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Greetings again!

One of the greatest challenges in a course is determining) bWl to pitch it.
This is perhaps most apparent in deciding what level of tigtgiive for proofs. For
us, the most important result is, as the name suggests, thteaCkeimit Theorem.
The purpose of this chapter is to quickly introduce you to lgjestt which is beau-
tiful and important in its own right, Complex Analysis, angkeshow it connects to
Probability and the Central Limit Theorem.



Chapter 1

Complex Analysis and the Central Limit
Theorem

In Chapter?? we gave a proof of the Central Limit Theorem using generdting-
tions; unfortunately that proof isn’t complete as it assdrseme results from Com-
plex Analysis. Moreover, we had to assume the moment gengfainction existed,
which isn’t always true.

We tried again in Chapte??, we proved the Central Limit Theorem by using
Fourier analysis. Instead of using the moment generatingtion, which can fail
to even exist, this time we used the Fourier transform (addled the characteristic
function), which has the very nice and useful property ofialty existing! Unfortu-
nately, here too we needed to appeal to some results from [@grapalysis.

This leaves us in a quandary, where we have a few options.

1. We can just accept as true some results from Complex Aisaipsl move on.

2. We can try and find yet another proof, this time one thatldased Complex
Analysis.

3. We can drop everything and take a crash course in Complak/sis.

This chapter is for those who like the third option. We'll éaip some of the
key ideas of complex analysis, in particular we’ll show wliig such a different
subject than real analysis. Obviously, it helps to have sealmanalysis, but if you're
comfortable with Taylor series and basic results on coremeg you'll be fine.

It turns out that assuming a function of a real variable ifedéntiable doesn’t
mean too much, but assume a function of a complex variabiffésehtiable and all
of a sudden doors are opening everywhere with additionalepiol facts that must
be true. Obviously this chapter can’t replace an entire smumor is that our goal.
We want to show you some of the key ideas of this beautifulextband hopefully
when you finish reading you'll have a better sense of why thelsbox results from
Complex Analysis (Theoren®? and??) are true.

This chapter is meant to supplement our discussions on magearrating func-
tions and proofs of the Central Limit Theorem. We thus asstlmaeeader is familiar
with the notation and concepts from ChaptePthrough??.
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1.1 Warnings from real analysis

The following example is one of my favorites from real analydt indicates why
real analysis is hard, almost surely much harder than yoatexpect. Consider the
functiong : R — R given by

a(e) = {e—l/w ifz#£0 L.1)

0 otherwise.

Using the definition of the derivative and L'Hopital's ruleie can show thay is
infinitely differentiable, and all of its derivatives at theigin vanish. For example,
e/h*

12 _ .
g0 = fim—7p

klggo 2kek? T

where we used’Hopital’s rule in the last steplimy_,o A(k)/B(k) = limg_ 00
A'(k)/B' (k) if limg_ 00 A(k) = limg_o B(k) = 00). (We replaced: with 1/k as
this allows us to re-express the quantities above in a fanfdirm, one where we can
apply LU'Hopital’s rule.) A similar analysis shows that th& derivative vanishes at
the origin for alln, i.e., g™ (0) = 0 for all positive integem. If we consider the
Taylor series fog about 0, we find

g"(0)a o~ 9" (0)z"

9(@) = 9(0) + 4Oz +=——+- = ZT = 0;
n=0

however, clearly(z) # 0if  # 0. We are thus in the ridiculous case where the

Taylor series (which converges for all) only agrees with the function when= 0.

This isn't that impressive, as the Taylor seriesdecedto agree with the original

function at 0, as both are jugt0).

We can learn a lot from the above example. The first is thapit'ssible for a
Taylor series to converge for all but only agree with the function at one point! It's
not too impressive to agree at just one point, as by consruttte Taylor seriebas
to agree at that point of expansion. The second, which is taernmportant, is that
a Taylor series does not uniquely determine a functiear example, botkin 2 and
sin z + g(z) (with g(z) the function from equatiof (1. 1)) have the same Taylor serie
aboutz = 0.

The reason this is so important for us is that we want to unaedswhen a
moment generating function uniquely determines a prolghiistribution. If our
distribution was discrete, there was no problem (Thed?&mn For continuous dis-
tributions, however, it's much harder, as we saw in equgtt@where we met two
densities that had the same moments.

Apparently, we must impose some additional conditions @mtimuous random
variables. For discrete random variables, it was enougmtovkall the moments;
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this doesn’t suffice for continuous random variables. Whau&d those conditions
be?

Recall that if we have a random variable with density fx, its " moment,
denoted by, , is defined by

o0
b = [ atxs,
— 00
Let’s consider again the pair of functions in equati@f)( A nice calculus exercise
shows thap, = e**/2. This means that the moment generating function is

(o] 2
1 s ek 24k
Mx(t) = Z Zl
k=0

=2 kL
k=0

For whatt does this series converge? Amazingly, this series conserngg when
t = 0! To see this, it suffices to show that the terms do not tendo. Z&s k! < k*,
for any fixedt, for k sufficiently larget* /k! > (¢/k)*; moreovergh” /2 = (ek/2)k,
so thek™ term is at least as large &8/t /k)*. For anyt # 0, this clearly does not
tend to zero, and thus the moment generating function hagiasraf convergence
of zero!

This leads us to the following conjecturdf. the moment generating function
converges foft| < ¢ for somej > 0, then it uniquely determines a densitye’ll
explore this conjecture below.

1.2 Complex Analysis and Topology Definitions

Our purpose here is to give a flavor of what kind of inputs amedee to ensure that
a moment generating function uniquely determines a prdibatensity. We first
collect some definitions, and then state some useful refsattscomplex analysis.

Definition 1.2.1 (Complex variable, complex function)Any complex numbee
can be written as = z + iy, with z andy real andi = /—1. We denote the
set of all complex numbers ly. A complex function is a map from C to C; in
other wordsf (z) € C. Frequently one writes = $(z) for thereal part, y = 3(z)
for theimaginary part, and f(z) = u(z,y) + iv(x, y) with « andv functions from
R2 toR.

There are many ways to write complex numbers. The most conisribie defi-
nition above; however, a polar coordinate approach is somstuseful. One of the
most remarkable relations in all of mathematics is

e = cos +isind.
There are several ways to see this, depending on how muchymatiant to assume.
One way is to use the Taylor series expansions for the expiahesine and cosine
functions. This gives another way of writing complex nunshémstead ofl + ¢ we
could write /2 exp(im/4). A particularly interesting choice af is 7, which gives
e'™ = —1, a beautiful formula involving many of the most importannstants in
mathematics!
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Notingi2 = —1, it isn’t too hard to show that

(a+ib) + (z+iy) = (a+z)+i(b+y)
(a+1b) - (z +iy) (ax —by) +i(ay + bx).

Thecomplex conjugateof z = = + iy is Z := x — iy, and we define thabsolute
value (or themodulus or magnitude) of z to be+/2%, and denote this bjz|. This

is real valued, and equalg 2 + y2. If we were to writez as a vector, it would be
z = (x,y); note that in this case we see thdtequals the length of the corresponding
vector.

We can write almost anything as an example of a complex fangtine possible
functionis f(z) = 22 + |z|. The question is when is such a function differentiable
in z, and what does that differentiability entail. Actuallyfbee we answer this we
first need to state what it means for a complex function to fieréintiable!

Definition 1.2.2 (Differentiable) We say a complex functighis (complex) differ-
entiable at z if it's differentiable with respect to the complex variable which

means
lim f(z0+h) = f(20)
h—0 h

exists, wheré, tends to zero alongnypath in the complex plane. If the limit exists

we write f'(zo) for the limit. If f is differentiable, therf (z+iy) = w(z, y)+iv(z,y)

satisfies th&Cauchy-Riemann equations:

f’()—@_’.'@—_'@_’_@
= 82 T 'or sz oy

(one direction is easy, arising from sendihg— 0 along the path§L andih, with
h € R).

Here’s a quick hint to see why differentiability implies ti@auchy-Riemann
equations — try and fill in the details. Since the derivatixists atz,, the key limit
is independent of the path we take to the paint+ iyo. Consider the path + iy
with z — xo, and the path, + iy with y — yo, and use results from multivariable
calculus on partial derivatives.

Let's explore a bit and see which functions are complex difitiable. We let
h = h1 + tho below, withh — 0 + 04,

e If f(z) =zthen

hmw g AR o = 1
h—0 h h—0 h h—0

thus the function is complex differentiable and the deneais 1.
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o If f(2) = 2%then
et =g) |, Grrroz

ilzli% h - h—0 h
224 22h+ k2 — 22
= lim
h—0 h
. 2zh+ h?
= lim ——
h—0 h
lim (22 + h)
h—0

= lim2z+ lim h
h—0 h—0

= 2240 = 2z.

We're using the following properties of complex numbeérgh = 1 and2zh+

h? = (2z + h)h. Note how similar this is to the real valued analogfig;) =

x2,

o If f(z) ==Zthen
flz+h) - f(2)

I i z+h—-%2
Py h = 5 h ’

Unlike the other limits, this one isn’timmediately cleaetls writez = x+7iy,

h = hy1 + ihs (and of cours& = x — iy, h = hy — ihs). The limitis

. :v—z'y—l—h—z’hg—(x—z’y) hl—ihg
lim =1

h—0 hi + ihs hg% hi +iho

This limit does not exist; depending on haw— 0 we obtain different an-
swers. For example, ik, = 0 (traveling along ther-axis) the limit is just
limy, 0 h1/h1 = 1, while if h; = 0 (traveling along thej-axis) the limit is
justlimy_,o —ihe/iha = —1. Thus this function isn’t complex differentiable
anywhere, even though it's a fairly straightforward funatto define.

If we continue to argue along these lines, we find that a fonds complex dif-
ferentiable if ther andy dependence is in a very special form, namely everything is
a function ofz = x + iy. In other words, we don’t allow our function to depend on
zZ = x — 1y. If we could depend on both, we could isolate etvhich isz + z) and
y (which is(z — z) /7). We can begin to see why being complex differentiable once
implies that we're complex differentiable infinitely oftamamely because of the very
special dependence anandy. Also, in the plane there’s really only two ways to
approach a point: from above, or from below. In the complexp| the situation is
strikingly different. There are so many ways we can move io-timensions, and
eachpath must give the same answer if we're to be complex difteable. This is
why differentiability means far more for a complex variatiian for a real variable.

To state the needed results from Complex Analysis, we algoimne some ter-
minology from Point Set Topology. In particular, many of theorems below deal
with open sets. We briefly review their definition and give scemamples.
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Definition 1.2.3 (Open set, closed seth subsetl/ of C is an open set if for any
zo € U there’s ad such that whenever — zy| < 6 thenz € U (noted is allowed to
depend ony). A setC is closed if its complement, C \ C, is open.

The following are examples of open setsin

1. Uy = {z:|z] < r} foranyr > 0. This is usually called thepen ball of
radius r centered at the origin.

2. Uy = {z : R(z) > 0}. To see this is open, if; € U, then we can write
20 = o + iyo, With zp > 0. Lettingd = x¢/2, for z = = + iy we see that if
|z — 20| < d then|z — zo| < x0/2, which impliesz > /2 > 0; Us is often
called the opemight half-plane.

For examples of closed sets, consider the following.

1. ¢y = {z: |z] < r}. Note that if we takey, to be any point on the boundary,
then the ball of radiug centered at, will contain points more tham units
from the origin, and thu€’; isn’t open. A little work shows, however, that
is closed (in fact(; is called theclosed ball of radiusr about the origin). We
prove it's closed by showing its complement is open. What eednto do is
show that, given any point in the complement, there’s a shalllabout that
point entirely contained in the complement. | urge you toadeapicture for
the following argument. Ity € C\ C; then|z| > r (as otherwise it would
be insideC,). If we taked < % then after some algebra we’'ll find that if
|z — z0| < dthenz € C\ Cy. ThusC \ C; is open, sd’; is closed.

2. Cy = {z: R(2) > 0}. To see this set isn’'t open, consider any= iy with
y € R. A similar calculation as the one we did fék or C; showsC; is
closed.

For a set that is neither open nor closed, consttler U; U Cs.

We now state two of the most important properties a complextfan could
have. One of the most important results in the subject isttiese two seemingly
very different properties are actually equivalent!

Definition 1.2.4 (Holomorphic, analytic) LetU be an open subset &f, and let f
be a complex function. We sgyis holomorphicon U if f is differentiable at every
pointz € U, and we sayf isanalyticonU if f has a series expansion that converges
and agrees withf on U. This means that for any, € U, for z close tozy we can
choosez,,’s such that

f(z) = D anlz = 20)"
n=0

As alluded to above, saying a function of a complex variabldifferentiable
turns out to implyfar more than saying a function of a real variable is differdsiga
as the following theorem shows us.
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Theorem 1.2.5Let f be a complex function and an open set. Thelf is holo-
morphic onU if and only if f is analytic onU, and the series expansion féris its
Taylor series.

The above theorem is amazing; its result seems to good taibe lamely, as
soon as we knovy is differentiable once, it's infinitely (real) differenti&e andf
agrees with its Taylor series expansion! This is very difgithan what happens in
the case of functions of a real variable. For instance, thetfan

h(z) = 2*sin(1/x) (1.2)

is differentiable once and only once at= 0, and while the functiory(z) from
(@) is infinitely differentiable, the Taylor series exgam only agrees with(z) at
x = 0. Complex analysis is @erydifferent subject than real analysis!

The nexttheorem provides a very nice condition for when ation is identically
zero. It involves the notion of a limit or accumulation poiwhich we define first.

Definition 1.2.6 (Limit or accumulation point) We say is alimit (or anaccumu-
lation) point of a sequencéz,, }22 if there exists a subsequengs,, }7° , converg-
ingtoz.

Let’'s do some examples to clarify the definitions.

=

. If z,, = 1/n, thenO is a limit point.

N

. If z, = cos(wn) then there are two limit points, namelyand—1. (If z,, =
cos(n) theneverypoint in [—1, 1] is a limit point of the sequence, though this
is harder to show.)

3. Ifz, = (14 (—-1)™")™ + 1/n, thenO is a limit point. We can see this by taking
the subsequencgz, zs, 25, 27, . . . }; note the subsequendey, 22, 24, . . . }
diverges to infinity.

4. Letz, denote the number of distinct prime factorsrof Then every positive
integer is a limit point! For example, let's shdwis a limit point. The first five
primes are 2, 3,5, 7 and 11; considér=2-3-5-7-11 = 2310. Consider
the subsequende, zy2, 2y, Zn4, - . . }; asN¥ has exactly 5 distinct prime
factors for eacltk, 5 is a limit point.

5. If z,, = n? then there are no limit points, &isn,, . 2, = .

6. Letz be any odd, positive integer, and set

3z, +1 if z,is odd
Zn+l = . .
Zn /2 if z,, is even.

It's conjecturedthat 1 is always a limit point (and if somg,, = 1, then the
next few terms have to b& 2.1,4,2,1,4,2,1,..., and hence the sequence
cycles). This is the famous: + 1 problem. Kakutani called it a conspiracy to
slow down American mathematics because of the amount ofgignele spent
on this; Erdos said mathematics isn’t yet ready for suchlprob. See?, ?, 7]

for some nice expositions, but be warned that this problembesaddictive!
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We can now state the theorem which, for us, is the most imporésult from
Complex Analysis. It's the basis of the black box results.

Theorem 1.2.7 Let f be an analytic function on an open €éf with infinitely many
Zeroszy, 29, 23, . ... Iflim, , 2, € U, thenf is identically zero orU. In other

words, if a function is zero along a sequencéjinvhose accumulation point is alg
in U, then that function is identically zero .

o

Note the above isery different than what happens in real analysis. Consider
again the function froni(112),
h(z) = 3sin(1/z).

This function is continuous and differentiable. It's zerbemeverr = 1/7n with
n an integer. If we let,, = 1/mn, we see this sequence hass a limit point,
and our function is also zero &t(see Figurd 1I]1). It's clear, however, that this

0.00001%-

Figure 1.1: Plot ofi3 sin(1/x).

function isnotidentically zero. Yet again, we see a stark difference betweal and
complex valued functions. As a nice exercise, show tatn(1/x) is notcomplex
differentiable. Itwill help if you recalt’ = cos §+isin 6, orsin = (e’ —e~%) /2.

1.3 Complex analysis and moment generating func-
tions

We conclude our technical digression by stating a few morg useful facts. The
proof of these requires properties of thaplace transform, which is defined by
(Lf)(s) = [~ e *"f(x)dz. The reason the Laplace transform plays such an im-
portant role in the theory is apparent when we recall the diefimof the moment
generating function of a random variabfewith density:

oo

Mx(t) = E[e'*] = / e f(z)dx;

— 00
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in other words, the moment generating function is the Lapteaensform of the den-
sity evaluated at = —t.

Remember that i’y andGy are the cumulative distribution functions of the
random variableX andY with densitiesf andg, then

We remind the reader of the two important results we assumtibitext (Theorems
??and??), which we restate below. After stating them we discuss th&iofs.

Theorem 1.3.1 Assume the moment generating functidfis(¢) and My (¢) existin
a neighborhood of zero (i.e., there’s sotnguch that both functions exist figt < 6).
If Mx(t) = My (t) in this neighborhood, the®’y (u) = Fy (u) for all u. As the
densities are the derivatives of the cumulative distritrufunctions, we havg = g.

Theorem 1.3.2Let { X; };c; be a sequence of random variables with moment gen-
erating functions\ x, (t). Assume there’s & > 0 such that whent| < § we have
lim; oo Mx,(t) = Mx(t) for some moment generating functidix (¢), and all
moment generating functions convergelfdr< §. Then there exists a unique cumu-
lative distribution functionf” whose moments are determined fréif (¢) and for
all « whereFx (z) is continuouslim; o, Fx, (z) = Fx ().

The proof of these theorems follow from results in complexigsis, specifically
the Laplace and Fourier inversion formulas. To give an examapto how the results
from complex analysis allow us to prove results such as thesayive most of the
details in the proof of the next theorem. Weliberatelydo not try and prove the
following result in as great generality as possible!
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Theorem 1.3.3Let X andY be two continuous random variables @i co) with
continuous densitieg and g, all of whose moments are finite and agree. Suppose
further that:

1. There is som€ > 0 such that for allc < C, e(“*D?f(et) andelctDig(e?)
are Schwartz functions (see Definiti®f). This isn't a terribly restrictive as-
sumption;f and g need to have decay in order for all moments to exist and
be finite. As we're evaluating andg at ¢! and nott, there’s enormous decay
here. The meat of the assumption is tlfiadnd g are infinitely differentiable
and their derivatives decay.

2. The (not necessarily integral) moments

o0 o0
i) = [ e f@ds ad () = [ amglelds
0 0
agree for some sequence of non-negative real numbers> , which has a
finite accumulation point (i.elim,,_, o, 7, = r < 00).

Thenf = g (in other words, knowing all these moments uniquely detegmihe
probability density).

Proof: We sketch the proof, which is long and sadly a bit technic&mBmber the
purpose of this proof is to highlight why our needed resuttsif Complex Analysis
are true. Feel free to skim or skip the proof, but we urge yoreta the example at
the end of this section, where we return to the two densitiesdre causing us so
much heartache. Lét(z) = f(x) — g(z), and define

Note thatA(z) exists for allz with real part non-negative. To see this,Jét) denote
the real part o, and letk be the unique non-negative integer withk< R(z) < k+1.
Thenz®* < zF + 5+, and

|A(2)]

IN

/ooo 2 (| f(@)] + |g(@)]] da

IN

|G et s+ [ et g = 2+ 2

Results from analysis now imply thal(z) exists for allz. The key point is thatd
is also differentiable. Interchanging the derivative amglintegration (which can be
justified; see Theorera?), we find

Alz) = /000 2 (log z)h(z)dx.

To show thatd’(z) exists, we just need to show this integral is well-defineder€h
are only two potential problems with the integral, namelyewh — oo and when
z — 0. Forz large, z*logz < 2®(®)*! and thus the rapid decay df gives
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|/ a*(log z)h(z)dx| < co. Foraz near0, h(xz) looks like h(0) plus a small er-
ror (remember we're assuming and g are continuous); thus there’s@ so that
|h(z)| < Cfor|z| < 1. Note

1
lim
e—0 e

1
< 1im1/ 1-(=logz) - Cdzx.

e—0

/OO x*(log z)h(x)dx
0

The anti-derivative ofog z is zlogz — z, andlim._,o(eloge — ¢) = 0. This is
enough to prove that this integral is bounded, and thus fresults in analysis we
getA’(z) exists.

We (finally!) use our results from complex analysis. Ass differentiable once,
it's infinitely differentiable and it equals its Taylor sesiforz with (z) > 0. There-
fore A is an analytic function which is zero for a sequence,g$ with an accumula-
tion point, and thus it's identically zero. This is spectacy- initially we only knew
A(z) was zero ifz was a positive integer or if was in the sequende-,, }; we now
know it's zero for allz with ®(z) > 0. This remarkable conclusion comes from
complex analysis; it's here that we use it.

We change variables, and replacavith ¢! and dz with e‘dt. The range of
integration is now-oo to co, and we seb(t)dt = h(e!)etdt. We now have

Az) = /°° e#p(t)dt = 0.

— 00

Choosingz = ¢ + 27iy with ¢ less than th€' from our hypotheses gives

A(c+ 2miy) = /OO e [e'p(t)] dt = 0.

— 00

Our assumptions imply thath(t) is a Schwartz function, and thus it has a unique
inverse Fourier transform. As we know this transformis zitimplies thateth(¢) =
0,0rh(z) =0, 0r f(z) = g(x). O

We needed the analysis at the end on the inverse Fouriefdramas our goal
is to show thatf(z) = g(z), not thatA(z) = 0. It seems absurd that(z) could
identically vanish withouff = g, but we must rigorously show this.

What if we lessen our restrictions ghrandg; perhaps one of them isn’t continu-
ous? Perhaps there’s a unique continuous probabilityiloligion attached to a given
sequence of moments such as in the above theorem, but if ewe @tin-continuous
distributions there could be additional possibilities.isTtopic is beyond the scope
of this book, requiring more advanced results from analyss/ever, we wanted to
point out where the dangers lie, where we need to be careful.

After proving Theoreri 1.313, it's natural to go back to the@ tlensities that are
causing so much trouble, namely (s€8)j

1 2
_ —(log= x)/2
X = — €
fil=) V2ma?

falx) = fi(z) [l +sin(27logx)].
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We know these two densities have the same integral moméeisit" moments are
¥ /2 fork a non-negative integer). These functions have the coresatyd note

e—t2/2
e(c+1)tf1(et) — e(c+l)t.

Voret’

which decays fast enough for anyo satisfy the assumptions of Theorem 11.3.3. As
these two densities are not the sarsemecondition must be violated. The only
condition left to check is whether or not we have a sequenarinfbers{r,, }°2 ,
with an accumulation point > 0 such that the-,"" moments agree. Using more
results from Complex Analysis (specifically, contour irggpn), we can calculate
the (a + ib)" moments. We find

(a + ib)™ moment of f; is elatib)®/2
and

(a + ib)™ moment of f; is elatib)’/2 4 % (e(“+i(b*2”))2/2 - e(“”(b““)fﬂ) .

While these moments agree for= 0 anda a positive integer, there’s no sequence of
real moments having an accumulation point where they agi@eee this, note that
whenb = 0 thea moment off, is

ea2/2 + e(a72i7'r)2/2 (1 _ e4ia7‘r) , (13)
and this is never zero unlessis a half-integer (i.e.a = k/2 for some integer
k). In fact, the reason we wrote (1.3) as we did was to highligktfact that it's
only zero whery is a half-integer. Exponentials of real or complex numbees a
never zero, and thus the only way this can vanish is # ¢**". Recalling that
e’ = cosf + isin6, we see that the vanishing of ta# moment is equivalent to
1 — cos(4ma) — isin(4ma) = 0; the only way this can happen isif= k/2 for some
k. If this happens, the cosine termis 1 and the sine term is 0.

1.4 Exercises

Problem 1.4.1 Let f(z) = 3 sin(1/z) for z # 0 and setf(0) = 0. (a) Show that

f is differentiable once when viewed as a function of a reaialde, but that it is not
differentiable twice. (b) Show thdtis not differentiable when viewed as a function
of a complex variable; it might be useful to note thatn u = (e — =) /2i.

Problem 1.4.2 If we're told that all the moments of are finite andf is infinitely
differentiable, must there be sor@esuch that for allc < C' we have=(cTDt f(et) is
a Schwartz function?
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