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Interval Arithmetic in Mathematica

Jerry B. Keiper

The use of interval methods to solve numerical problems has been very limited.
Some of the reasons for this are the lack of easy access to software and the
lack of knowledge of the potential benefits. Until numerical analysts and others
become generally familiar with interval methods, their use will remain limited.
Mathematica is one way to educate potential users regarding the usefulness of
interval methods. This paper examines some of the ways that intervals can be
used in Mathematica.

ИНТЕРВАЛЬНАЯ АРФМЕТИКА В
СИСТЕМЕ Mathematica

Дж. Б. Кейпер

Использование интервальных методов для решения численных задач до
сих пор было весьма ограниченным. Отчасти причины этого заключались
в отсутствии легкого доступа к программному обеспечению и отсутствии
знаний о потенциальной выгоде. Пока исследователи, занимающиеся чис-
ленным анализом и смежными дисциплинами, не познакомятся достаточ-
но близко с интервальными методами, их использование будет оставаться
ограниченным. Доступ к системе Mathematica является одним из способов
ознакомить потенциальных пользователей с полезностью интервальных
методов. В статье рассматриваются некоторые возможности использова-
ния интервалов в системе Mathematica.
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1 Introduction

Mathematica, like all computer-algebra systems, has several types of arith-
metic. In addition to exact arithmetic (i.e., integers and rational num-
bers) and machine-precision floating-point arithmetic, it has high-precision
floating-point arithmetic and interval arithmetic.

The behavior of the high-precision floating-point arithmetic can be al-
tered (by changing $MinPrecision and $MaxPrecision), but the default
behavior is essentially a form of interval arithmetic in which the intervals are
assumed to be “short” relative to the magnitude of the numbers represented.
This form of arithmetic is sometimes referred to as significance arithmetic
or range arithmetic. The length of the interval that is implicitly represented
by a high-precision floating-point number is

10−a

where a is the “accuracy” of the number: roughly the number of digits to
the right of the decimal point, although it is usually not an integer. In
the implementation, each high-precision floating-point number has a value
for a associated with it, stored as a machine float. This value represents
the logarithm of the length of the interval; the length itself is not explicitly
calculated nor are the digits actually counted.

There are problems, however, where range arithmetic is not sufficient
and you really do want to use interval arithmetic. The interval arithmetic in
Mathematica Version 2.2 is genuine interval arithmetic, complete with out-
ward rounding and multi-intervals. Note however that compromises must
be made in a system like Mathematica, which must run on a variety of ma-
chines. The outward rounding is done a posteriori rather than as directed
rounding in hardware, which many machines do not support. For example,
to evaluate sinx on the interval 2.1 < x < 2.2, where sinx is monotonic,
sin(2.1) and sin(2.2) are evaluated using the standard library functions pro-
vided with the computer. These values are then rounded outward. Thus
the intervals tend to grow slightly more rapidly than is absolutely necessary.
Also, an assumption is made that is known to be false: library functions
for the elementary functions are assumed to be correct to within one ulp
and directed rounding by one ulp is used to “ensure” that resulting interval
contains the image of the argument. There are no known examples for which
the elementary functions are in error by more than an ulp for high-precision
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arithmetic. Complex intervals have not yet been implemented.

2 Range arithmetic

The “accuracy” of a number is given by the function Accuracy[ ]. This
function simply gives access to the number a explained above, but by default
its result is rounded to the nearest integer. This rounding can be disabled
to see more clearly what is happening.
This disables the rounding of the results of Accuracy[ ] and Precision[ ]:

In[1]:= SetPrecision[Round, False];

Define a function len[ ] to give the length of the implicit interval associated with the real number x:

In[2]:= len[x_Real] := 10 (̂-Accuracy[x])

Define a to be the 30-digit approximation to 3 and examine the length of its implicit interval.
(Accuracy[a] ≈ 29.5229 and 10−29.5229 ≈ 2.99999× 10−30.)

In[3]:= a = N[3, 30]; len[a]

-30
Out[3]= 2.99999 10

Do the same for the number 4:

In[4]:= b = N[4, 30]; len[b]

-30
Out[4]= 4. 10

Find the lengths of the intervals resulting from various arithmetic operations on these two numbers:

In[5]:= {len[a+b], len[a-b], len[a b], len[a/b]}

-30 -30 -29 -30
Out[5]= {7.00001 10 , 7.00001 10 , 2.39999 10 , 1.5 10 }

Note that from the point of view of rigorous interval arithmetic, the
lengths of the intervals implicit in range arithmetic are a bit sloppy. This
is because the purpose of range arithmetic is merely to give a good es-
timate of the number of correct digits in the result. To reduce memory
requirements, the logarithm of the length of the interval is stored only as a
float. To increase the speed of the length calculations, a rational minimax
approximation is used to evaluate the accuracy of the result of an opera-
tion. Because interval arithmetic is rather pessimistic and because range
arithmetic is not intended to be a substitute for interval arithmetic, sloppy
length calculations are not problematic. Note that a much more serious
problem with attempting to view range arithmetic as interval arithmetic is
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that the length calculations assume that the interval lengths are “short” rel-
ative to the magnitude of the numbers they represent. For example, if we
have two intervals x(1 + εx) and y(1 + εy) where their relative half-lengths
are represented by εx and εy, the product of the two intervals is calculated
as xy(1+ εx+ εy), i.e. the second order term εxεy in the relative half-length
is ignored. (Note: the implementation does not deal with half-length, but
rather with the “accuracy” a. Rational minimax approximations are used to
achieve the behavior explained here in terms of half-length.) For even mod-
erate precision, say 10 digits or so, this works quite nicely, but for numbers
with only 1 or 2 digits the length calculations for certain operations can be
inaccurate. In many problems range arithmetic is all that is needed.

If we start with a 30-digit approximation to π and subtract a rational approximation we can lose many
digits: the total number of digits displayed in (i.e. the “precision” of) a number corresponds to the
logarithm of the relative length of the interval:

In[6]:= N[Pi, 30] - 31415926535897932384626/10000000000000000000000

-23
Out[6]= 4.338328 10

For very well-conditioned functions we can gain many digits. In this example we started with a 20-digit
approximation to the number 20 and got a 175-digit result:

In[7]:= Erf[N[20, 20]]

Out[7]= 0.99999999999999999999999999999999999999999999999999999\
9999999999999999999999999999999999999999999999999999999999999\
9999999999999999999999999999999999999999999999999999999999999

Rump [?] describes the following problem: evaluate

c = 333.75b6 + a2(11a2b2 − b6 − 121b4 − 2) + 5.5b8 +
a

2b

where a = 77617 and b = 33096. With fixed-precision floating-point arith-
metic one does not know how many digits of the result are correct. In fact,
unless rather high-precision arithmetic is used the answer will be completely
wrong. In Rump’s calculations, single precision, double precision, and even
extended precision gave the same wrong result: even the sign was wrong.

This function evaluates c starting with n digits:

In[8]:= f[n_] := Block[{a = N[77617, n], b = N[33096, n]},
N[333+3/4, n] b^6 + a^2 (11 a^2 b^2 - b^6

- 121 b^4 - 2) + N[5 + 1/2, n] b^8 + a/(2 b)]
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10 digits is less than $MachinePrecision, so the first calculation is done using machine numbers and is
completely wrong:

In[9]:= {f[10], f[20], f[30], f[40], f[50]}

21 8
Out[9]= {-1.18059 10 , 0. 10 , 0.0, -0.83, -0.827396059947}

The first three digits of the result which used 30 digits were in fact correct, but none of the digits was
known to be correct so none was displayed. We can uncover the hidden digits:

In[10]:= SetPrecision[%[[3]], 10]

Out[10]= -0.8274078369

We can let Mathematica worry about how much precision is required to get a specified precision in the
result.

In[11]:= n = 20; While[Precision[c = f[n]] < 10, n += 5]; c

Out[11]= -0.827396059947

3 Interval arithmetic

When range arithmetic is not sufficient to solve a problem the interval arith-
metic provided by Mathematica can be used.
This is the interval from 2 to 3:

In[12]:= a = Interval[{2, 3}]

Out[12]= Interval[{2, 3}]

This is the interval from -2 to 1:

In[13]:= b = Interval[{-2, 1}]

Out[13]= Interval[{-2, 1}]

You can do arithmetic with intervals:

In[14]:= c = a + b

Out[14]= Interval[{0, 4}]

Division by an interval containing 0 results in two half-infinite intervals:

In[15]:= a/b

Out[15]= Interval[{-Infinity, -1}, {2, Infinity}]

Inequalities also work with intervals:

In[16]:= a > b

Out[16]= True
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The functions IntervalUnion[ ], IntervalIntersection[ ], and IntervalMemberQ[ ] can be used to
manipulate intervals:

In[17]:= IntervalUnion[a, b]

Out[17]= Interval[{-2, 1}, {2, 3}]

The elementary functions are defined on intervals:

In[18]:= Sin[a]

Out[18]= Interval[{Sin[3], Sin[2]}]

Internal extrema are not a problem:

In[19]:= Sin[b]

Out[19]= Interval[{-1, Sin[1]}]

Exact singletons are rewritten as intervals of length 0:

In[20]:= Interval[Pi]

Out[20]= Interval[{Pi, Pi}]

Inexact singletons are also rewritten. This looks like another interval of length 0:

In[21]:= d = Interval[N[Pi]]

Out[21]= Interval[{3.14159, 3.14159}]

In fact it has a length of 2 ulps: 1 ulp from rounding each endpoint:

In[22]:= d[[1,2]] - d[[1,1]]

-16
Out[22]= 8.88178 10

4 Interval plotting

Interval plotting can be done by plotting the curves defined by the endpoints
of the resulting intervals.
Define a function that graphs a single interval function:

In[23]:= iplot[y_, r_, opt___] :=
Plot[{Min[y], Max[y]}, r, AspectRatio -> Automatic, opt]

Define how it should plot a list of interval functions:

In[24]:= iplot[{y__}, r_, opt___] :=
Show[Map[iplot[#, r, DisplayFunction->Identity]&, {y}],

DisplayFunction:>$DisplayFunction, opt]
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Plot two “lines”:

In[25]:= iplot[{(Interval[{5.7,5.8}]-Interval[{1.2,1.3}] x)/
Interval[{2.1,2.3}],

(Interval[{7.7,7.8}]-Interval[{3.2,3.3}] x)/
Interval[{-1.1,-1.3}]},

{x, 1, 4}, PlotRange -> {-2, 4}]

_   _                __                         __�4�3�2�1                  0                                         ,�1.5    2     .5    3    3.5    4�-1�-2���_�l�(�The intersection of two “lines” can be quite irregular:

In[26]:= iplot[{(Interval[{-0.3,0.1}]-Interval[{0.6,1.3}] x)/
Interval[{0.6,2.9}],

(Interval[{-0.1,0.3}]-Interval[{0.9,1.6}] x)/
(-Interval[{0.3,1.6}])},

{x, -.5, .5}, PlotRange -> {-.8, .4}]

_t_1__            _________     _       __    __        __         __�_�i                                   '�l�-2        -l                            2�l�_� t_� 1'� _                                 -� l� _� 1'�  o.q�  o�   -o.Q     -o.                o _.       o. Q�   O.2�   O.4�    o.6�    o.8          '�������      _ _                                                                h�      (�      _,�      _ _v -0- --�                  '                                                   _  _ _ -          _�
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iplot[ ] can plot nonlinear functions as well:

In[27]:= iplot[Interval[{1,2}] (x^2+x) - Interval[{2,2.2}], {x,-2,2}]

___tll            ____t_______       __        _�_0�t,�,,                                   l�!!H'_� -2        -l                            2� l� l� _� l� t� C�  _                                 _                                                              '���  O.4�   o��   -o.g     - o.                o _.       o. 4�   O.2�    O.Q�    o.6�     o_8          '�������      _u                                                                / _�       __�       _v - =�       0  0'   '                   _           _ _           _�5 Interval rootfinding

The following examples are not intended to be complete, robust algorithms.
They are merely intended to illustrate some of the possibilities for interval
algorithms in Mathematica.

5.1 Bisection

In a bisection search a given interval is recursively bisected and each half is
tested for roots. In interval arithmetic, testing for roots is done by testing
whether 0 is in the image of the interval.

Define an error message to warn the user when the recursion limit is encountered:

In[1]:= intervalbisection::rec = "MaxRecursion exceeded.";

Define the recursive element of the algorithm:

In[2]:= split[f_, x_, int_Interval, eps_, n_] :=
Block[{a = int[[1,1]], b = int[[1,2]], c},

If[!IntervalMemberQ[f /. x -> int, 0], Return[{}]];
If[b-a < eps, Return[int]];
If[n == 0, Message[intervalbisection::rec]; Return[int]];
c = (a+b)/2;
split[f, x, #, eps, n-1]& /@

{Interval[{a,c}], Interval[{c,b}]}
];

Give intervalbisection the option MaxRecursion with a default value of 7:

In[3]:= Options[intervalbisection] = {MaxRecursion -> 7};
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Define the function intervalbisection[ ]:

In[4]:= intervalbisection[f_, x_, intab_, eps_, opts___] :=
Block[{int, n},

n = MaxRecursion /. {opts} /. Options[intervalbisection];
int = Interval /@ (List @@ intab);
IntervalUnion @@ Flatten[split[f, x, #, eps, n]& /@ int]
];

Find the roots of the function Sin[ ] on Interval[{2., 20.}]. Here 7 recursive bisections were not sufficient
to shorten the enclosing intervals to 0.1:

In[5]:= intervalbisection[Sin[x], x, Interval[{2., 20.}], .1]

intervalbisection::rec: MaxRecursion exceeded.
General::stop: Further output of intervalbisection::rec

will be suppressed during this calculation.

Out[5]= Interval[{3.125, 3.26562}, {6.21875, 6.35938}, {9.3125, 9.45313},
{12.5469, 12.6875}, {15.6406, 15.7813}, {18.7344, 18.875}]

We can continue from where the previous calculation encountered MaxRecursion:

In[6]:= intervalbisection[Sin[x], x, %, .1]

Out[6]= Interval[{3.125, 3.19531}, {6.21875, 6.28906}, {9.38281, 9.45313},
{12.5469, 12.6172}, {15.6406, 15.7109}, {18.8047, 18.875}]

Setting MaxRecursion higher is another way to get convergence:

In[7]:= intervalbisection[Sin[x], x, Interval[{2., 20.}], .1,
MaxRecursion -> 10]

Out[7]= Interval[{3.125, 3.19531}, {6.21875, 6.28906}, {9.38281, 9.45313},
{12.5469, 12.6172}, {15.6406, 15.7109}, {18.8047, 18.875}]

Of course we cannot separate all of the roots when there are infinitely many:

In[8]:= intervalbisection[Sin[1/x], x, Interval[{-1., 1.}], .01]

intervalbisection::rec: MaxRecursion exceeded.
General::stop: Further output of intervalbisection::rec

will be suppressed during this calculation.

Out[8]= Interval[{-0.328125, -0.3125}, {-0.171875, -0.15625},
{-0.109375, 0.109375}, {0.15625, 0.171875}, {0.3125, 0.328125}]

5.2 Newton’s method

With Newton’s method the idea is to pick a point in the given interval and
evaluate the function at that point. Evaluating the derivative of the function
on the interval allows us to eliminate parts of the original interval (assuming
that the derivative is bounded).
Define an error message to warn the user when the recursion limit is encountered.

In[1]:= intervalnewton::rec = "MaxRecursion exceeded.";
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Define the recursive element of the algorithm:

In[2]:= intnewt[f_, jac_, x_, {a_, b_}, eps_, n_] :=
Block[{xmid, int = Interval[{a, b}]},

If[b-a < eps, Return[int]];
If[n == 0, Message[intervalnewton::rec]; Return[int]];
xmid = Interval[(a+b)/2];
int = IntervalIntersection[int,
xmid - N[f /. x -> xmid]/N[jac /. x -> int]];
(intnewt[f, jac, x, #, eps, n-1])& /@ (List @@ int)
];

Give intervalnewton the option MaxRecursion with a default value of 7:

In[3]:= Options[intervalnewton] = {MaxRecursion -> 7};

Define the function intervalnewton[ ]:

In[4]:= intervalnewton[f_, x_, int_Interval, eps_, opts___] :=
Block[{jac, n},

n = MaxRecursion /. {opts} /. Options[intervalnewton];
jac = D[f, x];
IntervalUnion @@ Select[ Flatten[

(intnewt[f,jac,x,#,eps,n])& /@ (List @@ int)],
IntervalMemberQ[N[f /. x -> #], 0]&]

];

Find the roots of the function Sin[ ] on Interval[{2., 20.}]:

In[5]:= intervalnewton[Sin[x], x, Interval[{2., 20.}], .1]

Out[5]= Interval[{3.11564, 3.20189}, {6.27942, 6.29789}, {9.40122, 9.4251},
{12.5661, 12.588}, {15.6936, 15.7121}, {18.7924, 18.8764}]

Continue working until each interval is less than 0.00001 in length:

In[6]:= intervalnewton[Sin[x], x, %, 0.00001]

Out[6]= Interval[{3.14159, 3.14159}, {6.28318, 6.28319}, {9.42478, 9.42478},
{12.5664, 12.5664}, {15.708, 15.708}, {18.8496, 18.8496}]

Multiple roots simply take more iterations and hence more time:

In[7]:= intervalnewton[Sin[x]^2, x, Interval[{2., 20.}], .1]

Out[7]= Interval[{3.12024, 3.20076}, {6.25056, 6.34969}, {9.41445, 9.4889},
{12.5054, 12.5809}, {15.6982, 15.7491}, {18.7928, 18.8748}]

When the derivative is unbounded there is a problem:

In[8]:= intervalnewton[Sin[1/x], x, Interval[{-1., 1.}], .01]

Infinity::indet: Indeterminate expression -Infinity + Infinity encountered.

General::stop: Further output of Infinity::indet
will be suppressed during this calculation.

intervalnewton::rec: MaxRecursion exceeded.

Out[8]= Interval[{-1., 1.}]
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6 Centered forms of functions

Mathematica can also do symbolic manipulation and although manipulat-
ing forms of expressions to reduce the excess width is not as trivial as the
previous examples it is still quite easy. The code in this example is only 50
lines long.
Read in the file that contains the necessary code:

In[9]:= « IntervalTaylorForm.m

Find the centered sixth-order Taylor form for the function Sin. The expression defining how to evaluate
it is hidden, although it can be displayed:

In[10]:= ff = IntervalTaylorForm[Sin[x], x, 6]

Out[10]= IntervalTaylorFunction[Sin[x], <>, 6]

This evaluates the previous result on the interval [1, 2]:

In[11]:= ff[Interval[{1,2}]]

5761 667 Cos[1] 385 667 Cos[1]
Out[11]= Interval[{-(---------) - ------------------- + Sin[1], ----- + -------------------}]

46080 1280 384 1280

This evaluates it on the same interval using Horner’s rule rather than evaluation of powers of the
symmetric interval:

In[12]:= ff[Interval[{1,2}], Horner -> True]

Out[12]= Interval[{
1 Cos[1]

-(-------) - -----------
1 1440 120

-(---) + -------------------------------
24 2 Cos[1]

----------------------------------------------- - -----------
1 2 6

-(-) + -----------------------------------------------------------------
2 2

------------------------------------------------------------------------------- - Cos[1]
2

------------------------------------------------------------------------------------------------- + Sin[1],
2

1 Cos[1]
------- + -----------

1 1440 120
--- + -------------------------
24 2 Cos[1]
----------------------------------- + -----------

1 2 6
- + -----------------------------------------------------
2 2
------------------------------------------------------------- + Cos[1]

2
1 + -------------------------------------------------------------------------------}]

2

In this example Horner’s rule gives a wider interval:

In[13]:= N[{%%, %}]

Out[13]= {Interval[{0.434901, 1.28415}], Interval[{0.432297, 1.40917}]}
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7 Conclusions

While Mathematica is not a complete interval analysis package it does pro-
vide many of the elements necessary for studying and experimenting with
interval methods. Because it has a user base of many tens of thousands and
because programs written in its language are completely portable, exchange
of ideas is quite easy. With its graphic, symbolic, and numerical capabilities,
Mathematica is an excellent way to introduce interval methods to students.
To aid in the sharing of programs an automated repository has been estab-
lished at the email address mathsource@wri.com. (For information send
the single-line message help info.) For more ambitious projects for which
Mathematica is too slow, one of the established interval analysis packages
could be used for the computation while Mathematica serves as a more
friendly interface, communication being done using the MathLink protocol.
(Write info@wri.com or mathlink@wri.com for more information.)
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