congruence Generator (LCG). http://en.wikipedia.org/wiki/Linear_congruence_
generator (see p. 9).
[10] Wikipedia: Magic number. http://en.wikipedia.org/wiki/Magic_number_(programming) (see p.5).
[11] Wikipedia: National lottery. http://en.wikipedia.org/wiki/National_Lottery (see p. 3).
[12] Wikipedia: “Nothing up my sleeve” number. http://en.wikipedia.org/wiki/Nothing_up_my_sleeve_
number (see p. 6).
[13] Wikipedia: Press Your Luck. http://en.wikipedia.org/wiki/Press_Your_Luck (see p. 3).
[14] Wikipedia: Pseudo-randomness. http://en.wikipedia.org/wiki/Pseudo_random (see p. 9).
[15] Wikipedia: Randomness. http://en.wikipedia.org/wiki/Randomness (see p. 3).
[16] Wikipedia: Script. http://en.wikipedia.org/wiki/Script_(computing) (see p. 11).
[17] Wikipedia: Statistical randomness. http://en.wikipedia.org/wiki/Statistical_randomness (see p. 4).

git # b4055dd3 @ 2019-05-13 14

mailto:dan@phoo.org
mailto:csnps@bristol.ac.uk
http://en.wikipedia.org/wiki/Any_key
http://en.wikipedia.org/wiki/Bayes'_theorem
http://en.wikipedia.org/wiki/Coin_flipping
http://en.wikipedia.org/wiki/Data_Encryption_Standard
http://en.wikipedia.org/wiki/Data_Encryption_Standard
http://en.wikipedia.org/wiki//dev/random
http://en.wikipedia.org/wiki/Gambler's_fallacy
http://en.wikipedia.org/wiki/Geiger_counter
http://en.wikipedia.org/wiki/Kolmogorov_randomness
http://en.wikipedia.org/wiki/Linear_congruence_generator
http://en.wikipedia.org/wiki/Linear_congruence_generator
http://en.wikipedia.org/wiki/Magic_number_(programming)
http://en.wikipedia.org/wiki/National_Lottery
http://en.wikipedia.org/wiki/Nothing_up_my_sleeve_number
http://en.wikipedia.org/wiki/Nothing_up_my_sleeve_number
http://en.wikipedia.org/wiki/Press_Your_Luck
http://en.wikipedia.org/wiki/Pseudo_random
http://en.wikipedia.org/wiki/Randomness
http://en.wikipedia.org/wiki/Script_(computing)
http://en.wikipedia.org/wiki/Statistical_randomness

I have a question/comment/complaint for you. Any (positive or negative) feedback, experience or comment
is very welcome; this helps us to improve and extend the material in the most useful way.

However, keep in mind we are far from perfect; mistakes are of course possible, although hopefully rare.
Some cases are hard for us to check, and make your feedback even more valuable: for instance

1. minor variation in software versions can produce subtle differences in how some commands and
hence examples work, and

2. some examples download and use online resources, but web-sites change over time (or even might
differ depending on where you access them from) so might cause the example to fail.

Either way, if you spot a problem then let us know: we will try to explain and/or fix things as fast as we
can!

Can I use this material for something ? We are distributing these PDFs under the Creative Commons Attribution-
ShareAlike License (CC BY-SA)

This is a fancy way to say you can basically do whatever you want with them (i.e., use, copy and distribute
it however you see fit) as long as a) you correctly attribute the original source, and b) you distribute the
result under the same license.

Is there a printed version of this material I can buy? Yes: Springer have published selected Chapters in

while also allowing us to keep electronic versions online. Any royalties from this published version are
donated to the UK-based Computing At School (CAS) group, whose ongoing work can be followed at

Why are all your references to Wikipedia? Our goal is to give an easily accessible overview, so it made no
sense to reference lots of research papers. There are basically two reasons why: research papers are often
written in a way that makes them hard to read (even when their intellectual content is not difficult to
understand), and although many research papers are available on the Internet, many are not (or have to
be paid for). So although some valid criticisms of Wikipedia exist, for introductory material on Computer
Science it certainly represents a good place to start.

I like programming; why do the examples include so little programming? We want to focus on interesting
topics rather than the mechanics of programming. So even when we include example programs, the
idea is to do so in a way where their meaning is fairly clear. For example it makes more sense to use
pseudo-code algorithms or reuse existing software tools than complicate a description of something by
including pages and pages of program listings.

But you need to be able to program to do Computer Science, right? Yes! But only in the same way as you
need to be able to read and write to study English. Put another way, reading and writing, or grammar
and vocabulary, are just tools: they simply allow us to study topics such as English literature. Computer
Science is the same. Although it is possible to study programming as a topic in itself, we are more
interested in what can be achieved using programs: we treat programming itself as another tool.

http://creativecommons.org/licenses/by-sa/4.0/
http://www.springer.com/computer/book/978-3-319-04041-7
http://www.computingatschool.org.uk/

	What is randomness?
	Biased versus unbiased
	Predictable versus unpredictable
	Random versus arbitrary

	Real randomness
	Generating randomness
	Testing randomness

	Fake randomness
	Generating randomness
	Testing randomness

