Plotting data using Mathematica

Eric D. Black
California Institute of Technology
v1.0

1 Introduction

If you've never used Mathematica before it can seem a little alien. It is very
different from just about any other software paradigm out there. Computer
programs written in traditional languages such as Python or C++ consist of
a series of statements or commands that get executed in order when you run
the program, and their output is either displayed on the screen or written
to a file. Spreadsheets such as Microsoft Excel display an array of numbers,
text, or formulas, and some of the elements in that array contain the results
of calculations that use other elements as input. If you change one element
the whole sheet updates automatically. Both of these force you to conform
your notation and commands to a particular format that is convenient to
the computer, or more accurately to the people who wrote the program.
Mathematica is designed the other way around. Here, the computer attempts
to conform to the way you would do a calculation with pen and paper. It’s
not perfect, of course, but it is pretty good once you get the hang of it.
Oh, and it can do a lot more than any spreadsheet or even a traditional
programming language with a lot less work on your part.

Imagine you were doing some math with pen and paper, but instead of
regular paper you are using a “smart” paper. On this special paper you can
write down, say, an arithmetic problem or an integral, but instead of you
having to come up with the answer you can just ask the paper to do it for
you. Of course you have to be very explicit and ask the paper only well-
specified questions. Also, you may have scribbled quite a bit on the paper,
and you only want the answer to one specific question or series of questions.
For this you will have to draw a box around exactly what you want answered,
but as long as you're clear on what you want, the paper can give it to you.

Mathematica documents are called Notebooks, and each notebook is orga-
nized into cells. The notebook is the equivalent of our smart paper, and a cell
is the equivalent of a box drawn around a statement or question. Mathemat-
ica evaluates only what is in a given cell at any one time. It does remember
the results of all of the cells it has evaluated during a session, but unlike a
spreadsheet it does not update them all as soon as one cell is edited.

Mathematica’s syntax does have a bit of a learning curve, but once you
are comfortable with it you will find it easier to use than a spreadsheet for
most tasks.

2 Opening a file, entering data, and produc-
ing a plot

This is what the Mathematica icon looks like. If you are using one of the
imacs in the lab, it should already be in the dock. The program starts with
either a new, empty notebook or a dialog box asking you what you want to
do. If you get the dialog box, click on “New Document,” and a new notebook
window will appear.

At this point you can type your data in by hand, or you can open an
existing data file. For this example I have downloaded the data file from the
ph3 website to the desktop on my mac, and the first thing I am going to do
is set Mathematica’s working (default) directory to that location. To do this
use the command,

SetDirectory["~/Desktop"]

All commands in Mathematica begin with capital letters, and their argu-
ments are contained in square brackets. After you have typed the command,
hit “Enter” on your numeric keypad or “Shift-Return” to execute it. (Just
hitting “Return” makes a new line inside the cell.) The output is the full

2

[] Welcome to Wolfram Mathematica

& Sign in to access your
Wolfram Cloud files...

Open Recent

Wolfram
Mathematica 1()

{#/ 1. DataPlotting

{# 2. Prob8.24-plot

1% 3.taylor6_9_16.nb
1% 4.Prob7.6

{# 5.Prob7.4 -

g 1 g

Documentation Wolfram Community Resources

Open...
Open from Cloud...

(v) Show atstartup

Figure 1: Opening dialog in Mathematica. For this tutorial, if you see this,
just click on “New Document.”

path of the directory, along with some complaining from Mathematica which
[will ignore (see Figure 2). The brackets on the far right, near the edge of the
window, delineate the first cell. You can have as many or as few commands
in a cell as you want, and Mathematica will run them all in order when you
tell it to execute that cell.

Next import the data from the file Datal.txt into Mathematica, using
the Import command,

data = Import["Datal.txt", "Table"]

The arguments of the Import command are first, the data file itself, and
second, the format of the data. The output is a list that we will store in the
variable data. This list is a collection of pairs of numbers, the first of which
is the x value of the data, and the second its y value. Those of you familiar

with computer science will recognize that data is now a two-dimensional
array, and that Mathematica took care of the dimensioning, formatting, etc.
for you.

Now plot the data using the command,

dataplot = ListPlot[datal

Again, we are sending the output of this command to be stored in a variable,
in this case dataplot. Note that this time the variable type is a graph, rather
than a number or array. You can store just about anything in a variable,
which comes in handy in a lot of ways. More on this later.

[JOX J # Untitled-2
In[1:= SetDirectory["~/Desktop"] 3
outi}= /Users/ericblack/Desktop 3

Assuming a directory name | Use as a generic text string instead

open filesin directory parentdirectory full path flename more... E

100% »

Figure 2: New notebook in Mathematica. The first command is to set the
working directory to where the data file is located, in this case the desktop
on my mac.

[XOX J # Untitled-2

In[1:= SetDirectory["~/Desktop"] 3
outi}= /Users/ericblack/Desktop 3
)= data = Import["Datal.txt", "Table"] 3]
ouzl= {{0., 3.4039}, {0.5, 3.9881}, {1., 4.2004}, {1.5, 5.0291}, {2., 5.188}, 3
(2.5, 5.3914}, {3., 5.7904}, {3.5, 5.4771}, {4., 5.784}, {4.5, 5.9271}, {5., 7.1422},
(5.5, 7.1213}, {6., 6.8499}, {6.5, 7.936}, {7., 8.3686}, {7.5, 8.2178},
(8., 8.8891}, {8.5, 8.8176}, {9., 8.8702}, {9.5, 9.8769}, {10., 9.7354}} 1]
n@:= dataplot = ListPlot[data] 3]
g
10} oo
oo o
8 PR]
® e,
6
o e 0 °
out[3]= Ld
4 o ®
L
2
2 4 6 8 10 1]
100% »

Figure 3: Importing and plotting data from a file. This notebook now has
three cells, as the square brackets on the right show. Each cell is subdivided
into an input and an output, and there are square brackets with slightly-
different formats to show this.

3 Error bars

Mathematica has a special command for plotting data points with error bars,
and it is called ErrorListPlot. Most commands are available immediately
when you start Mathematica, but this one requires you to load a special
package first. To do that, type in the following command, and execute it.

Needs ["ErrorBarPlots‘"]

Be sure to include the backwards single quotation mark (), which is usually
in the top-left corner of your keyboard, just to the left of the number one key
and just below the escape key. Once this package is loaded you can now use
the command ErrorListPlot. Before we try this command out, however,
we are going to have to do some work to construct its argument, which must
be a list of the form

{{{x1, yi}, ErrorBar[si]l}, {{x2, y2}, ErrorBar[s2]}, ... }

where x1 and y1 are the x and y values of the first data point, and sl is the
uncertainty in y1, etc. (You can add uncertainties in x as well, but we won’t
need them for this example.) You can construct this list by hand if you only
have a few data points, but constructing the list using a single command
will give me an excuse to show you some useful techniques for manipulating
elements of a list. We will construct the argument for the ErrorListPlot
command the following way:.

darg = Table[{{datal[i,1]], datal[i,2]]}, ErrorBar[0.3]},
{i,1,Length[datal}]

The output should look like the list shown in Figure 4. There are several
things to notice about this command.

1. The command Table generates a list.

2. We are storing that list in the variable darg (short for “data argument,”
but you could call it anything you want).

3. We can extract the particular elements of the array data by appending
what amounts to subscripts inside double square brackets. The name
of the number that resides in the i-th row and j-th column of the array
is

datal[i,j]]

4. The index for the table is 7, and its range goes from 1 up to the number
of data points you have. You could have counted them, gotten a total
of 21, and plugged the range in as

{i, 1, 21}

However, it is much easier to tell Mathematica to do the counting for
you by using the Length command, so the range becomes

{i, 1, Length[datal}

5. I have used the same error for each data point (0.3), but you could just
as easily have put in a different uncertainty for each point.

Now you can pass this list to the function ErrorListPlot, and the output
should be a plot similar to what ListPlot generated, except with error bars
on each data point.

dataplot2 = ErrorListPlot[darg]

[JOX J # Untitled-2
In[1:= SetDirectory["~/Desktop"]

oufi}= /Users/ericblack/Desktop

In2)= data = Import["Datal.txt", "Table"]

ouz= {{0., 3.4039}, {0.5, 3.9881}, {1., 4.2004}, {1.5, 5.0291}, {2., 5.188},
(2.5, 5.3914}, {3., 5.7904}, {3.5, 5.4771}, {4., 5.784}, {4.5, 5.9271}, {5., 7.1422},
(5.5, 7.1213}, {6., 6.8499}, {6.5, 7.936}, {7., 8.3686}, {7.5, 8.2178},
(8., 8.8891}, {8.5, 8.8176}, {9., 8.8702}, {9.5, 9.8769}, {10., 9.7354}}

@)= dataplot = ListPlot[data]

10-

o
oo o
.
8r ° °
® e,
61 °
. °
°® M
Out[3]= .

4 o ®
L
2

. . . .

2 4 6 8 10

In4:= Needs ["ErrorBarPlots™"]

5= darg = Table[{{data[[i, 1]], data[[i, 2]]}, ErrorBar[0.3]}, {i, 1, Length[data]}]

outsl= {{{0., 3.4039}, ErrorBar[0.3]},
{{0.5, 3.9881}, ErrorBar[0.3]}, {{1., 4.2004}, ErrorBar([0.3]},
{{1.5, 5.0291}, ErrorBar[0.3]}, {{2., 5.188}, ErrorBar[0.3]},
{{2.5, 5.3914}, ErrorBar[0.3]}, {{3., 5.7904}, ErrorBar(0.3]},
{{3.5, 5.4771}, ErrorBar[0.3]}, {{4., 5.784}, ErrorBar[0.3]},
{{4.5, 5.9271}, ErrorBar[0.3]}, {{5., 7.1422}, ErrorBar[0.3]},
{{5.5, 7.1213}, ErrorBar[0.3]}, {{6., 6.8499}, ErrorBar[0.3]},
{{6.5, 7.936}, ErrorBar([0.3]}, {{7., 8.3686}, ExrrorBar[0.3]},
{{7.5, 8.2178}, ErrorBar[0.3]}, {{8., 8.8891}, ErrorBar[0.3]},
{{8.5, 8.8176}, ErrorBar[0.3]}, {{9., 8.8702}, ErrorBar[0.3]},
{{9.5, 9.8769}, ErrorBar[0.3]}, {{10., 9.7354}, ErrorBar[0.3]}}

100% »

Figure 4: Constructing a list of data points with error bars.

.4

.4

4 Adding a theory curve

Now you know enough to go on with, and we can start doing some useful
things rather quickly.

First, we can plot a line through the data using the P1lot command. This
one, like ListPlot, is intrinsic to Mathematica, and you don’t have to load
any special packages to use it. Before we use it, though, we will want to
define a function to plot. Let’s start with a line of the form

f(z)=ax+0b

Before we can ask Mathematica to plot this we have to have definitions of the
slope a and y-intercept b. We are fortunate that our first data point has an
x-value of zero, so a good first guess for the y-intercept is that first y-value.

b=1

The slope a is going to be approximately the rise over run between the first
and last data points,

YN — U1

N — 1

a

The way to write these expressions in Mathematica is

b = data[[1,2]]

a = (datal[[Length[datal,2]]-datal[1,2]])/
(data[[Length[datal,1]]-datal[1,1]])

flx_] :=a*xx + D

You can put all three statements into a single cell, but you ought to put
the definitions of a and b before that of the function f so Mathematica will
know what those coefficients are. Note the underscore after the x and the
colon-equals := in the definition of the function.

Plotting this function is easy.

theoryplot = Plot[f[x], {x, -1, 11}]

We have been storing our graphs in variables, and now you will see why.
Use the Show command to overlay multiple plots.

Show[dataplot2, theoryplot]

10

5 Residuals

You now know enough to calculate and plot your residuals. If you've been
paying attention the following commands should be familiar enough.

residuals =
Table[{{datal[[i, 1]], datalli, 2]] - fldatalli, 11113},
ErrorBar[0.3]}, {i, 1, Length[datal}]

ErrorListPlot [residuals]

6 Reduced chi-squared

The only new command I have to introduce you to here is Sum, and it works
exactly like you'd expect. To write the expression,

2
)?2 _ izN: yi — f(3)
N = 0.3
we use the following Mathematica syntax.

rchisq = Sum[((datal[[i, 211 - fldatal[i, 1]111)/0.3)"2, {i, 1,
Length[data]}]/Length[datal

7 Least-squares fitting

Your reduced chi-squared in this case probably won’t be all that close to 1,
because we haven’t yet optimized our values for a and b. You can calculate
these coefficients using the summation formulas in Equations 2 and 3 of the
main handout (you know enough commands to do that now), but you can
also have Mathematica do it for you using the Fit command.

1sq = Fit[data, {1, x}, x]

Here, as usual, we are storing the output of the Fit command in the variable
1sq. The arguments may require a little explanation. First is the data, here
given by the variable data that we created when we first imported the data
from its file on the Desktop. Second is a shorthand notation for the form of

11

the function we are fitting to the data, in this case a first-order polynomial
in the variable x. Finally, the variable itself . The Fit function can fit to
a polynomial of any order by changing the second argument. For example,
you could fit to a quadratic by typing

Fit[data, {1, x, x"2}, x]

Mathematica can do fits many different ways, most of which are beyond the
scope of this discussion, but you should know they exist. One in particular
I want to point out to you is this. If you want a quick fit and residuals plot,
and you don’t care about error bars, try the following.

1sq2 = LinearModelFit[data, x, x]
ListPlot[1lsq2["FitResiduals"]]

This gives a plot of the residuals without error bars, and I honestly don’t
know if it’s possible to add them to this. If you've followed along, however,
you can make your own residuals plot with error bars using ErrorListPlot,
as we did earlier.

8 Summary

8.1 File-handling commands
1. SetDirectory["path"] - Set the working directory.

2. Import["file", "type"] - Read data from a file. There are literally
hundreds of file types supported. For a list of these, see
http: / /reference.wolfram.com /language/quide/Listing OfAllFormats. html.
We are primarily interested in "Table".

3. Export["file", data] - Write data to a file. We didn’t cover this on
in the writeup, but you may as well know about it. Again, literally
hundreds of formats are supported. Much like a variable, you can store
just about anything in a file.

8.2 Plotting commands

1. Plot[f[x], {x, min, max}] - Plot the function f(z) from x = min
to x = max. The vertical scale is set automatically, unless you add the
option

12

Plot[f[x], {x, min, max},
PlotRange -> {{xmin, xmax}, {ymin, ymax}}]

ListPlot [data] - Plot a list of data. PlotRange works here the same
as it does in Plot.

. ErrorListPlot [data] - Plot data with error bars. Requires loading a

package before you can use this one. Command is
Needs ["ErrorBarPlots ‘"]

Elements of the data list must be of the form
{{x, y}, ErrorBar[s]}

Show[plotl, plot2] - Overlay plots plotl and plot2, and show them
on the same graph. Supports essentially any number of plots.

List-related commands

. Table[expr([i], {i, min, max}] - Generate a list of values of the

expression ezpr as the index ¢ goes from min to max.
Length[list] - Length of list.

list[[i,j]1] - Value of element i, j of 1list.

Arithmetic

. Sum[expr[i], {i, min, max}] - Sum of expr[i] over ¢+ = nmun to

1 = max.

Fitting commands

. Fit[data, model, variable] - Least-squares fit of model to data.

LinearModelFit[data, model, variable] - Similar to above, except
with more options.

. NonlinearModelFit[data, model, variable] - Fit a nonlinear model

to a set of data. For more information see
http:/ /reference.wolfram.com/language/ref /NonlinearModelFit.html

13

